
6 CALIBRATION RESULTS

6.1 MECHANICAL DIMENSIONS

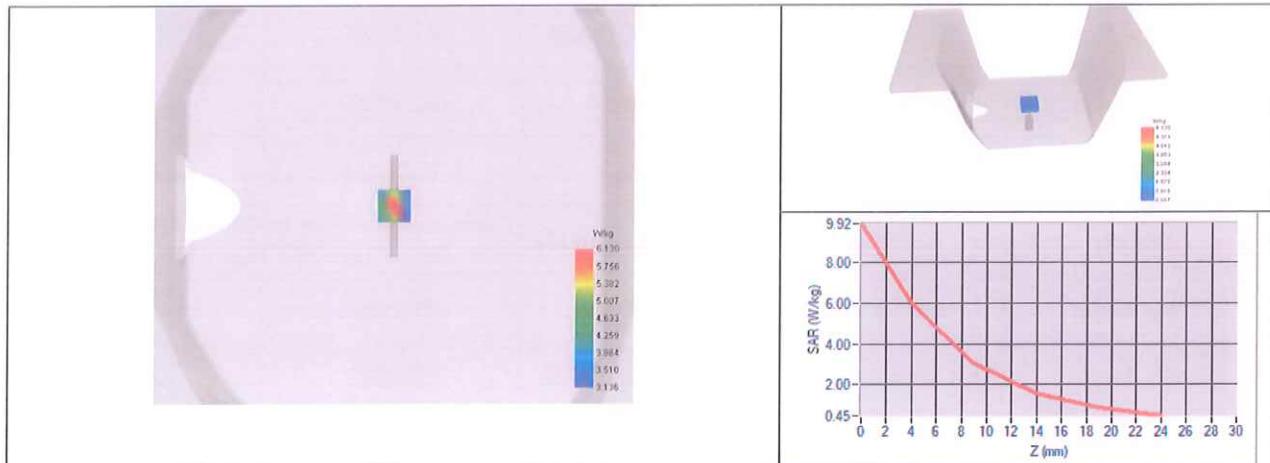
L mm		h mm		d mm	
Measured	Required	Measured	Required	Measured	Required
51.74	51.50 +/- 2%	30.50	30.40 +/- 2%	3.60	3.60 +/- 2%

6.2 S11 PARAMETER

6.2.1 S11 parameter in Head Liquid

Frequency (MHz)	S11 parameter (dB)	Requirement (dB)	Impedance
2450	-24.20	-20	$46.4\Omega + 4.7j\Omega$

6.3 SAR


The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

6.3.1 SAR with Head Liquid

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: ϵ_s' : 42.8 sigma : 1.87
Distance between dipole center and liquid	10.0 mm
Area scan resolution	$dx=8\text{mm}/dy=8\text{mm}$
Zoon Scan Resolution	$dx=5\text{mm}/dy=5\text{mm}/dz=5\text{mm}$
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency	1g SAR (W/kg)			10g SAR (W/kg)		
	Measured	Measured normalized to 1W	Target normalized to 1W	Measured	Measured normalized to 1W	Target normalized to 1W
2450 MHz	5.33	53.30	52.40	2.51	25.11	24.00

7 LIST OF EQUIPMENT

Equipment Summary Sheet

Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No cal required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Calipers	Mitutoyo	SN 0009732	11/2022	11/2025
Reference Probe	MVG	3523-EPGO-429	11/2023	11/2024
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2024
Power Meter	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2021	06/2024

COMOSAR E-Field Probe Calibration Report

Ref : ACR.170.9.24.BES.A

**WORLD STANDARDIZATION CERTIFICATION &
TESTING GROUP CO .,LTD**
**BLOCK A, BAO SHI SCIENCE PARK, BAO SHI ROAD, BAO'AN
DISTRICT, SHENZHEN 518108, P.R. CHINA**
MVG COMOSAR DOSIMETRIC E-FIELD PROBE
SERIAL NO.: 3523-EPGO-428

Calibrated at MVG
Z.I. de la pointe du diable
Technopôle Brest Iroise – 295 avenue Alexis de Rochon
29280 PLOUZANE - FRANCE

Calibration date: 06/18/2024



Accreditations #2-6789
Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed at MVG, using the CALIPROBE test bench, for use with a MVG COMOSAR system only. The test results covered by accreditation are traceable to the International System of Units (SI).

	<i>Name</i>	<i>Function</i>	<i>Date</i>	<i>Signature</i>
<i>Prepared by :</i>	Jérôme Le Gall	Measurement Responsible	6/18/2024	
<i>Checked & approved by:</i>	Jérôme Luc	Technical Manager	6/19/2024	
<i>Authorized by:</i>	Géraldine TOUTAIN	Quality Manager	6/20/2024	

	<i>Customer Name</i>
<i>Distribution :</i>	World Standardization Certification & Testing Group Co .,Ltd

<i>Issue</i>	<i>Name</i>	<i>Date</i>	<i>Modifications</i>
A	Jérôme Le Gall	6/18/2024	Initial release

TABLE OF CONTENTS

1	Device Under Test	4
2	Product Description	4
2.1	General Information	4
3	Measurement Method	4
3.1	Sensitivity	4
3.2	Linearity	5
3.3	Isotropy	5
3.4	Boundary Effect	5
3.5	Probe Modulation Response	6
4	Measurement Uncertainty	6
5	Calibration Results	6
5.1	Calibration in air	6
5.2	Calibration in liquid	7
6	Verification Results	8
7	List of Equipment	9

1 DEVICE UNDER TEST

Device Under Test	
Device Type	COMOSAR DOSIMETRIC E FIELD PROBE
Manufacturer	MVG
Model	SSE2
Serial Number	3523-EPGO-428
Product Condition (new / used)	Used
Frequency Range of Probe	0.15 GHz-7.5GHz
Resistance of Three Dipoles at Connector	Dipole 1: R1=0.205 MΩ Dipole 2: R2=0.207 MΩ Dipole 3: R3=0.216 MΩ

2 PRODUCT DESCRIPTION

2.1 GENERAL INFORMATION

MVG's COMOSAR E field Probes are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards.

Figure 1 – MVG COMOSAR Dosimetric E field Probe

Probe Length	330 mm
Length of Individual Dipoles	2 mm
Maximum external diameter	8 mm
Probe Tip External Diameter	2.5 mm
Distance between dipoles / probe extremity	1 mm

3 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their effect. All calibrations / measurements performed meet the fore-mentioned standards.

3.1 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards for frequency range 600-7500MHz and using the calorimeter cell method (transfer method) as outlined in the standards for frequency 150-450 MHz.

3.2 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

3.3 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 to 360 degrees in 15-degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°–180°) in 15° increments. At each step the probe is rotated about its axis (0°–360°).

3.4 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

The boundary effect uncertainty can be estimated according to the following uncertainty approximation formula based on linear and exponential extrapolations between the surface and $d_{be} + d_{step}$ along lines that are approximately normal to the surface:

$$\text{SAR}_{\text{uncertainty}} [\%] = \delta \text{SAR}_{be} \frac{(d_{be} + d_{step})^2}{2d_{step}} \frac{(e^{-d_{be}/(\delta/2)})}{\delta/2} \quad \text{for } (d_{be} + d_{step}) < 10 \text{ mm}$$

where

$\text{SAR}_{\text{uncertainty}}$	is the uncertainty in percent of the probe boundary effect
d_{be}	is the distance between the surface and the closest <i>zoom-scan</i> measurement point, in millimetre
Δ_{step}	is the separation distance between the first and second measurement points that are closest to the phantom surface, in millimetre, assuming the boundary effect at the second location is negligible
δ	is the minimum penetration depth in millimetres of the head tissue-equivalent liquids defined in this standard, i.e., $\delta \approx 14$ mm at 3 GHz;
δSAR_{be}	in percent of SAR is the deviation between the measured SAR value, at the distance d_{be} from the boundary, and the analytical SAR value.

The measured worst case boundary effect SAR uncertainty [%] for scanning distances larger than 4mm is 1.0% Limit ,2%).

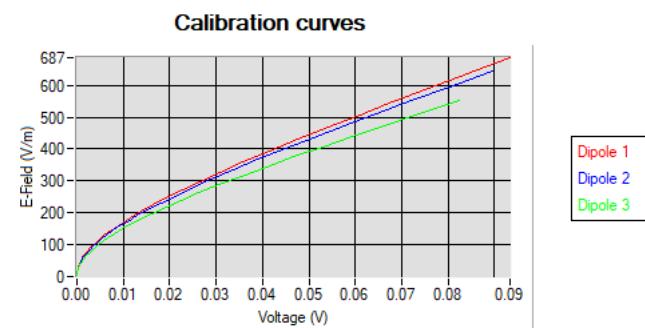
3.5 PROBE MODULATION RESPONSE

MVG's probe were evaluated experimentally with various modulated signal and the deviation from CW response were found neglectable in the used power range of the probe. So the correction to taking into account the linearization parameters for different modulation is null, therefore the CW factor given in this report can be used whatever the measured modulation.

4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty associated with a SAR probe calibration using the waveguide or calorimetric cell technique depending on the frequency.

The estimated expanded uncertainty ($k=2$) in calibration for SAR (W/kg) is $+/-11\%$ for the frequency range 150-450MHz.


The estimated expanded uncertainty ($k=2$) in calibration for SAR (W/kg) is $+/-14\%$ for the frequency range 600-7500MHz.

5 CALIBRATION RESULTS

Ambient condition	
Liquid Temperature	20 $+/- 1$ °C
Lab Temperature	20 $+/- 1$ °C
Lab Humidity	30-70 %

5.1 CALIBRATION IN AIR

The following curve represents the measurement in waveguide of the voltage picked up by the probe toward the E-field generated inside the waveguide.

From this curve, the sensitivity in air is calculated using the below formula.

$$E^2 = \sum_{i=1}^3 \frac{V_i (1 + V_i / DCP_i)}{Norm_i}$$

where

V_i =voltage readings on the 3 channels of the probe

DCP_i =diode compression point given below for the 3 channels of the probe

$Norm_i$ =dipole sensitivity given below for the 3 channels of the probe

Normx dipole 1 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normy dipole 2 ($\mu\text{V}/(\text{V}/\text{m})^2$)	Normz dipole 3 ($\mu\text{V}/(\text{V}/\text{m})^2$)
0.37	0.39	0.47

DCP dipole 1 (mV)	DCP dipole 2 (mV)	DCP dipole 3 (mV)
105	116	111

5.2 CALIBRATION IN LIQUID

The calorimeter cell or the waveguide is used to determine the calibration in liquid using the formula below.

$$ConvF = \frac{E_{liquid}^2}{E_{air}^2}$$

The E-field in the liquid is determined from the SAR measurement according to the below formula.

$$E_{liquid}^2 = \frac{\rho SAR}{\sigma}$$

where

σ =the conductivity of the liquid

ρ =the volumetric density of the liquid

SAR=the SAR measured from the formula that depends on the setup used. The SAR formulas are given below

For the calorimeter cell (150-450 MHz), the formula is:

$$SAR = c \frac{dT}{dt}$$

where

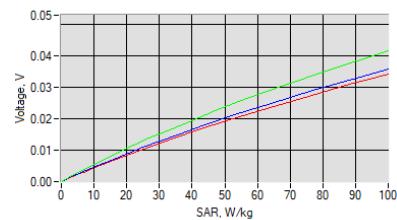
c =the specific heat for the liquid

dT/dt =the temperature rises over the time

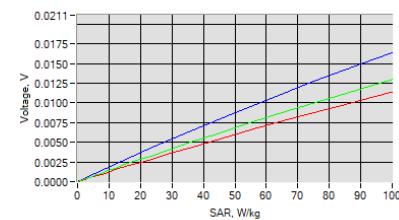
For the waveguide setup (600-75000 MHz), the formula is:

$$SAR = \frac{4P_W}{ab\delta} e^{-\frac{2z}{\delta}}$$

where

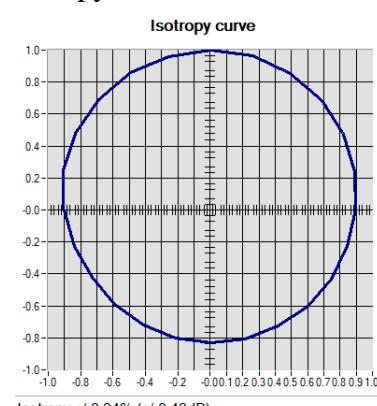
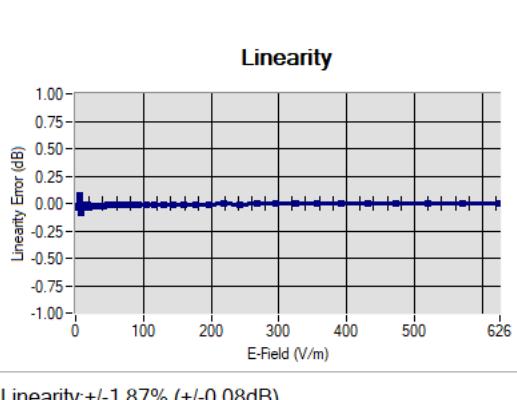

a=the larger cross-sectional of the waveguide
 b=the smaller cross-sectional of the waveguide
 δ =the skin depth for the liquid in the waveguide
 P_W =the power delivered to the liquid

The below table summarize the ConvF for the calibrated liquid. The curves give examples for the measured SAR depending on the voltage in some liquid.


Liquid	Frequency (MHz*)	ConvF
HL2300	2300	3.20
BL2300	2300	3.55
HL3500	3500	2.63
BL3500	3500	2.81
HL3700	3700	2.60
BL3700	3700	2.90
HL7000	7000	2.25

(* Frequency validity is +/-50MHz below 600MHz, +/-100MHz from 600MHz to 6GHz and +/-700MHz above 6GHz

SAR @ HL2300

SAR @ HL7000

6 VERIFICATION RESULTS

The figures below represent the measured linearity and axial isotropy for this probe. The probe specification is +/-0.2 dB for linearity and +/-0.15 dB for axial isotropy.

7 LIST OF EQUIPMENT

Equipment Summary Sheet				
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date
CALIPROBE Test Bench	Version 2	NA	Validated. No cal required.	Validated. No cal required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2021	08/2024
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	07/2022	07/2025
Multimeter	Keithley 2000	4013982	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	03/2022	03/2025
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2021	06/2026
USB Sensor	Keysight U2000A	SN: MY62340002	10/2022	10/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Fluoroptic Thermometer	LumaSense Luxtron 812	94264	09/2022	09/2025
Coaxial cell	MVG	SN 32/16 COAXCELL_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG2_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G600_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG4_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_0G900_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG6_1	Validated. No cal required.	Validated. No cal required.

Liquid transition	MVG	SN 32/16 WGLIQ_1G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG8_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_1	Validated. No cal required.	Validated. No cal required.
Waveguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated. No cal required.	Validated. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44235403	02/2024	02/2027

ANNEX D: System Check Results

Plot 1 System Performance Check at 6500 MHz TSL Measurement Report for Device, CW, Channel 0 (6500.0 MHz)

Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 250.0 x 15.0	/	Laptop Computer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	5.00		CW, 0--	6500.0, 0	5.95	6.08	34.0

Hardware Setup


Phantom	TSL, Measured	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt) - 2072	HBBL-600-10000	EX3DV4 – SN7698, 2024-06-04	DAE4 Sn1317, 2024-09-13

Scans Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	51.0 x 85.0	22.0 x 22.0 x 22.0
Grid Steps [mm]	8.5 x 8.5	3.4 x 3.4 x 1.4
Sensor Surface [mm]	3.0	1.4
Graded Grid	n/a	Yes
Grading Ratio	n/a	1.4
MAIA	N/A	N/A
Surface Detection	VMS + 6p	All points
Scan Method	Measured	Measured

Measurement Results

	Area Scan	Zoom Scan
Date	2024-12-20	2024-12-20
psSAR1g [W/Kg]	23.6	30.4
psSAR10g [W/Kg]	5.14	5.79
Power Drift [dB]	-0.02	-0.09
Power Scaling	Disabled	Disabled
Scaling Factor [dB]		
TSL Correction	No correction	No correction
M2/M1 [%]		55.2
Dist 3dB Peak [mm]		4.8

Plot 2 Measurement Report for Device, UID 0 -, Channel 0 (6500.000MHz)**Device under Test Properties**

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 250.0 x 15.0	/	Laptop Computer

Exposure Conditions

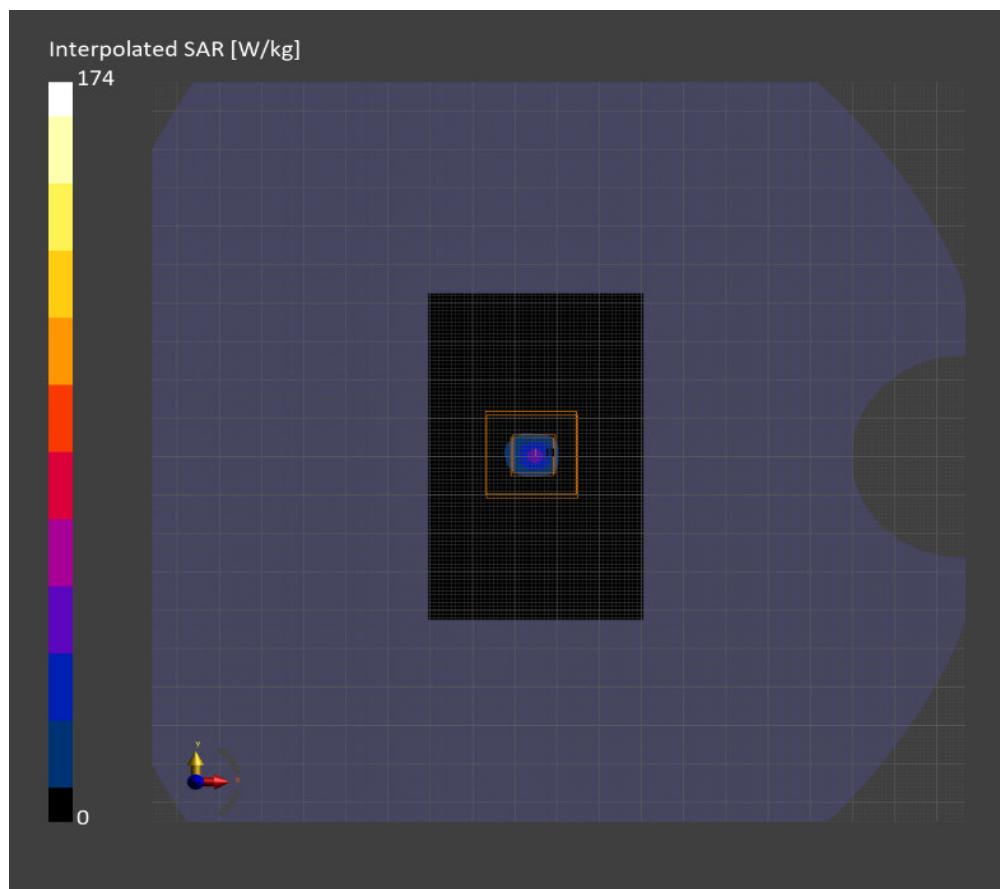
Phantom Section, TSL	Position, Test Distance [mm]	Band UID	Group, Channel Number	Frequency [MHz], Channel	Conversion Factor	TSL Conductivity	TSL Permittivity
Flat, HSL	5.00	CW, 0--		6500.000, 0	5.85	6.08	34.0

Hardware Setup

Phantom	TSI, Measured	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt) - 2072	HBBL-600-10000	EX3DV4 – SN7698, 2024-06-04	DAE4 Sn1317, 2024-09-13

Scan Setup

Scan Setup			Measurement Results		
	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	51.0 x 85.0	22.0 x 22.0 x 22.0	Date	2024-11-28	2024-11-28
Grid Steps [mm]	8.5 x 8.5	3.4 x 3.4 x 1.4	psSAR1g [W/kg]	24.7	28.1
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	4.78	5.25
Graded Grid	N/A	Yes	psAPD (1.0cm ² , sq) [W/m ²]		281
Grading Ratio	N/A	1.4	psAPD (4.0cm ² , sq) [W/m ²]		128
MAIA	N/A	N/A	Power Drift [dB]	-0.02	0.01
Surface Detection	VMS + 6p	VMS + 6p	Power Scaling	Disabled	Disabled
Scan Method	Measured	Measured	Scaling Factor [dB]		
			TSL Correction	No correction	No correction
			M2/M1 [%]		52.6
			Dist 3dB Peak [mm]		4.8


Warning(s) / Error(s)

Details Area Scan

Zoom Scan

Warning(s)

Error(s)

Plot 3 Measurement Report for Device, BACK, Validation band, CW, Channel 10000 (10000.0 MHz)

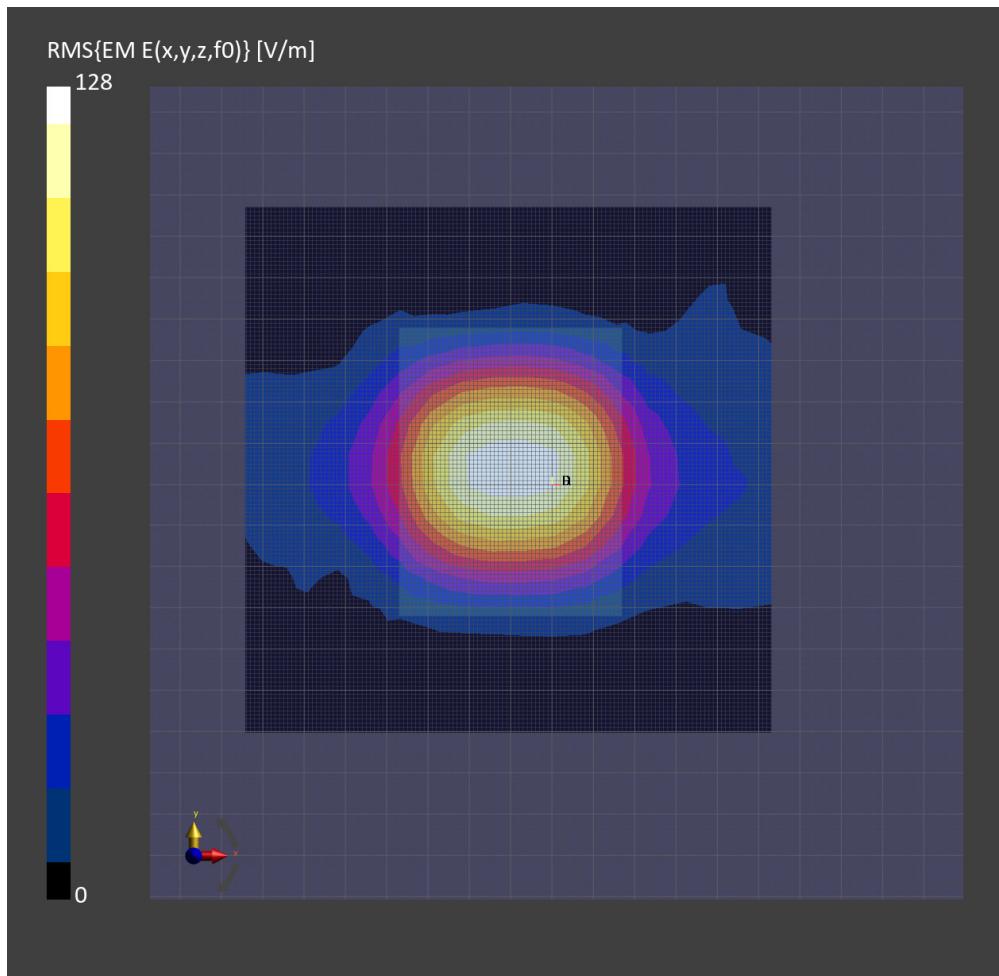
Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 250.0 x 15.0	/	Laptop Computer

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G	BACK, 10.00	Validation band	CW, 0--	10000.0, 10000	1.0

Hardware Setup


Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave - xxxx	Air -	EUmmWV4 - SN9642_F1-55GHz, 2024-07-10	DAE4 Sn1317, 2024-09-13

Scans Setup

Scan Type	5G Scan
Grid Extents [mm]	120.0 x 120.0
Grid Steps [lambda]	0.25 x 0.25
Sensor Surface [mm]	10.0
MAIA	Y

Measurement Results

Scan Type	5G Scan
Date	2024-12-20
Avg. Area [cm ²]	1.00
psPDn+ [W/m ²]	51.2
psPDtot+ [W/m ²]	51.3
psPDmod+ [W/m ²]	51.6
E _{max} [V/m]	126
Power Drift [dB]	0.03

ANNEX E: Highest Graph Results

Plot 4 Measurement Report for Device, BACK, U-NII-7, IEEE 802.11ax (40MHz, MCS0, 90pc duty cycle), Channel 187 (6885.000 MHz)

Device Under Test Properties

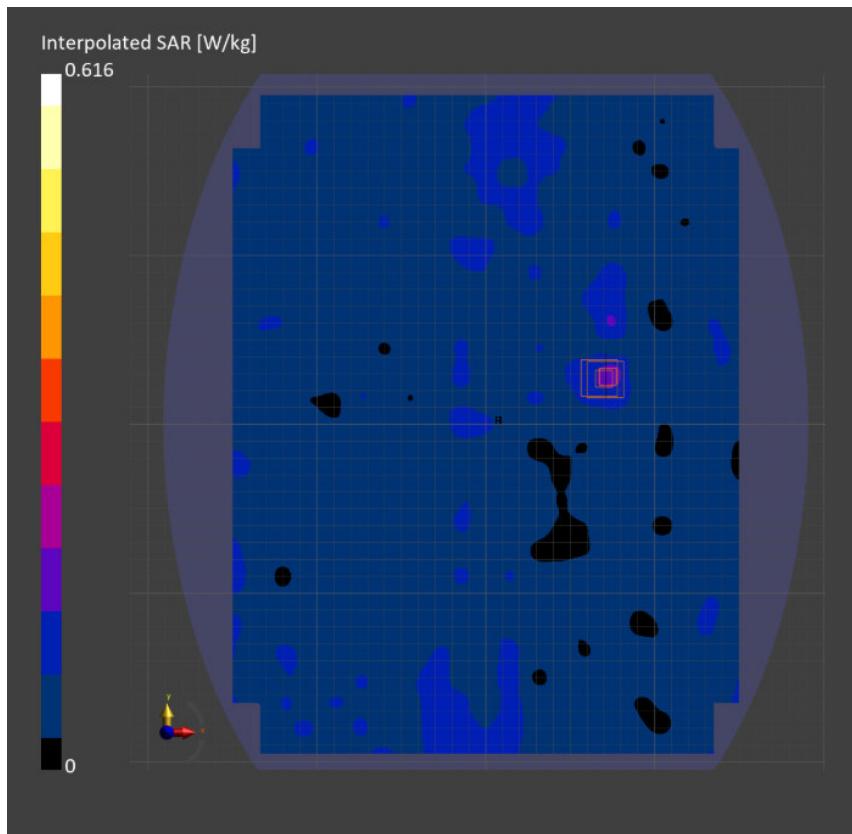
Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 250.0 x 15.0	/	Laptop Computer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	BACK, 0.00	U-NII-7	WLAN, 10695-AAC	6885.000, 187	5.51	6.69	33.2

Hardware Setup

Phantom	TSL, Date	Measured	Probe, Calibration Date	DAE, Date	Calibration
ELI V8.0 (20deg probe tilt) - xxxx	HBBL-600-10000	EX3DV4 – SN7698, 2024-06-04	DAE4	Sn1317, 2024-09-13	


Scans Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	300.0 x 390.0	24.0 x 24.0 x 24.0
Grid Steps [mm]	15.0 x 15.0	3.4 x 3.4 x 1.4
Sensor Surface [mm]	3.0	1.4
Graded Grid	N/A	Yes
Grading Ratio	N/A	1.4
MAIA	Y	Y
Surface Detection	VMS + 6p	VMS + 6p
Scan Method	Measured	Measured

Measurement Results

	Area Scan	Zoom Scan
Date	2024-12-20	2024-12-20

psSAR1g [W/Kg]	0.154	0.096
psSAR10g [W/Kg]	0.062	0.016
Power Drift [dB]	0.01	0.01
Power Scaling	Disabled	Disabled
Scaling Factor [dB]		
TSL Correction	No correction	No correction
M2/M1 [%]		47.3
Dist 3dB Peak [mm]		6.9

Plot 5 Measurement Report for Device, BACK, U-NII-5, IEEE 802.11ax (40MHz, MCS0, 90pc duty cycle), Channel 43 (6165.0 MHz)

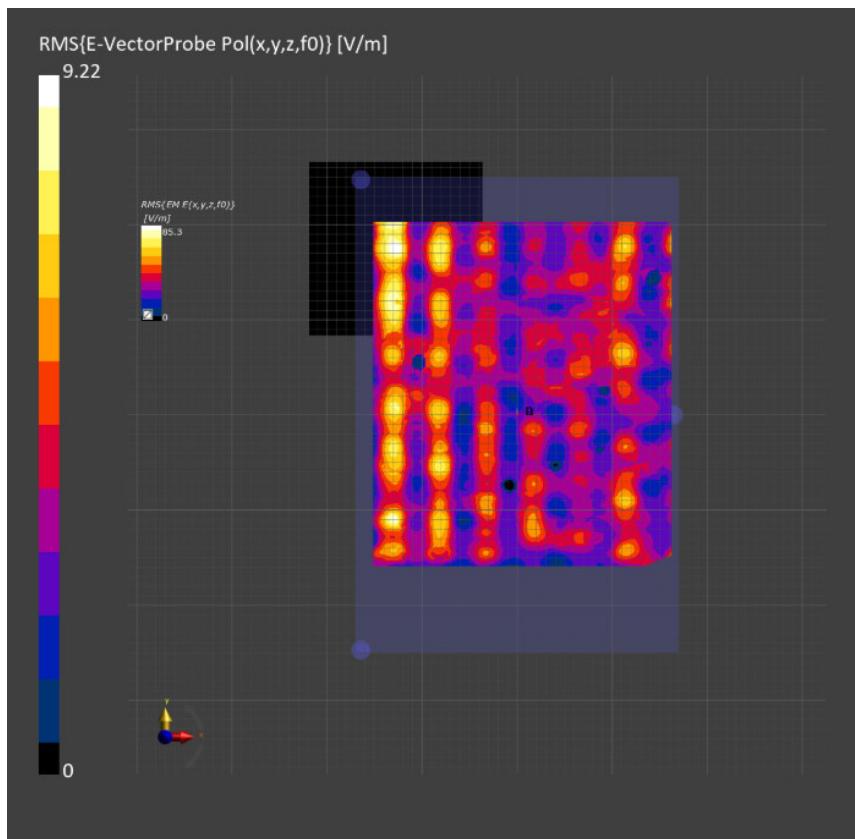
Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	300.0 x 260.0 x 15.0	/	Laptop Computer

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G	BACK, 2.00	U-NII-5	WLAN, 10695-AAC	6165.0, 43	1.0

Hardware Setup


Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave xxxx	- Air -	EUmmWV4 - SN9642_F1-55GHz, 2024-07-10	DAE4 Sn1317, 2024-09-13

Scans Setup

Scan Type	5G Scan
Grid Extents [mm]	97.3 x 97.3
Grid Steps [lambda]	0.003 x 0.003
Sensor Surface [mm]	2.0
MAIA	Y

Measurement Results

Scan Type	5G Scan
Date	2024-12-20
Avg. Area [cm ²]	4.00
psPDn+ [W/m ²]	1.05
psPDtot+ [W/m ²]	2.39
psPDmod+ [W/m ²]	9.44
E _{max} [V/m]	85.3
Power Drift [dB]	0.038

ANNEX D: System Check Results

Plot 1 System Performance Check at 6500 MHz TSL Measurement Report for Device, CW, Channel 0 (6500.0 MHz)

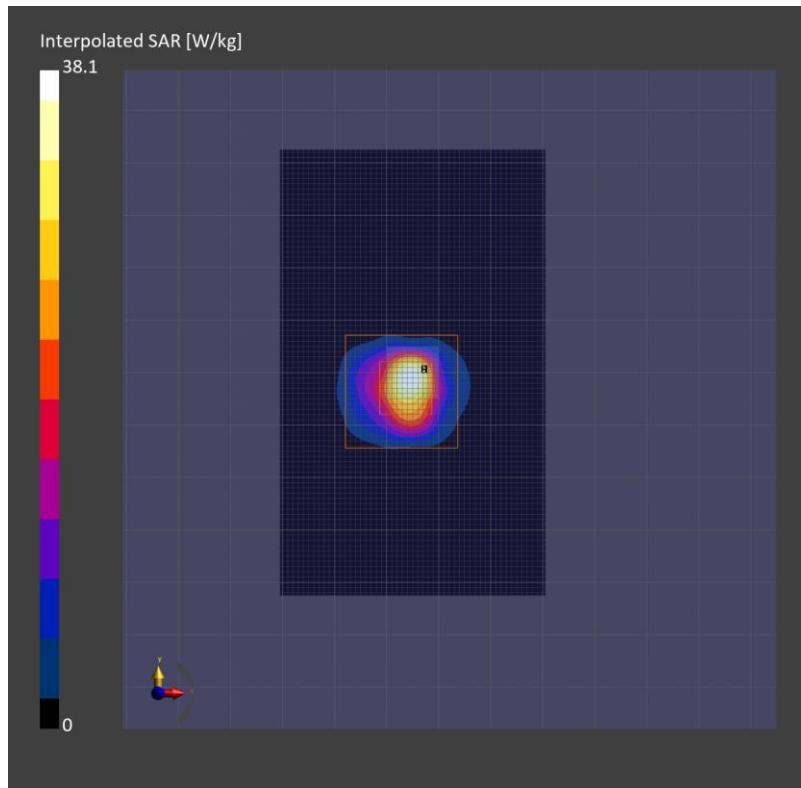
Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 250.0 x 15.0	/	Laptop Computer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	5.00		CW, 0--	6500.0, 0	5.95	6.08	34.0

Hardware Setup


Phantom	TSL, Measured	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt) - 2072	HBBL-600-10000	EX3DV4 – SN7698, 2024-06-04	DAE4 Sn1317, 2024-09-13

Scans Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	51.0 x 85.0	22.0 x 22.0 x 22.0
Grid Steps [mm]	8.5 x 8.5	3.4 x 3.4 x 1.4
Sensor Surface [mm]	3.0	1.4
Graded Grid	n/a	Yes
Grading Ratio	n/a	1.4
MAIA	N/A	N/A
Surface Detection	VMS + 6p	All points
Scan Method	Measured	Measured

Measurement Results

	Area Scan	Zoom Scan
Date	2024-11-28	2024-11-28
psSAR1g [W/Kg]	23.6	30.4
psSAR10g [W/Kg]	5.14	5.79
Power Drift [dB]	-0.02	-0.09
Power Scaling	Disabled	Disabled
Scaling Factor [dB]		
TSL Correction	No correction	No correction
M2/M1 [%]		55.2
Dist 3dB Peak [mm]		4.8

Plot 2 Measurement Report for Device, UID 0 -, Channel 0 (6500.000MHz)

Device under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 250.0 x 15.0	/	Laptop Computer

Exposure Conditions

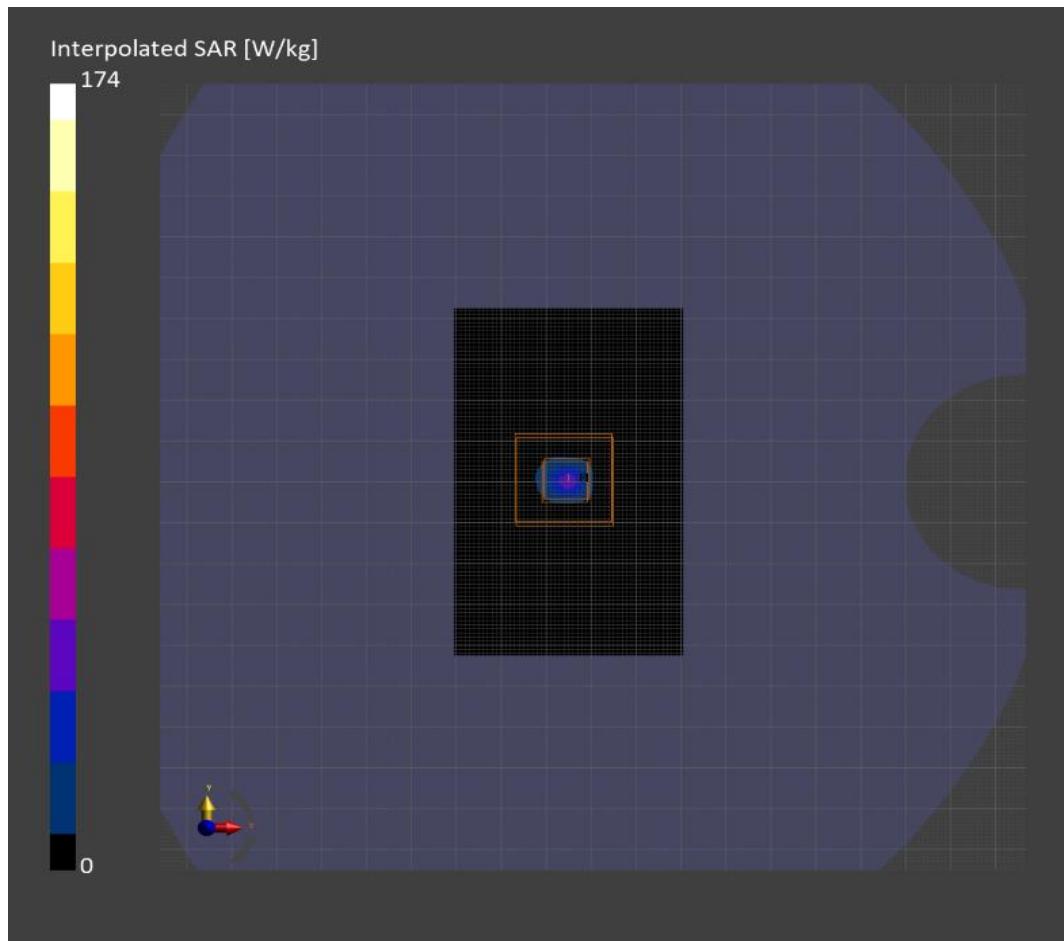
Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL	TSL Conductivity [S/m]	Permittivity
Flat, HSL	5.00	CW, 0--		6500.000, 0	5.85	6.08	34.0	

Hardware Setup

Phantom	TSL, Measured	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt) - 2072	HBBL-600-10000	EX3DV4 – SN7698, 2024-06-04	DAE4 Sn1317, 2024-09-13

Scan Setup

	Area Scan	Zoom Scan		Area Scan	Zoom Scan
Grid Extents [mm]	51.0 x 85.0	22.0 x 22.0 x 22.0	Date	2024-06-05	2024-06-05
Grid Steps [mm]	8.5 x 8.5	3.4 x 3.4 x 1.4	psSAR1g [W/kg]	24.7	28.1
Sensor Surface [mm]	3.0	1.4	psSAR10g [W/kg]	4.78	5.25
Graded Grid	N/A	Yes	psAPD (1.0cm ² , sq)		281
Grading Ratio	N/A	1.4	[W/m ²]		
MAIA	N/A	N/A	psAPD (4.0cm ² , sq)		128
Surface Detection	VMS + 6p	VMS + 6p	[W/m ²]		
Scan Method	Measured	Measured	Power Drift [dB]	-0.02	0.01
			Power Scaling	Disabled	Disabled
			Scaling Factor [dB]		
			TSL Correction	No correction	No correction
			M2/M1 [%]		52.6
			Dist 3dB Peak [mm]		4.8


Warning(s) / Error(s)

Details Area Scan

Zoom Scan

Warning(s)

Error(s)

Plot 3 Measurement Report for Device, BACK, Validation band, CW, Channel 10000 (10000.0 MHz)

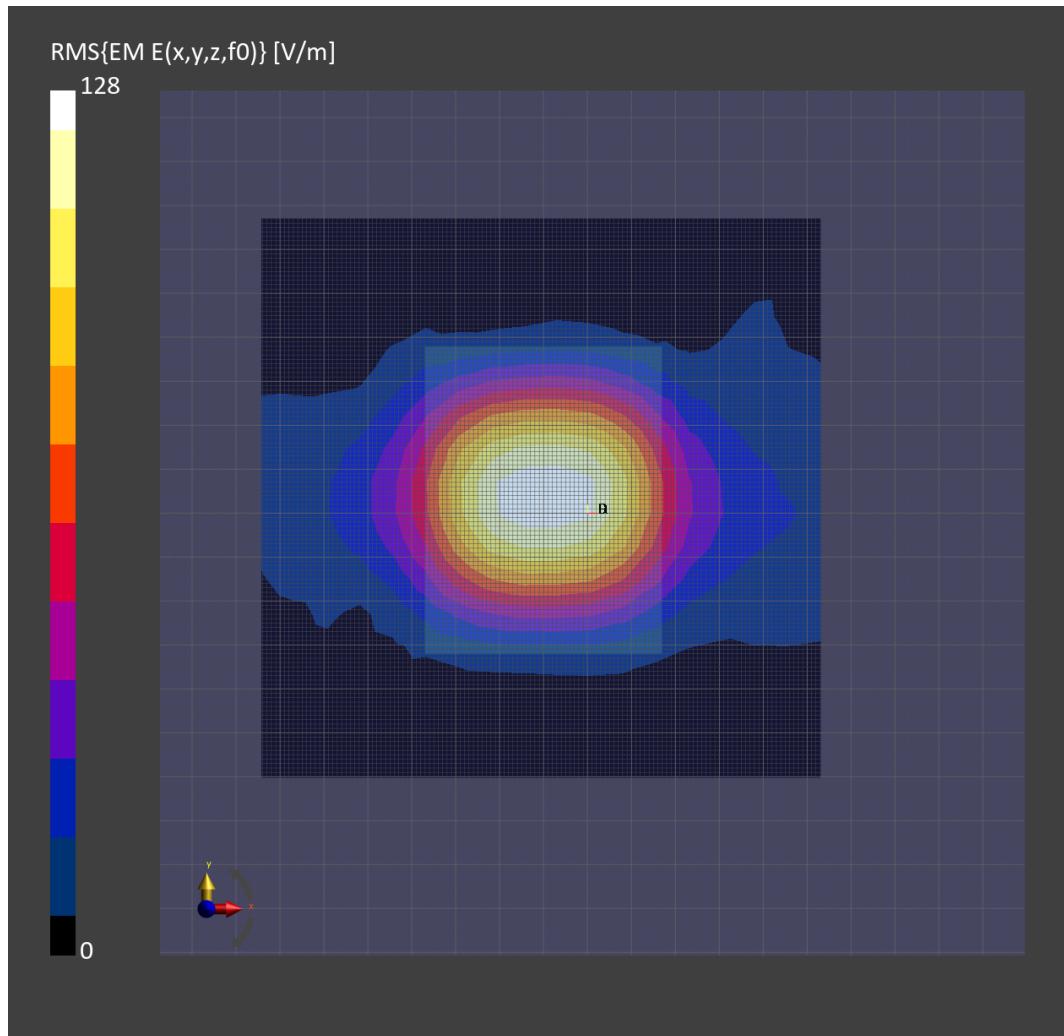
Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 250.0 x 15.0	/	Laptop Computer

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G	BACK, 10.00	Validation band	CW, 0--	10000.0, 10000	1.0

Hardware Setup


Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave - xxxx	Air -	EUmmWV4 - SN9642_F1-55GHz, 2024-07-10	DAE4 Sn1317, 2024-09-13

Scans Setup

Scan Type	5G Scan
Grid Extents [mm]	120.0 x 120.0
Grid Steps [lambda]	0.25 x 0.25
Sensor Surface [mm]	10.0
MAIA	Y

Measurement Results

Scan Type	5G Scan
Date	2024-06-05
Avg. Area [cm ²]	1.00
psPDn+ [W/m ²]	51.2
psPDTot+ [W/m ²]	51.3
psPDmod+ [W/m ²]	51.6
E _{max} [V/m]	126
Power Drift [dB]	0.03

ANNEX E: Highest Graph Results

Plot 4 Measurement Report for Device, BACK, U-NII-7, IEEE 802.11ax (80MHz, MCS0, 90pc duty cycle), Channel 135 (6625.000 MHz)

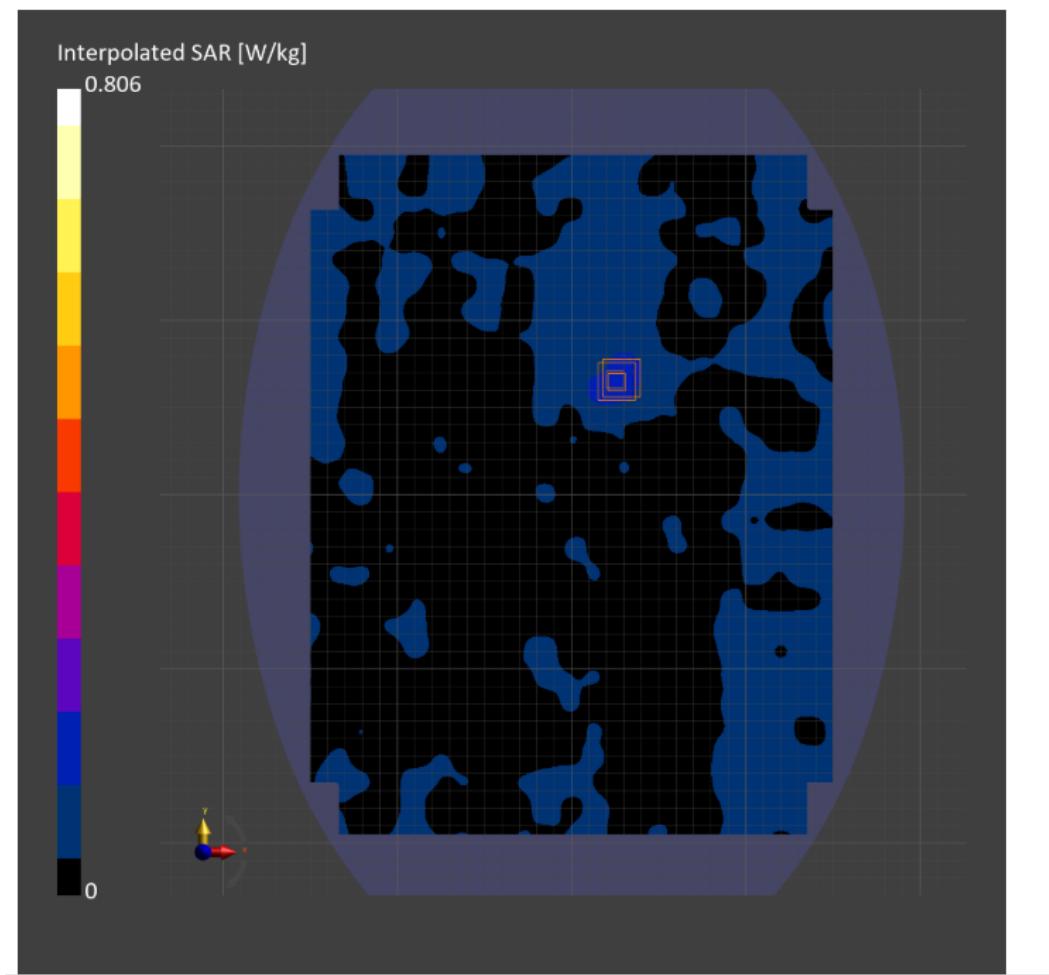
Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 250.0 x 15.0		Laptop Computer

Exposure Conditions

Phantom Section, TSL	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor	TSL Conductivity [S/m]	TSL Permittivity
Flat, HSL	BACK, 0.00	U-NII-7	WLAN, 10719-AAC	6625.000, 135	5.51	6.08	34.0

Hardware Setup


Phantom	TSL, Measured	Probe, Calibration Date	DAE, Calibration Date
Twin-SAM V8.0 (30deg probe tilt) - 2072	HBBL-600-10000	EX3DV4 – SN7698, 2024-06-04	DAE4 Sn1317, 2024-09-13

Scans Setup

	Area Scan	Zoom Scan
Grid Extents [mm]	390.0 x 300.0	22.0 x 22.0 x 22.0
Grid Steps [mm]	8.5 x 8.5	3.4 x 3.4 x 1.4
Sensor Surface [mm]	3.0	1.4
Graded Grid	N/A	Yes
Grading Ratio	N/A	1.4
MAIA	Y	Y
Surface Detection	VMS + 6p	VMS + 6p
Scan Method	Measured	Measured

Measurement Results

	Area Scan	Zoom Scan
Date	2024-11-28	2024-11-28
psSAR1g [W/kg]	0.161	0.167
psSAR10g [W/kg]	0.068	0.052
Power Drift [dB]	0.11	0.047
Power Scaling	Disabled	Disabled
Scaling Factor [dB]		
TSL Correction	No correction	No correction
M2/M1 [%]		52.8
Dist 3dB Peak [mm]		6.5

Plot 5 Measurement Report for Device, BACK, U-NII-7, IEEE 802.11ax (80MHz, MCS0, 90pc duty cycle), Channel 135 (6625.0 MHz)

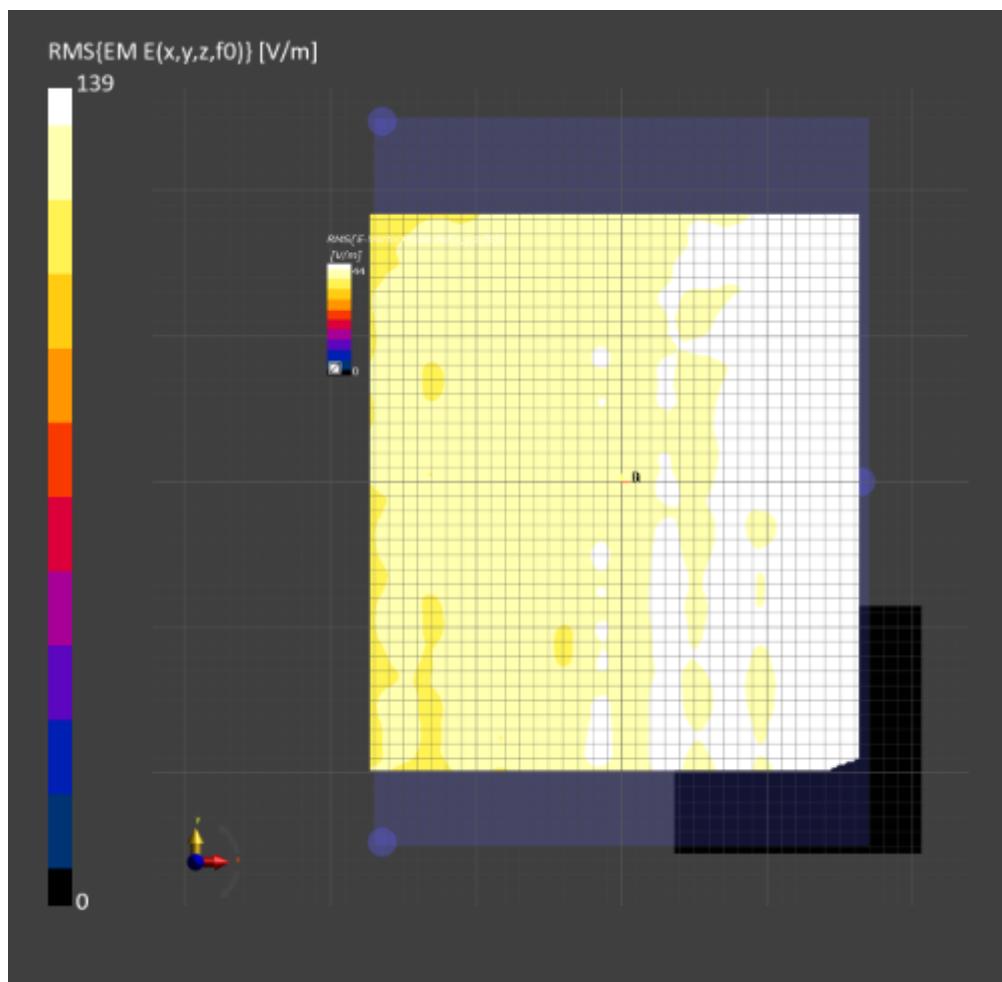
Device Under Test Properties

Model, Manufacturer	Dimensions [mm]	IMEI	DUT Type
Device,	360.0 x 250.0 x 15.0		Laptop Computer

Exposure Conditions

Phantom Section	Position, Test Distance [mm]	Band	Group, UID	Frequency [MHz], Channel Number	Conversion Factor
5G	BACK, 2.00	U-NII-7	WLAN, 10719-AAC	6625.0, 135	1.0

Hardware Setup


Phantom	Medium	Probe, Calibration Date	DAE, Calibration Date
mmWave - xxxx	Air -	EUmmWV4 - SN9642_F1-55GHz, 2024-07-10	DAE4 Sn1317, 2024-09-13

Scans Setup

Scan Type	5G Scan
Grid Extents [mm]	90.5 x 90.5
Grid Steps [λ]	0.003 x 0.003
Sensor Surface [mm]	2.0
MAIA	Y

Measurement Results

Scan Type	5G Scan
Date	2024-11-28
Avg. Area [cm ²]	4.00
psPDn+ [W/m ²]	2.40
psPDtot+ [W/m ²]	6.36
psPDmod+ [W/m ²]	21.5
E _{max} [V/m]	139
Power Drift [dB]	-0.14

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **WSCT**
 Shenzhen

Certificate No.

EX-7391_Oct24

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:7391**

Calibration procedure(s) **QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,
 QA CAL-25.v8
 Calibration procedure for dosimetric E-field probes**

Calibration date **October 16, 2024**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
OCP DAK-3.5 (weighted)	SN: 1249	23-Sep-24 (OCP-DAK3.5-1249_Sep24)	Sep-25
OCP DAK-12	SN: 1016	24-Sep-24 (OCP-DAK12-1016_Sep24)	Sep-25
Reference 20 dB Attenuator	SN: CC2552 (20x)	26-Mar-24 (No. 217-04046)	Mar-25
DAE4	SN: 660	23-Feb-24 (No. DAE4-660_Feb24)	Feb-25
Reference Probe EX3DV4	SN: 7349	03-Jun-24 (No. EX3-7349_Jun24)	Jun-25

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-24)	In house check: Jun-26
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-24)	In house check: Jun-26
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Sep-24)	In house check: Sep-26

Calibrated by	Name Joanna Lleshaj	Function Laboratory Technician	Signature
Approved by	Sven Kühn	Technical Manager	

Issued: October 16, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary

TS	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}**: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)_{x,y,z} = NORM_{x,y,z} * frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCP_{x,y,z}**: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}; VR_{x,y,z}**: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle**: The angle is assessed using the information gained by determining the NORM_x (no uncertainty required).

Parameters of Probe: EX3DV4 - SN:7391

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.62	0.65	0.61	$\pm 10.1\%$
DCP (mV) ^B	104.7	104.7	104.9	$\pm 4.7\%$

Calibration Results for Modulation Response

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Max dev.	Max Unc ^E k = 2
0	CW	X	0.00	0.00	1.00	0.00	118.0	$\pm 1.2\%$	$\pm 4.7\%$
		Y	0.00	0.00	1.00		144.9		
		Z	0.00	0.00	1.00		120.4		

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

Parameters of Probe: EX3DV4 - SN:7391

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	4.5°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3–4 mm for an *Area Scan* job.

Parameters of Probe: EX3DV4 - SN:7391

Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
4200	37.1	3.63	6.53	6.50	6.47	0.32	1.27	±13.1%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10% if SAR correction is applied.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

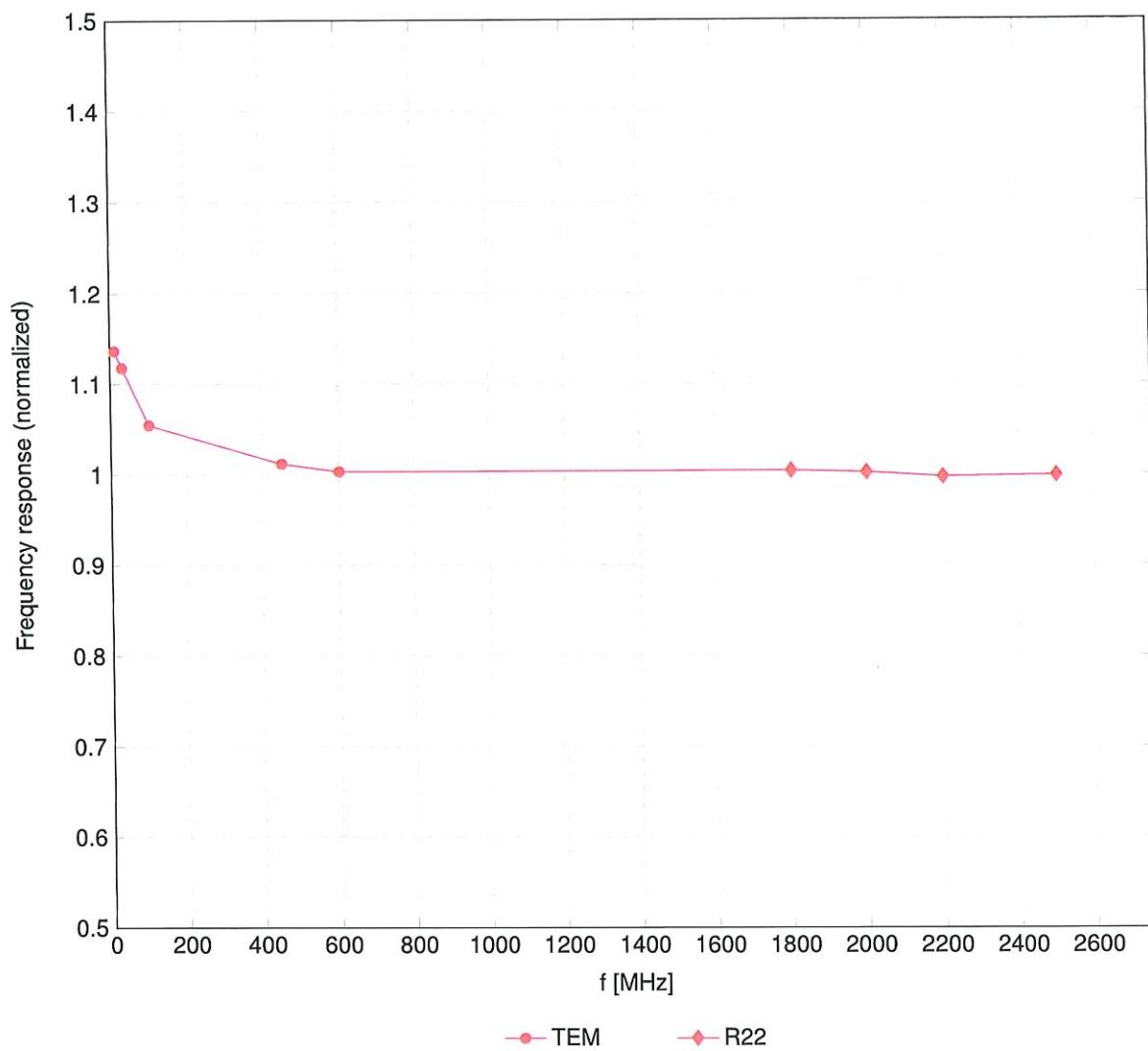
^H The stated uncertainty is the total calibration uncertainty (k = 2) of Norm·ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.

Parameters of Probe: EX3DV4 - SN:7391

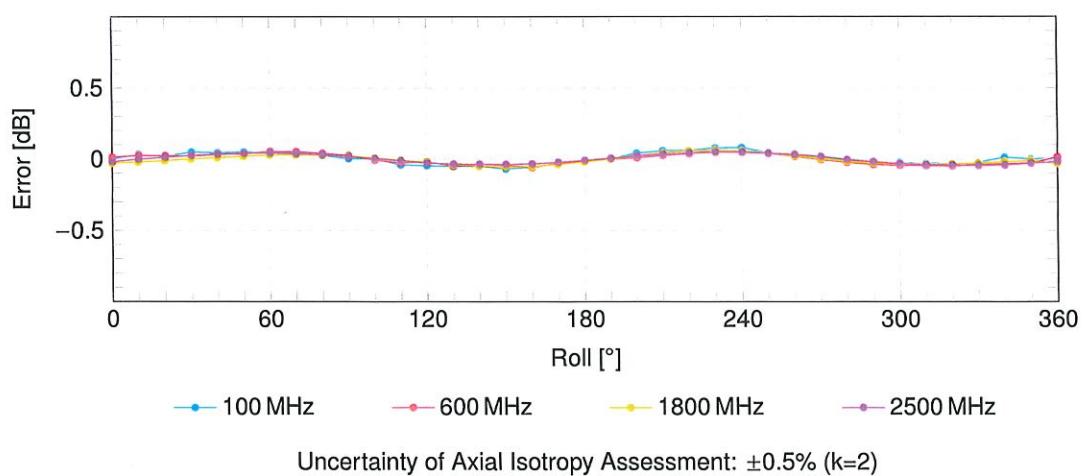
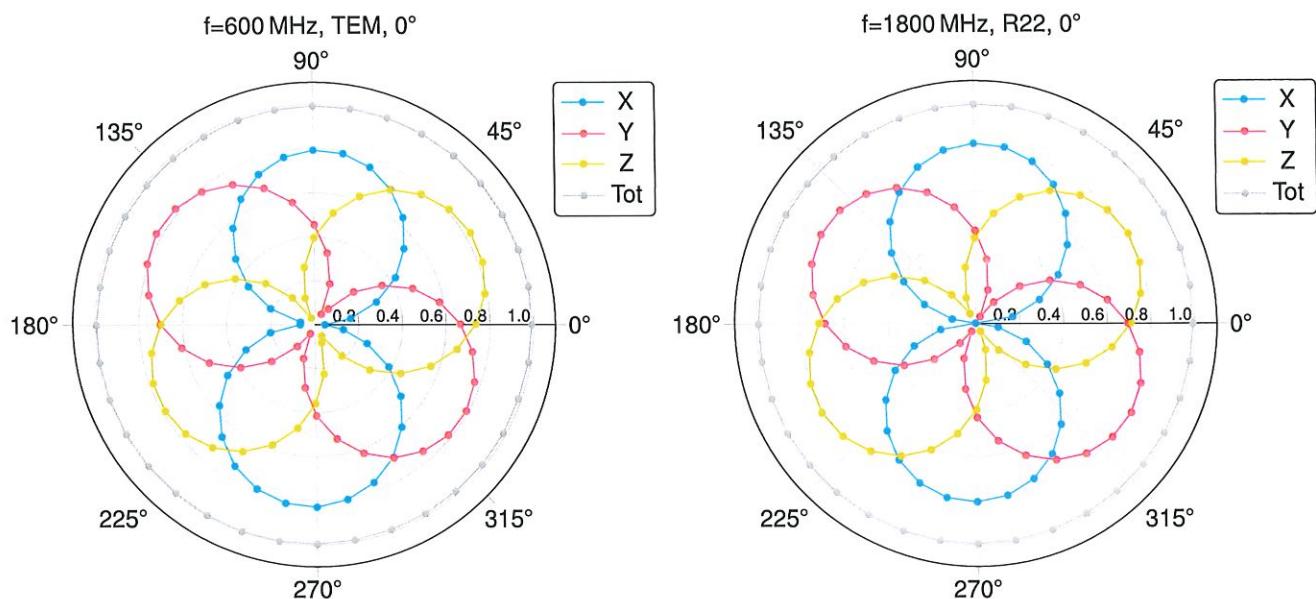
Calibration Parameter Determined in Head Tissue Simulating Media

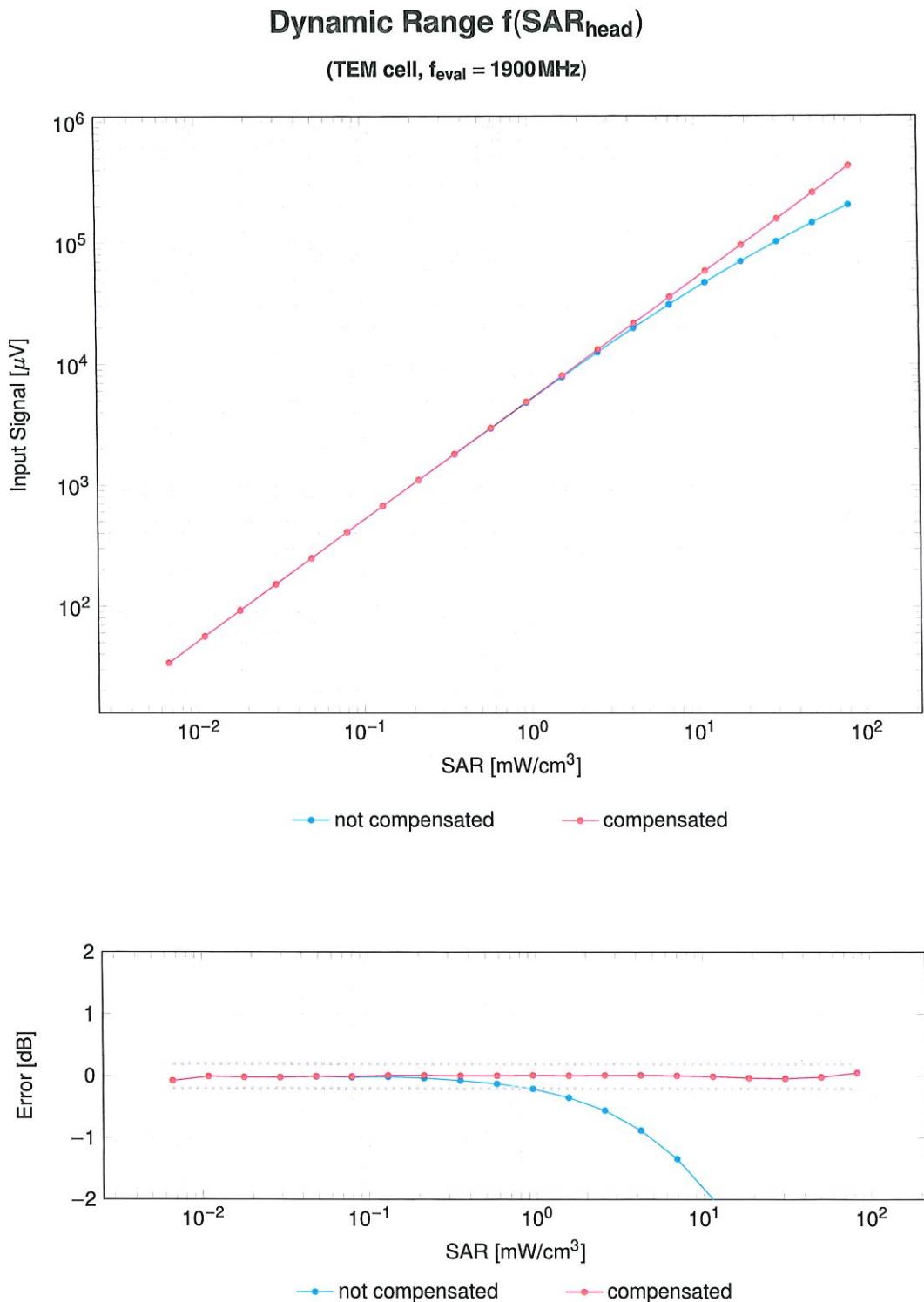
f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc ^H (k = 2)
6500	34.5	6.07	5.57	5.54	5.52	0.20	1.27	±18.6%

^C Frequency validity at 6.5 GHz is $-600/+700$ MHz, and ± 700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

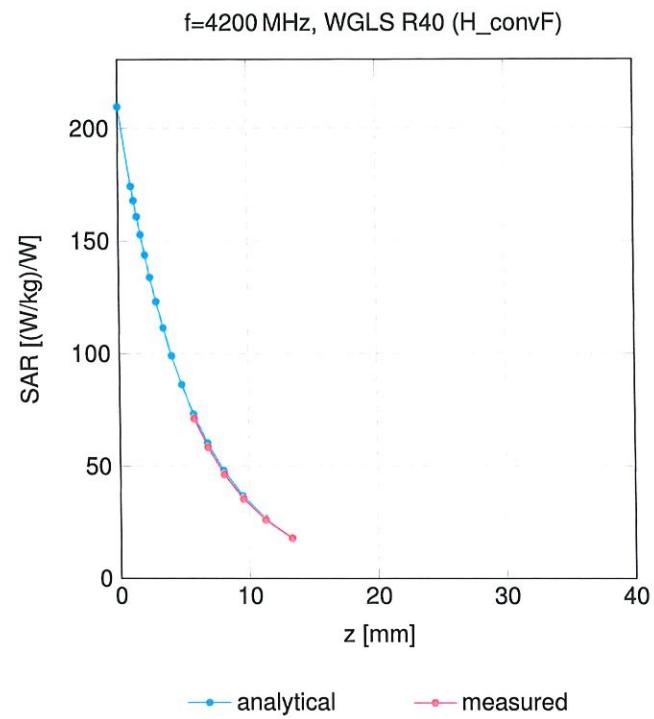

^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than $\pm 10\%$ from the target values (typically better than $\pm 6\%$) and are valid for TSL with deviations of up to $\pm 10\%$.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm 1\%$ for frequencies below 3 GHz; below $\pm 2\%$ for frequencies between 3–6 GHz; and below $\pm 4\%$ for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

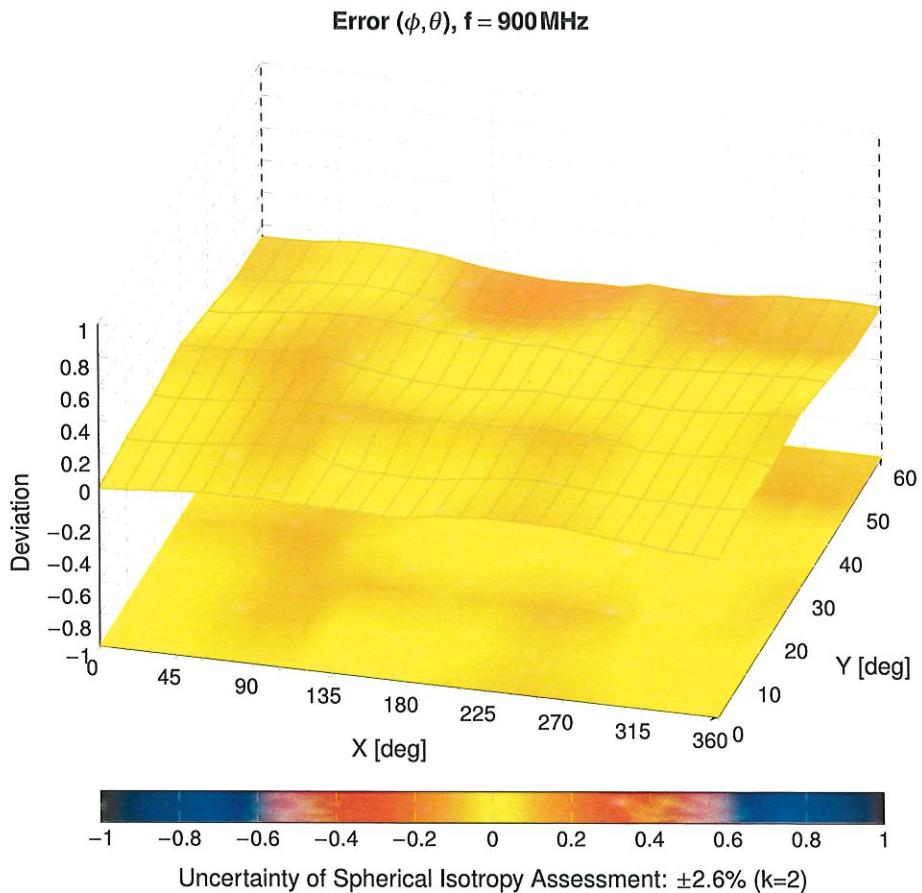


^H The stated uncertainty is the total calibration uncertainty ($k = 2$) of Norm·ConvF. This is equivalent to the uncertainty component with the symbol CF in Table 9 of IEC/IEEE 62209-1528:2020.


Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)


Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

Receiving Pattern (ϕ), $\vartheta = 0^\circ$



Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

