

TEST REPORT

FCC ID: 2ADYY-T15RA-1

Product: Laptop Computer

Model No.: T15RA

Trade Mark: TECNO

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

Issued Date: 12 October 2024

Issued for:

TECNO MOBILE LIMITED

FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET
FOTAN NT HONGKONG

Issued By:

World Standardization Certification & Testing Group(Shenzhen) Co., Ltd.

Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyang
Street, Bao'an District, Shenzhen City, Guangdong Province, China

TEL: +86-755-26996192

FAX: +86-755-86376605

Note: The results contained in this report pertain only to the tested sample. This report shall not be reproduced, except in full, without written approval of World Standardization Certification & Testing Group(Shenzhen) Co., Ltd. This report must not be used by the client to claim product certification, approval, or any agency of the U.S. Government.

TABLE OF CONTENTS

1 TEST CERTIFICATION	3
2 EUT DESCRIPTION	4
3 TEST DESCRIPTION	5
3.1 MEASUREMENT UNCERTAINTY	5
3.2 TEST ENVIRONMENT AND MODE	6
3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING	7
3.4 CONFIGURATION OF SYSTEM UNDER TEST	8
3.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)	8
4 SUMMARY OF TEST RESULTS	9
5 MEASUREMENT INSTRUMENTS	10
6 FACILITIES AND ACCREDITATIONS	11
6.1 FACILITIES	11
6.2 ACCREDITATIONS	11
7 TEST RESULTS AND MEASUREMENT DATA	12
7.1 CONDUCTED EMISSION MEASUREMENT	12
7.2 RADIATED EMISSION MEASUREMENT	16
7.3 ANTENNA REQUIREMENT	38
7.4 EMISSION BANDWIDTH	39
7.5 AVERAGE POWER	78
7.6 POWER SPECTRAL DENSITY	149
7.7 FREQUENCY STABILITY	220
7.8 BAND EDGE EMISSIONS	256
7.9 DYNAMIC FREQUENCY SELECTION (DFS)	292

1 Test Certification

Product:	Laptop Computer
Model No.:	T15RA
Trade Mark:	TECNO
Applicant:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Manufacturer:	TECNO MOBILE LIMITED
Address:	FLAT N 16/F BLOCK B UNIVERSAL INDUSTRIAL CENTRE 19-25 SHAN MEI STREET FOTAN NT HONGKONG
Date of Test:	20 September 2024 to 12 October 2024
Applicable Standards:	FCC CFR Title 47 FCC Part 15 Subpart E

The above equipment has been tested by World Standardization Certification & Testing Group(Shenzhen)Co., Ltd. and found compliance with the requirements set forth in the technical standards mentioned above. The results of testing in this report apply only to the product, which was tested. Other similar equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Tested By: Wang Xiang
(Wang Xiang)

Checked By: Chen Xu
(Chen Xu)

Approved By: Li Huaibi
(Li Huaibi)

Date: 12 October 2024

2 EUT Description

Product:	Laptop Computer
Model No.:	T15RA
Trade Mark:	TECNO
Operation Frequency:	Band1:5150-5250MHz Band2:5250-5350MHz Band3:5470-5725MHz Band4:5725-5850MHz
Modulation type:	IEEE 802.11a/n/ac/ax: OFDM/OFDMA (BPSK/QPSK/16QAM/64QAM/256QAM/1024QAM)
Antenna Type:	Integral Antenna
Antenna Gain	MAIN:2.86dBi ,AUX:2.24 dBi
Operating Voltage:	Adapter1: FC498U Input: 100-240V~50/60Hz 1.5A Max Output: PD:5.V---3A 15.0W 9V---3A 12 V---3A 15V---3A 20V---3.25A PPS: 3.3-11V---5A Max Rechargeable Li-ion Polymer Battery: 156 Rated Voltage: 11.55V Rated Capacity: 6060mAh/70Wh Typical Capacity: 6160mAh/71.14Wh Limited Charge Voltage: 13.2V
Remark:	N/A.

Configuration differences

Model	Processor
T15RA	i5
T15RA	i7

Note: The prototypes of both configurations have been tested, and the T15RA (i7) has the worst test result, which is the main test model reported

3 TEST DESCRIPTION

3.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	$\pm 3.2\text{dB}$
2	RF power, conducted	$\pm 0.16\text{dB}$
3	Spurious emissions, conducted	$\pm 0.21\text{dB}$
4	All emissions, radiated(<1GHz)	$\pm 4.7\text{dB}$
5	All emissions, radiated(>1GHz)	$\pm 4.7\text{dB}$
6	Temperature	$\pm 0.5^\circ\text{C}$
7	Humidity	$\pm 2\%$

3.2 TEST ENVIRONMENT AND MODE

Operating Environment:

Temperature: 25.0 °C

Humidity: 56 % RH

Atmospheric Pressure: 1010 mbar

Test Mode:

Engineering mode:	Keep the EUT in continuous transmitting by select channel and modulations(The value of duty cycle is 98.46%)
-------------------	--

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. For the full battery state and The output power to the maximum state.

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Description
Mode 1	802.11a
Mode 2	802.11n20
Mode 3	802.11n40
Mode 4	802.11ac20
Mode 5	802.11ac40
Mode 6	802.11ac80
Mode 7	802.11ax20
Mode 8	802.11ax40
Mode 9	802.11ax80
Mode 10	802.11ax160

Note:

(1) The measurements are performed at the highest, lowest available channels.

(2) The EUT use new battery.

(3) Record the worst case of each test item in this report.

3.3 TABLE OF PARAMETERS OF TEXT SOFTWARE SETTING


Test program	DRTU								
Mode	Test Frequency (MHz)								
	NCB: 20MHz								
802.11a	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5500 MHz	5700 MHz	5745 MHz	5825 MHz	
802.11n	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5500 MHz	5700 MHz	5745 MHz	5825 MHz	
802.11ac	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5500 MHz	5700 MHz	5745 MHz	5825 MHz	
802.11ax	5180 MHz	5240 MHz	5260 MHz	5320 MHz	5500 MHz	5700 MHz	5745 MHz	5825 MHz	
NCB: 40MHz									
802.11n	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5510 MHz	5670 MHz	5755 MHz	5795 MHz	
802.11ac	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5510 MHz	5670 MHz	5755 MHz	5795 MHz	
802.11ax	5190 MHz	5230 MHz	5270 MHz	5310 MHz	5510 MHz	5670 MHz	5755 MHz	5795 MHz	
NCB: 80MHz									
802.11ac	5210 MHz	5290 MHz	5530 MHz	5610 MHz	5775 MHz				
802.11ax	5210 MHz	5290 MHz	5530 MHz	5610 MHz	5775 MHz				
NCB: 160MHz									
802.11ax	5250 MHz	5570 MHz							

During testing, Channel and Power Controlling Software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

3.4 CONFIGURATION OF SYSTEM UNDER TEST

3.5 DESCRIPTION OF SUPPORT UNITS (CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
1	Adapter	TECNO	FC498U	/	/
2	Router	ASUS	GT-AXE11000	M6LAJF201230	

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in 『Length』 column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".
- (4) The adapter supply by the applicant.

4 SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 Subpart C&E

Standard Section	Test Item	Judgment	Remark
2.1049	26dB & 99% Bandwidth	PASS	Complies
15.403(i)			
15.407(e)	6dB Spectrum Bandwidth	PASS	Complies
15.407(a)	Maximum Conducted Output Power	PASS	Complies
15.407(a)	Power Spectral Density	PASS	Complies
15.407(b)	Unwanted Emissions	PASS	Complies
15.207	AC Conducted Emission	PASS	Complies
15.407(g)	Frequency Stability	PASS	Complies
15.407(c)	Automatically Discontinue Transmission	PASS	Complies
15.203 & 15.407(a)	Antenna Requirement	PASS	Complies
15.407(h)	Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)	PASS	Complies

NOTE:

(1)" N/A" denotes test is not applicable in this test report.

5 MEASUREMENT INSTRUMENTS

NAME OF EQUIPMENT	MANUFACTURER	MODEL	SERIAL NUMBER	Calibration Date	Calibration Due.
Test software	--	WSCT EZ-EMC	CON-03A	-	-
Test software	--	MTS8310	-	-	-
EMI Test Receiver	R&S	ESCI	100005	11/05/2023	11/04/2024
LISN	WSAFJ	LS16	16010222119	11/05/2023	11/04/2024
LISN(EUT)	Mestec	AN3016	04/10040	11/05/2023	11/04/2024
Universal Radio Communication Tester	R&S	CMU 200	1100.0008.02	11/05/2023	11/04/2024
Coaxial cable	Megalon	LMR400	N/A	11/05/2023	11/04/2024
GPIB cable	Megalon	GPIB	N/A	11/05/2023	11/04/2024
Spectrum Analyzer	R&S	FSU	100114	11/05/2023	11/04/2024
Pre Amplifier	H.P.	HP8447E	2945A02715	11/05/2023	11/04/2024
Pre-Amplifier	CDSI	PAP-1G18-38	--	11/05/2023	11/04/2024
Bi-log Antenna	SCHWARZBECK	VULB9168	01488	11/05/2023	11/04/2024
9*6*6 Anechoic	--	--	--	11/05/2023	11/04/2024
Horn Antenna	COMPLIANCE ENGINEERING	CE18000	--	11/05/2023	11/04/2024
Horn Antenna	SCHWARZBECK	BBHA9120D	9120D-631	11/05/2023	11/04/2024
Cable	TIME MICROWAVE	LMR-400	N-TYPE04	11/05/2023	11/04/2024
System-Controller	CCS	N/A	N/A	N.C.R	N.C.R
Turn Table	CCS	N/A	N/A	N.C.R	N.C.R
Antenna Tower	CCS	N/A	N/A	N.C.R	N.C.R
RF cable	Murata	MXHQ87WA3000	-	11/05/2023	11/04/2024
Loop Antenna	EMCO	6502	00042960	11/05/2023	11/04/2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1123	11/05/2023	11/04/2024
Power meter	Anritsu	ML2487A	6K00003613	11/05/2023	11/04/2024
Power sensor	Anritsu	MX248XD	--	11/05/2023	11/04/2024
Spectrum Analyzer	Keysight	N9010B	MY60241089	11/05/2023	11/04/2024

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

6 Facilities and Accreditations

6.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

World Standardization Certification & Testing Group (Shenzhen) Co., Ltd.

Building A-B, Baoli'an Industrial Park, No.58 and 60, Tangtou Avenue, Shiyuan Street, Bao'an District, Shenzhen City, Guangdong Province, China

The sites are constructed in conformance with the requirements of ANSI C63.4 and CISPR Publication 22. All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

6.2 ACCREDITATIONS

ANAB - Certificate Number: AT-3951

The EMC Laboratory has been accredited by the American Association for Laboratory Accreditation (ANAB). Certification Number: AT-3951

7 Test Results and Measurement Data

7.1 CONDUCTED EMISSION MEASUREMENT

POWER LINE CONDUCTED EMISSION Limits (Frequency Range 150KHz-30MHz)

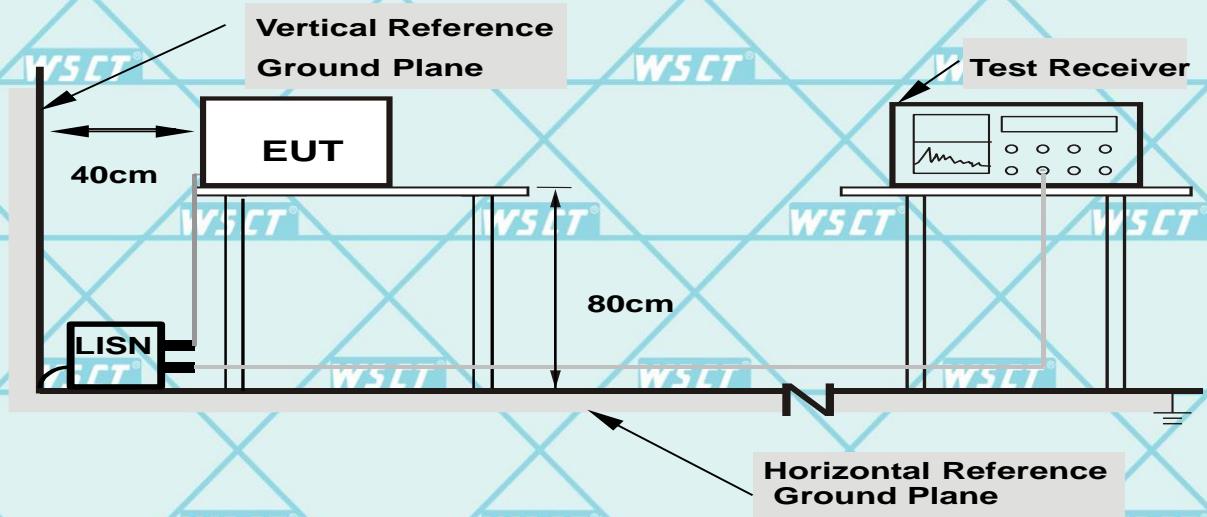
FREQUENCY (MHz)	Class A (dBuV)		Class B (dBuV)		Standard
	Quasi-peak	Average	Quasi-peak	Average	
0.15 -0.5	79.00	66.00	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	73.00	60.00	56.00	46.00	FCC
5.0 -30.0	73.00	60.00	60.00	50.00	FCC

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of "*" marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz


7.1.1 TEST PROCEDURE

- The EUT was placed 0.4 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- LISN at least 80 cm from nearest part of EUT chassis.
- For the actual test configuration, please refer to the related Item –EUT Test Photos.

7.1.2 DEVIATION FROM TEST STANDARD

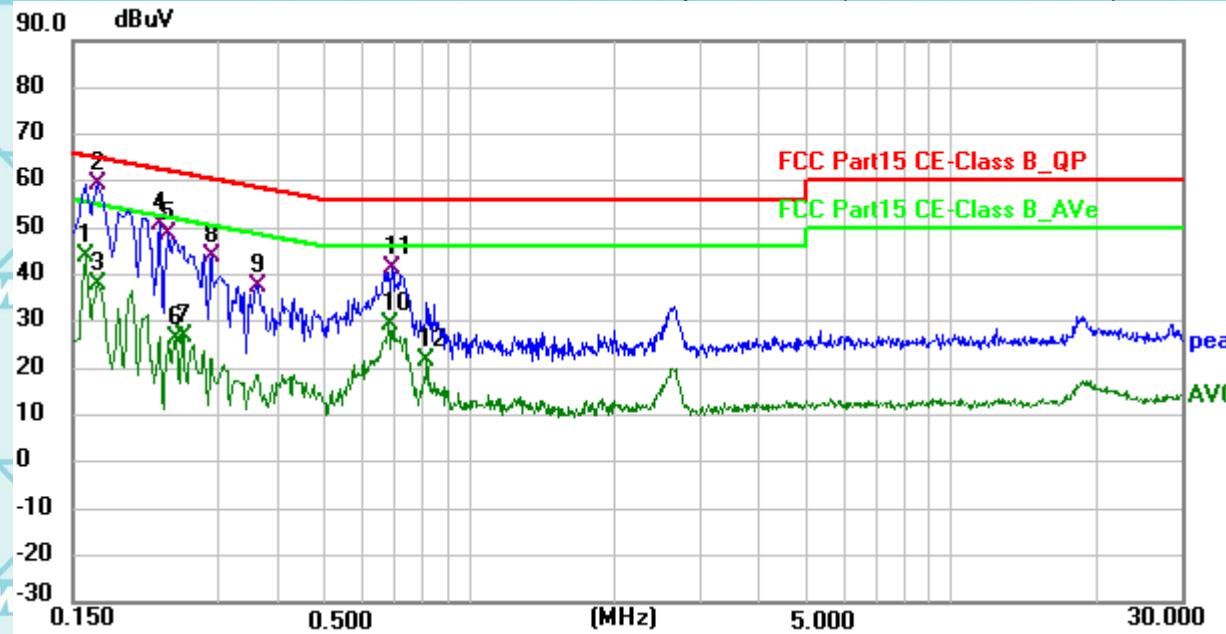
No deviation

TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

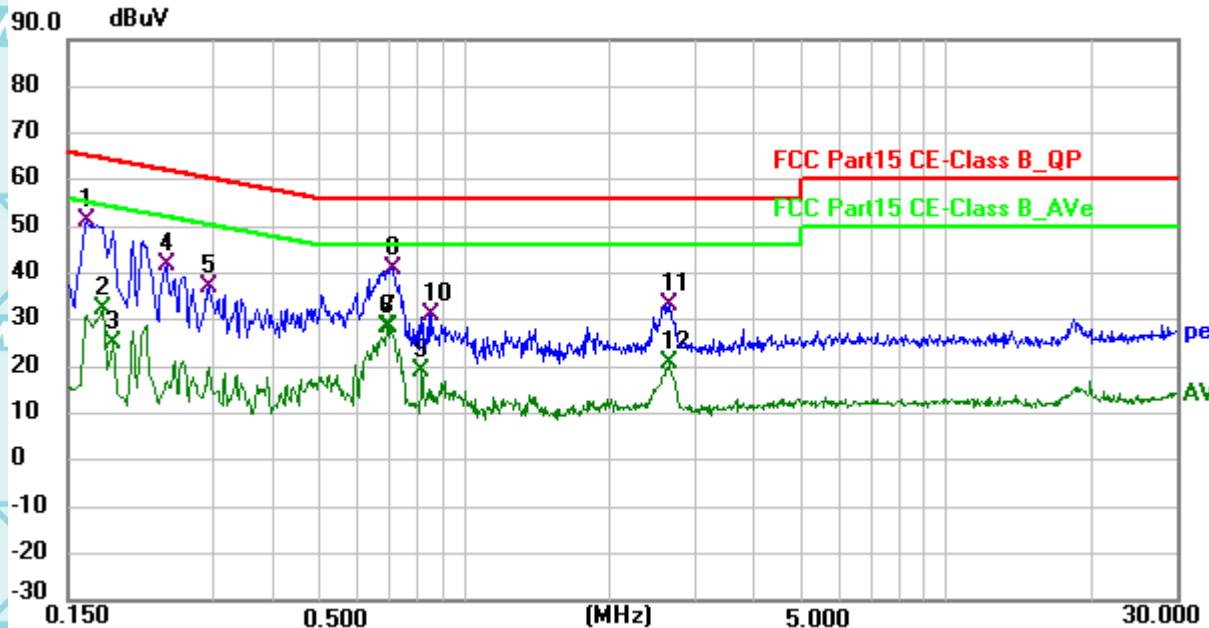
7.1.3 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.1.4 TEST RESULTS(WORST CASE)

The worst mode is 11a


Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)-worst

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1590	23.19	20.72	43.91	55.52	-11.61	AVG
2 *	0.1680	38.59	20.72	59.31	65.06	-5.75	QP
3	0.1680	17.15	20.72	37.87	55.06	-17.19	AVG
4	0.2265	30.19	20.67	50.86	62.58	-11.72	QP
5	0.2355	28.10	20.67	48.77	62.25	-13.48	QP
6	0.2445	5.71	20.66	26.37	51.94	-25.57	AVG
7	0.2535	6.11	20.66	26.77	51.64	-24.87	AVG
8	0.2895	23.08	20.64	43.72	60.54	-16.82	QP
9	0.3615	16.82	20.59	37.41	58.69	-21.28	QP
10	0.6809	9.02	20.54	29.56	46.00	-16.44	AVG
11	0.6900	20.95	20.54	41.49	56.00	-14.51	QP
12	0.8160	0.87	20.59	21.46	46.00	-24.54	AVG

Remark: All the modes have been investigated, and only worst mode is presented in this report.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1 *	0.1635	30.47	20.72	51.19	65.28	-14.09	QP
2	0.1770	11.58	20.71	32.29	54.63	-22.34	AVG
3	0.1860	4.38	20.70	25.08	54.21	-29.13	AVG
4	0.2400	21.08	20.67	41.75	62.10	-20.35	QP
5	0.2940	16.25	20.63	36.88	60.41	-23.53	QP
6	0.6900	8.15	20.54	28.69	46.00	-17.31	AVG
7	0.6990	7.76	20.54	28.30	46.00	-17.70	AVG
8	0.7080	20.34	20.54	40.88	56.00	-15.12	QP
9	0.8160	-1.57	20.59	19.02	46.00	-26.98	AVG
10	0.8520	10.61	20.61	31.22	56.00	-24.78	QP
11	2.6565	12.77	20.60	33.37	56.00	-22.63	QP
12	2.6565	0.14	20.60	20.74	46.00	-25.26	AVG

Note1:

Freq. = Emission frequency in MHz

Reading level (dB μ V) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)Limit (dB μ V) = Limit stated in standardMargin (dB) = Measurement (dB μ V) - Limits (dB μ V)

Q.P. = Quasi-Peak AVG = average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

7.2 RADIATED EMISSION MEASUREMENT

Radiated Emission Limits(Frequency Range 9kHz-1000MHz)

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)	
	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

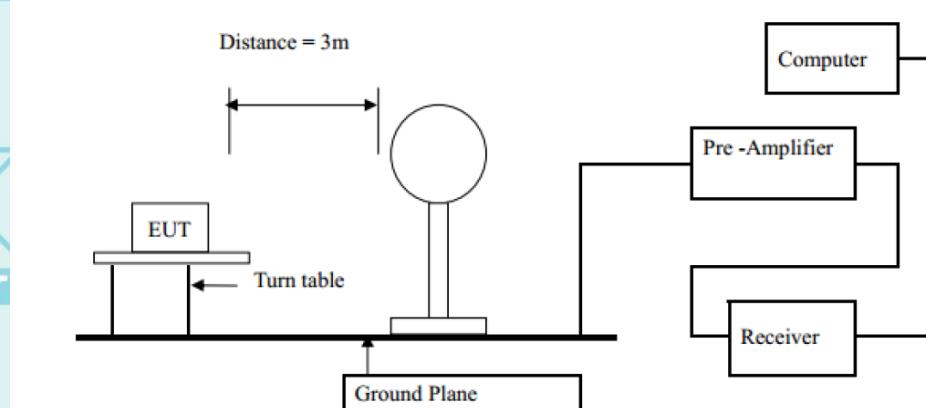
Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

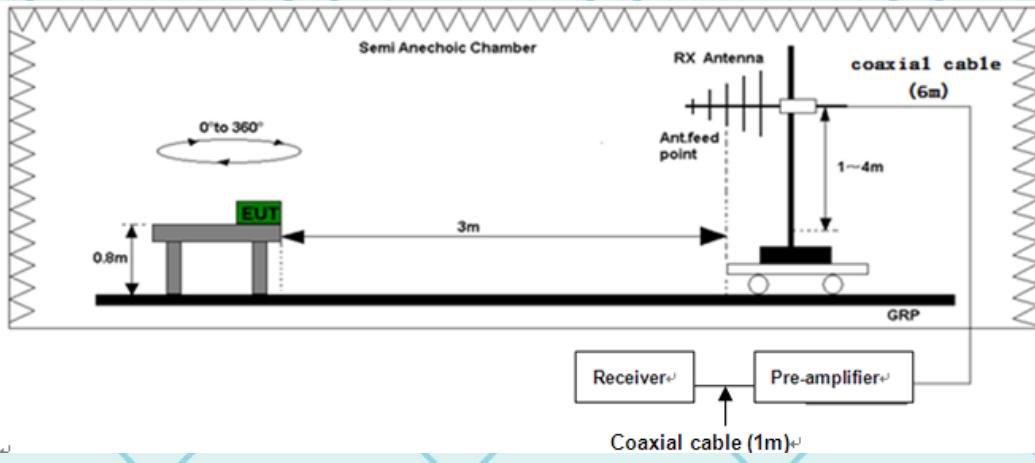
7.2.1 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter open area test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos.

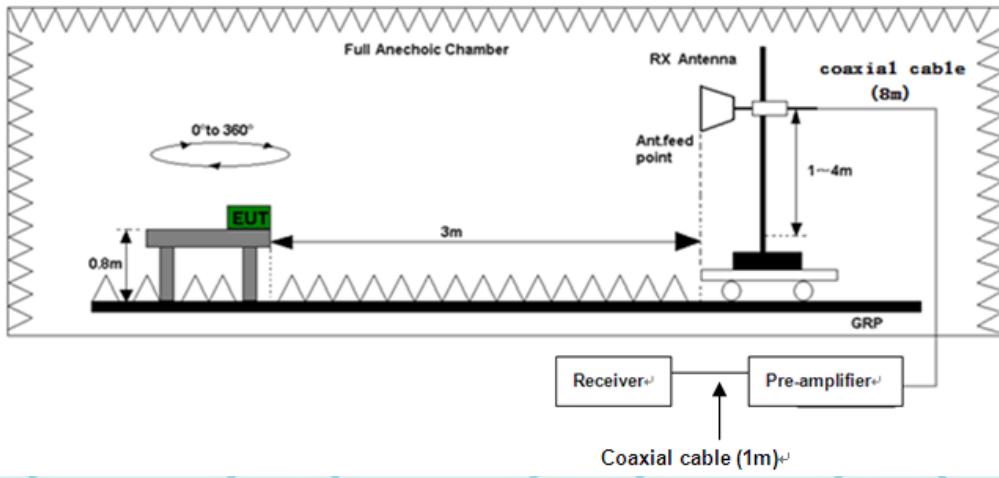
Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

7.2.2 DEVIATION FROM TEST STANDARD


No deviation

7.2.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.2.4 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

7.2.5 RESULTS (BELOW 30 MHZ)

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
--	--	--	--	P
--	--	--	--	P

Note:

No result in this part for margin above 20dB.

Distance extrapolation factor = $20 \log(\text{specific distance}/\text{test distance})$ (dB);

Limit line = specific limits(dBuV) + distance extrapolation factor.

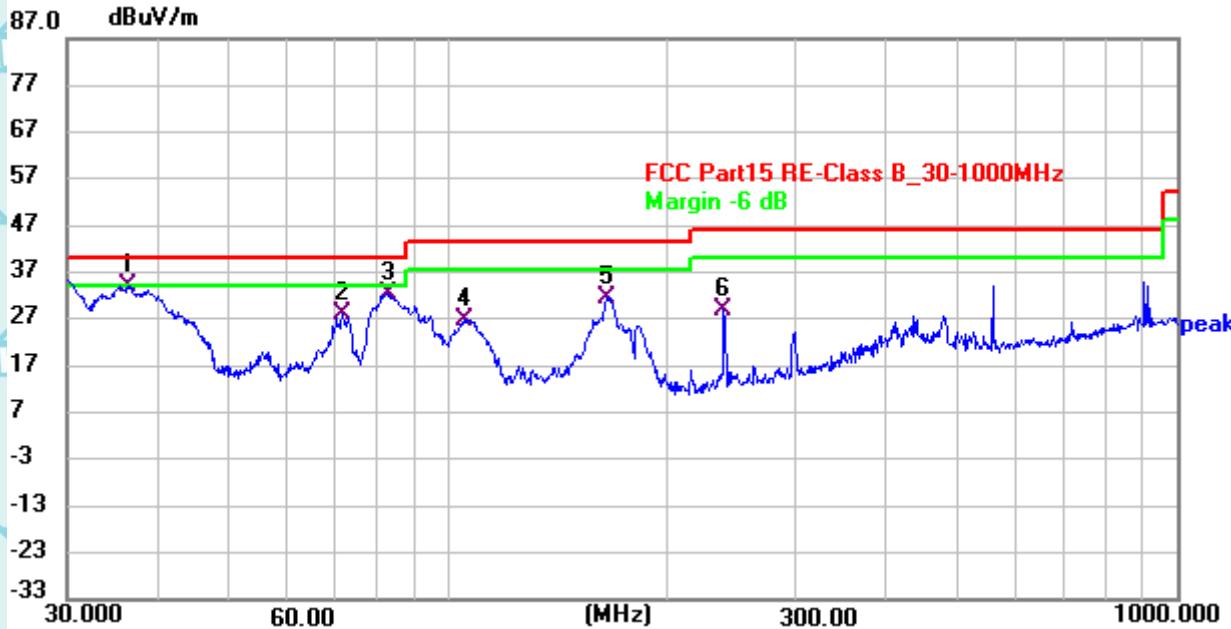
All the x/y/z orientation has been investigated, and only worst case is presented in this report.

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.2.6 TEST RESULTS (BETWEEN 30M – 1000 MHZ) (WORST CASE)

Please refer to following diagram for individual(The worst mode is 11a)

Below 1GHz


Horizontal:

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	35.4837	42.37	-19.47	22.90	40.00	-17.10	QP
2	70.2132	44.28	-22.35	21.93	40.00	-18.07	QP
3	82.1066	48.79	-24.08	24.71	40.00	-15.29	QP
4	109.5076	49.42	-22.61	26.81	43.50	-16.69	QP
5	167.1635	50.10	-20.29	29.81	43.50	-13.69	QP
6 *	239.9873	60.12	-22.59	37.53	46.00	-8.47	QP

Vertical:

No.	Frequency (MHz)	Reading (dB μ V)	Factor (dB/m)	Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector
1 *	36.4772	53.44	-19.42	34.02	40.00	-5.98	QP
2	71.8320	50.80	-22.55	28.25	40.00	-11.75	QP
3	82.9021	56.23	-24.00	32.23	40.00	-7.77	QP
4	105.5490	49.95	-23.04	26.91	43.50	-16.59	QP
5	165.9225	51.71	-20.06	31.65	43.50	-11.85	QP
6	239.8822	51.56	-22.59	28.97	46.00	-17.03	QP

Note1:

Freq. = Emission frequency in MHz

Reading level (dB μ V) = Receiver reading

Corr. Factor (dB) = Antenna factor + Cable loss - Amplifier factor.

Measurement (dB μ V) = Reading level (dB μ V) + Corr. Factor (dB)Limit (dB μ V) = Limit stated in standardMargin (dB) = Measurement (dB μ V) - Limits (dB μ V)

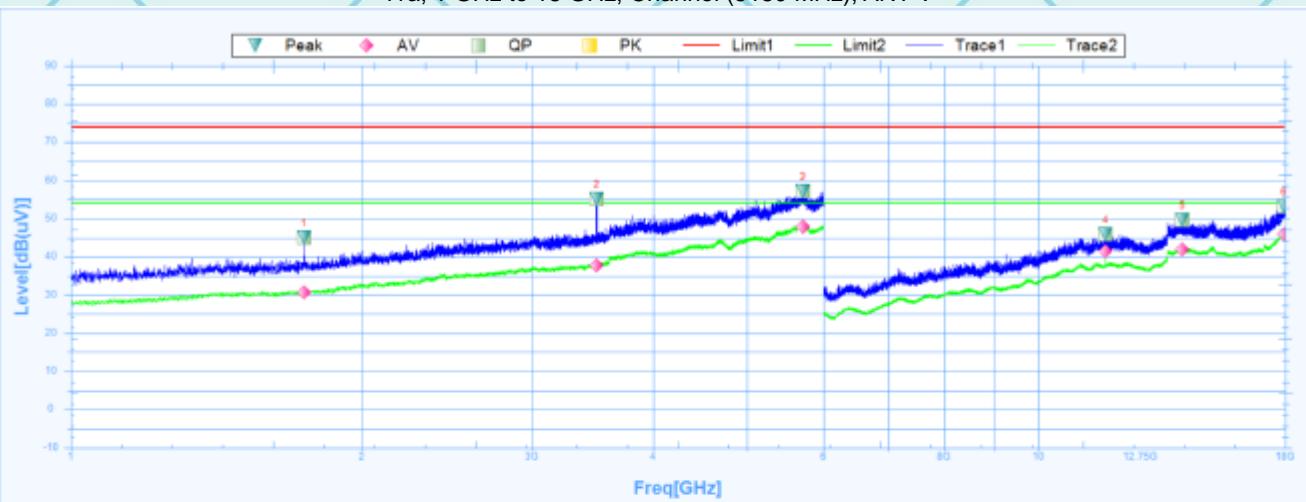
Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.2.7 TEST RESULTS (ABOVE 1GHZ)

Note: 1. The spurious above 18G is noise only, do not show on the report.

2. Report and only recorded the worst-case scenario 802.11a.

11a, 1 GHz to 18 GHz, Channel (5180 MHz), ANT H



Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	2371.8750	42.7	5	37.7	74	-31.3	-0.1	Horizontal	PK	Pass
1	2371.8750	34.01	5	29.01	54	-19.99	-0.1	Horizontal	AV	Pass
2	3743.7500	49.7	10.45	39.25	74	-24.3	210.1	Horizontal	PK	Pass
2	3743.7500	39.88	10.45	29.43	54	-14.12	210.1	Horizontal	AV	Pass
3	5675.0000	57.06	20.86	36.2	74	-16.94	3.5	Horizontal	PK	Pass
3	5675.0000	47.61	20.86	26.75	54	-6.39	3.5	Horizontal	AV	Pass
4	11181.0000	45.04	39.34	5.7	74	-28.98	45	Horizontal	PK	Pass
4	11181.0000	37.18	39.34	-2.16	54	-16.82	45	Horizontal	AV	Pass
5	13629.0000	48.49	40.54	7.95	74	-25.51	333.1	Horizontal	PK	Pass
5	13629.0000	41.24	40.54	0.7	54	-12.76	333.1	Horizontal	AV	Pass
6	17811.0000	53.52	45.23	8.29	74	-20.48	300.9	Horizontal	PK	Pass
6	17811.0000	45.24	45.23	0.01	54	-8.76	300.9	Horizontal	AV	Pass

11a, 1 GHz to 18 GHz, Channel (5180 MHz), ANT V

Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	1741.8750	44.92	0.47	44.45	74	-29.08	0.5	Vertical	PK	Pass
1	1741.8750	30.6	0.47	30.13	54	-23.4	0.5	Vertical	AV	Pass
2	3497.5000	55.23	9.67	45.56	74	-18.77	212	Vertical	PK	Pass
2	3497.5000	37.82	9.67	28.15	54	-16.18	212	Vertical	AV	Pass
3	5711.8750	57.08	21.23	35.85	74	-16.92	348.1	Vertical	PK	Pass
3	5711.8750	47.92	21.23	26.69	54	-6.08	348.1	Vertical	AV	Pass
4	11745.0000	45.99	38.83	7.16	74	-28.01	0	Vertical	PK	Pass
4	11745.0000	41.43	38.83	2.6	54	-12.57	0	Vertical	AV	Pass
5	14095.5000	49.7	41.38	8.32	74	-24.3	0	Vertical	PK	Pass
5	14095.5000	41.82	41.38	0.44	54	-12.18	0	Vertical	AV	Pass
6	17947.5000	53.21	46.15	7.06	74	-20.79	11.8	Vertical	PK	Pass
6	17947.5000	45.91	46.15	-0.24	54	-8.09	11.8	Vertical	AV	Pass

11a, 1 GHz to 18 GHz, Channel (5240 MHz), ANT H

Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	2355.0000	43.15	4.89	38.26	74	-30.85	10.2	Horizontal	PK	Pass
1	2355.0000	34.06	4.89	29.17	54	-19.94	10.2	Horizontal	AV	Pass
2	3875.0000	50.88	11.12	39.76	74	-23.12	320.9	Horizontal	PK	Pass
2	3875.0000	40.92	11.12	29.8	54	-13.08	320.9	Horizontal	AV	Pass
3	5704.3750	57.81	21.15	36.66	74	-16.19	360	Horizontal	PK	Pass
3	5704.3750	48.64	21.15	27.49	54	-5.36	360	Horizontal	AV	Pass
4	11745.0000	47.82	38.83	8.99	74	-26.18	243.6	Horizontal	PK	Pass
4	11745.0000	41.3	38.83	2.47	54	-12.7	243.6	Horizontal	AV	Pass
5	15244.5000	49.8	39.44	10.36	74	-24.2	63	Horizontal	PK	Pass
5	15244.5000	41.29	39.44	1.85	54	-12.71	63	Horizontal	AV	Pass
6	17982.0000	52.98	46.38	6.6	74	-21.02	144.3	Horizontal	PK	Pass
6	17982.0000	46.49	46.38	0.11	54	-7.51	144.3	Horizontal	AV	Pass

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

11a, 1 GHz to 18 GHz, Channel (5240 MHz), ANT V



Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	3130.6250	46.37	7.98	38.39	74	-27.83	323.3	Vertical	PK	Pass
1	3130.6250	36.33	7.98	28.35	54	-17.67	323.3	Vertical	AV	Pass
2	4488.2500	53.17	13.63	39.54	74	-20.83	237.3	Vertical	PK	Pass
2	4488.2500	42.38	13.63	28.75	54	-11.62	237.3	Vertical	AV	Pass
3	5750.6250	59.2	20.81	38.39	74	-14.8	6.2	Vertical	PK	Pass
3	5750.6250	47.69	20.81	26.88	54	-6.31	6.2	Vertical	AV	Pass
4	10536.0000	42.65	38.85	3.8	74	-31.35	359	Vertical	PK	Pass
4	10536.0000	35.64	38.85	-3.21	54	-18.38	359	Vertical	AV	Pass
5	14416.5000	50.41	40.96	9.45	74	-23.59	359.5	Vertical	PK	Pass
5	14416.5000	41.46	40.96	0.5	54	-12.54	359.5	Vertical	AV	Pass
6	17967.0000	53.01	46.28	6.73	74	-20.99	71.4	Vertical	PK	Pass
6	17967.0000	46.09	46.28	-0.19	54	-7.91	71.4	Vertical	AV	Pass

11a, 1 GHz to 18 GHz, Channel (5260 MHz), ANT H

Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	1939.3750	42.55	1.92	40.63	74	-31.45	307.7	Horizontal	PK	Pass
1	1939.3750	32.05	1.92	30.13	54	-21.95	307.7	Horizontal	AV	Pass
2	3418.7500	55.45	9.12	46.33	74	-18.55	207.3	Horizontal	PK	Pass
2	3418.7500	37.43	9.12	28.31	54	-16.57	207.3	Horizontal	AV	Pass
3	5987.5000	57.57	21.29	36.28	74	-16.43	286.2	Horizontal	PK	Pass
3	5987.5000	47.59	21.29	26.3	54	-6.41	286.2	Horizontal	AV	Pass
4	11530.5000	45.46	39.02	6.44	74	-28.54	0	Horizontal	PK	Pass
4	11530.5000	38.19	39.02	-0.83	54	-15.81	0	Horizontal	AV	Pass
5	14383.5000	49.21	41	8.21	74	-24.79	73.8	Horizontal	PK	Pass
5	14383.5000	41.68	41	0.68	54	-12.32	73.8	Horizontal	AV	Pass
6	17982.0000	53.06	46.38	6.68	74	-20.94	352.9	Horizontal	PK	Pass
6	17982.0000	46.85	46.38	0.47	54	-7.15	352.9	Horizontal	AV	Pass

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

11a, 1 GHz to 18 GHz, Channel (5260 MHz), ANT V

Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	2716.8750	45.17	6.39	38.78	74	-28.83	76.8	Vertical	PK	Pass
1	2716.8750	35.07	6.39	28.68	54	-18.93	76.8	Vertical	AV	Pass
2	4373.7500	51.41	13.41	38	74	-22.59	122.2	Vertical	PK	Pass
2	4373.7500	42.27	13.41	28.86	54	-11.73	122.2	Vertical	AV	Pass
3	5684.3750	56.86	20.96	35.9	74	-17.14	93.6	Vertical	PK	Pass
3	5684.3750	48.16	20.96	27.2	54	-5.84	93.6	Vertical	AV	Pass
4	11077.5000	44.74	39.43	5.31	74	-29.26	275.8	Vertical	PK	Pass
4	11077.5000	37.68	39.43	-1.75	54	-16.32	275.8	Vertical	AV	Pass
5	14367.0000	49.76	41.02	8.74	74	-24.24	358.8	Vertical	PK	Pass
5	14367.0000	41.87	41.02	0.85	54	-12.13	358.8	Vertical	AV	Pass
6	17997.0000	53.37	46.48	6.89	74	-20.63	0	Vertical	PK	Pass
6	17997.0000	46.67	46.48	0.19	54	-7.33	0	Vertical	AV	Pass

11a, 1 GHz to 18 GHz, Channel (5320 MHz), ANT H


Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	3008.1250	46.67	8.04	38.63	74	-27.33	248	Horizontal	PK	Pass
1	3008.1250	36.9	8.04	28.86	54	-17.1	248	Horizontal	AV	Pass
2	4718.7500	52.93	14.81	38.12	74	-21.07	331.7	Horizontal	PK	Pass
2	4718.7500	43.58	14.81	28.77	54	-10.42	331.7	Horizontal	AV	Pass
3	5718.7500	57.93	21.16	36.77	74	-16.07	6.6	Horizontal	PK	Pass
3	5718.7500	48.2	21.16	27.04	54	-5.8	6.6	Horizontal	AV	Pass
4	11671.5000	46.06	38.9	7.16	74	-27.94	359.5	Horizontal	PK	Pass
4	11671.5000	37.48	38.9	-1.44	54	-16.54	359.5	Horizontal	AV	Pass
5	13998.0000	49.2	41.49	7.71	74	-24.8	29.6	Horizontal	PK	Pass
5	13998.0000	41.84	41.49	0.35	54	-12.16	29.6	Horizontal	AV	Pass
6	17955.0000	53.05	46.2	6.85	74	-20.95	213.6	Horizontal	PK	Pass
6	17955.0000	46.23	46.2	0.03	54	-7.77	213.6	Horizontal	AV	Pass

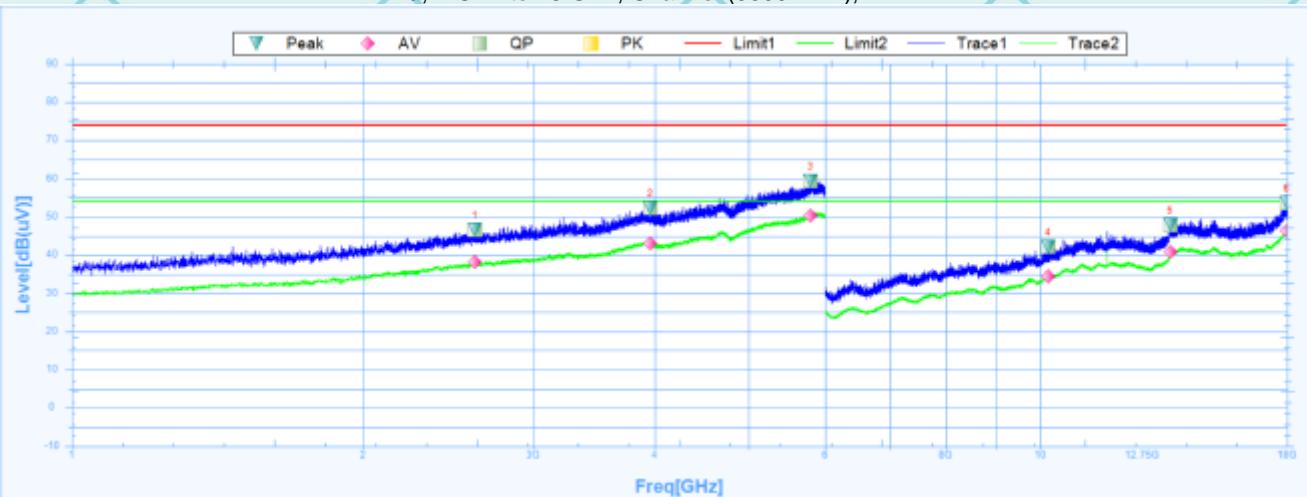
Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

11a, 1 GHz to 18 GHz, Channel (5320 MHz), ANT V

Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	1947.5000	45.67	2.02	43.65	74	-28.33	68.6	Vertical	PK	Pass
1	1947.5000	31.83	2.02	29.81	54	-22.17	68.6	Vertical	AV	Pass
2	3507.5000	52.14	9.72	42.42	74	-21.86	265.9	Vertical	PK	Pass
2	3507.5000	37.38	9.72	27.86	54	-16.62	265.9	Vertical	AV	Pass
3	5734.3750	56.59	21	35.59	74	-17.41	301.8	Vertical	PK	Pass
3	5734.3750	47.74	21	26.74	54	-6.26	301.8	Vertical	AV	Pass
4	11745.0000	45.5	38.83	6.67	74	-28.5	140.7	Vertical	PK	Pass
4	11745.0000	41.53	38.83	2.7	54	-12.47	140.7	Vertical	AV	Pass
5	14013.0000	50.35	41.48	8.87	74	-23.65	222	Vertical	PK	Pass
5	14013.0000	41.58	41.48	0.1	54	-12.42	222	Vertical	AV	Pass
6	17991.0000	53.2	46.44	6.76	74	-20.8	14	Vertical	PK	Pass
6	17991.0000	46.64	46.44	0.2	54	-7.36	14	Vertical	AV	Pass

11a, 1 GHz to 18 GHz, Channel (5500 MHz), ANT H


Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	1744.3750	47.23	0.48	46.75	74	-28.77	72.2	Horizontal	PK	Pass
1	1744.3750	32.92	0.48	32.44	54	-21.08	72.2	Horizontal	AV	Pass
2	3256.2500	49.05	8.56	40.49	74	-24.95	1.5	Horizontal	PK	Pass
2	3256.2500	40.33	8.56	31.77	54	-13.67	1.5	Horizontal	AV	Pass
3	5961.2500	59.87	20.96	38.91	74	-14.13	210.9	Horizontal	PK	Pass
3	5961.2500	50.75	20.96	29.79	54	-3.25	210.9	Horizontal	AV	Pass
4	11745.0000	45.26	38.83	6.43	74	-28.74	279.4	Horizontal	PK	Pass
4	11745.0000	41.66	38.83	2.83	54	-12.34	279.4	Horizontal	AV	Pass
5	13969.5000	48.3	41.42	6.88	74	-25.7	230.4	Horizontal	PK	Pass
5	13969.5000	41.41	41.42	-0.01	54	-12.59	230.4	Horizontal	AV	Pass
6	17967.0000	52.97	46.28	6.69	74	-21.03	193.3	Horizontal	PK	Pass
6	17967.0000	45.97	46.28	-0.31	54	-8.03	193.3	Horizontal	AV	Pass

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

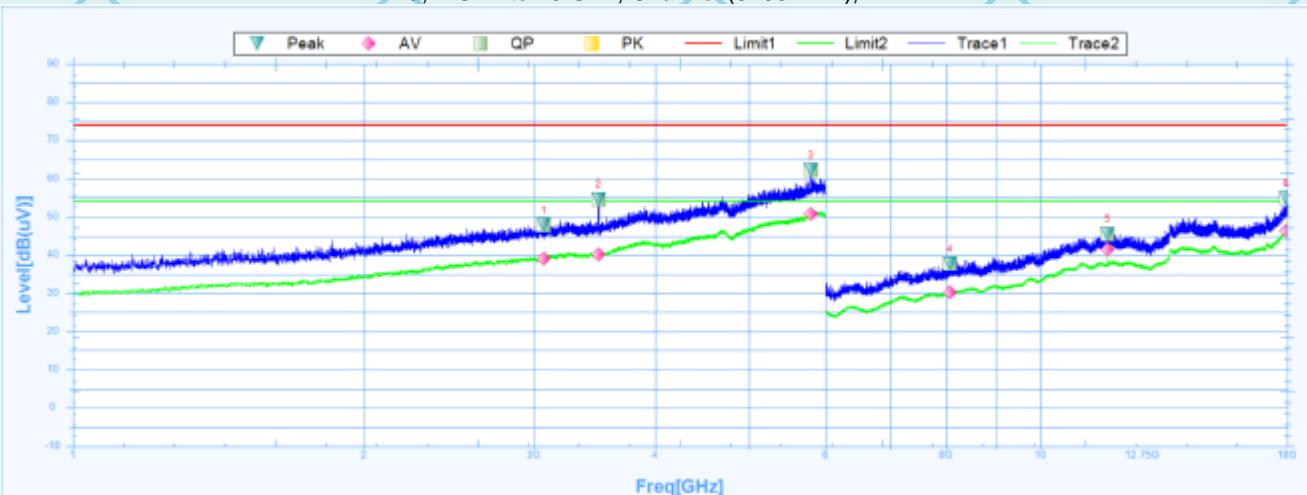
11a, 1 GHz to 18 GHz, Channel (5500 MHz), ANT V



Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	2609.3750	46.46	5.95	40.51	74	-27.54	359.5	Vertical	PK	Pass
1	2609.3750	38.11	5.95	32.16	54	-15.89	359.5	Vertical	AV	Pass
2	3959.3750	52.36	11.53	40.83	74	-21.84	-0.1	Vertical	PK	Pass
2	3959.3750	43.09	11.53	31.56	54	-10.91	-0.1	Vertical	AV	Pass
3	5795.0000	59.42	20.33	39.09	74	-14.58	237.6	Vertical	PK	Pass
3	5795.0000	50.37	20.33	30.04	54	-3.63	237.6	Vertical	AV	Pass
4	10194.0000	42.06	38.37	3.69	74	-31.94	115.3	Vertical	PK	Pass
4	10194.0000	34.51	38.37	-3.86	54	-19.49	115.3	Vertical	AV	Pass
5	13632.0000	47.87	40.54	7.33	74	-26.13	360	Vertical	PK	Pass
5	13632.0000	40.83	40.54	0.29	54	-13.17	360	Vertical	AV	Pass
6	17985.0000	53.72	46.4	7.32	74	-20.28	299.3	Vertical	PK	Pass
6	17985.0000	46.31	46.4	-0.09	54	-7.69	299.3	Vertical	AV	Pass

11a, 1 GHz to 18 GHz, Channel (5700 MHz), ANT H


Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	2363.1250	46.08	4.94	41.14	74	-27.92	320.2	Horizontal	PK	Pass
1	2363.1250	36.01	4.94	31.07	54	-17.99	320.2	Horizontal	AV	Pass
2	3497.5000	53.93	9.67	44.26	74	-20.07	230.5	Horizontal	PK	Pass
2	3497.5000	40.28	9.67	30.61	54	-13.72	230.5	Horizontal	AV	Pass
3	5921.8750	60.14	20.59	39.55	74	-13.86	244.8	Horizontal	PK	Pass
3	5921.8750	51.07	20.59	30.48	54	-2.93	244.8	Horizontal	AV	Pass
4	11098.5000	45.7	39.41	6.29	74	-28.3	268.2	Horizontal	PK	Pass
4	11098.5000	37.43	39.41	-1.98	54	-16.57	268.2	Horizontal	AV	Pass
5	14013.0000	48.98	41.48	7.5	74	-25.02	1.2	Horizontal	PK	Pass
5	14013.0000	41.84	41.48	0.36	54	-12.16	1.2	Horizontal	AV	Pass
6	17992.5000	53.1	46.45	6.65	74	-20.9	124.8	Horizontal	PK	Pass
6	17992.5000	46.46	46.45	0.01	54	-7.54	124.8	Horizontal	AV	Pass

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2


11a, 1 GHz to 18 GHz, Channel (5700 MHz), ANT V

Suspected Data List

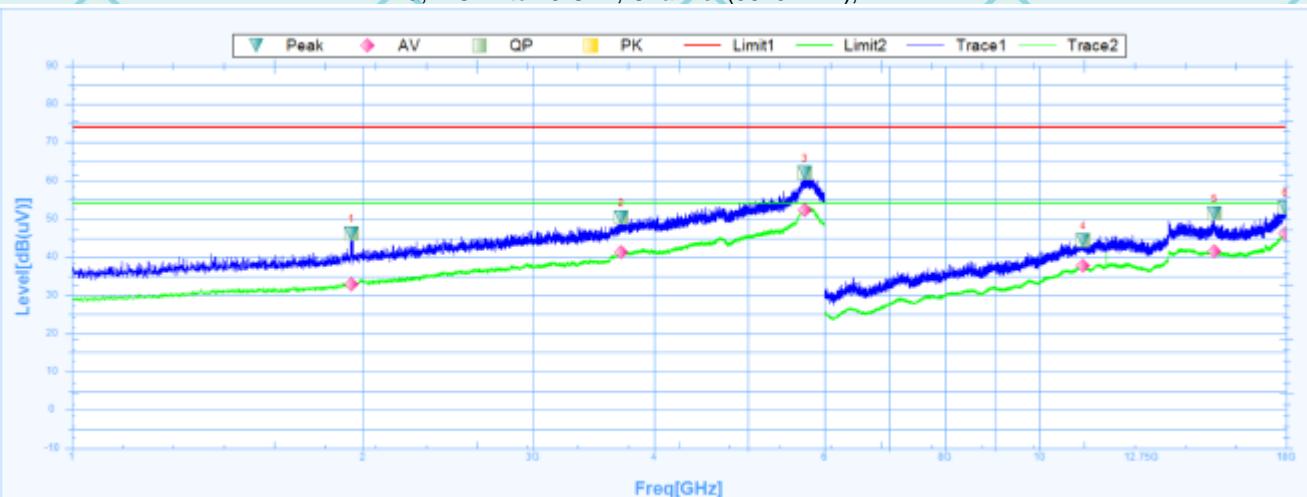
NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	3070.0000	47.95	8.01	39.94	74	-26.05	134.8	Vertical	PK	Pass
1	3070.0000	39.14	8.01	31.13	54	-14.88	134.8	Vertical	AV	Pass
2	3496.2500	54.62	9.67	44.95	74	-19.38	0	Vertical	PK	Pass
2	3496.2500	40.06	9.67	30.39	54	-13.94	0	Vertical	AV	Pass
3	5797.5000	62.26	20.31	41.95	74	-11.74	349.8	Vertical	PK	Pass
3	5797.5000	50.83	20.31	30.52	54	-3.17	349.8	Vertical	AV	Pass
4	8070.0000	37.69	37.03	0.66	74	-36.31	328	Vertical	PK	Pass
4	8070.0000	30.23	37.03	-6.8	54	-23.77	328	Vertical	AV	Pass
5	11745.0000	45.56	38.83	6.73	74	-28.44	355.2	Vertical	PK	Pass
5	11745.0000	41.46	38.83	2.63	54	-12.54	355.2	Vertical	AV	Pass
6	17965.5000	54.89	46.27	8.62	74	-19.11	358.5	Vertical	PK	Pass
6	17965.5000	46.29	46.27	0.02	54	-7.71	358.5	Vertical	AV	Pass

11a, 1 GHz to 18 GHz, Channel (5745 MHz), ANT H

Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	1941.2500	42.3	1.95	40.35	74	-31.7	45.2	Horizontal	PK	Pass
1	1941.2500	32.76	1.95	30.81	54	-21.24	45.2	Horizontal	AV	Pass
2	3540.0000	49.44	9.9	39.54	74	-24.56	0	Horizontal	PK	Pass
2	3540.0000	38.32	9.9	28.42	54	-15.68	0	Horizontal	AV	Pass
3	5791.8750	65.19	20.37	44.82	74	-8.81	156.4	Horizontal	PK	Pass
3	5791.8750	52.93	20.37	32.56	54	-1.07	156.4	Horizontal	AV	Pass
4	10683.0000	43.9	39.06	4.84	74	-30.1	182.2	Horizontal	PK	Pass
4	10683.0000	38.31	39.06	-2.75	54	-17.89	182.2	Horizontal	AV	Pass
5	11745.0000	46.78	38.83	7.95	74	-27.22	69.8	Horizontal	PK	Pass
5	11745.0000	41.92	38.83	3.09	54	-12.08	69.8	Horizontal	AV	Pass
6	17901.0000	53	45.84	7.16	74	-21	261	Horizontal	PK	Pass
6	17901.0000	45.84	45.84	0	54	-8.16	261	Horizontal	AV	Pass

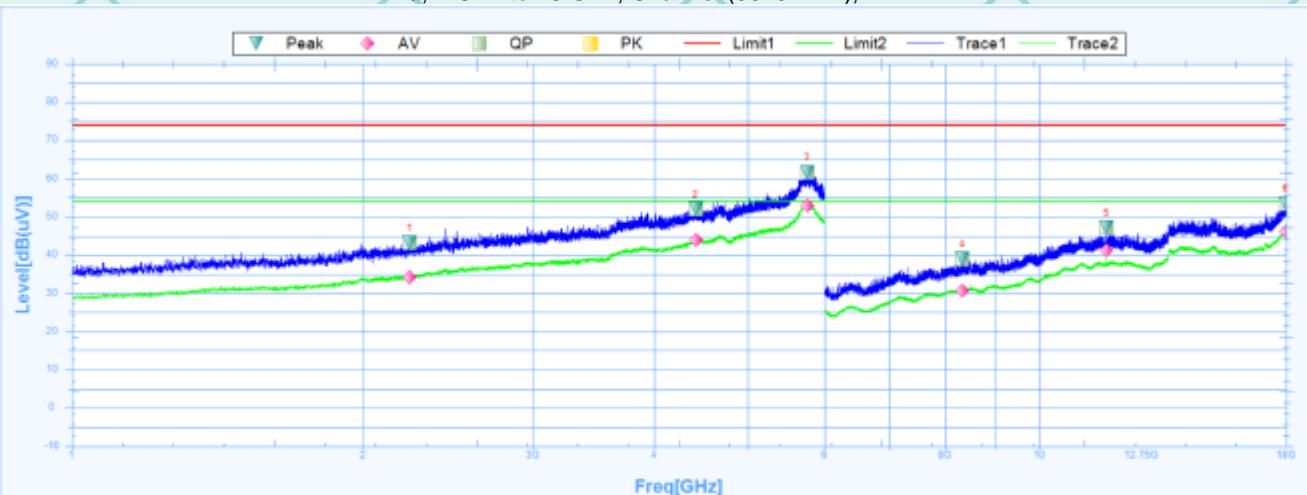
Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2


11a, 1 GHz to 18 GHz, Channel (5745 MHz), ANT V

Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	2116.2500	42.67	3.11	39.56	74	-31.33	-0.1	Vertical	PK	Pass
1	2116.2500	33.77	3.11	30.66	54	-20.23	-0.1	Vertical	AV	Pass
2	3543.7500	48.16	9.91	38.25	74	-25.84	36.7	Vertical	PK	Pass
2	3543.7500	38.66	9.91	28.75	54	-15.34	36.7	Vertical	AV	Pass
3	5717.5000	61.48	21.18	40.3	74	-12.52	8.9	Vertical	PK	Pass
3	5717.5000	53.03	21.18	31.85	54	-0.97	8.9	Vertical	AV	Pass
4	8997.0000	38.94	37.4	1.54	74	-35.06	0.5	Vertical	PK	Pass
4	8997.0000	31.92	37.4	-5.48	54	-22.08	0.5	Vertical	AV	Pass
5	11745.0000	47.04	38.83	8.21	74	-26.96	333.9	Vertical	PK	Pass
5	11745.0000	41.9	38.83	3.07	54	-12.1	333.9	Vertical	AV	Pass
6	17886.0000	53.84	45.74	8.1	74	-20.18	286.1	Vertical	PK	Pass
6	17886.0000	45.48	45.74	-0.26	54	-8.52	286.1	Vertical	AV	Pass

11a, 1 GHz to 18 GHz, Channel (5825 MHz), ANT H



Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	1945.0000	46.11	1.99	44.12	74	-27.89	316.6	Horizontal	PK	Pass
1	1945.0000	32.78	1.99	30.79	54	-21.22	316.6	Horizontal	AV	Pass
2	3700.0000	50.28	10.38	39.9	74	-23.72	347	Horizontal	PK	Pass
2	3700.0000	41.19	10.38	30.81	54	-12.81	347	Horizontal	AV	Pass
3	5725.0000	61.99	21.09	40.9	74	-12.01	97.8	Horizontal	PK	Pass
3	5725.0000	52.41	21.09	31.32	54	-1.59	97.8	Horizontal	AV	Pass
4	11103.0000	44.41	39.41	5	74	-29.59	102.2	Horizontal	PK	Pass
4	11103.0000	37.67	39.41	-1.74	54	-16.33	102.2	Horizontal	AV	Pass
5	15178.5000	51.34	39.65	11.69	74	-22.66	77	Horizontal	PK	Pass
5	15178.5000	41.49	39.65	1.84	54	-12.51	77	Horizontal	AV	Pass
6	17965.5000	53.05	46.27	6.78	74	-20.95	230.1	Horizontal	PK	Pass
6	17965.5000	46.19	46.27	-0.08	54	-7.81	230.1	Horizontal	AV	Pass

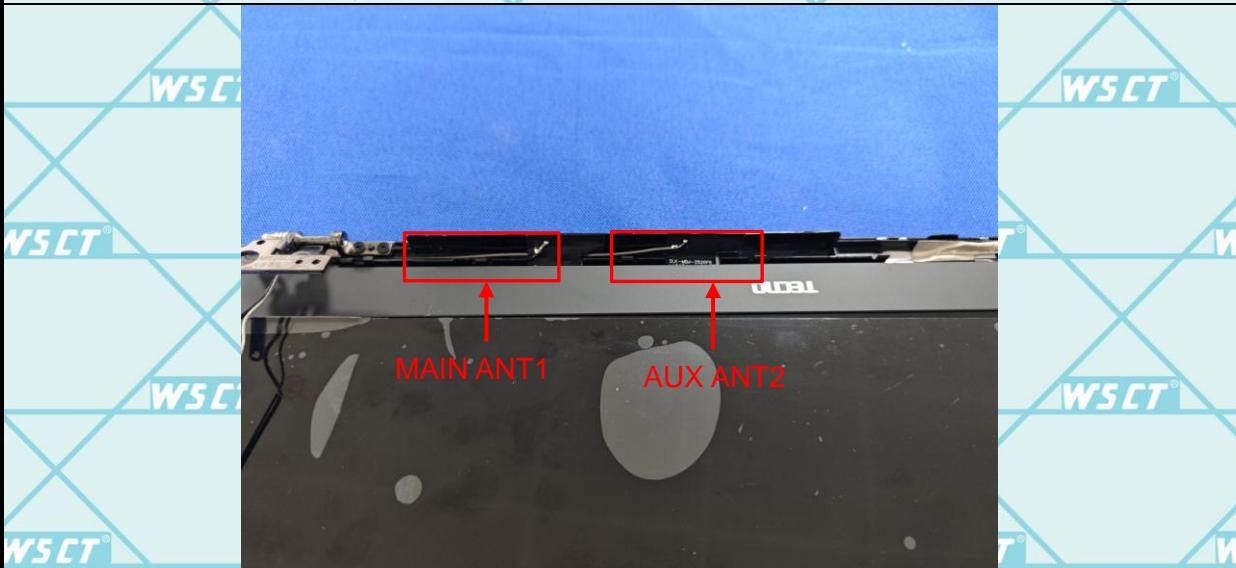
11a, 1 GHz to 18 GHz, Channel (5825 MHz), ANT V

Suspected Data List

NO.	Freq. [MHz]	Reading [dB(uV)]	Factor [dB]	Level [dB(uV)]	Limit [dB]	Margin [dB]	Deg [°]	Polarity	Trace	Verdict
1	2235.0000	43.18	3.99	39.19	74	-30.82	351.3	Vertical	PK	Pass
1	2235.0000	34.14	3.99	30.15	54	-19.88	351.3	Vertical	AV	Pass
2	4415.0000	52.08	13.55	38.53	74	-21.92	350.6	Vertical	PK	Pass
2	4415.0000	43.85	13.55	30.3	54	-10.15	350.6	Vertical	AV	Pass
3	5760.0000	61.69	20.72	40.97	74	-12.31	97.8	Vertical	PK	Pass
3	5760.0000	53.05	20.72	32.33	54	-0.95	97.8	Vertical	AV	Pass
4	8331.0000	38.97	37.13	1.84	74	-35.03	1.2	Vertical	PK	Pass
4	8331.0000	30.63	37.13	-6.5	54	-23.37	1.2	Vertical	AV	Pass
5	11745.0000	47.22	38.83	8.39	74	-26.78	360.1	Vertical	PK	Pass
5	11745.0000	41.23	38.83	2.4	54	-12.77	360.1	Vertical	AV	Pass
6	17982.0000	53.52	46.38	7.14	74	-20.48	245.6	Vertical	PK	Pass
6	17982.0000	46.04	46.38	-0.34	54	-7.96	245.6	Vertical	AV	Pass

Note:

1. All emissions not reported were more than 20dB below the specified limit or in the noise floor.
2. Emission Level= Reading Level+ Probe Factor +Cable Loss.
3. Data of measurement within this frequency range shown “-” in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
4. EUT has been tested in unfolded states, and the report only reflects data in the unfolded state (worst-case scenario)


7.3 ANTENNA REQUIREMENT

Standard requirement:	The EUT'S antenna is met the requirement of FCC part 15C section 15.203 and FCC part 15C section 15.407.
------------------------------	--

FCC part 15C section 15.203 and FCC part 15C section 15.407 requirements: Systems operating in the 5150~5850MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum peak output power of the intentional radiator is reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Wi-Fi antenna is a Integral Antenna. it meets the standards, and the best case gain of the antenna is "MAIN:2.86dBi ,AUX:2.24 dBi".

<CDD Modes >

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = GANT + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(NANT/NSS=1)$ dB.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for NANT \leq 4.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain GANT is set equal to the antenna having the highest gain, i.e., F(2)f(j).

For PSD, the directional gain calculation is following F(2)f(ii) of KDB 662911 D01 v02r01.

The directional gain "DG" is calculated as following table.

<CDD Modes>	Ant1 (dBi)	Ant2 (dBi)	DG for power (dBi)	DG for PSD (dBi)
5180~5825MHz	2.86	2.24	2.86	5.57

Power limit reduction = Composite gain – 6dBi, (min = 0)

PSD limit reduction = Composite gain + PSD Array gain – 6dBi, (min = 0)

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

7.4 EMISSION BANDWIDTH

7.4.1 TEST EQUIPMENT

Please refer to Section 5 this report.

7.4.2 TEST PROCEDURE

-26dB Bandwidth and 99% Occupied Bandwidth:

Test Method:	<p>a)The transmitter was radiated to the spectrum analyzer in peak hold mode.</p> <p>b)Measure the maximum width of the emission that is 26 dB down from the peak of the emission Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.</p>
Test Equipment Setting – 26dB Bandwidth:	<p>a)Attenuation: Auto</p> <p>b)Span Frequency: > 26dB Bandwidth</p> <p>c)RBW: Approximately 1% of the emission bandwidth</p> <p>d)VBW: VBW > RBW</p> <p>e)Detector: Peak</p> <p>f)Trace: Max Hold</p> <p>g)Sweep Time: Auto</p>
Test Equipment Setting – 99% Bandwidth:	<p>a)Span: 1.5 times to 5.0 times the OBW</p> <p>b)RBW: 1 % to 5 % of the OBW</p> <p>c)VBW: $\geq 3 \times$ RBW</p> <p>d)Detector: Peak</p> <p>e)Trace: Max Hold</p>

6 dB Bandwidth:

Test Method:	<p>a)The transmitter was radiated to the spectrum analyzer in peak hold mode.</p> <p>b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (C) Emission Bandwidth.</p> <p>c)Multiple antenna system was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.</p> <p>d)Measured the spectrum width with power higher than 6dB below carrier.</p>
Test Equipment Setting:	<p>a)Attenuation: Auto</p> <p>b)Span Frequency: > 6dB Bandwidth</p> <p>c)RBW: 100kHz</p> <p>d)VBW: $\geq 3 \times$ RBW</p> <p>e)Detector: Peak</p> <p>f)Trace: Max Hold</p> <p>g)Sweep Time: Auto</p>

Maximum Conducted Output Power Measurement:

Test Method:	<p>a)The transmitter output (antenna port) was connected to the power meter.</p> <p>b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (E) Maximum conducted output power =>3. Measurement using a Power Meter (PM) =>b) Method PM-G (Measurement using a gated RF average power meter).</p> <p>c)Multiple antenna systems was performed in accordance with KDB662911 D01 v02r01 Emissions Testing of Transmitters with Multiple Outputs in the Same Band.</p> <p>d)When measuring maximum conducted output power with multiple antenna systems, add every result of the values by mathematic formula.</p>
Test Equipment Setting: Detector - Average	

Power Spectral Density:

Test Method:	<p>a)The transmitter output (antenna port) was connected RF switch to the spectrum analyzer.</p> <p>b)Test was performed in accordance with KDB789033 D02 v01 for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices - section (F) Maximum Power Spectral Density (PSD).</p> <p>c)Multiple antenna systems was performed in accordance KDB662911 D01 v02r01 in-Band Power Spectral Density (PSD) Measurements (a) Measure and sum the spectra across the outputs.</p> <p>d)When measuring first spectral bin of output 1 is summed with that in the first spectral bin of output 2 and that from the first spectral bin of output 3 and so on up to the Nth output to obtain the value for the first frequency bin of the summed spectrum. The summed spectrum value for each of the other frequency bins is computed in the same way.</p> <p>e)For 5.725~5.85 GHz, the measured result of PSD level must add $10\log(500\text{kHz}/\text{RBW})$</p>
--------------	---

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

	and the final result should ≤ 30 dBm.
<u>Test Equipment Setting:</u>	
a)Attenuation: Auto	e)Detector: RMS
b)Span Frequency: Encompass the entire emissions bandwidth (EBW) of the signal	f)Trace: AVERAGE
c)RBW: 1000 kHz	g)Sweep Time: Auto
d)VBW: 3000 kHz	h)Trace Average: 100 times
Note: If measurement bandwidth of Maximum PSD is specified in 500 kHz, add $10\log(500\text{kHz}/\text{RBW})$ to the measured result, whereas RBW (< 500 kHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.	

Frequency Stability Measurement:	
Test Method:	a)The transmitter output (antenna port) was connected to the spectrum analyzer. b)EUT have transmitted absence of modulation signal and fixed channelize. c)Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth. d)Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings. e)fc is declaring of channel frequency. Then the frequency error formula is $(f_c - f)/f_c \times 10^6$ ppm and the limit is less than ± 20 ppm (IEEE 802.11n specification). f)The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value g)Extreme temperature is 0°C~40°C
<u>Test Equipment Setting:</u>	
a)Attenuation: Auto	e)Sweep Time: Auto
b)Span Frequency: Entire absence of modulation emissions bandwidth	
c)RBW: 10 kHz	
d)VBW: 10 kHz	

7.4.3 CONFIGURATION OF THE EUT

Same as section 3.4 of this report

7.4.4 EUT OPERATING CONDITION

Same as section 3.5 of this report.

7.4.5 LIMIT

-26dB Bandwidth and 99% Occupied Bandwidth:

Limit: No restriction limits.

-6 dB Bandwidth:

Limit: For digital modulation systems, the minimum 6dB bandwidth shall be at least 500 kHz.

Test Equipment Setting:

a)Attenuation: Auto
b)Span Frequency: > 6dB Bandwidth
c)RBW: 100kHz
d)VBW: $\geq 3 \times$ RBW

e)Detector: Peak

f)Trace: Max Hold

g)Sweep Time: Auto

Maximum Conducted Output Power Measurement:

 5.15~5.25 GHz Limit of Outdoor access point:

The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

 Limit of Fixed point-to-point access points:

The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.

 Limit of Indoor access point:

The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

 Limit of Mobile and portable client devices:

The maximum conducted output power over the frequency band of operation shall not exceed 250 mW (24dBm) provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

 5.25-5.35 GHz & 5.470-5.725 GHz

The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW (24dBm) or 11 dBm $10 \log B$, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

 5.725~5.85 GHz

The maximum conducted output power over the frequency band of operation shall not exceed 1 W (30dBm). If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power.

Power Spectral Density

 5.15~5.25 GHz Limit of Outdoor access point: 17 dBm/MHz Limit of Indoor access point: 17 dBm/MHz Limit of Fixed point-to-point access points: 17 dBm/MHz Limit of Mobile and portable client devices: 11 dBm/MHz 5.25-5.35 GHz

11 dBm/MHz

 5.470-5.725 GHz

11 dBm/MHz

 5.725~5.85 GHz

30 dBm/500kHz

Frequency Stability Measurement:

Limit: In-band emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.
The transmitter center frequency tolerance shall be ± 20 ppm maximum for the 5 GHz band (IEEE 802.11).

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

802.11n specification).

7.4.6 TEST RESULT

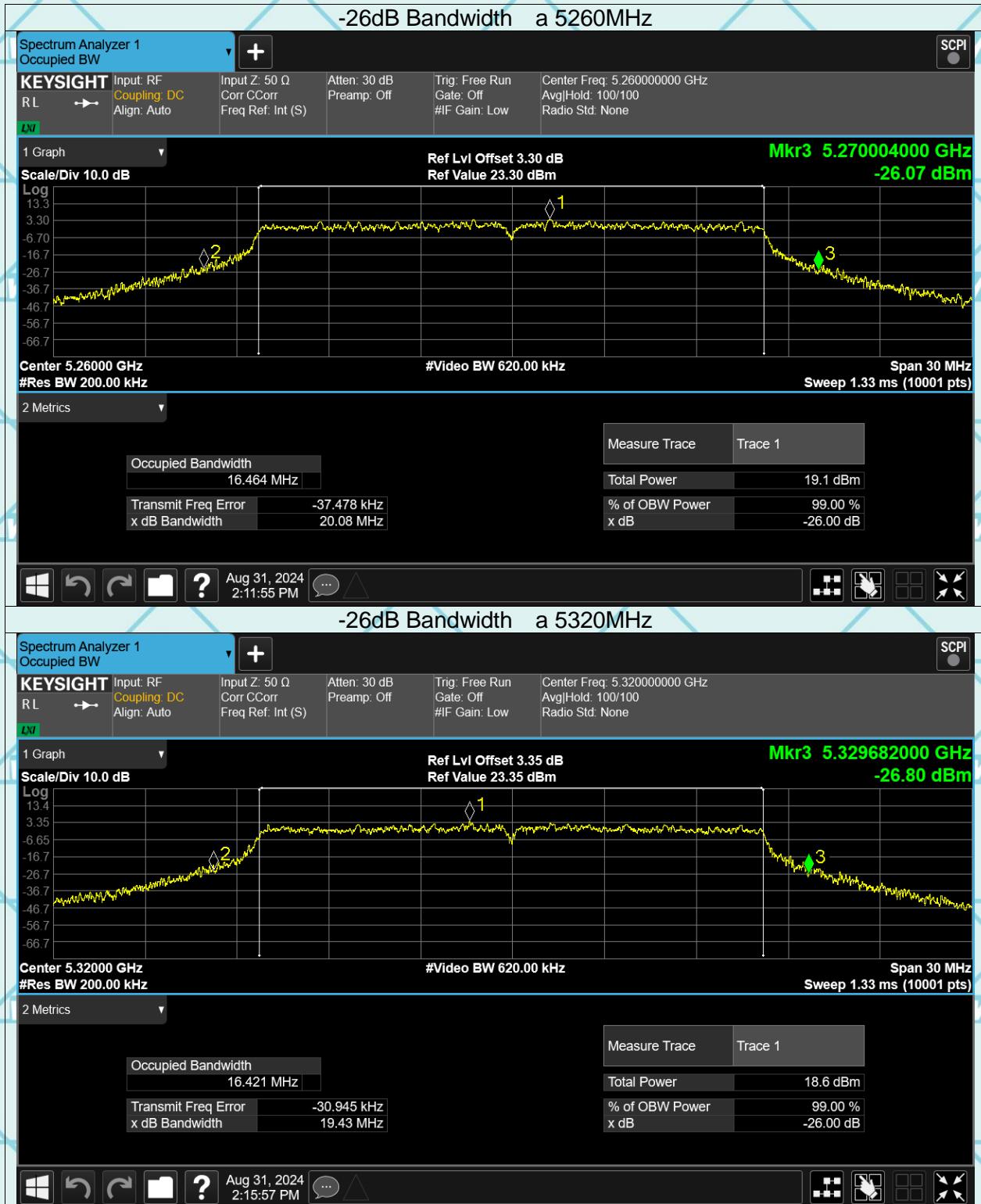
-26dB Bandwidth and 99% Occupied Bandwidth

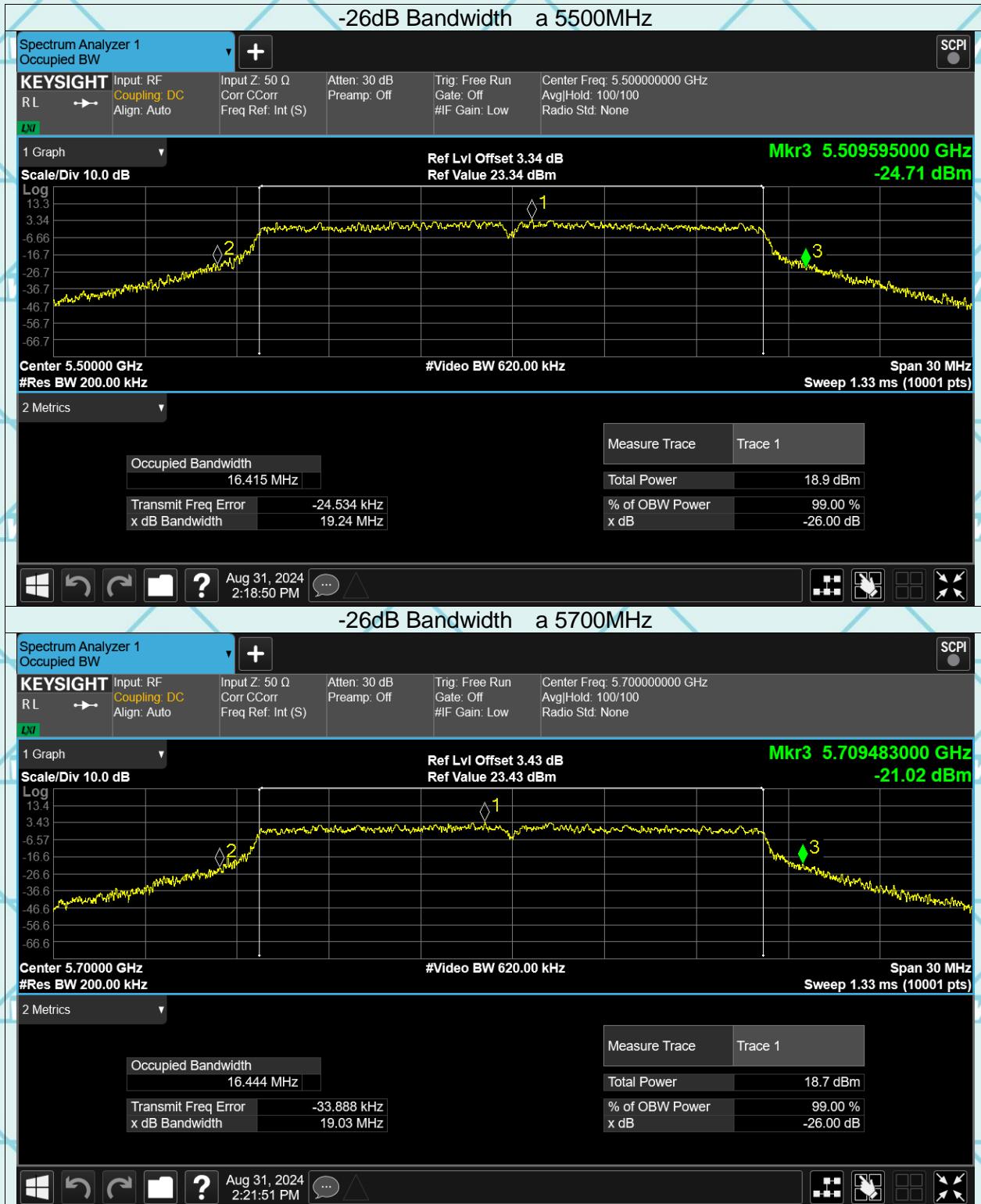
Product	: EUT-Sample	Test Mode	: See section 3.4
Test Item	: -26dB Bandwidth/-6dB Bandwidth and 99% Occupied Bandwidth	Temperature	: 25 °C
Test Voltage	: DC 11.55V	Humidity	: 56%RH
Test Result	: PASS		

-26dB Bandwidth

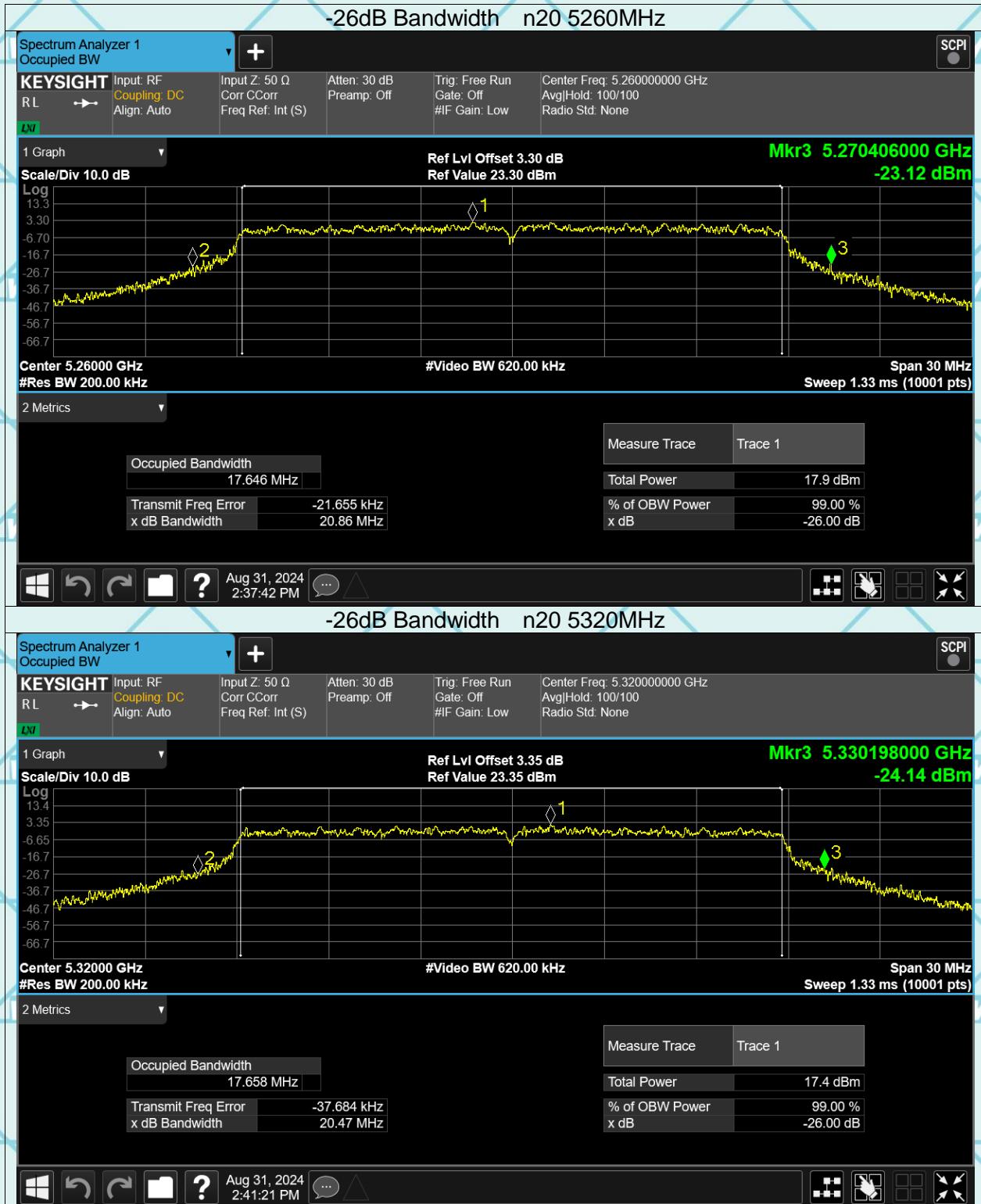
Mode	Frequency (MHz)	-26 dB Bandwidth (MHz)	Verdict
a	5180	23.97	Pass
a	5240	19.40	Pass
a	5260	20.08	Pass
a	5320	19.43	Pass
a	5500	19.24	Pass
a	5700	19.03	Pass
n20	5180	20.55	Pass
n20	5240	19.88	Pass
n20	5260	20.86	Pass
n20	5320	20.47	Pass
n20	5500	20.50	Pass
n20	5700	20.47	Pass
n40	5190	39.39	Pass
n40	5230	39.69	Pass
n40	5270	39.86	Pass
n40	5310	40.14	Pass
n40	5510	39.35	Pass
n40	5670	39.78	Pass
ac20	5180	20.47	Pass
ac20	5240	19.84	Pass
ac20	5260	20.33	Pass
ac20	5320	20.21	Pass
ac20	5500	20.64	Pass
ac20	5700	20.48	Pass
ac40	5190	39.23	Pass
ac40	5230	39.39	Pass
ac40	5270	39.29	Pass
ac40	5310	38.87	Pass
ac40	5510	39.11	Pass
ac40	5670	39.58	Pass
ac80	5210	78.55	Pass
ac80	5290	78.68	Pass
ac80	5530	78.50	Pass
ac80	5610	78.35	Pass
ax20	5180	21.97	Pass
ax20	5240	19.76	Pass
ax20	5260	21.68	Pass
ax20	5320	21.69	Pass
ax20	5500	21.63	Pass
ax20	5700	21.42	Pass
ax40	5190	52.24	Pass
ax40	5230	39.35	Pass
ax40	5270	39.20	Pass
ax40	5310	44.35	Pass
ax40	5510	52.39	Pass
ax40	5670	55.29	Pass
ax80	5210	83.09	Pass
ax80	5290	79.76	Pass
ax80	5530	79.84	Pass

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2


ax80	5610	79.83	Pass
ax160	5250	164.8	Pass
ax160	5570	165.3	Pass


-6dB Bandwidth

Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
a	5745	16.37	0.5	Pass
a	5825	16.32	0.5	Pass
n20	5745	17.58	0.5	Pass
n20	5825	17.48	0.5	Pass
n40	5755	35.08	0.5	Pass
n40	5795	35.03	0.5	Pass
ac20	5745	17.48	0.5	Pass
ac20	5825	16.93	0.5	Pass
ac40	5755	34.99	0.5	Pass
ac40	5795	35.12	0.5	Pass
ac80	5775	75.08	0.5	Pass
ax20	5745	18.76	0.5	Pass
ax20	5825	17.12	0.5	Pass
ax40	5755	35.81	0.5	Pass
ax40	5795	35.59	0.5	Pass
ax80	5775	74.05	0.5	Pass



Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

Report No.: WSCT-ANAB-R&E240800043A-Wi-Fi2

