

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

WPT	wireless power transfer
V&V	verification & validation

Calibration is Performed According to the Following Standards:

- Internal procedure QA CAL-47 Calibration procedure for WPT verification & validation sources from 3 kHz to 10 MHz
- IEC/IEEE 63164, "Assessment methods of the human exposure to electric and magnetic fields from wireless power transfer systems – Models, instrumentation, measurement and computational methods and procedures (Frequency range 3 kHz to 30 MHz)", draft standard, 2023

Additional Documentation:

- cDASY6/DASY8 Module WPT Manual

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* The V&V source is switched on for at least 30 minutes.
- Source Positioning:* The V&V source is placed in the center of the UniPV1 phantom such that the source surface is parallel to phantom surface. The probe location used for DUT teaching is the top center of the coil (marked on the source casing). The probe distance is verified using mechanical gauges placed on the source surface.
- H-field distribution:* H-field is measured in the volume above the V&V source in a rectilinear grid with a uniform grid step of 7.33 mm.

Calibrated Quantity

- Spatial peak of H-field (RMS value) at d mm from the DUT surface (extrapolated from measurements)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

Software version	cDASY6 Module WPT	2.6.0.5002
	Notebook GUI	2.6.0.9
	Sim4Life	8.0.1
Scan setup	Grid dimensions	x: 125 mm, y: 125 mm, z: 36.7 mm
	Grid resolutions	dx, dy, dz: 7.33 mm
Nominal frequency	400 kHz	

Calibrated Quantities

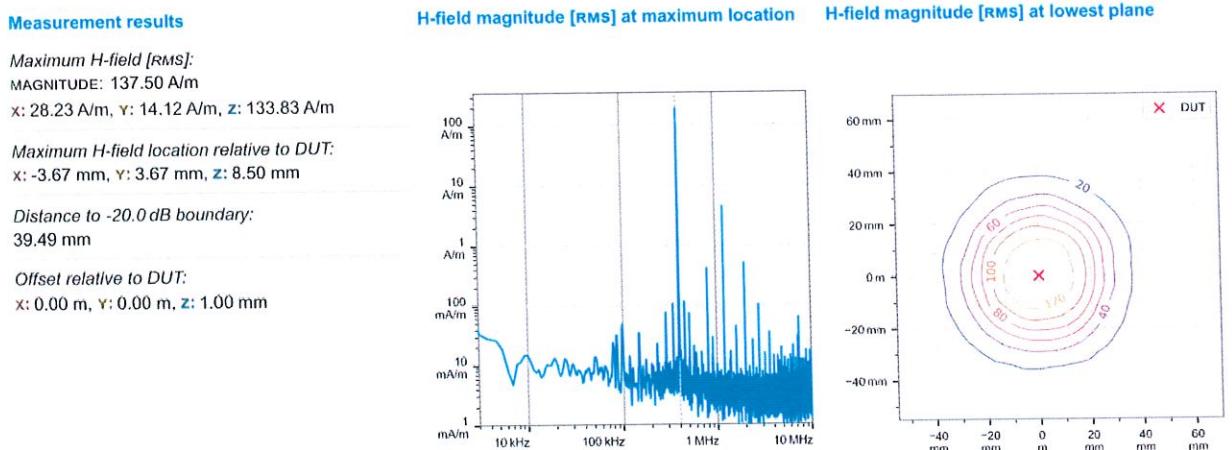
Distance (relative to source surface) (mm)	Peak H-field (A/m)	Uncertainty (k=2) (dB)
0	284	1.13
2	249	1.13

Appendix (Additional assessments outside the scope of SCS 0108)

Peak values of induced fields¹

Distance (relative to source surface) (mm)	Induced peak current density, 1cm ² area avg. (A/m ²)	Induced peak E-field (V/m)			peak spatial SAR (mW/kg)	
		2mm cube avg.	Local	5mm line avg.	1g avg.	10g avg.
0	2.83	4.46	4.57	4.58	7.87	3.91
2	2.41	3.86	3.97	3.98	5.76	2.90

Voltage measurement


Total voltage (V)	Voltages at harmonics (dBc)
0.416	Highest harmonic: -32.1 2 nd highest harmonic: -45.6

¹ determined for a virtual half-space phantom with tissue properties $\epsilon_r = 55$, $\sigma = 0.75$ S/m, $\rho = 1000$ kg/m³ and a 2 mm thick phantom shell

Measurement report

cDASY6 Module WPT Measurement Report

Device under test	Tool info	Scan info
Info: V-Coil50/400	DASY software version: cDASY6 Module WPT 2.6.0.5002	Center location: x: -186.14 mm, y: -319.40 mm, z: 36.78 mm
Serial number: 1034	Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP000230, 2024/08/23	Dimensions: x: 125.0 mm, y: 124.0 mm, z: 36.6 mm
Scenario: source calibration	Software version: 2.0.63, backend: 2.2.22	Resolution: x: 7.33 mm, y: 7.33 mm, z: 7.33 mm

Incident fields and induced fields in the homogeneous phantom at the peak frequency ($f = 400.00 \text{ kHz}$, $\sigma = 0.750 \text{ S/m}$, tissue density = 1.000 kg/m^3)

Distance [mm]	H _{inc} [A/m]	Peak E _{ind} [V/m, RMS]			Peak J _{ind} [A/m ² , RMS] Surface avg.	psSAR [mW/kg]		H-field extent -20 dB radius [mm]	Sign	Vector potential	Warnings Boundary effect
		Cube avg.	Local	Line avg.		1g avg.	10g avg.				
0.00	284	4.46	4.57	4.58	2.83	7.87	3.91	38.9	1%	8%	23%
2.00	249	3.86	3.97	3.98	2.41	5.76	2.90	39.2	1%	8%	26%

Compliance evaluation (Field values at the peak frequency) ($f=400.00 \text{ kHz}$,)

Distance [mm]	ICNIRP 2010/2020			ICNIRP 1998			IEEE 2019			FCC			HC Code 6		
	RL [RMS]		BR [RMS]	RL [RMS]		BR [RMS]	ERL [RMS]		DRL [RMS]	MPE [RMS]		BR [RMS]	RL [RMS]		BR [RMS]
	pH _{inc} [A/m]	pE _{ind} [V/m]	psSAR [mW/kg]	pH _{inc} [A/m]	pJ _{ind} [A/m ²]	psSAR [mW/kg]	pH _{inc} [A/m]	pE _{ind} [V/m]	psSAR [mW/kg]	pH _{inc} [A/m]	pE _{ind} [V/m]	psSAR [mW/kg]	pH _{inc} [A/m]	pE _{ind} [V/m]	psSAR [mW/kg]
0.00	284	4.46	3.91	284	2.83	3.91	284	4.58	3.91	284	N/A	7.87	284	4.57	7.87
2.00	249	3.86	2.90	249	2.41	2.90	249	3.98	2.90	249	N/A	5.76	249	3.97	5.76

Compliance evaluation (Exposure ratios) (ratios in dB)

Distance [mm]	ICNIRP 2010/2020			ICNIRP 1998			IEEE 2019			FCC			HC Code 6		
	RL		BR	RL	BR	ERL	RL	BR	DRL	MPE	BR	RL	BR	RL	BR
	pH _{inc}	pE _{ind}	psSAR	pH _{inc}	pJ _{ind}	psSAR	pH _{inc}	pE _{ind}	psSAR	pH _{inc}	pE _{ind}	psSAR	pH _{inc}	pE _{ind}	psSAR
0.00	NS	TH	NS	TH	N/A	NS	TH	NS	TH	N/A	N/A	TH	NS	TH	NS
2.00	22.6	27.3	-21.7	-27.1	43.8	11.0	-27.1	4.81	9.88	-25.2	-27.1	44.8	N/A	-23.1	9.97
	21.5	26.1	-22.9	-28.4	42.7	9.58	-28.4	3.67	8.73	-26.5	-28.4	43.7	N/A	-24.4	8.83

Document generated at 2024/10/31 17:29:51, simulation performed at 2024/10/31 17:23:49 using Sim4Life version 8.0.1.15446

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Client **WSCT**
Shenzhen

Certificate No. **V-Coil350/85-1035_Nov24**

CALIBRATION CERTIFICATE

Object **V-Coil350/85V2 - SN: 1035**

Calibration procedure(s) **QA CAL-47.v13**
Calibration Procedure for WPT Verification & Validation Sources

Calibration date: **November 6, 2024**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 75\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
MAGPy-8H3D+E3D/DAS	SN: 3090/3078	22-Aug-24 (MAGPy-8H3D-3090_Aug24)	Aug-25
Secondary Standards	ID #	Check Date (in house)	Scheduled Check

Calibrated by: **Jinglian Xi** Name **Project Leader** Function **Signature**

Approved by: **Sven Kühn** Name **Technical Manager** Function **Signature**

Issued: November 13, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 0108**

Glossary:

WPT	wireless power transfer
V&V	verification & validation

Calibration is Performed According to the Following Standards:

- Internal procedure QA CAL-47 Calibration procedure for WPT verification & validation sources from 3 kHz to 10 MHz
- IEC/IEEE 63164, "Assessment methods of the human exposure to electric and magnetic fields from wireless power transfer systems – Models, instrumentation, measurement and computational methods and procedures (Frequency range 3 kHz to 30 MHz)", draft standard, 2023

Additional Documentation:

- a) cDASY6/DASY8 Module WPT Manual

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:* The V&V source is switched on for at least 30 minutes.
- Source Positioning:* The V&V source is placed in the center of the UniPV1 phantom such that the source surface is parallel to phantom surface. The probe location used for DUT teaching is the top center of the coil (marked on the source casing). The probe distance is verified using mechanical gauges placed on the source surface.
- H-field distribution:* H-field is measured in the volume above the V&V source in a rectilinear grid with a uniform grid step of 7.33 mm.

Calibrated Quantity

- Spatial peak of H-field (RMS value) at d mm from the DUT surface (extrapolated from measurements)

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

Software version	cDASY6 Module WPT	2.6.0.5002
	Notebook GUI	2.6.0.9
	Sim4Life	8.0.1
Scan setup	Grid dimensions	x: 477 mm, y: 389 mm, z: 36.7 mm
	Grid resolutions	dx, dy, dz: 7.33 mm
Nominal frequency	85 kHz	

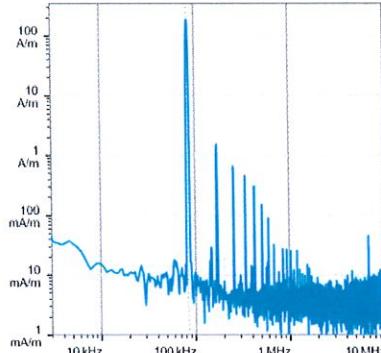
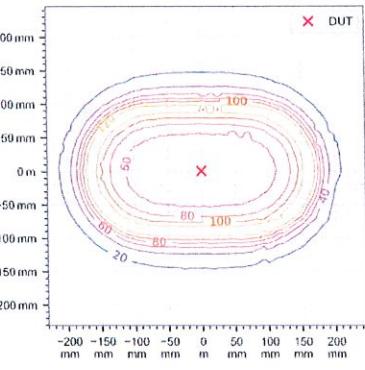
Calibrated Quantities

Distance (relative to source surface) (mm)	Peak H-field (A/m)	Uncertainty (k=2) (dB)
0	208	1.13
2	189	1.13

Appendix (Additional assessments outside the scope of SCS 0108)

Peak values of induced fields¹

Distance (relative to source surface) (mm)	Induced peak current density, 1cm ² area avg. (A/m ²)	Induced peak E-field (V/m)			peak spatial SAR (mW/kg)	
		2mm cube avg.	Local	5mm line avg.	1g avg.	10g avg.
0	2.36	3.36	3.40	3.41	6.51	4.82
2	2.22	3.16	3.19	3.20	5.81	4.36



Voltage measurement

Total voltage (V)	Voltages at harmonics (dBc)
0.407	Highest harmonic: -41.1 2 nd highest harmonic: -48.2

¹ determined for a virtual half-space phantom with tissue properties $\epsilon_r = 55$, $\sigma = 0.75$ S/m, $\rho = 1000$ kg/m³ and a 2 mm thick phantom shell

Measurement report

CDASY6 Module WPT Measurement Report

Device under test	Tool info	Scan info
Info: V-Coil350/85	DASY software version: cDASY6 Module WPT 2.6.0.5002	Center location: x: -48.08 mm, y: -119.84 mm, z: 36.74 mm
Serial number: 1035	Probe model, serial no. and configuration date: MAGPy-8H3D+E3Dv2, WP000230, 2024/08/23	Dimensions: x: 477.0 mm, y: 388.8 mm, z: 36.7 mm
Scenario: source calibration	Software version: 2.0.63, backend: 2.2.22	Resolution: x: 7.33 mm, y: 7.33 mm, z: 7.33 mm
Completed on: 2024/11/06 18:58:08		
Measurement results	H-field magnitude [RMS] at maximum location	H-field magnitude [RMS] at lowest plane
<p>Maximum H-field [RMS]: MAGNITUDE: 135.93 A/m x: 118.90 A/m, y: 31.23 A/m, z: 57.99 A/m</p> <p>Maximum H-field location relative to DUT: x: 157.67 mm, y: 25.67 mm, z: 8.50 mm</p> <p>Distance to -20.0 dB boundary: 62.66 mm</p> <p>Offset relative to DUT: x: 0.00 m, y: 0.00 m, z: 1.00 mm</p>		

Incident fields and induced fields in the homogenous phantom at the peak frequency ($f = 85.00 \text{ kHz}$, $\sigma = 0.750 \text{ S/m}$, tissue density = $1,000 \text{ kg/m}^3$)

Distance [mm]	Peak incident fields [RMS] H_{inc} [A/m]	Peak E_{ind} [V/m, RMS]			Peak J_{ind} [A/m ² , RMS] Surface avg.	psSAR [mW/kg]		H-field extent -20 dB radius [mm]	Sign	Vector potential	Warnings Boundary effect
		Cube avg.	Local	Line avg.		1g avg.	10g avg.				
0.00	208	3.36	3.40	3.41	2.36	6.51	4.82	181	1%	90%	36%
2.00	189	3.16	3.19	3.20	2.22	5.81	4.36	183	1%	90%	38%

Compliance evaluation (Field values at the peak frequency) ($f=85.00 \text{ kHz}$)

Distance [mm]	ICNIRP 2010/2020			ICNIRP 1998			IEEE 2019			FCC			HC Code 6		
	RL [RMS]		BR [RMS]	RL [RMS]		BR [RMS]	ERL [RMS]		DRL [RMS]	MPE [RMS]		BR [RMS]	RL [RMS]		BR [RMS]
	pH_{inc} [A/m]	pE_{ind} [V/m]	psSAR	pH_{inc} [A/m]	pJ_{ind} [A/m ²]	psSAR	pH_{inc} [A/m]	pE_{ind} [V/m]	psSAR	pH_{inc} [A/m]	pE_{ind} [V/m]	psSAR	pH_{inc} [A/m]	pE_{ind} [V/m]	psSAR
0.00	208	3.36	4.82	208	2.36	4.82	208	3.41	4.82	208	N/A	6.51	208	3.40	6.51
2.00	189	3.16	4.36	189	2.22	4.36	189	3.20	4.36	189	N/A	5.81	189	3.19	5.81

Compliance evaluation (Exposure ratios) (ratios in dB)

Distance [mm]	ICNIRP 2010/2020			ICNIRP 1998			IEEE 2019			FCC			HC Code 6					
	RL		BR	RL	BR	ERL	DRL	MPE	BR	RL	BR	RL	BR	RL	BR			
	pH_{inc}	pE_{ind}	psSAR	pH_{inc}	pJ_{ind}	psSAR	pH_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{ind}	psSAR	pH_{inc}	pE_{ind}	psSAR			
0.00	19.9	N/A	-10.7	N/A	32.4	22.9	N/A	2.1	N/A	-14.4	N/A	7.26	N/A	N/A	7.26	N/A	-10.6	N/A
2.00	19.1	N/A	-11.2	N/A	31.6	22.3	N/A	1.3	N/A	-14.9	N/A	6.46	N/A	N/A	6.46	N/A	-11.1	N/A

Document generated at 2024/11/06 22:07:22, simulation performed at 2024/11/06 20:39:37 using Sim4Life version 8.0.1.15446