
Impedance Measurement Plot for Head TSL

Asset No.:	E-434	Model No.:	D2450V2	Serial No.:	919
Environmental		Original Cal. Date:	April 22, 2024	Next Cal. Date:	April 22, 2027
Environmentar	22.0C, 31 N	Standar		Next Cal. Date:	Api 11 22, 2021
1	IEC/IEEE 62209-1528:2020	Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposu To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528:Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10GHz)			
2	KDB865664	SA	R Measurement Requiremen	nts for 100 MHz to 6	GHz
		Equipment I			
Equipment:	Manufacturer:	Model No.:	Serial No.:	Cal. Organization:	Cal. Date:
Power Amplifier	Mini-Circuits	ZHL-42W+	QA1333003	N/A	June 29, 2024
DC Source metter	1teck	IT6154	006104126768201001	N/A	June 29, 2024
ector Network Analy	Agilent	E5071C	MY46102965	N/A	January 11, 2025
Signal Generator	Agilent	N5172B	MY53050758	N/A	January 11, 2025
Smart Power Sensor	R&S	NRP18S	101333	N/A	June 1, 2024
Dielectric Assessment	Speag	DAK-3. 5	1226	N/A	January 20, 2025
Directional Coupler	Woken	TS-PCCOM-05	0107090019	N/A	January 11, 2025
Coupler	Woken	0110A056010-10	COM5BNW1A2	N/A	January 12, 2025
Liquid Thermometer	Nscing Es	YZ6021S	/	N/A	November 24, 2024
Model No			For Head Tissue		·
	Item	Original Cal. Result	Verified on 2025/4/15	Deviation	Result
	Impedance, transformed to feed point	55. 3 Ω +1. 3 j Ω	55. 096 Ω +3. 27 Ω	<5Ω	Pass
D0.450U0	Return Loss (dB)	-25. 7	-25. 444	-1.0%	Pass
D2450V2	SAR Value for 1g(mW/g)	13. 6	12. 7	-6.6%	Pass
	SAR Value for 10g(mW/g)	6.3	5. 97	-5.2%	Pass
	Impedance Test-Head			Return Loss-Head	
E5071C Network Analyzer Active ChiTrace 2 Response 3 Stimulus 4 Mir/Analysis 5 Inst	r State		E5071C Network Analyzer 1 Active Ch/Trace 2 Response 3 Stimulus 4 Mkr/Analysis 5 Enstr St	ale	
r1 S11 Smith (R+jx) Scale 1.0000 [F1]		System	Trl Sil Log Mag 10.00dB/ Ref -20.00dB [F1]		System
>1 2.4500000 GHz 55.096 G 3.2653 G j		Print Abort Printing Printer Setup Invert Image Our Dump Screen Image Multiport Test Set , Setup Mic Setup Backlight On Firmware Revision Service Menu Help	20.00 10.00 -10.00 -30.00 -60.00 -70.00		Print Abort Printin Printer Salup Invert Image CNI Dump Sovies Image Multiport Tost Selup Med Salup Baddight CNI Firmware Revision Service Men Help Refurn

Test Laboratory: BTL Inc.

Date: 2025/4/15

System Check_H2450_0415

DUT: Dipole 2450 MHz D2450V2;SN:919;

Communication System: UID 0, CW (0); Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used: f = 2450 MHz; σ = 1.866 S/m; ϵ_r = 40.251; ρ = 1000 kg/m³ Ambient Temperature: 22.5°C; Liquid Temperature: 22.1°C

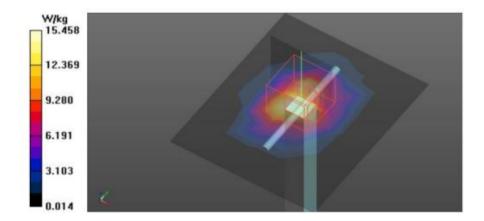
DASY Configuration:

- Probe: EX3DV4 SN3809; ConvF(7.59, 6.97, 6.79) @ 2450 MHz; Calibrated: 2025/1/24
- Sensor-Surface: 1.4mm (Mechanical Surface Detection), z = 1.0, 31.0
- Electronics: DAE4 Sn420; Calibrated: 2025/4/8
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 Ax; Serial: 1222
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Area Scan (6x7x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (measured) = 15.5 W/kg

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 108.6 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 24.7 W/kg

SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.97 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1 = 52.2%

Maximum value of SAR (measured) = 20.4 W/kg

Calibrator: Tustin Huang, Approver: Harbort Liv

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client BTL Inc.

D: 01 1 1

Guangdong

Certificate No. D5GHzV2-1160_Apr24/2

CALIBRATION CERTIFICATE (Replacement of No: D5GHzV2-1160_Apr24)

Object D5GHzV2 - SN:1160

Calibration procedure(s) QA CAL-22.v7

Calibration Procedure for SAR Validation Sources between 3-10 GHz

Calibration date: April 25, 2024

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	26-Mar-24 (No. 217-04036/04037)	Mar-25
Power sensor NRP-Z91	SN: 103244	26-Mar-24 (No. 217-04036)	Mar-25
Power sensor NRP-Z91	SN: 103245	26-Mar-24 (No. 217-04037)	Mar-25
Reference 20 dB Attenuator	SN: BH9394 (20k)	26-Mar-24 (No. 217-04046)	Mar-25
Type-N mismatch combination	SN: 310982 / 06327	26-Mar-24 (No. 217-04047)	Mar-25
Reference Probe EX3DV4	SN: 3503	07-Mar-24 (No. EX3-3503_Mar24)	Mar-25
DAE4	SN: 601	30-Jan-24 (No. DAE4-601_Jan24)	Jan-25
,			
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
Power sensor HP 8481A	SN: MY41093315	07-Oct-15 (in house check Oct-22)	In house check: Oct-24
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-22)	In house check: Oct-24
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24
	Name	Function	Signature
Calibrated by:	Paulo Pina	Laboratory Technician	Signature
James and Sys	r dalo i ma	Laboratory reclinician	(sur less)
Approved by:	Sven Kühn	Technical Manager	
			72

Issued: May 21, 2024

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D5GHzV2-1160_Apr24/2

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

N/A

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices - Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.

b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

c) DASY System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D5GHzV2-1160_Apr24/2

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

garaneri, as har as not given on page 1.			
DASY Version	DASY52	V52.10.4	
Extrapolation	Advanced Extrapolation		
Phantom	Modular Flat Phantom V5.0		
Distance Dipole Center - TSL	10 mm	with Spacer	
Zoom Scan Resolution	dx, dy = 4.0 mm, dz = 1.4 mm	Graded Ratio = 1.4 (Z direction)	
Frequency	5250 MHz ± 1 MHz 5600 MHz ± 1 MHz 5750 MHz ± 1 MHz 5850 MHz ± 1 MHz		

Head TSL parameters at 5250 MHz The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.9	4.71 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.7 ± 6 %	4.58 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5250 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.84 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.7 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1160_Apr24/2 Page 3 of 9

Head TSL parameters at 5600 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.5	5.07 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	36.1 ± 6 %	4.97 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5600 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.16 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	81.8 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.5 W/kg ± 19.5 % (k=2)

Head TSL parameters at 5750 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.4	5.22 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	5.14 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5750 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	7.85 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	78.7 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.23 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	22.4 W/kg ± 19.5 % (k=2)

Certificate No: D5GHzV2-1160_Apr24/2 Page 4 of 9

Head TSL parameters at 5850 MHz

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	35.2	5.32 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	35.8 ± 6 %	5.24 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL at 5850 MHz

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	100 mW input power	8.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	80.6 W/kg ± 19.9 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	100 mW input power	2.29 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	23.0 W/kg ± 19.5 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL at 5250 MHz

Impedance, transformed to feed point	49.2 Ω - 3.5 jΩ
Return Loss	- 28.8 dB

Antenna Parameters with Head TSL at 5600 MHz

Impedance, transformed to feed point	55.0 Ω - 0.3 jΩ
Return Loss	- 26.4 dB

Antenna Parameters with Head TSL at 5750 MHz

Impedance, transformed to feed point	54.8 Ω - 0.7 jΩ
Return Loss	- 26.7 dB

Antenna Parameters with Head TSL at 5850 MHz

Impedance, transformed to feed point	56.3 Ω - 3.9 jΩ
Return Loss	- 23.2 dB

Certificate No: D5GHzV2-1160_Apr24/2 Page 5 of 9

General Antenna Parameters and Design

Electrical Delay (one direction)	1.198 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D5GHzV2-1160_Apr24/2 Page 6 of 9

DASY5 Validation Report for Head TSL

Date: 25.04.2024

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN:1160

Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750

MHz, Frequency: 5850 MHz

Medium parameters used: f = 5250 MHz; $\sigma = 4.58$ S/m; $\epsilon_r = 36.7$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5600 MHz; $\sigma = 4.97$ S/m; $\epsilon_r = 36.1$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5750 MHz; $\sigma = 5.14$ S/m; $\epsilon_r = 35.8$; $\rho = 1000$ kg/m³ Medium parameters used: f = 5850 MHz; $\sigma = 5.24$ S/m; $\epsilon_r = 35.8$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3503; ConvF(5.39, 5.39, 5.39) @ 5250 MHz, ConvF(5, 5, 5) @ 5600 MHz, ConvF(4.98, 4.98, 4.98) @ 5750 MHz, ConvF(4.89, 4.89, 4.89) @ 5850 MHz; Calibrated: 07.03.2024
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.01.2024
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.71 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 26.2 W/kg

SAR(1 g) = 7.84 W/kg; SAR(10 g) = 2.26 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 71.3%

Maximum value of SAR (measured) = 17.5 W/kg

Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan,

dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 72.07 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 29.5 W/kg

SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.34 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 68.7%

Maximum value of SAR (measured) = 18.7 W/kg

Certificate No: D5GHzV2-1160_Apr24/2