

Contact person

Ermin Pasalic  
Electronics  
+46 10 516 55 57  
ermin.pasalic@ri.se

Date

2018-11-28  
Rev. 1:2018-12-07

Reference

8P07436-F1  
FCC ID: 2ADEFAT-DG2

Page

1 (98)

Airtame ApS  
Att: Kendra Bannister  
Kuglegårdsvej 1  
1434 Copenhagen K  
Danmark

## Equipment Authorization measurements on 5150-5250 MHz RLAN

### FCC ID: 2ADEFAT-DG2

Rev.1 2018-12-07: The following pages have been revised; 24, 29, 30 and 52.

Page 24: Added text: 'Additionally, test in MIMO operating mode was done according 662911 D01 Multiple Transmitter Output v02r01.E.1.'

Page 29: In the end of the heading 'Limit' replaced 26 dBm with correct value 24 dBm.

Page 30: Added text: 'Additionally, test in MIMO operating mode was done according 662911 D01 Multiple Transmitter Output v02r01.E.2.a.'

Page 52: replaced CAV level value and Peak level value at frequency 5350.40 in the table with each other.

Page 52: In the column 'Limit (dBm)' in the table replaced '-27 (PK)' with '-41.2 (CAV)' for frequencies 5148.90 MHz and 5350.40 MHz.

#### Test object

Product name: Airtame 2

Product model of Airtame 2: AT-DG2

Product number: 18

HW Revision: Airtame\_DG2\_V7\_RB

FW Revision: 3.3.0

#### RISE Research Institutes of Sweden AB Electronics - EMC

Performed by

Examined by

Ermin Pasalic

Monika Fuller

#### RISE Research Institutes of Sweden AB

Postal address  
Box 857  
SE-501 15 BORÅS  
Sweden

Office location  
Brinellgatan 4  
SE-504 62 BORÅS

Phone / Fax / E-mail  
+46 10 516 50 00  
+46 33 13 55 02  
info@ri.se

Laboratories are accredited by the Swedish Board for Accreditation and Conformity Assessment (SWEDAC) under the terms of Swedish legislation. This report may not be reproduced other than in full, except with the prior written approval of the issuing laboratory.

**Table of Content**

|                                                                                                                                                                                                         |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Summary .....                                                                                                                                                                                           | 3  |
| Commission .....                                                                                                                                                                                        | 4  |
| Test object.....                                                                                                                                                                                        | 4  |
| Operational test mode .....                                                                                                                                                                             | 5  |
| Connected equipment during the test.....                                                                                                                                                                | 7  |
| References .....                                                                                                                                                                                        | 9  |
| Uncertainties .....                                                                                                                                                                                     | 10 |
| Test results .....                                                                                                                                                                                      | 12 |
| Duty cycle measurements .....                                                                                                                                                                           | 12 |
| Maximum conducted output power measurements according to FCC 47 CFR part 15.407 (a) (1) (ii) and (iv) .....                                                                                             | 24 |
| Maximum power spectral density measurements according to FCC 47 CFR part 15.407 (a) (1) (ii) and (iv) .....                                                                                             | 30 |
| Maximum emission outside of the frequency bands of operation according to FCC 47 CFR part 15.407 (b) (1) and Unwanted emission in the restricted bands according to FCC 47 CFR part 15.407 (b) (7)..... | 49 |
| Conducted emission according to FCC 47 CFR part 15.407 (b) (6) and FCC 47 CFR part 15.207.....                                                                                                          | 61 |
| Frequency stability according to FCC 47 CFR part 15.407 (g) .....                                                                                                                                       | 70 |
| 26 dB bandwidth measurements according to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 II.C.1 .....                                                                       | 74 |
| 99% occupied bandwidth - OBW measurements according to 47CFR 2.1049 .....                                                                                                                               | 82 |
| Band edge measurements according to 47CFR 2.1049.....                                                                                                                                                   | 90 |

## Summary

| Standard                                                                                                                                                              | Compliant | Remarks |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------|
| <b>FCC 47 CFR Part 15 E</b><br>15.407 Operation within the band 5150-5250 MHz<br>KDB 789033, D02 General U-NII Test Procedures<br>New Rules v02r01, December 14, 2017 |           |         |
| 15.407 (a) (1) (ii) (iv), Maximum conducted output power                                                                                                              | Yes       |         |
| 15.407 (a) (1) (ii) (iv), Maximum power spectral density                                                                                                              | Yes       |         |
| 15.407 (b) (1) Maximum emission outside of the frequency bands of operation                                                                                           | Yes       |         |
| 15.407 (b) (6) Unwanted emission below 1 GHz; according 15.209                                                                                                        | Yes       |         |
| 15.407 (b) (7) Unwanted emission in the restricted bands                                                                                                              | Yes       |         |
| 15.407 (b) (6) Conducted emission AC; according 15.207                                                                                                                | Yes       |         |
| 15.407 (c) Automatic discontinue transmission                                                                                                                         | -         | Note 1  |
| 15.407 (f) Radiation exposure; §1.1307 (b), §2.1091, §2.1093                                                                                                          | Yes       | Note 2  |
| 15.407 (g) Frequency stability                                                                                                                                        | Yes       |         |
| 15.407 (h) Transmit Power Control (TPC) and Dynamic Frequency Selection (DFS)                                                                                         | N/A       | Note 3  |
| 15.407 (i) Security features                                                                                                                                          | -         | Note 1  |
| Duty cycle measurements                                                                                                                                               | N/A       | Note 4  |
| Band edge:<br>f low = 5150 MHz<br>f high = 5250 MHz                                                                                                                   | Yes       | Note 5  |
| 26 dB Bandwidth                                                                                                                                                       | N/A       | Note 6  |
| 99% Occupied bandwidth                                                                                                                                                | N/A       | Note 7  |

Note 1: See in separate document provided by client.

Note 2: See in separate document, REPORT-ANNEX, AT-DG2 RF exposure

Note 3: DFS and TPC functionality are not required for this frequency band, 5150 MHz to 5250 MHz.

Note 4: There is not particular requirement, but information is needed for choosing applicable RF output power test method and for correction of data.

Note 5: This is part of the requirement for maximum emission outside of the frequency bands of operation

Note 6: There is not particular requirement, but information is needed for configuration of instruments and for assessment if operating channel is inside allowed frequency band

Note 7: There is not particular requirement, but information is needed for configuration of instruments and as alternative for assessment if operating channel is inside allowed frequency band

## Commission

The tests were performed to verify that the electromagnetic emission from the test object meets the requirements of FCC Part 15E.

### Manufacturer representative

Kendra Bannister  
Kuglegårdsvej 1  
1434 Copenhagen K  
Danmark

## Test object

The AT-DG2, 5 GHz RLAN provides wireless connection and transfer of huge amount of data including high definition video stream.

The device will be used as indoor access point and/or client.

The test object could be configured in different ways. For these measurements devices were configured for test mode with duty cycle as high as possible. Duty cycle varied from 92% to 99% depending of mode, configuration, modulation and bandwidth. Samples used during tests:

- 8 (only for justification test for worst case positioning)
- 18

A special test software ‘mfg’-manufacturing cypress-chip firmware and a tool from cypress called ‘wl’ was used in the test objects to achieve test mode and high duty cycle transmission. Device under test was configured by the python script on the separate PC.

|                                              |                                                                                                                                 |
|----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Transceiver:                                 | CYW89342CRFB4G                                                                                                                  |
| Antennas:                                    | PCB printed antennas                                                                                                            |
| Antenna gain                                 |                                                                                                                                 |
| Chain 1                                      | 2.5 dBi                                                                                                                         |
| Chain 2                                      | 6 dBi                                                                                                                           |
| Frequencies used during test:                |                                                                                                                                 |
|                                              | 5180 MHz                                                                                                                        |
|                                              | 5190 MHz                                                                                                                        |
|                                              | 5210 MHz                                                                                                                        |
|                                              | 5220 MHz                                                                                                                        |
|                                              | 5230 MHz                                                                                                                        |
|                                              | 5240 MHz                                                                                                                        |
| Output power, max, setting                   | 17 dBm/p17, but maximum accepted setting can be seen in each subtest.                                                           |
| Frequency bandwidth:                         |                                                                                                                                 |
|                                              | 20 MHz                                                                                                                          |
|                                              | 40 MHz                                                                                                                          |
|                                              | 80 MHz                                                                                                                          |
| Modulations:                                 | Standards 802.11a, 802.11n and 802.11ac with modulations BPSK, QPSK, 16-QAM, 64-QAM and 256-QAM; MSC0 to MSC8                   |
| Max declared duty cycle in normal operation: | < 95%                                                                                                                           |
| Duty cycle during test:                      | See in the respective sub-tests                                                                                                 |
| Supply voltage to AT-DG2:                    | 5 V $\pm$ 2%, feeding from PSU (normal use)<br>feeding from PoE adapter (test)<br>Extreme voltage: $\pm$ 15% of nominal voltage |

During the test, the test object was powered by 5 V DC from PoE adapter. Power adapter was powered by 48 V DC from PoE injector which was powered by 120 V AC/60 Hz supply. PoE injector and power adapter were used instead to power supply, PSU, to be able to control device under test to different modes, channels, power, BW and modulations.

#### Radiated tests:

During radiated tests only AT-DG2, PoE adapter and monitor were placed in the anechoic chamber. PoE injector, router and PC were outside the chamber.

#### Conducted tests:

Conducted emission was done by powering test device from PoE injector via PoE adapter. PoE adapter was powered to the 120 V AC supply. Environmental test with voltage variation was done with variation of 120 V AC for  $\pm$ 15%, instead for variation of 5 V DC due to practical reasons.

The test items were delivered to RISE 2018-09-03, 2018-09-17 and 2018-11-05.

Testing was carried by Ermin Pasalic at 2018-09-03—2018-11-23.

#### Operational test mode

The following were set in the EUT, if not otherwise stated.

Initial conducted power measurement and radiated spurious measurement were performed with maximum output power (setting 17 dBm/p17). During edge test it was needed to tune down output power to meet edge requirements. See maximum acceptable power classes for different bandwidths to comply with edge requirement which consider also variation due to temperature. Rest of the tests were done with power setting 9 dBm/p9.

In the table below you can find maximum acceptable power class to comply with all requirements:

|       | Max overall acceptable power class |
|-------|------------------------------------|
| Ch 36 | 8 dBm/p8                           |
| Ch 38 | 5 dBm/p5                           |
| Ch 42 | 6 dBm/p6                           |
| Ch 46 | 9 dBm/p9                           |
| Ch 48 | 9 dBm/p9                           |

Tx power dBm: 14.4 dBm total in MIMO mode

Tx power dBm: 11.5 dBm per chain in SISO mode

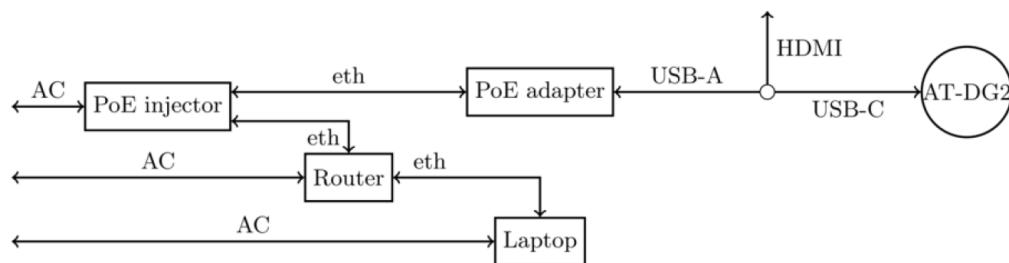
Channel BW: 20 MHz / 40 MHz / 80 MHz

For duty cycle measurements results see: [Duty cycle measurements](#).

Justification measurements were performed of the different WiFi standards, different modulation and coding index – MCS and different antenna configuration. Justification were also performed of different placements of DUT and the worst case channel through different frequency bands. The presented results in the reports were judged to represent a worst case scenario based on the justification measurement.

The worst case according justification tests was 802.11ac, MCS0 and 20 MHz BW in MIMO mode.

Regarding placement of DUT, laying placement was the worst case.


The channel 48 showed highest emission levels through the frequency bands.

## Connected equipment during the test

According to ANSI C63.10.2013, clause 5.10.7

|                                                           |                  |
|-----------------------------------------------------------|------------------|
| PoE injector, AXIS T8120 15W MDSPN 1P, model: 5026-001-01 | Client equipment |
| PoE adapter, model: AT-PoE, FCC ID: 2ADEFAT-PoE           | Client equipment |
| Router, NetgearAC1900 Smart WiFi Router Model: R7000      | Client equipment |
| HP Laptop Model: 14-bp092no, ProdID 2GG01EA#UUW           | Client equipment |
| Lenovo ThinkVision LCD monitor, Type/Model A16270QP0      | RISE equipment   |

Test setup - DUT with auxiliary equipment



DUT consists of AT-DG2 and PoE adapter.

Cabling during tests:

| AT-DG2 port | Cable type                     | Termination / use                                                                                                            |
|-------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| USB C       | Aircord 0.2 m;<br>branch USB C | Cable splitter (to PoE adapter via one branch with USB A connector and to the Monitor via second branch with HDMI connector) |

| PoE adapter | Cable type                                                       | Termination / use                                                                                                       |
|-------------|------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| USB-A       | Aircord 0.85 m;<br>branch USB A                                  | Cable splitter (to AT-DG2 via one branch with USB C connector and to the Monitor via second branch with HDMI connector) |
| LAN         | Cat 5, 1.0 m (conductive tests)<br>Cat 5, 3.0 m (radiated tests) | PoE injector                                                                                                            |

**Measurement equipment**

| Measurement equipment                                            | RISE number | Calibration Due |
|------------------------------------------------------------------|-------------|-----------------|
| Semi anechoic chamber, Edison                                    | 504114      | 2021-08         |
| Test site Galvani                                                | 15:117      | -               |
| Computer Lenovo ThinkCentre                                      | -           | -               |
| Software R&S EMC32, ver.9.15.00                                  | 503889      | -               |
| EMI test receiver R&S ESU 26                                     | 902210      | 2019-07         |
| Signal Analyser R&S FSQ26                                        | BX50694     | 2019-07         |
| Signal Analyser R&S ESI40                                        | 503125      | 2019-07         |
| Antenna Schaffner CBL 6143                                       | 504079      | 2021-08         |
| Low Noise Amplifier Miteq                                        | 504160      | 2019-01         |
| Step attenuator Narda743-60                                      | BX41644     | 2019-11         |
| Coaxial cable                                                    | BX50672     | 2019-10         |
| Coaxial cable                                                    | 504102      | 2019-03         |
| Coaxial cable                                                    | 504103      | 2019-03         |
| Coaxial cable                                                    | 504104      | 2019-03         |
| Coaxial cable                                                    | 900678      | 2019-05         |
| Coaxial cable                                                    | 504162      | 2019-01         |
| 120 V AC/60 Hz AC Power source HP 6813B                          | 503091      | 2019-09         |
| DC power supply TTI                                              | 502786      | -               |
| DC power supply HP E3632A                                        | 503170      | -               |
| Multimeter Fluke 83                                              | 501522      | 2019-06         |
| Multimeter Fluke 85III                                           | 503418      | 2019-06         |
| Temperature and humidity meter Testo 625                         | 503498      | 2019-05         |
| Test site Marconi                                                | 15:121      | -               |
| Software R&S WMS32, ver.10.40.10                                 | -           | -               |
| Switching box with RF power meters<br>R&S OSP120 with OSP-B157W8 | BX60313     | 2020-07         |
| Coaxial cable                                                    | BX81424     | 2019-05         |
| Coaxial cable                                                    | BX81436     | 2019-05         |
| Coaxial cable                                                    | BX50685     | 2019-05         |
| EMI test receiver R&S ESU 40                                     | 901385      | 2019-07         |
| Antenna ETS-Lindgren 3115 Tesla                                  | 902175      | 2021-07         |
| Standard gain horn, 18-26 GHz, 20240-20                          | 503674      | 2021-01         |
| Standard gain horn, 26-40 GHz, 22240-20                          | 503674      | 2021-01         |
| Low Noise Amplifier Miteq, 18-26.5 GHz                           | 503285      | 2019-01         |
| Low Noise Amplifier Miteq 18-40 GHz                              | 503278      | 2018-12         |
| Semi anechoic chamber, Tesla                                     | 503881      | 2019-12         |
| Software R&S EMC32, ver.9.15.00                                  | BX62351     | -               |
| Standard gain horn, 8-12.75 GHz                                  | 503939      | -               |
| Standard gain horn, 12.75-18 GHz                                 | 503900      | -               |
| Low Noise Amplifier Miteq                                        | 901545      | 2019-01         |

|                                                               |         |         |
|---------------------------------------------------------------|---------|---------|
| Huber Suhner antenna cable N-N                                | BX62218 | 2019-09 |
| Coaxial cable                                                 | 503697  | 2019-01 |
| 6 dB Dämpare                                                  | BX61530 | 2019-07 |
| Coaxial cable                                                 | 503508  | 2019-09 |
| Coaxial cable                                                 | 503509  | 2019-09 |
| Coaxial cable                                                 | 504206  | 2019-07 |
| Coaxial cable                                                 | 900679  | 2019-01 |
| Temperature and humidity meter Testo 625                      | 504188  | 2019-05 |
| LISN Schwarzbeck NNLA 8120                                    | BX70761 | 2019-04 |
| LISN Schwarzbeck NNBL 8226-2                                  | 902060  | 2020-02 |
| Limiter, EM-7600                                              | BX42883 | 2019-09 |
| Temperature scope                                             | 503360  | 2021-02 |
| Temperature and humidity meter Testo 625                      | 504203  | 2019-05 |
| Temperature and humidity meter Testo 625, with wire sensor 2A | 504117  | 2019-05 |
| Coaxial cable                                                 | 900226  | 2019-09 |
| Coaxial cable                                                 | 504035  | 2019-02 |
| Coaxial cable                                                 | 503274  | 2019-02 |

### Test facility

The used semi-anechoic chambers are compliant with ANSI C63.4.

### References

Measurements were done according to relevant parts of the following standards:

ANSI 63.10-2013

eCFR 47, part 15 C

eCFR 47, part 15 E

KDB 447498 D01 General RF Exposure Guidance v06

KDB 789033 D02 General U-NII Test Procedures New Rules v02r01; Dec. 14, 2017

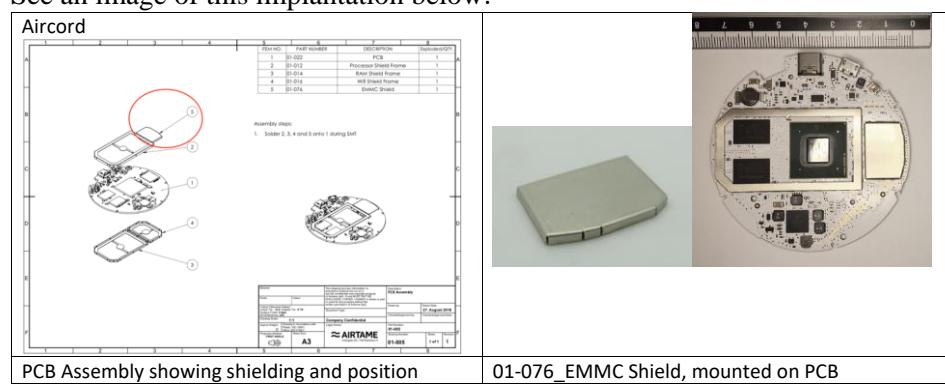
## Uncertainties

Measurement and test instrument uncertainties are described in the quality assurance documentation "SP-QD 10885". The uncertainties are calculated with a coverage factor  $k=2$  (95% level of confidence). The measurement uncertainties can be found in the table below:

| Method                                | Uncertainty          |
|---------------------------------------|----------------------|
| Duty cycle                            | 1.3 %                |
| Maximum peak conducted power          | 1 dB                 |
| Restricted bands of operation:        |                      |
| Radiated emission, 30 – 1000 MHz      | 4.8/5.6 dB (V/H-pol) |
| Radiated emission, 1 – 40 GHz         | 2.6 dB               |
| Conducted 26 dBc                      | 2 %                  |
| Power spectral density                | 1.3 dB               |
| RF Safety                             | 1 dB                 |
| 99 % Occupied bandwidth               | 2.0 %                |
| Band edge, restricted bands, radiated | 4.8/5.6 dB (V/H-pol) |
| Band edge, 99 % OBW                   | 2.0 %                |

Compliance evaluation is based on a shared risk principle with respect to the measurement uncertainty.

The test results in this report apply only to the particular Equipment Under Test (EUT) as declared in the report.

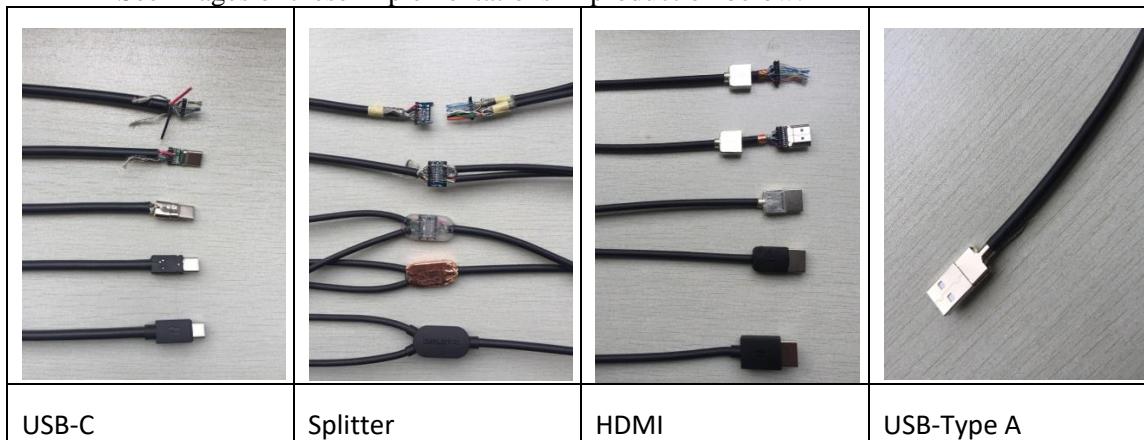

## Modifications of the device

Some modifications of the test device were necessary to comply with requirements for Maximum emission outside of the frequency bands of operation, Unwanted emission below 1 GHz and for Conducted emission AC.

- EMMC shielding

EMMC shielding was added over EMMC in order to improve emissions performance.

See an image of this implantation below:




The device without EMMC shielding was used only at initial tests for judgement about worst case position. Our assessment is that implementation of the EMMC shielding could not negatively impact performances.

- Aircord

The Aircord was modified with improved shielding. Copper tape was added to the splitter part of the cable, and the cable heads were modified to have shielding added. A PCB was also custom-designed for the splitter to minimize emissions from high

frequency HDMI signals. This will only improve performance in terms of emissions. See images of these implementations in production below:



Modified aircord was used for radiated emission tests below 1 GHz, conducted emission AC test, output power, PSD, EBW and OBW tests.

For all other tests, duty cycle, radiated emission test over 1 GHz and frequency stability test the original aircord, (without modifications), was used.

Our assessment is that implemented modifications on the aircord would not negatively impact performance.

- PoE injector
 

PoE injector had to be replaced by different model due to experienced problem during radiated emission test below 1 GHz and conducted emission AC test.

The model of the latest used power injector is AXIS T8120 15W MDSPN 1P, model: 5026-001-01.

Initially used power injector was of model: GP-D480-050G.

Our assessment is that using another model of power injector would not negatively impact performance.

In addition, power injector is not supplied with the product.
- PoE to USB adapter
 

During certification, Airtame supplied the latest revision of HW of the own product, the model: AT-PoE which is a PoE to USB adaptor. PoE Module Hardware Rev 1.3. The difference between this revision and earlier PoE to USB revisions is that additional filtering had been added (common mode choke).

Our assessment is that implemented modifications on the PoE to USB adapter would not negatively impact performance.

#### Test participants

Alvin Sipraga, Airtame, Copenhagen, Danmark (partly present)  
 Søren Bøgeskov Nørgaard, RTX A/S Noerresundby, Danmark (partly present)

## Test results

### Duty cycle measurements

| Date       | Temperature  | Humidity   |
|------------|--------------|------------|
| 2018-11-14 | 22 °C ± 3 °C | 29 % ± 5 % |
| 2018-11-15 | 21 °C ± 3 °C | 35 % ± 5 % |

### Test setup and procedure

The measurements were performed according to ANSI C63.10 clause 12.2 and the KDB 789033 D02 Dec. 14, 2017 II.B.2.a).

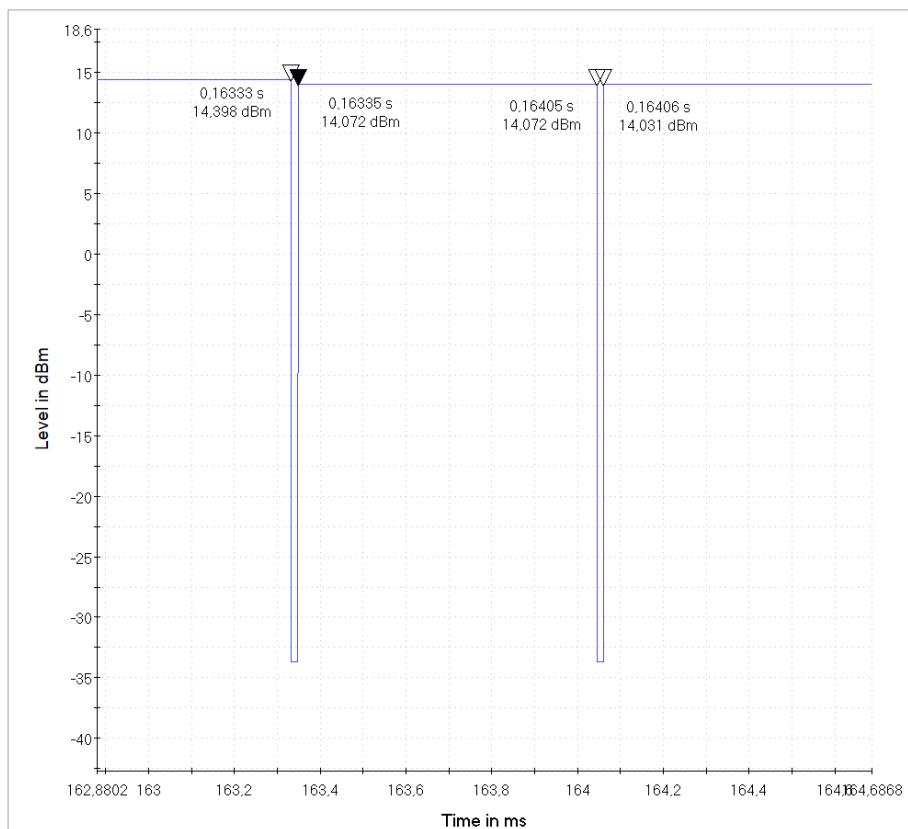
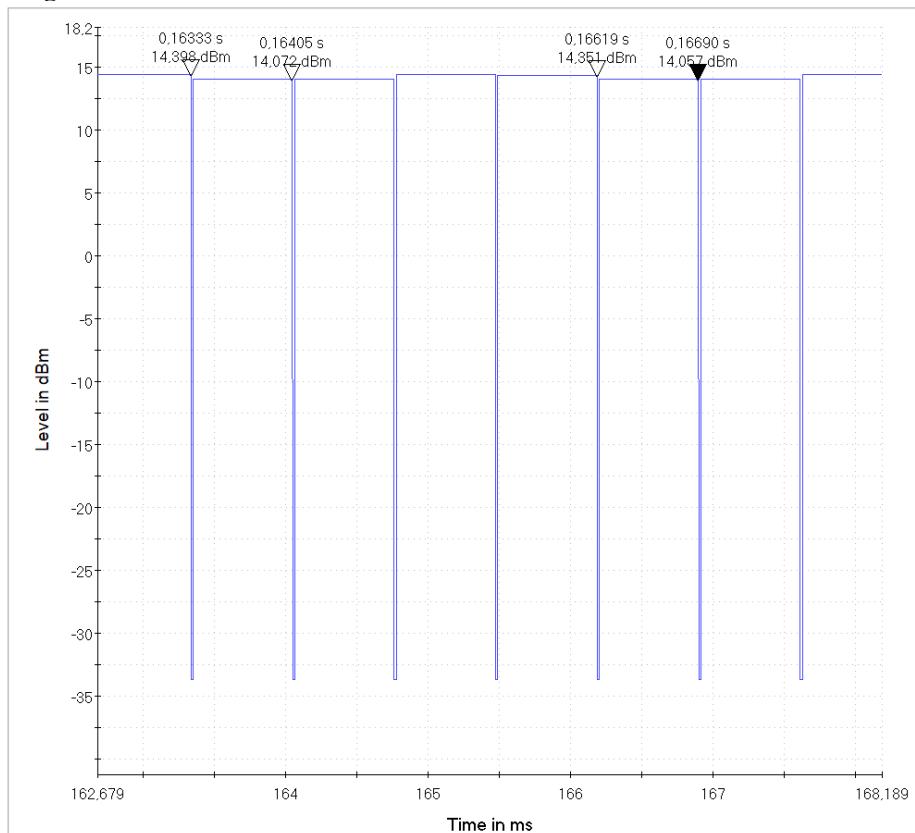
Conducted measurements were performed on units with the temporary antenna connectors, with transmission below 98% of duty cycle and with normal modulation.

Test set-up photos during the tests can be found in the photo section in the separate document, REPORT-ANNEX, REPORT-ANNEX, AT-DG2 Photos.

| Measurement equipment                                            | RISE number |
|------------------------------------------------------------------|-------------|
| Test site Marconi                                                | 15:121      |
| Software R&S WMS32, ver.10.40.10                                 | -           |
| Signal Analyser R&S FSQ26                                        | BX50694     |
| Switching box with RF power meters<br>R&S OSP120 with OSP-B157W8 | BX60313     |
| Coaxial cable                                                    | BX81424     |
| Coaxial cable                                                    | BX81436     |
| Coaxial cable                                                    | BX50685     |
| 120 V AC/60 Hz AC Power source HP 6813B                          | 503 091     |
| Multimeter Fluke 85 III                                          | 503 418     |
| Temperature and humidity meter Testo 625                         | 503 498     |

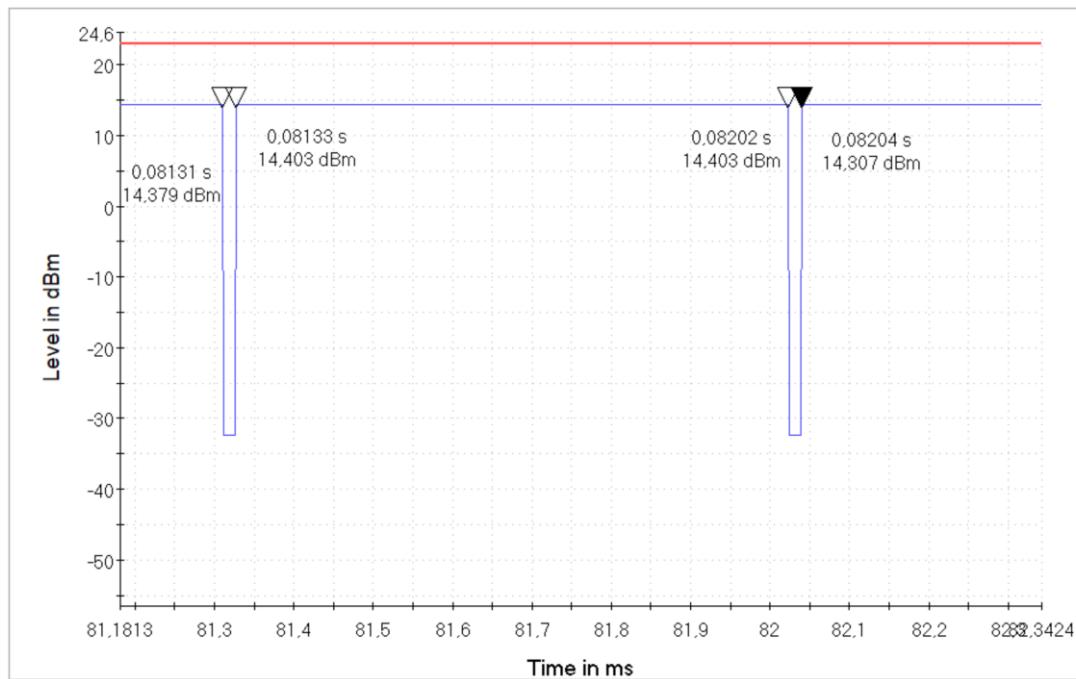
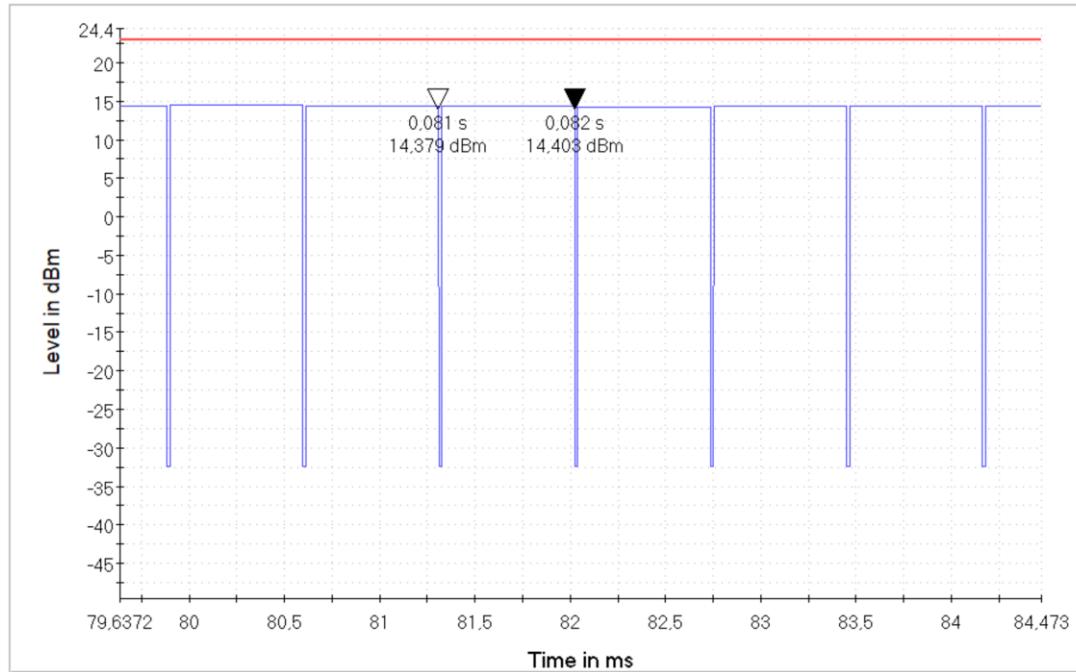
| MIMO                                 |             | 802.11.ac/ MCS0      |                     |                   |                    |
|--------------------------------------|-------------|----------------------|---------------------|-------------------|--------------------|
| $T_{nom}$ 20°C<br>$V_{nom}$ 120 V AC |             |                      |                     |                   |                    |
| f<br>[MHz]                           | BW<br>[MHz] | Pulse period<br>[ms] | Pulse width<br>[ms] | Duty Cycle<br>[%] | Correction<br>[dB] |
| 5180                                 | 20          | 0.71                 | 0.7                 | 98.6              | 0.06               |
| 5220                                 | 20          | 0.71                 | 0.69                | 97.2              | 0.12               |
| 5240                                 | 20          | 0.71                 | 0.7                 | 97.7              | 0.10               |
| 5190                                 | 40          | 0.38                 | 0.37                | 95.7              | 0.19               |
| 5230                                 | 40          | 0.38                 | 0.37                | 95.7              | 0.19               |
| 5210                                 | 80          | 0.21                 | 0.19                | 92.3              | 0.35               |

| SISO 2, (chain 2 – 6 dBi antenna gain) |             | 802.11.ac/MCS0                       |                     |                   |                    |
|----------------------------------------|-------------|--------------------------------------|---------------------|-------------------|--------------------|
|                                        |             | $T_{nom}$ 20°C<br>$V_{nom}$ 120 V AC |                     |                   |                    |
| f<br>[MHz]                             | BW<br>[MHz] | Pulse period<br>[ms]                 | Pulse width<br>[ms] | Duty Cycle<br>[%] | Correction<br>[dB] |
| 5180                                   | 20          | 1.36                                 | 1.34                | 98.5              | 0.07               |
| 5240                                   | 20          | 1.36                                 | 1.35                | 99.2              | 0.03               |
| 5190                                   | 40          | 0.69                                 | 0.67                | 98.5              | 0.07               |
| 5210                                   | 80          | 0.35                                 | 0.33                | 94.3              | 0.25               |

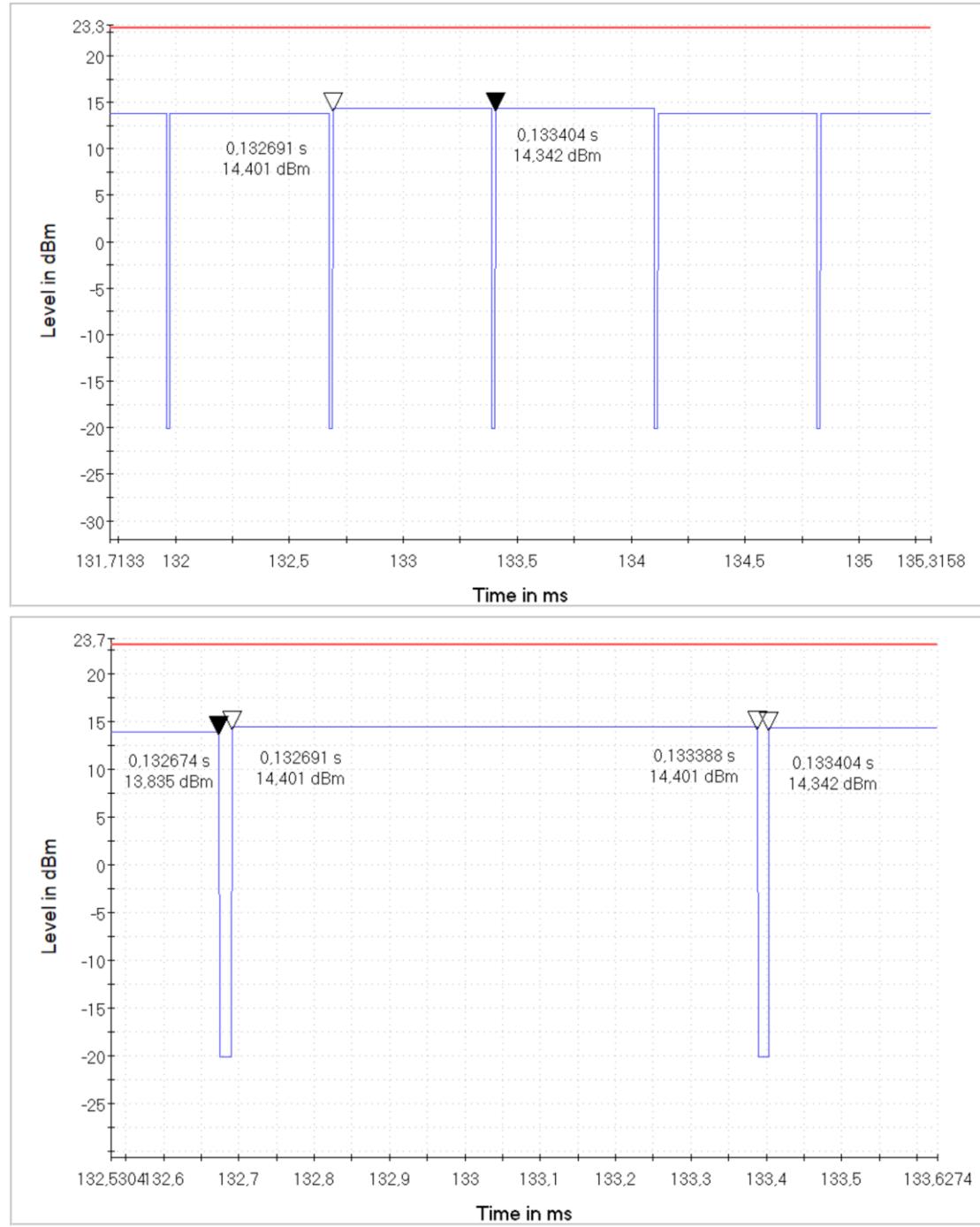


## Results

The duty cycle measurements can be found in the diagrams below:

|             |                             |
|-------------|-----------------------------|
| Diagram 1:  | 5180 MHz, 20 MHz BW, MIMO   |
| Diagram 2:  | 5220 MHz, 20 MHz BW, MIMO   |
| Diagram 3:  | 5240 MHz, 20 MHz BW, MIMO   |
| Diagram 4:  | 5190 MHz, 40 MHz BW, MIMO   |
| Diagram 5:  | 5230 MHz, 40 MHz BW, MIMO   |
| Diagram 6:  | 5210 MHz, 80 MHz BW, MIMO   |
| Diagram 7:  | 5180 MHz, 20 MHz BW, SISO 2 |
| Diagram 8:  | 5240 MHz, 20 MHz BW, SISO 2 |
| Diagram 9:  | 5190 MHz, 40 MHz BW, SISO 2 |
| Diagram 10: | 5210 MHz, 80 MHz BW, SISO 2 |

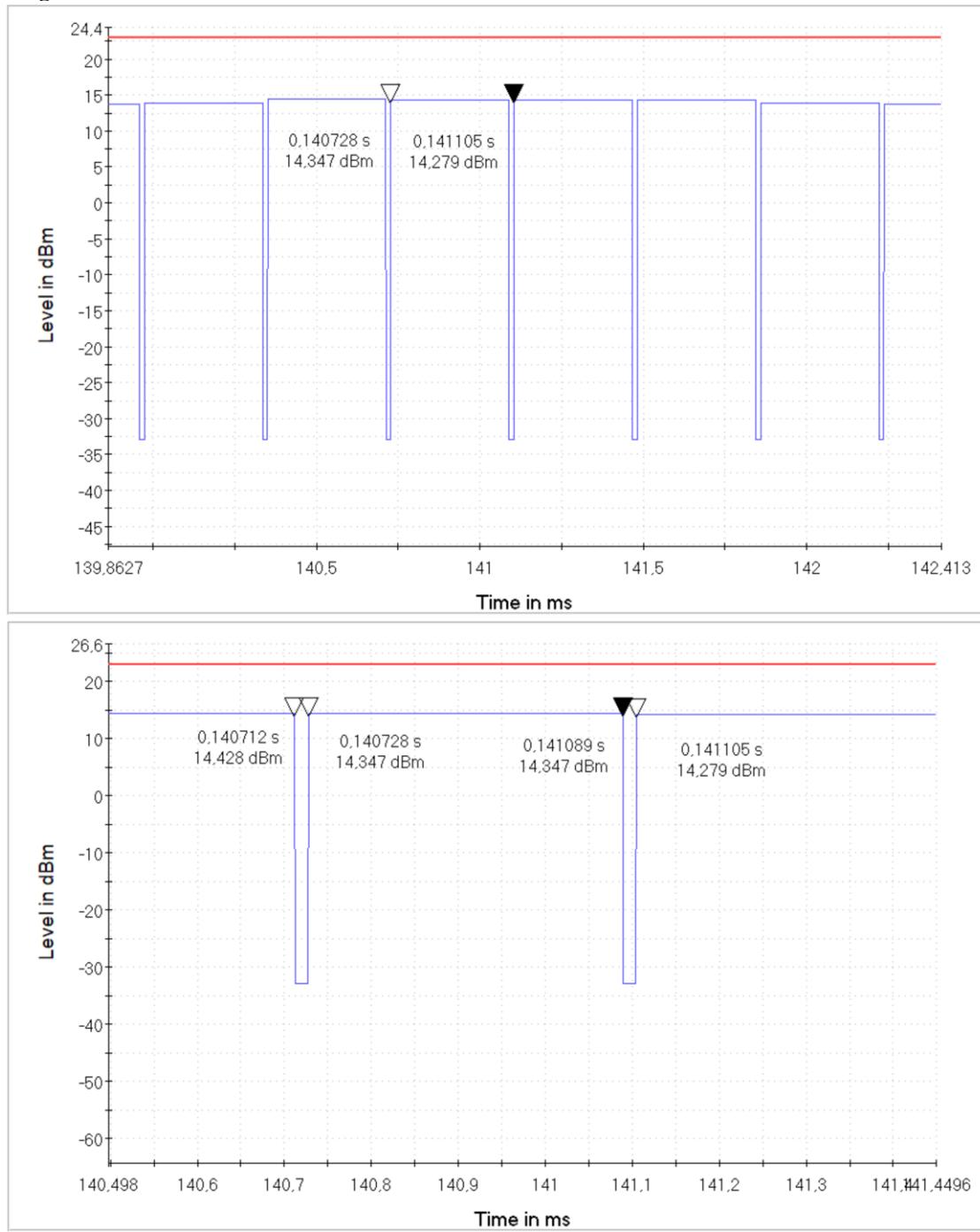


Test engineer: Ermin Pasalic

|           |     |
|-----------|-----|
| Complies? | N/A |
|-----------|-----|


**Diagram 1**


DUT operating at 5180 MHz and 20 MHz BW, MIMO; Duty cycle

Diagram 2




DUT operating at 5220 MHz and 20 MHz BW, MIMO; Duty cycle

**Diagram 3**

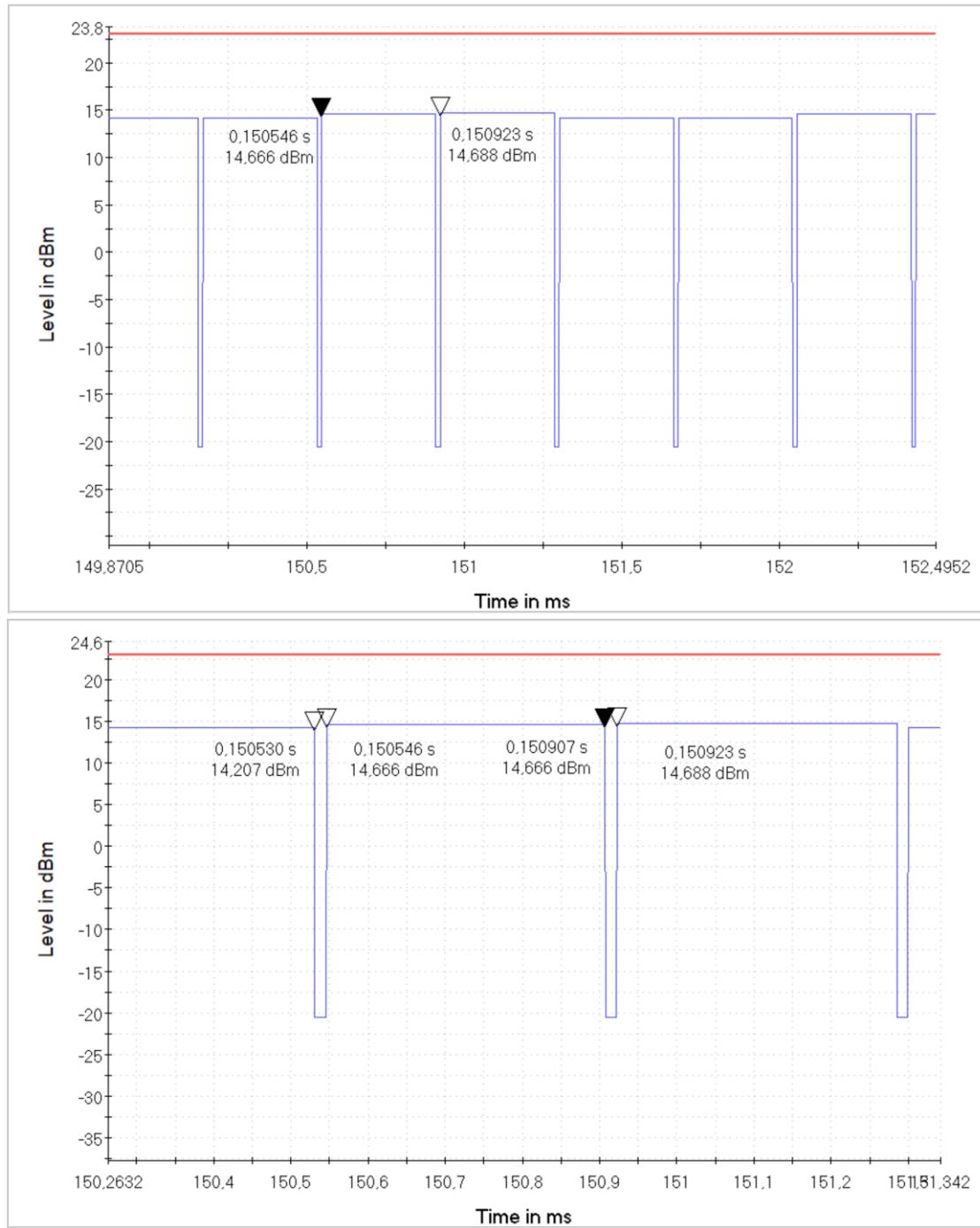


DUT operating at 5240 MHz and 20 MHz BW, MIMO; Duty cycle

Diagram 4



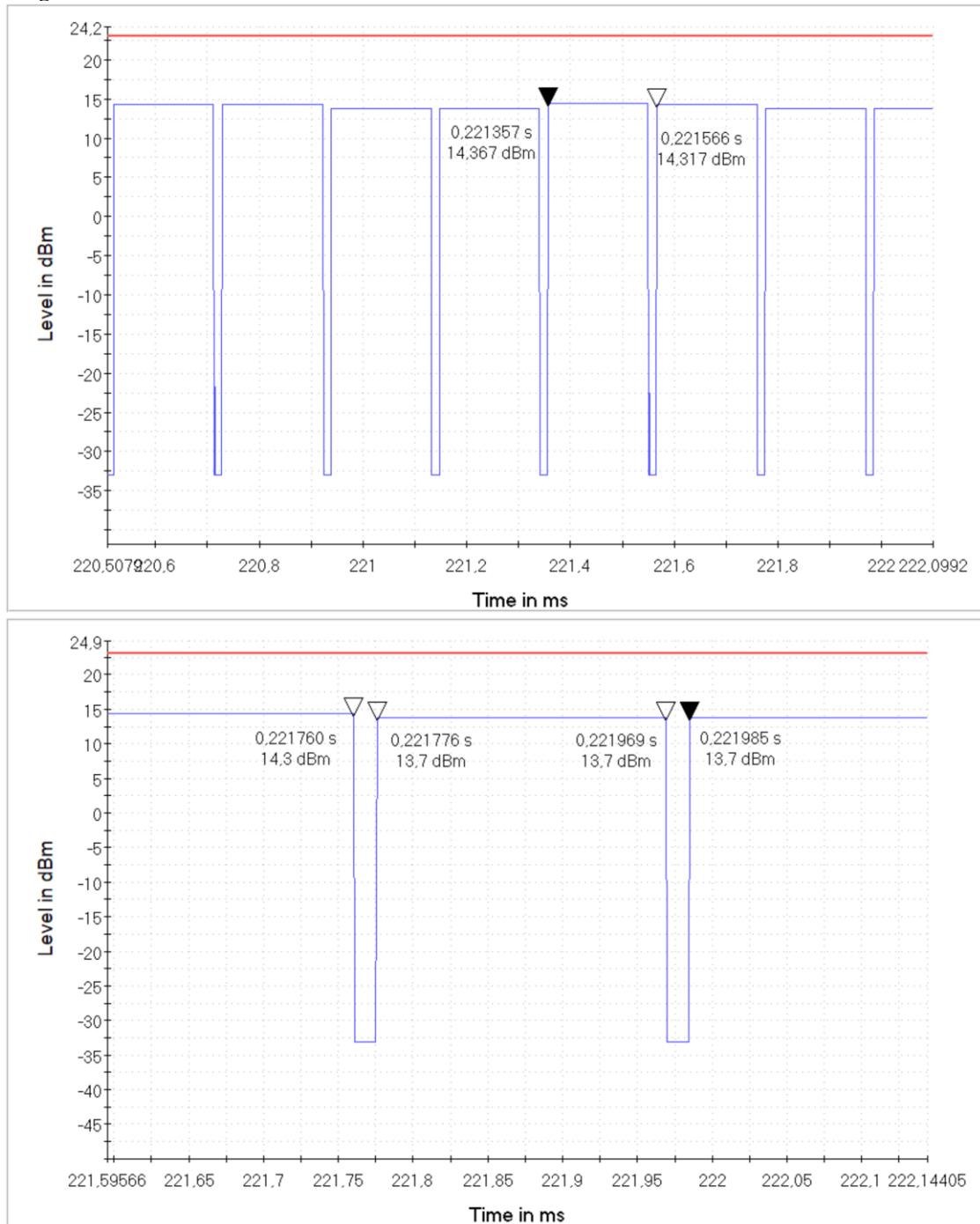
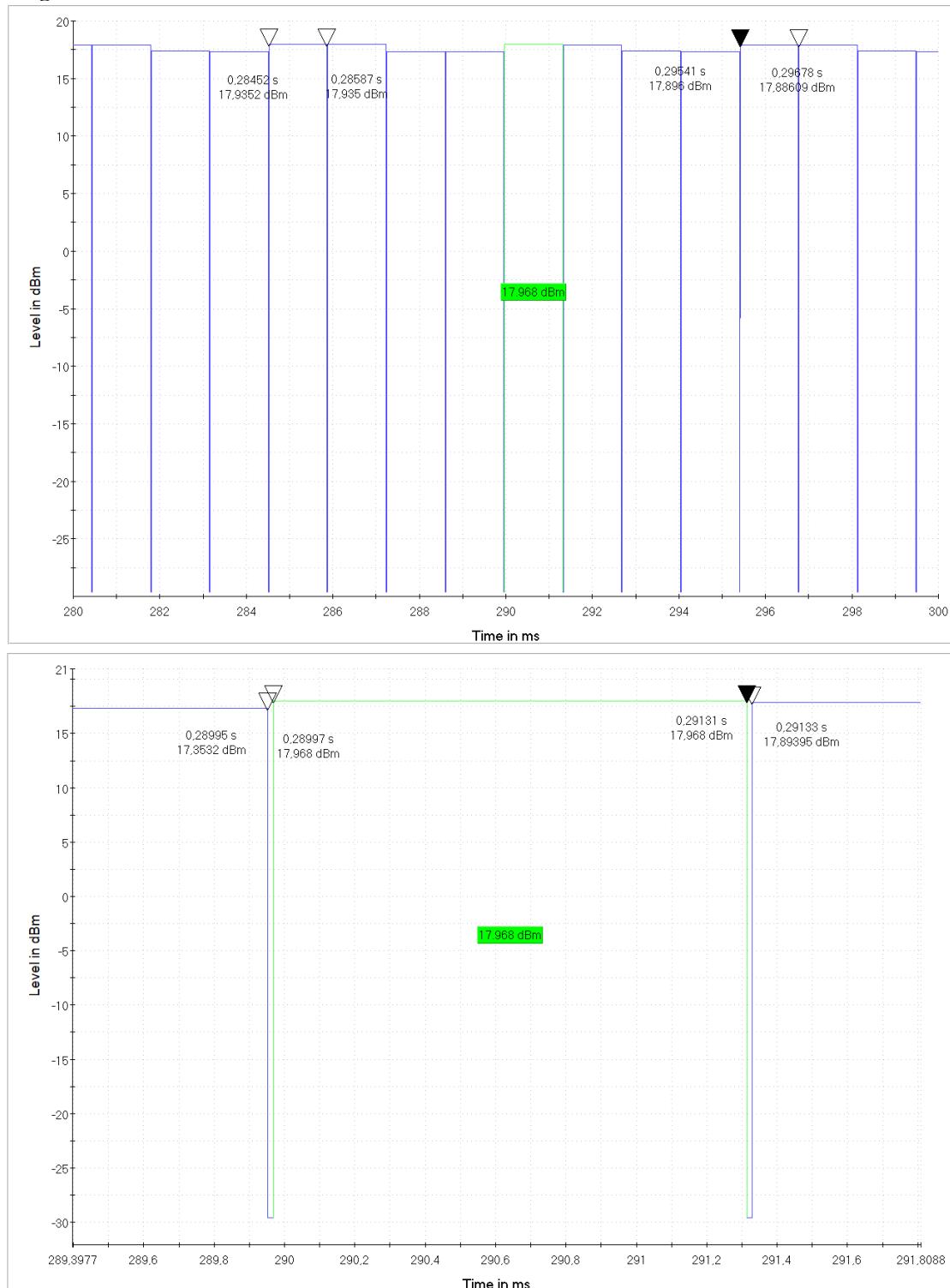
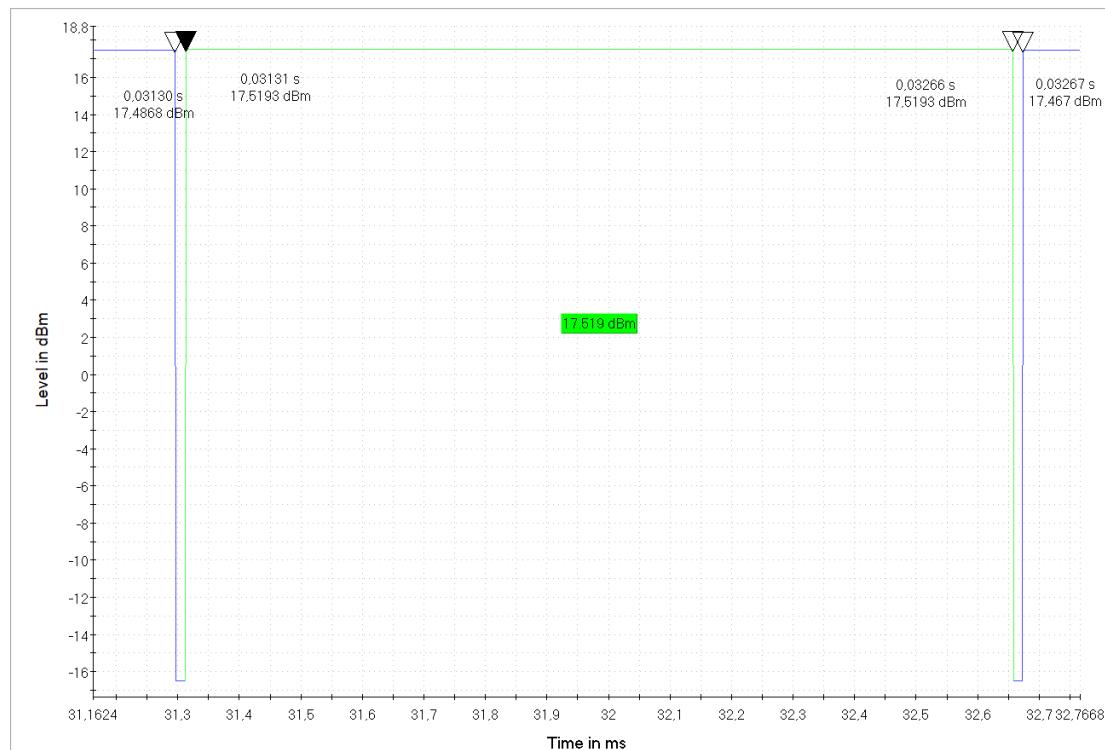
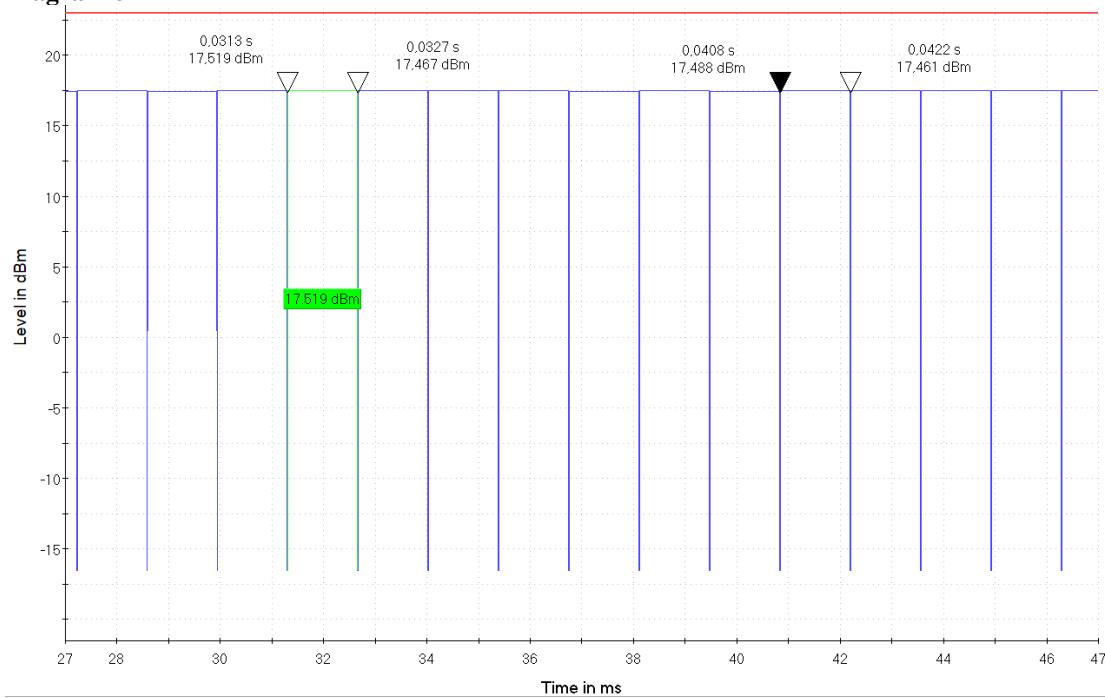

DUT operating at 5190 MHz and 40 MHz BW, MIMO; Duty cycle

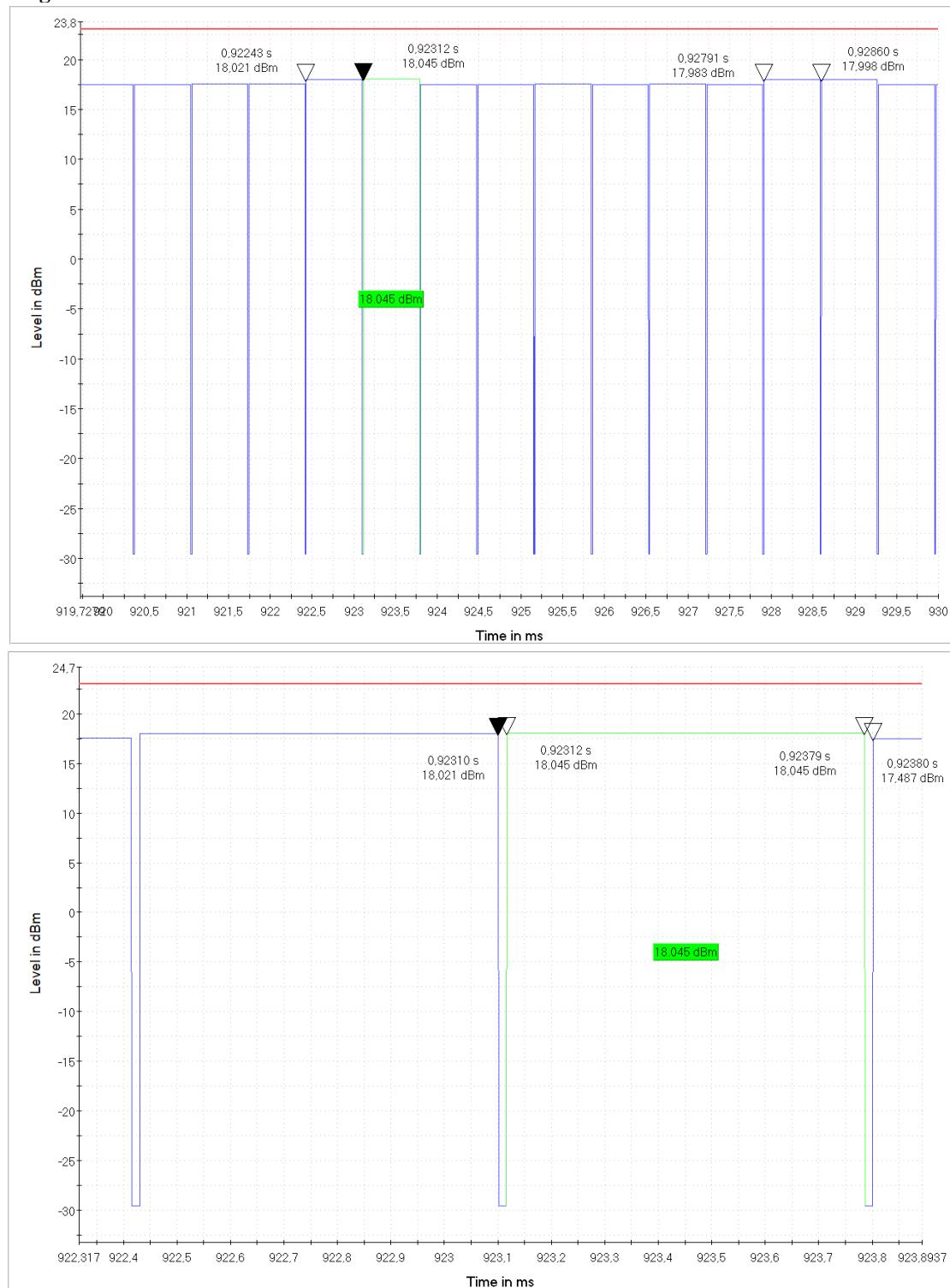
Diagram 5




DUT operating at 5230 MHz and 40 MHz BW, MIMO; Duty cycle

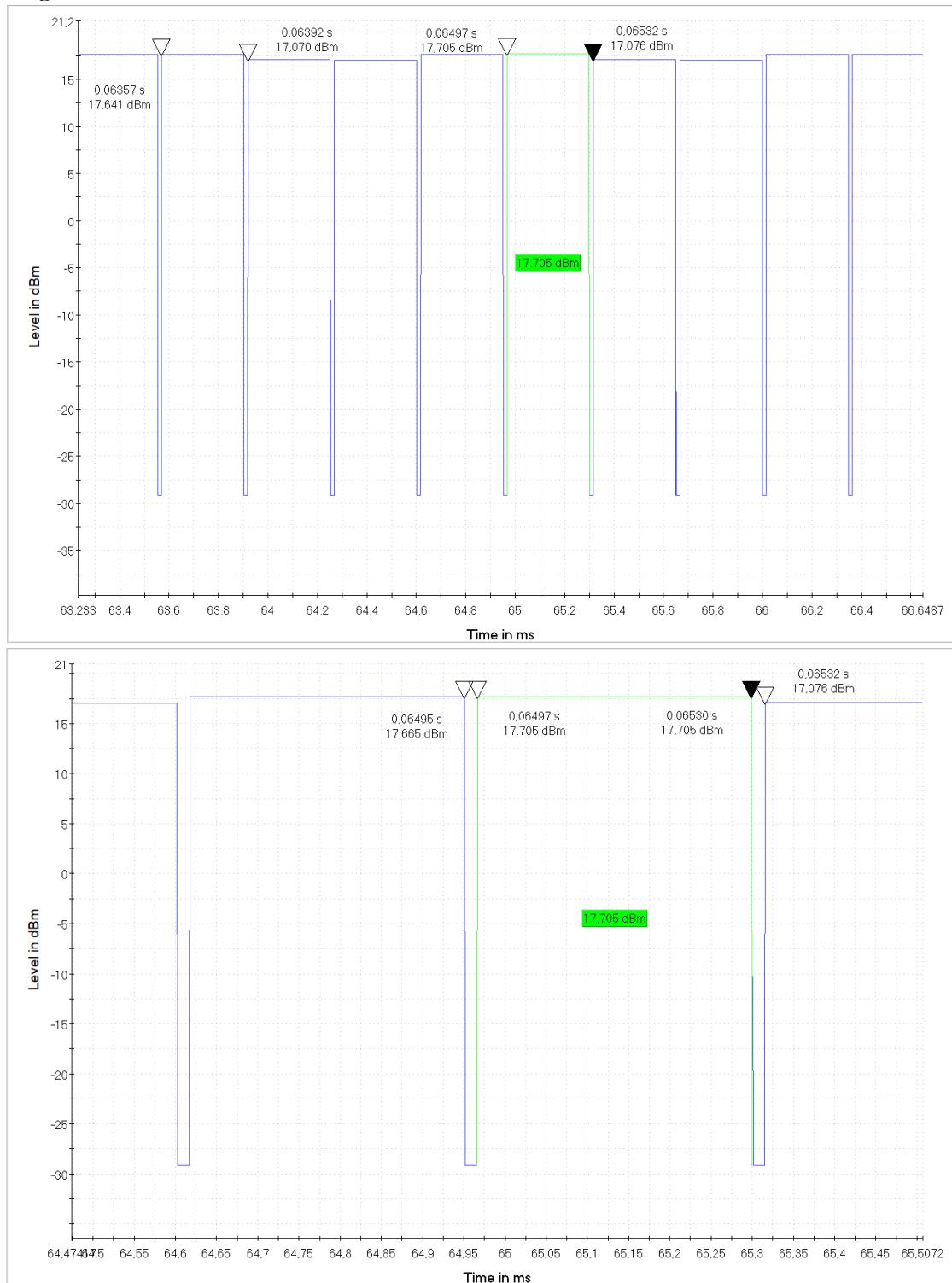


Diagram 6




DUT operating at 5210 MHz and 80 MHz BW, MIMO; Duty cycle

**Diagram 7**


DUT operating at 5180 MHz and 20 MHz BW, SISO 2; Duty cycle


**Diagram 8**


DUT operating at 5240 MHz and 20 MHz BW, SISO 2; Duty cycle

**Diagram 9**


DUT operating at 5190 MHz and 40 MHz BW, SISO 2; Duty cycle

Diagram 10



DUT operating at 5210 MHz and 80 MHz BW, SISO 2; Duty cycle

**Maximum conducted output power measurements according to  
FCC 47 CFR part 15.407 (a) (1) (ii) and (iv)**

| Date       | Temperature  | Humidity   |
|------------|--------------|------------|
| 2018-11-14 | 22 °C ± 3 °C | 29 % ± 5 % |
| 2018-11-15 | 21 °C ± 3 °C | 35 % ± 5 % |

**Test setup and procedure**

The measurements were performed according to ANSI C63.10 clause 12.3 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 II.E.3.b).

Additionally, test in MIMO operating mode was done according 662911 D01 Multiple Transmitter Output v02r01.E.1.

Conducted measurements were performed on units with the temporary antenna connectors, with transmission below 98% of duty cycle and with normal modulation.

Test set-up photos during the tests can be found in the photo section in the separate document, REPORT-ANNEX, AT-DG2 Photos.

| Measurement equipment                                            | RISE number |
|------------------------------------------------------------------|-------------|
| Test site Marconi                                                | 15:121      |
| Computer Lenovo ThinkCentre                                      | -           |
| Software R&S WMS32, ver.10.40.10                                 | -           |
| Switching box with RF power meters<br>R&S OSP120 with OSP-B157W8 | BX60313     |
| Coaxial cable                                                    | BX81424     |
| Coaxial cable                                                    | BX81436     |
| Coaxial cable                                                    | BX50685     |
| Temperature and humidity meter Testo 625                         | 504 117     |
| 120 V AC/60 Hz AC Power source HP 6813B                          | 503 091     |
| Multimeter Fluke 85 III                                          | 503 418     |
| Temperature and humidity meter Testo 625                         | 503 498     |

**Results**

| MIMO                                                             |                             | 802.11ac                    |                             |
|------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C                                            |                             | V <sub>nom</sub> 120 V AC   |                             |
| Max conducted output power<br>(RMS detector – gated power meter) |                             |                             |                             |
|                                                                  | f = 5180 MHz<br>BW = 20 MHz | f = 5190 MHz<br>BW = 40 MHz | f = 5210 MHz<br>BW = 80 MHz |
| MCS0                                                             | 14.4                        | 14.1                        | 13.9                        |
| MCS1                                                             | 14.3                        | 14.3                        | 13.8                        |
| MCS2                                                             | 14.2                        | 14                          | 13.7                        |
| MCS3                                                             | 14                          | 14                          | 13.7                        |
| MCS4                                                             | 14                          | 13.9                        | 13.7                        |
| MCS5                                                             | 14                          | 13.9                        | 13.7                        |
| MCS6                                                             | 13.9                        | 13.9                        | 13.7                        |
| MCS7                                                             | 13.8                        | 13.9                        | 13.7                        |
| MCS8                                                             | 13.8                        | 13.8                        | 13.6                        |
| MCS9                                                             | NA, Note                    | NA, Note                    | NA, Note                    |

Note: DUT doesn't support MCS9

| SISO 1 (chain 1, 2.5 dBi antenna gain)                           |                             | 802.11ac                    |                             |
|------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C                                            |                             | V <sub>nom</sub> 120 V AC   |                             |
| Max conducted output power<br>(RMS detector – gated power meter) |                             |                             |                             |
|                                                                  | f = 5180 MHz<br>BW = 20 MHz | f = 5190 MHz<br>BW = 40 MHz | f = 5210 MHz<br>BW = 80 MHz |
| MCS0                                                             | 11.2                        | 10.8                        | 10.6                        |
| MCS1                                                             | 11.2                        | 10.8                        | 10.6                        |
| MCS2                                                             | 11.3                        | 10.9                        | 10.6                        |
| MCS3                                                             | 11                          | 10.8                        | 10.5                        |
| MCS4                                                             | 11                          | 10.7                        | 10.6                        |
| MCS5                                                             | 11                          | 10.8                        | 10.5                        |
| MCS6                                                             | 10.9                        | 10.7                        | 10.5                        |
| MCS7                                                             | 11                          | 10.7                        | 10.5                        |
| MCS8                                                             | 10.8                        | 10.7                        | 10.5                        |

|                                        |                                                               |                               |                               |
|----------------------------------------|---------------------------------------------------------------|-------------------------------|-------------------------------|
| SISO 2, (chain 2 – 6 dBi antenna gain) |                                                               | 802.11ac                      |                               |
| $T_{nom}$ 20°C                         |                                                               | $V_{nom}$ 120 V AC            |                               |
|                                        | Max conducted output power (RMS detector – gated power meter) |                               |                               |
|                                        | $f = 5180$ MHz<br>BW = 20 MHz                                 | $f = 5190$ MHz<br>BW = 40 MHz | $f = 5210$ MHz<br>BW = 80 MHz |
| MCS0                                   | 11.4                                                          | 11.6                          | 11.1                          |
| MCS1                                   | 11.5                                                          | 11.3                          | 11.1                          |
| MCS2                                   | 11.3                                                          | 11.4                          | 11.1                          |
| MCS3                                   | 11                                                            | 11.3                          | 10.9                          |
| MCS4                                   | 11                                                            | 11.4                          | 10.9                          |
| MCS5                                   | 11                                                            | 11.3                          | 10.9                          |
| MCS6                                   | 10.9                                                          | 11.2                          | 10.9                          |
| MCS7                                   | 10.9                                                          | 11.3                          | 10.9                          |
| MCS8                                   | 10.9                                                          | 11.3                          | 10.9                          |

|                                          |                                                               |                               |
|------------------------------------------|---------------------------------------------------------------|-------------------------------|
| SISO 1, (chain 1 – 2.5 dBi antenna gain) |                                                               | 802.11n                       |
| $T_{nom}$ 20°C                           |                                                               | $V_{nom}$ 120 V AC            |
|                                          | Max conducted output power (RMS detector – gated power meter) |                               |
|                                          | $f = 5180$ MHz<br>BW = 20 MHz                                 | $f = 5190$ MHz<br>BW = 40 MHz |
| MCS0                                     | 11.2                                                          | 10.9                          |
| MCS1                                     | 11.2                                                          | 10.9                          |
| MCS2                                     | 11.2                                                          | 11                            |
| MCS3                                     | 11                                                            | 10.8                          |
| MCS4                                     | 11                                                            | 10.7                          |
| MCS5                                     | 10.9                                                          | 10.8                          |
| MCS6                                     | 11                                                            | 10.8                          |
| MCS7                                     | 11                                                            | 10.6                          |

|                                                               |                               |                               |
|---------------------------------------------------------------|-------------------------------|-------------------------------|
| SISO 2, (chain 2 – 6 dBi antenna gain)                        |                               | 802.11n                       |
| $T_{\text{nom}}$ 20°C                                         |                               | $V_{\text{nom}}$ 120 V AC     |
| Max conducted output power (RMS detector – gated power meter) |                               |                               |
|                                                               | $f = 5180$ MHz<br>BW = 20 MHz | $f = 5190$ MHz<br>BW = 40 MHz |
| MCS0                                                          | 11.5                          | 11.6                          |
| MCS1                                                          | 11.4                          | 11.6                          |
| MCS2                                                          | 11.4                          | 11.5                          |
| MCS3                                                          | 11.2                          | 11.6                          |
| MCS4                                                          | 11.1                          | 11.5                          |
| MCS5                                                          | 7.3                           | 11.4                          |
| MCS6                                                          | 11.1                          | 11.4                          |
| MCS7                                                          | 11.1                          | 11.4                          |

|                                                               |                               |                               |
|---------------------------------------------------------------|-------------------------------|-------------------------------|
| SISO 1 (chain 1 – 2.5 dBi antenna gain)                       |                               | 802.11a                       |
| $T_{\text{nom}}$ 20°C                                         |                               | $V_{\text{nom}}$ 120 V AC     |
| Max conducted output power (RMS detector – gated power meter) |                               |                               |
|                                                               | $f = 5180$ MHz<br>BW = 20 MHz | $f = 5190$ MHz<br>BW = 40 MHz |
| 54 Mbps                                                       | 10.9                          | 10.8                          |
| 48 Mbps                                                       | 10.9                          | 10.7                          |
| 36 Mbps                                                       | 10.9                          | 10.8                          |

|                                                               |                               |                               |
|---------------------------------------------------------------|-------------------------------|-------------------------------|
| SISO 2, (chain 2 – 6 dBi antenna gain)                        |                               | 802.11a                       |
| $T_{\text{nom}}$ 20°C                                         |                               | $V_{\text{nom}}$ 120 V AC     |
| Max conducted output power (RMS detector – gated power meter) |                               |                               |
|                                                               | $f = 5180$ MHz<br>BW = 20 MHz | $f = 5190$ MHz<br>BW = 40 MHz |
| 54 Mbps                                                       | 11.2                          | 11.5                          |
| 48 Mbps                                                       | 11.1                          | 11.5                          |
| 36 Mbps                                                       | 11.2                          | 11.5                          |

## Conducted output power as function of voltage variation

| MIMO                                                             |                             | 802.11ac                    |                             |
|------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C                                            |                             | MSC0                        | Power setting: p9           |
| Max conducted output power<br>(RMS detector – gated power meter) |                             |                             |                             |
|                                                                  | f = 5180 MHz<br>BW = 20 MHz | f = 5220 MHz<br>BW = 20 MHz | f = 5240 MHz<br>BW = 20 MHz |
| V <sub>85% nom</sub> 102 V AC                                    | 14.3                        | 14.4                        | 14.5                        |
| V <sub>nom</sub> 120 V AC                                        | 14.4                        | 14.3                        | 14.5                        |
| V <sub>115% nom</sub> 138 V AC                                   | 14.2                        | 14.2                        | 14.4                        |

| MIMO                                                             |                             | 802.11ac                    |                             |
|------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C                                            |                             | MSC0                        | Power setting: p9           |
| Max conducted output power<br>(RMS detector – gated power meter) |                             |                             |                             |
|                                                                  | f = 5190 MHz<br>BW = 40 MHz | f = 5230 MHz<br>BW = 40 MHz | f = 5210 MHz<br>BW = 80 MHz |
| V <sub>85% nom</sub> 102 V AC                                    | 14.2                        | 14.5                        | 14.0                        |
| V <sub>nom</sub> 120 V AC                                        | 14.2                        | 14.6                        | 14.0                        |
| V <sub>115% nom</sub> 138 V AC                                   | 14.2                        | 14.5                        | 14.0                        |

| SISO 2, (chain 2 – 6 dBi antenna gain)                           |                             | 802.11ac                    |                             |
|------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C                                            |                             | MSC0                        | Power setting: p9           |
| Max conducted output power<br>(RMS detector – gated power meter) |                             |                             |                             |
|                                                                  | f = 5180 MHz<br>BW = 20 MHz | f = 5220 MHz<br>BW = 20 MHz | f = 5240 MHz<br>BW = 20 MHz |
| V <sub>85% nom</sub> 102 V AC                                    | 11.4                        | 11.8                        | 11.4                        |
| V <sub>nom</sub> 120 V AC                                        | 11.7                        | 11.7                        | 11.6                        |
| V <sub>115% nom</sub> 138 V AC                                   | 11.5                        | 11.6                        | 11.5                        |

|                                        |                                                                  |                             |                             |
|----------------------------------------|------------------------------------------------------------------|-----------------------------|-----------------------------|
| SISO 2, (chain 2 – 6 dBi antenna gain) |                                                                  | 802.11.ac                   |                             |
| T <sub>nom</sub> 20°C                  |                                                                  | MSC0                        |                             |
|                                        | Max conducted output power<br>(RMS detector – gated power meter) |                             |                             |
|                                        | f = 5190 MHz<br>BW = 40 MHz                                      | f = 5230 MHz<br>BW = 40 MHz | f = 5210 MHz<br>BW = 80 MHz |
| V <sub>85% nom</sub> 102 V AC          | 11.7                                                             | 11.9                        | 11.4                        |
| V <sub>nom</sub> 120 V AC              | 11.7                                                             | 11.8                        | 11.4                        |
| V <sub>115% nom</sub> 138 V AC         | 11.5                                                             | 11.9                        | 11.4                        |

Note : According 47CFR 15.31(e), for intentional radiators, measurements of the variation of the input power or the radiated signal level of the fundamental frequency component of the emission, as appropriate, shall be performed with the supply voltage varied between 85% and 115% of the nominal rated supply voltage.

### Limits

According to 47CFR 15.407(a)(1)(ii), for indoor access point, operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W, (30 dBm), provided the maximum antenna gain does not exceed 6 dBi.

According to 47CFR 15.407(a)(1)(iv), for client devices, operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW, (24 dBm), provided the maximum antenna gain does not exceed 6 dBi.

Test engineer: Ermin Pasalic

|           |     |
|-----------|-----|
| Complies? | Yes |
|-----------|-----|

**Maximum power spectral density measurements according to FCC 47 CFR part 15.407 (a) (1) (ii) and (iv)**

| Date       | Temperature  | Humidity   |
|------------|--------------|------------|
| 2018-11-14 | 22 °C ± 3 °C | 29 % ± 5 % |
| 2018-11-15 | 21 °C ± 3 °C | 35 % ± 5 % |

**Test setup and procedure**

The measurements were performed according to ANSI C63.10 clause 12.5 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 II.F.1 (II.E.2.f; SA-3). Additionally, test in MIMO operating mode was done according 662911 D01 Multiple Transmitter Output v02r01.E.2.a.

The conducted measurements were performed on units with the temporal antenna connectors, with transmission below 98% of duty cycle and with normal modulation.

The test was performed with RMS detector. Total power in the burst was measured with triggered power meter.

Test set-up photos during the tests can be found in the photo section in the separate document, REPORT-ANNEX, AT-DG2 Photos.

| Measurement equipment                                            | RISE number |
|------------------------------------------------------------------|-------------|
| Test site Marconi                                                | 15:121      |
| Computer Lenovo ThinkCentre                                      | -           |
| Software R&S WMS32, ver.10.40.10                                 | -           |
| Spectrum analyser R&S FSQ 26                                     | BX50694     |
| Switching box with RF power meters<br>R&S OSP120 with OSP-B157W8 | BX60313     |
| Coaxial cable                                                    | BX81424     |
| Coaxial cable                                                    | BX81436     |
| Coaxial cable                                                    | BX50685     |
| Temperature and humidity meter Testo 625                         | 504 117     |
| 120 V AC/60 Hz AC Power source HP 6813B                          | 503 091     |
| Multimeter Fluke 85 III                                          | 503 418     |
| Temperature and humidity meter Testo 625                         | 503 498     |

**Results**

| MIMO                  |                                      | 802.11ac                    |                             |
|-----------------------|--------------------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C |                                      | V <sub>nom</sub> 120 V AC   |                             |
|                       | Max power spectral density<br>(SA-3) |                             |                             |
|                       | f = 5180 MHz<br>BW = 20 MHz          | f = 5190 MHz<br>BW = 40 MHz | f = 5210 MHz<br>BW = 80 MHz |
| MCS0                  | 3.8                                  | 0.6                         | -2.9                        |
| MCS1                  | 3.5                                  | 0.8                         | -2.8                        |
| MCS2                  | 3.4                                  | 0.7                         | -3.7                        |
| MCS3                  | 2                                    | 0.8                         | -3.7                        |
| MCS4                  | 2.1                                  | 0.6                         | -3.7                        |
| MCS5                  | 2.1                                  | 0.7                         | -3.7                        |
| MCS6                  | 2.2                                  | 0.6                         | -3.5                        |
| MCS7                  | 2.3                                  | 0.6                         | -3.6                        |
| MCS8                  | 2.2                                  | 0.5                         | -3.6                        |
| MCS9                  | NA, Note                             | NA, Note                    | NA, Note                    |

Note: Device doesn't support MCS9

| SISO 1 (chain 1 – 2.5 dBi antenna gain) |                                      | 802.11ac                    |                             |
|-----------------------------------------|--------------------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C                   |                                      | V <sub>nom</sub> 120 V AC   |                             |
|                                         | Max power spectral density<br>(SA-3) |                             |                             |
|                                         | f = 5180 MHz<br>BW = 20 MHz          | f = 5190 MHz<br>BW = 40 MHz | f = 5210 MHz<br>BW = 80 MHz |
| MCS0                                    | 0.4                                  | -2.6                        | -6.4                        |
| MCS1                                    | 0.4                                  | -2.7                        | -6.3                        |
| MCS2                                    | 0.4                                  | -2.6                        | -6.3                        |
| MCS3                                    | -0.9                                 | -2.6                        | -7                          |
| MCS4                                    | -0.9                                 | -2.5                        | -6.8                        |
| MCS5                                    | -0.9                                 | -2.7                        | -6.8                        |
| MCS6                                    | -0.9                                 | -2.7                        | -6.7                        |
| MCS7                                    | -0.8                                 | -2.7                        | -6.7                        |
| MCS8                                    | -0.9                                 | -2.6                        | -6.6                        |

|                                        |                             |                             |                             |
|----------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| SISO 2, (chain 2 – 6 dBi antenna gain) |                             | 802.11ac                    |                             |
| T <sub>nom</sub> 20°C                  |                             | V <sub>nom</sub> 120 V AC   |                             |
| Max power spectral density (SA-3)      |                             |                             |                             |
|                                        | f = 5180 MHz<br>BW = 20 MHz | f = 5190 MHz<br>BW = 40 MHz | f = 5210 MHz<br>BW = 80 MHz |
| MCS0                                   | 0.5                         | -1.9                        | -5.6                        |
| MCS1                                   | 0.5                         | -2.2                        | -5.6                        |
| MCS2                                   | 0.5                         | -2.2                        | -5.6                        |
| MCS3                                   | -0.9                        | -2.2                        | -6.6                        |
| MCS4                                   | -0.9                        | -2.1                        | -6.6                        |
| MCS5                                   | -0.8                        | -2.2                        | -6.5                        |
| MCS6                                   | -0.8                        | -2.2                        | -6.3                        |
| MCS7                                   | -0.8                        | -2.2                        | -6.4                        |
| MCS8                                   | -0.9                        | -2.1                        | -6.5                        |

|                                          |                             |                             |  |
|------------------------------------------|-----------------------------|-----------------------------|--|
| SISO 1, (chain 1 – 2.5 dBi antenna gain) |                             | 802.11n                     |  |
| T <sub>nom</sub> 20°C                    |                             | V <sub>nom</sub> 120 V AC   |  |
| Max power spectral density (SA-3)        |                             |                             |  |
|                                          | f = 5180 MHz<br>BW = 20 MHz | f = 5190 MHz<br>BW = 40 MHz |  |
| MCS0                                     | 0.4                         | -2.5                        |  |
| MCS1                                     | 0.4                         | -2.5                        |  |
| MCS2                                     | 0.4                         | -2.5                        |  |
| MCS3                                     | -1.0                        | -2.5                        |  |
| MCS4                                     | -0.9                        | -2.7                        |  |
| MCS5                                     | -0.9                        | -2.6                        |  |
| MCS6                                     | -0.8                        | -2.6                        |  |
| MCS7                                     | -0.9                        | -2.5                        |  |

|                                        |                               |                               |
|----------------------------------------|-------------------------------|-------------------------------|
| SISO 2, (chain 2 – 6 dBi antenna gain) |                               | 802.11n                       |
| $T_{nom}$ 20°C                         |                               | $V_{nom}$ 120 V AC            |
| Max power spectral density (SA-3)      |                               |                               |
|                                        | $f = 5180$ MHz<br>BW = 20 MHz | $f = 5190$ MHz<br>BW = 40 MHz |
| MCS0                                   | 0.5                           | -2.1                          |
| MCS1                                   | 0.5                           | -2.1                          |
| MCS2                                   | 0.4                           | -2.2                          |
| MCS3                                   | -0.9                          | -2.3                          |
| MCS4                                   | -0.9                          | -2.2                          |
| MCS5                                   | -0.8                          | -2.1                          |
| MCS6                                   | -0.8                          | -2.2                          |
| MCS7                                   | -0.8                          | -2.3                          |

|                                         |                               |                               |
|-----------------------------------------|-------------------------------|-------------------------------|
| SISO 1 (chain 1 – 2.5 dBi antenna gain) |                               | 802.11a                       |
| $T_{nom}$ 20°C                          |                               | $V_{nom}$ 120 V AC            |
| Max power spectral density (SA-3)       |                               |                               |
|                                         | $f = 5180$ MHz<br>BW = 20 MHz | $f = 5190$ MHz<br>BW = 40 MHz |
| 54 Mbps                                 | -0.5                          | -2.3                          |
| 48 Mbps                                 | -0.4                          | -2.2                          |
| 36 Mbps                                 | -0.5                          | -2.1                          |

|                                        |                               |                               |
|----------------------------------------|-------------------------------|-------------------------------|
| SISO 2, (chain 2 – 6 dBi antenna gain) |                               | 802.11a                       |
| $T_{nom}$ 20°C                         |                               | $V_{nom}$ 120 V AC            |
| Max power spectral density (SA-3)      |                               |                               |
|                                        | $f = 5180$ MHz<br>BW = 20 MHz | $f = 5190$ MHz<br>BW = 40 MHz |
| 54 Mbps                                | -0.4                          | -1.8                          |
| 48 Mbps                                | -0.2                          | -1.8                          |
| 36 Mbps                                | -0.4                          | -1.6                          |

## Power spectral density as function of voltage variation

| MIMO                                 |                             | 802.11ac                    |                             |
|--------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C                |                             | MSC0                        | Power setting: p9           |
| Max power spectral density<br>(SA-3) |                             |                             |                             |
|                                      | f = 5180 MHz<br>BW = 20 MHz | f = 5220 MHz<br>BW = 20 MHz | f = 5240 MHz<br>BW = 20 MHz |
| V <sub>85% nom</sub> 102 V AC        | 3.5                         | 3.3                         | 3.5                         |
| V <sub>nom</sub> 120 V AC            | 3.7                         | 3.4                         | 3.6                         |
| V <sub>115% nom</sub> 138 V AC       | 3.5                         | 3.3                         | 3.5                         |

| MIMO                                 |                             | 802.11ac                    |                             |
|--------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C                |                             | MSC0                        | Power setting: p9           |
| Max power spectral density<br>(SA-3) |                             |                             |                             |
|                                      | f = 5190 MHz<br>BW = 40 MHz | f = 5230 MHz<br>BW = 40 MHz | f = 5210 MHz<br>BW = 80 MHz |
| V <sub>85% nom</sub> 102 V AC        | 0.7                         | 0.8                         | -2.9                        |
| V <sub>nom</sub> 120 V AC            | 0.7                         | 0.9                         | -2.8                        |
| V <sub>115% nom</sub> 138 V AC       | 0.7                         | 0.7                         | -2.7                        |

| SISO 2, (chain 2 – 6 dBi antenna gain) |                             | 802.11ac                    |                             |
|----------------------------------------|-----------------------------|-----------------------------|-----------------------------|
| T <sub>nom</sub> 20°C                  |                             | MSC0                        | Power setting: p9           |
| Max power spectral density<br>(SA-3)   |                             |                             |                             |
|                                        | f = 5180 MHz<br>BW = 20 MHz | f = 5220 MHz<br>BW = 20 MHz | f = 5240 MHz<br>BW = 20 MHz |
| V <sub>85% nom</sub> 102 V AC          | 0.5                         | 0.7                         | 0.5                         |
| V <sub>nom</sub> 120 V AC              | 0.8                         | 0.7                         | 0.7                         |
| V <sub>115% nom</sub> 138 V AC         | 0.5                         | 0.6                         | 0.6                         |

|                                        |                                      |                             |                             |
|----------------------------------------|--------------------------------------|-----------------------------|-----------------------------|
| SISO 2, (chain 2 – 6 dBi antenna gain) |                                      | 802.11ac                    |                             |
| T <sub>nom</sub> 20°C                  |                                      | MSC0                        |                             |
|                                        | Max power spectral density<br>(SA-3) |                             |                             |
|                                        | f = 5190 MHz<br>BW = 40 MHz          | f = 5230 MHz<br>BW = 40 MHz | f = 5210 MHz<br>BW = 80 MHz |
| V <sub>85% nom</sub> 102 V AC          | -2.1                                 | -1.7                        | -5.5                        |
| V <sub>nom</sub> 120 V AC              | -2.1                                 | -1.7                        | -5.5                        |
| V <sub>115% nom</sub> 138 V AC         | -2.2                                 | -1.8                        | -5.5                        |

Note: No corrections of power spectral density, PSD, for duty cycle were done in upper tables because PSD measured by spectrum analyser is normalized to the power measured in the burst by OSP-B157W8 which is not impacted by duty cycle.

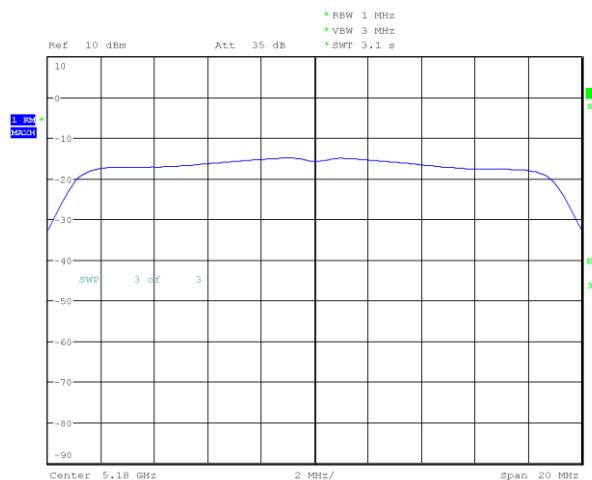
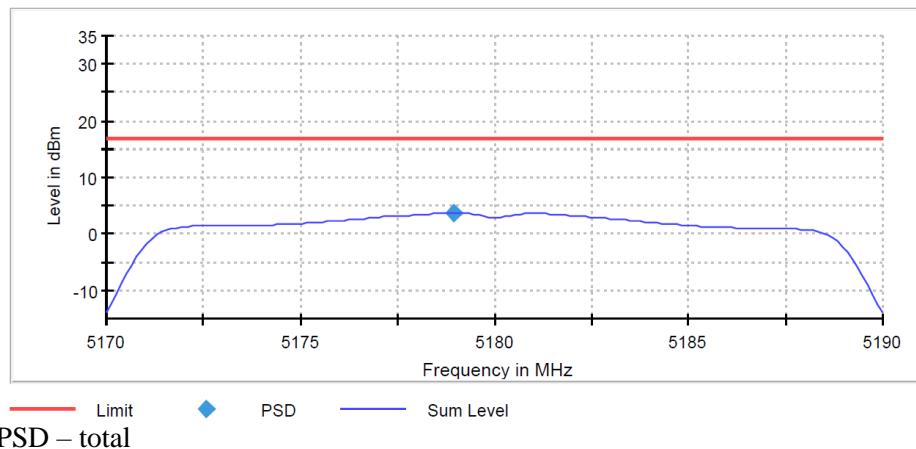
The measurements with RMS detector can be found in the diagrams below:

|             |                                                           |
|-------------|-----------------------------------------------------------|
| Diagram 1:  | 5180 MHz 20 MHz BW MIMO MSC0,<br>Power spectral density   |
| Diagram 2:  | 5220 MHz 20 MHz BW MIMO MSC0,<br>Power spectral density   |
| Diagram 3:  | 5240 MHz 20 MHz BW MIMO MSC0,<br>Power spectral density   |
| Diagram 4:  | 5190 MHz 40 MHz BW MIMO MSC0,<br>Power spectral density   |
| Diagram 5:  | 5230 MHz 40 MHz BW MIMO MSC0,<br>Power spectral density   |
| Diagram 6:  | 5210 MHz 80 MHz BW MIMO MSC0,<br>Power spectral density   |
| Diagram 7:  | 5180 MHz 20 MHz BW SISO 2 MSC0,<br>Power spectral density |
| Diagram 8:  | 5220 MHz 20 MHz BW SISO 2 MSC0,<br>Power spectral density |
| Diagram 9:  | 5240 MHz 20 MHz BW SISO 2 MSC0,<br>Power spectral density |
| Diagram 10: | 5190 MHz 40 MHz BW SISO 2 MSC0,<br>Power spectral density |
| Diagram 11: | 5230 MHz 40 MHz BW SISO 2 MSC0,<br>Power spectral density |
| Diagram 12: | 5210 MHz 80 MHz BW SISO 2 MSC0,<br>Power spectral density |

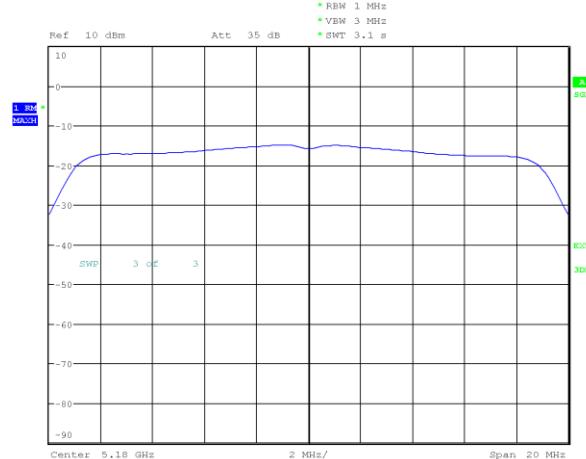
Note: the results in the diagrams are not corrected for duty cycle.

**Limits**

According to 47CFR 15.407(a)(1)(ii), for indoor access point, operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 MHz band, provided that max antenna gain is 6 dBi.

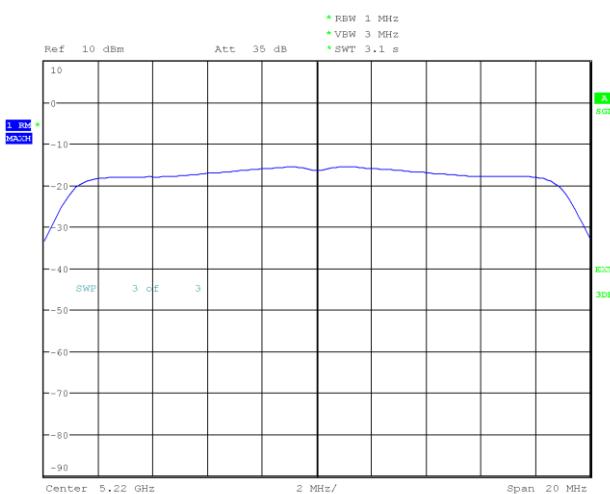
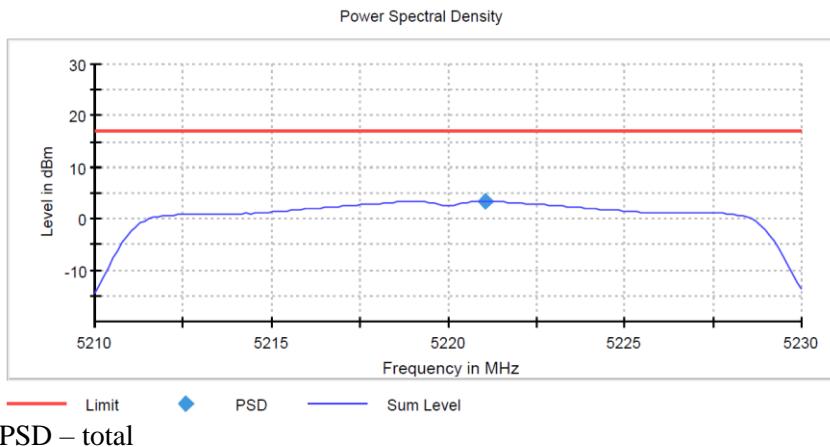


According to 47CFR 15.407(a)(1)(iv), for client devices, operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 11 dBm in any 1 MHz band provided that max antenna gain is 6 dBi.

Test engineer: Ermin Pasalic

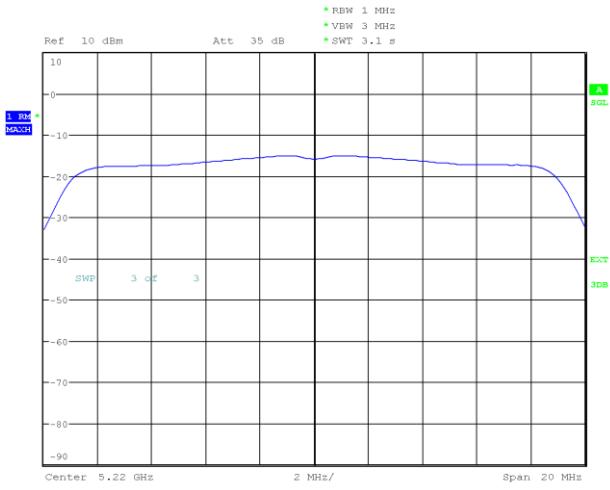

|           |     |
|-----------|-----|
| Complies? | Yes |
|-----------|-----|

**Diagram 1**

Power Spectral Density

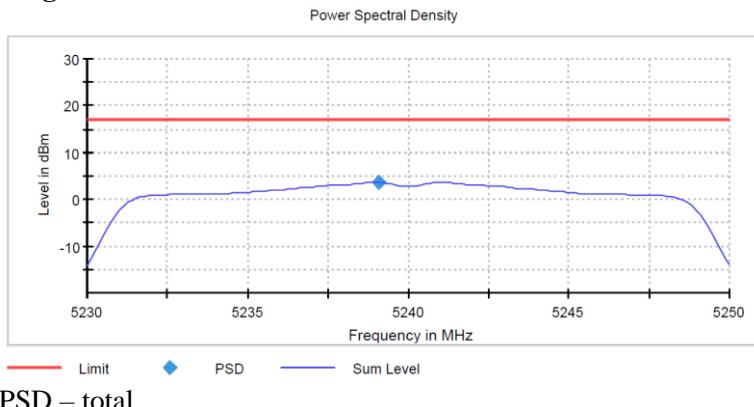
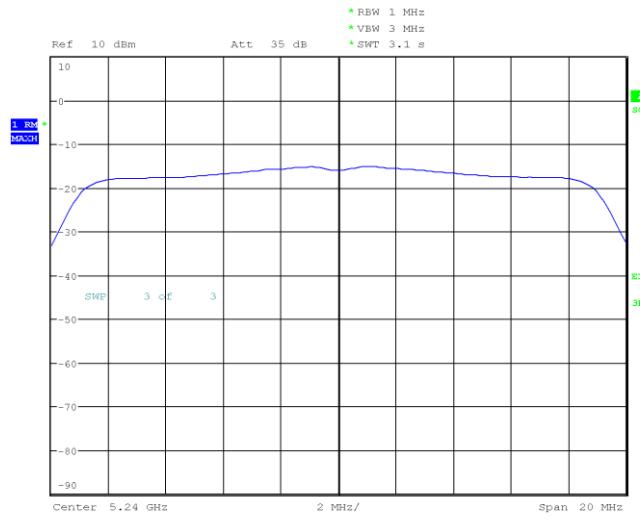




Date: 14.NOV.2018 10:27:00

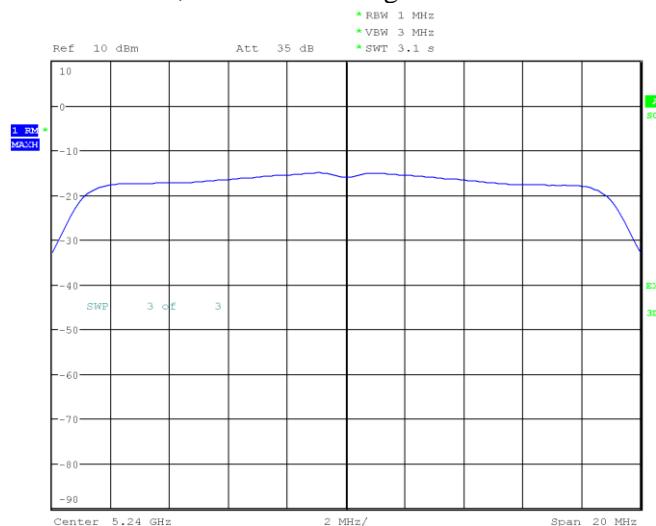

**PSD – chain 1, 2.5 dBi antenna gain**


Date: 14.NOV.2018 10:27:46

**PSD – chain 2, 6 dBi antenna gain**  
 DUT operating at 5180 MHz 20 MHz BW MIMO MSC0,  
 Power spectral density

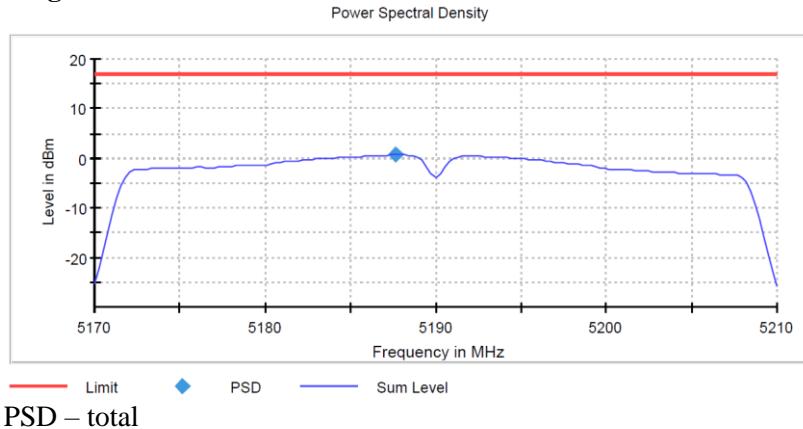
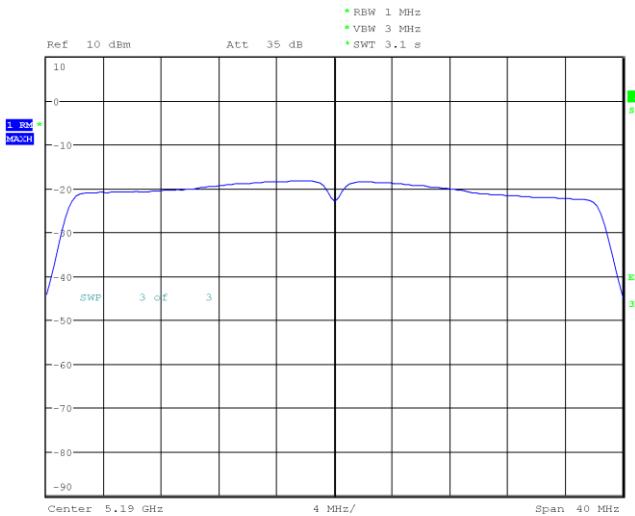


**Diagram 2**


Date: 14.NOV.2018 10:29:19


**PSD – chain 1, 2.5 dBi antenna gain**

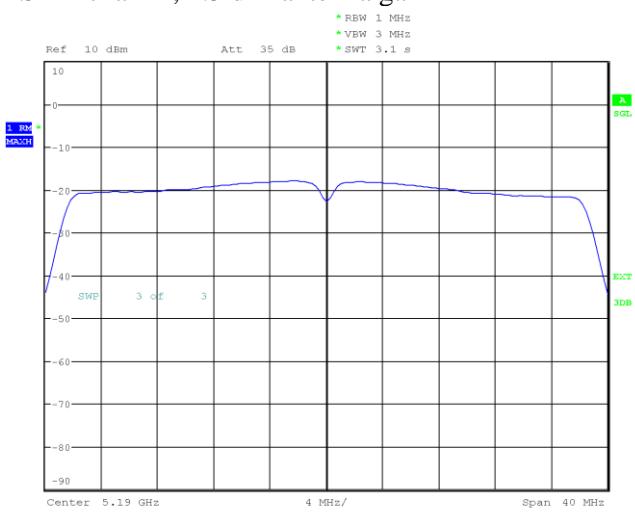

Date: 14.NOV.2018 10:30:03

**PSD – chain 2, 6 dBi antenna gain**  
 DUT operating at 5220 MHz 20 MHz BW MIMO MSC0,  
 Power spectral density



**Diagram 3**

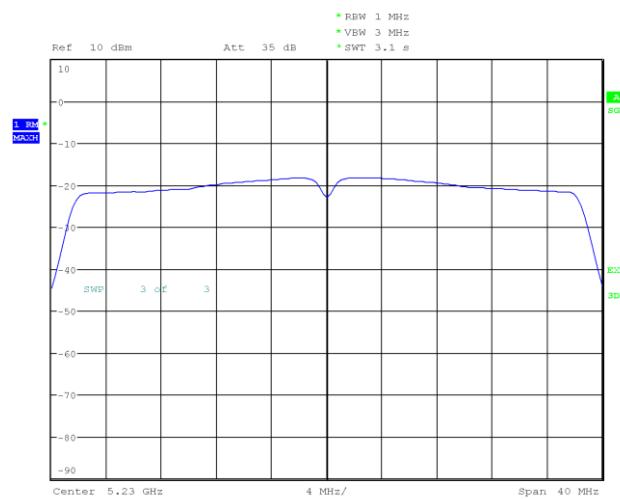
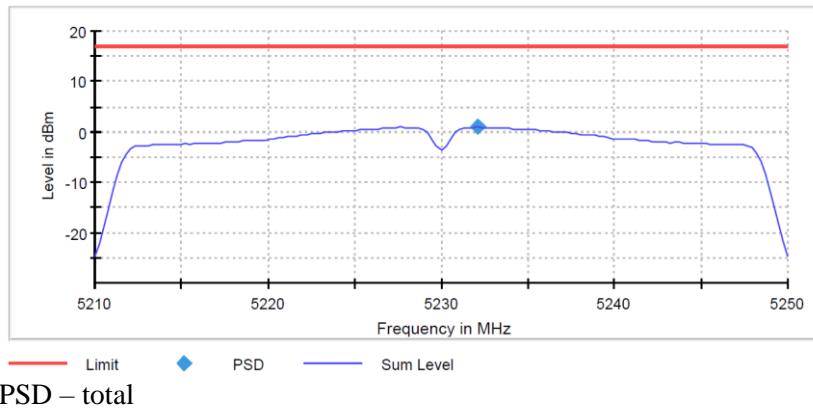
**PSD – total**


Date: 14.NOV.2018 10:31:31


**PSD – chain 1, 2.5 dBi antenna gain**

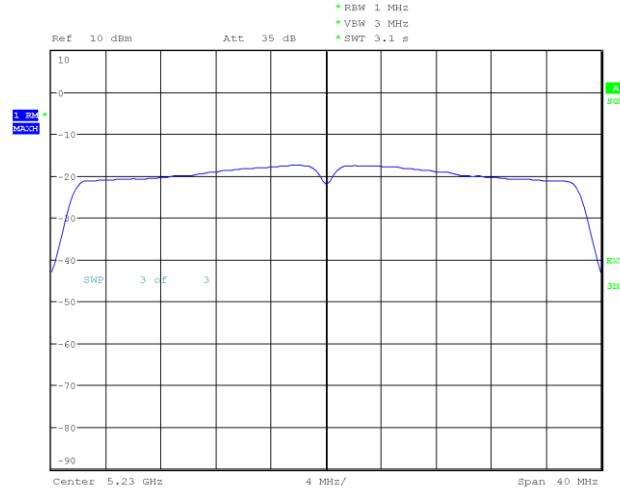

Date: 14.NOV.2018 10:32:15

**PSD – chain 2, 6 dBi antenna gain**  
 DUT operating at 5240 MHz 20 MHz BW MIMO MSC0,  
 Power spectral density



**Diagram 4**

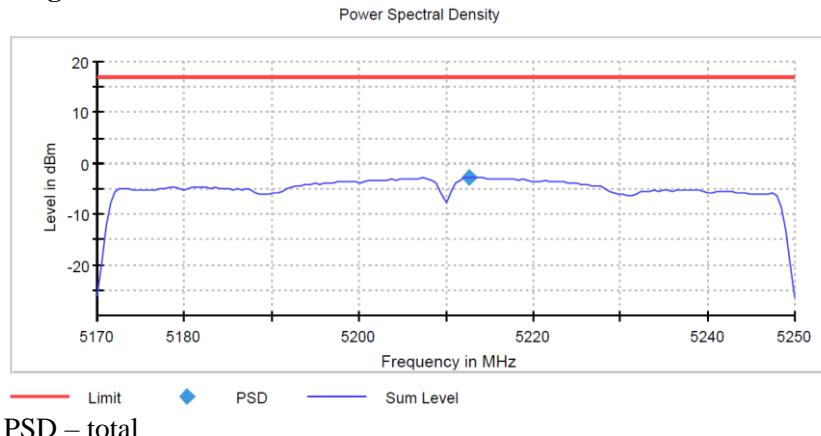
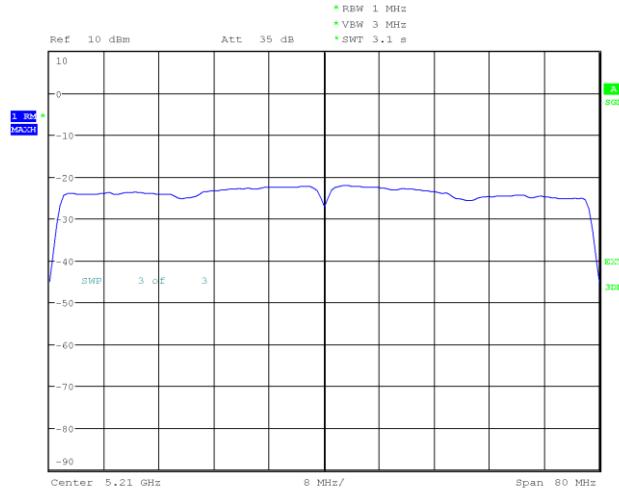
**PSD – total**


Date: 14.NOV.2018 10:34:17

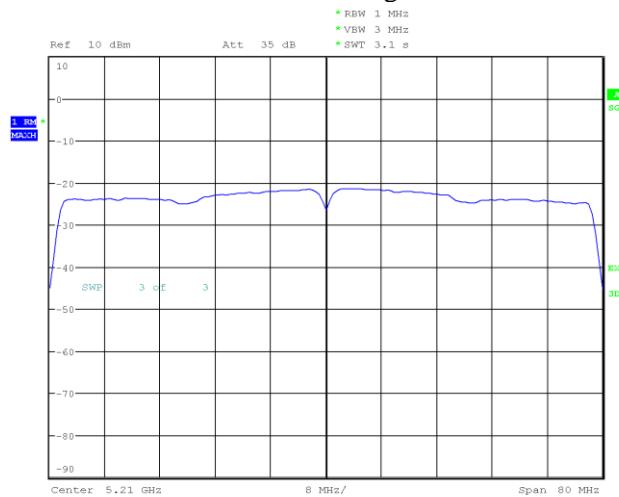

**PSD – chain 1, 2.5 dBi antenna gain**


Date: 14.NOV.2018 10:35:02

**PSD – chain 2, 6 dBi antenna gain**  
 DUT operating at 5190 MHz 40 MHz BW MIMO MSC0,  
 Power spectral density



**Diagram 5**


Date: 14.NOV.2018 10:37:28


**PSD – chain 1, 2.5 dBi antenna gain**

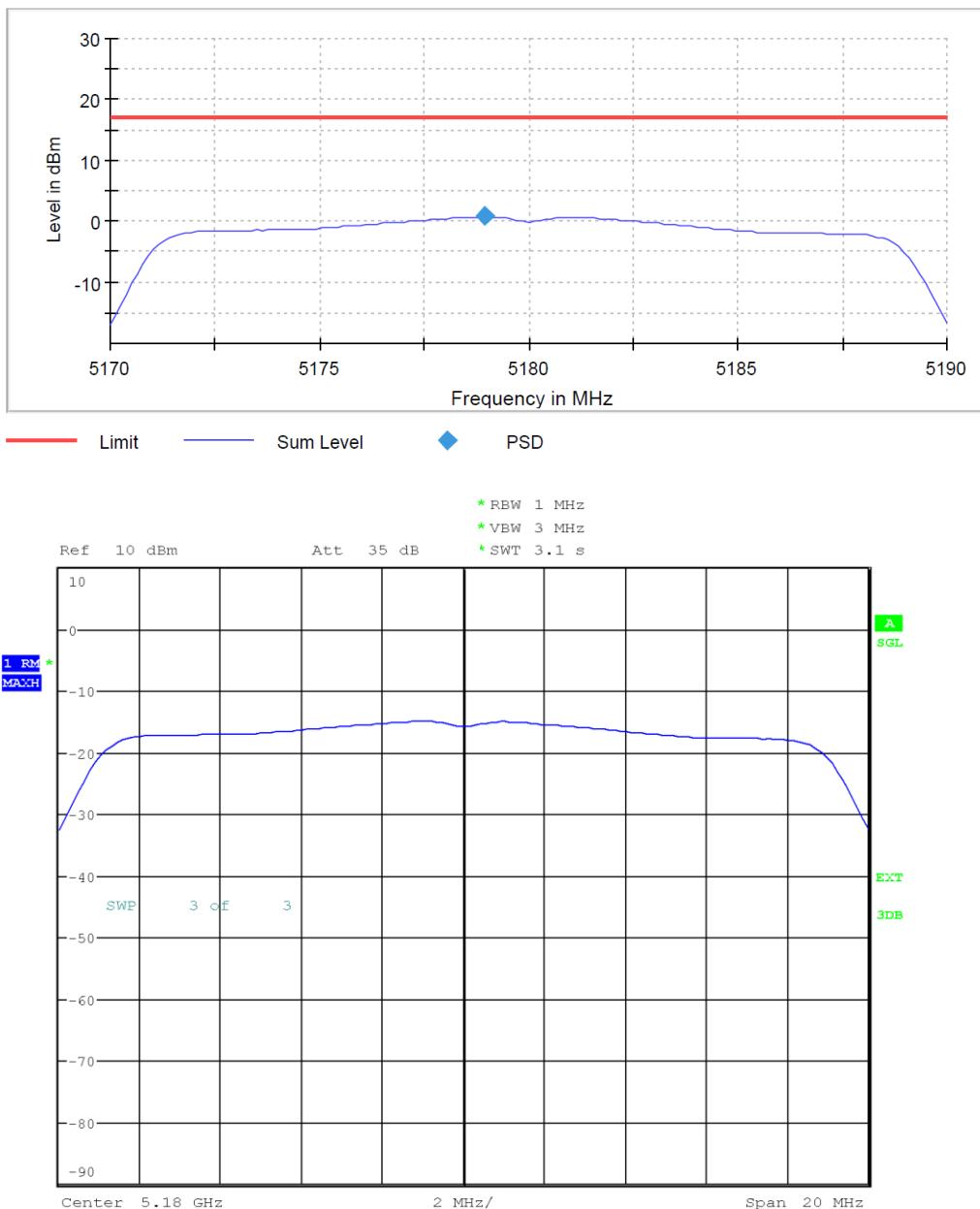

Date: 14.NOV.2018 10:38:12

**PSD – chain 2, 6 dBi antenna gain**  
 DUT operating at 5230 MHz 40 MHz BW MIMO MSC0,  
 Power spectral density

**Diagram 6**

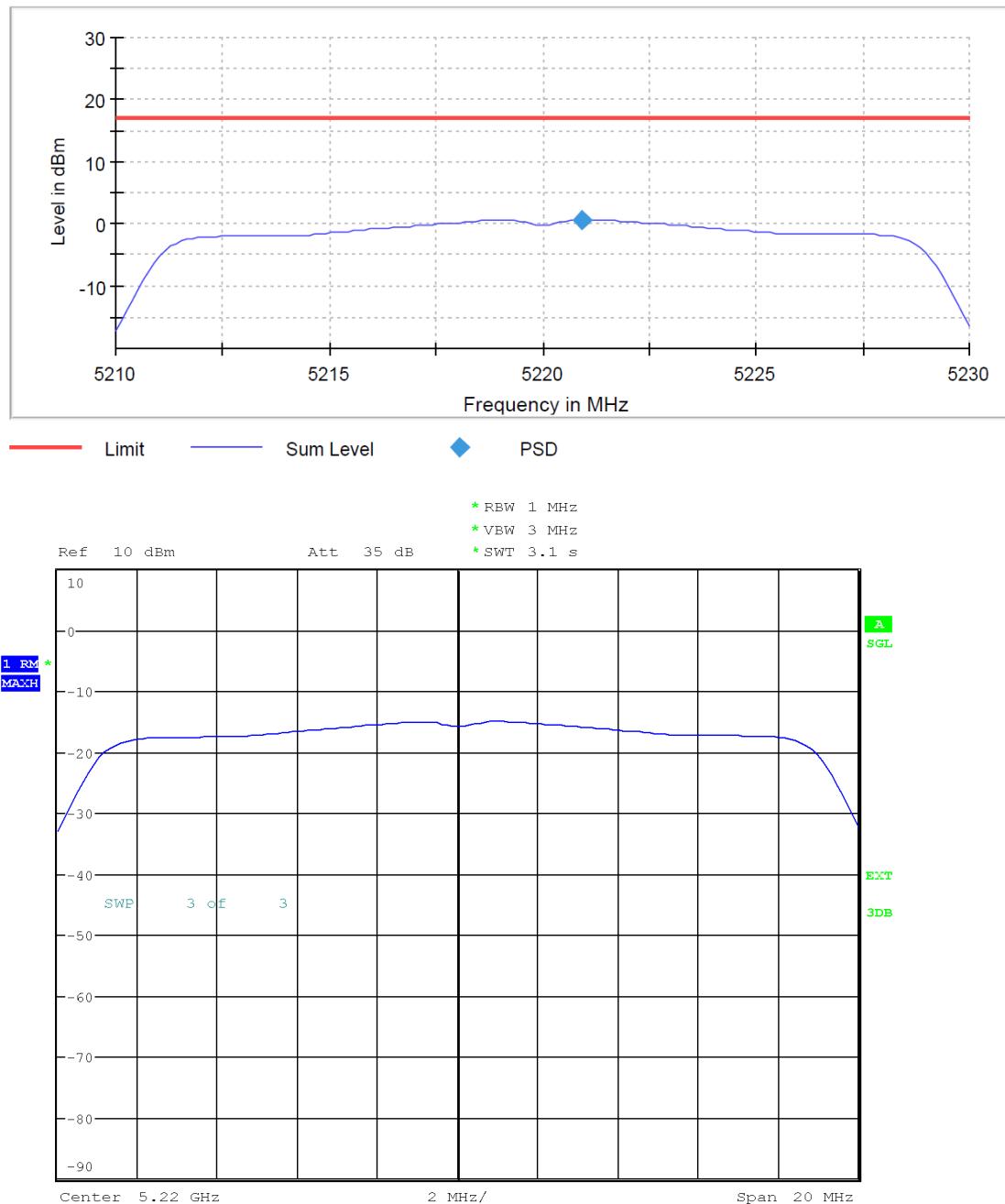
**PSD – total**


Date: 14.NOV.2018 10:39:50


**PSD – chain 1, 2.5 dBi antenna gain**


Date: 14.NOV.2018 10:40:34

**PSD – chain 2, 6 dBi antenna gain**  
 DUT operating at 5210 MHz 80 MHz BW MIMO MSC0,  
 Power spectral density

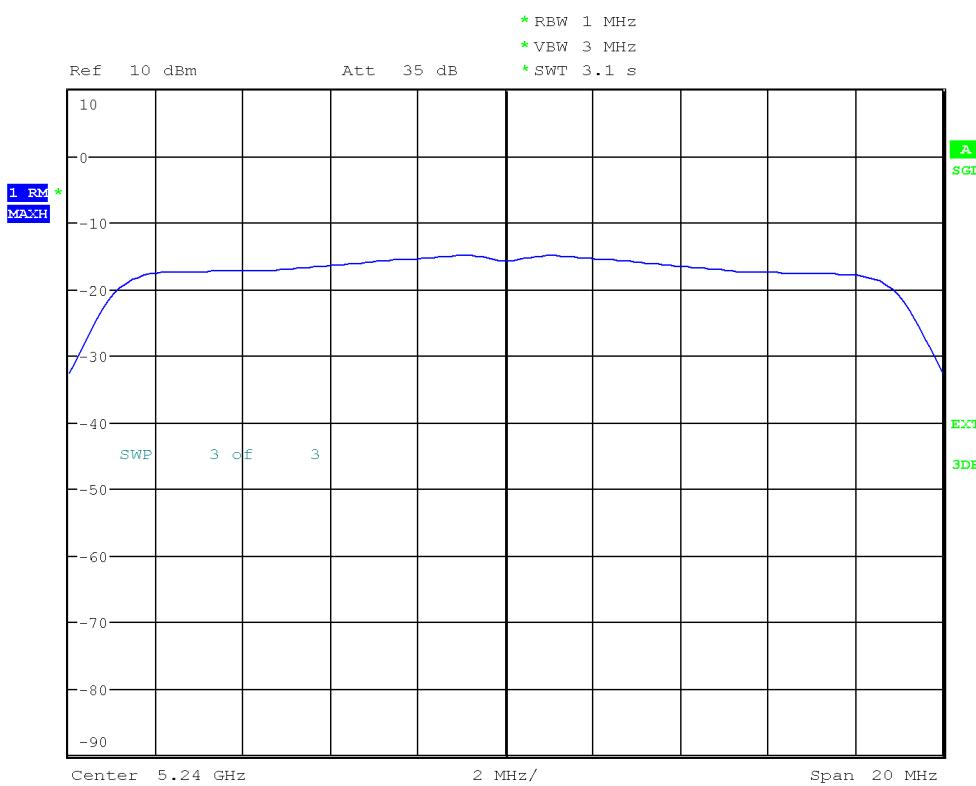
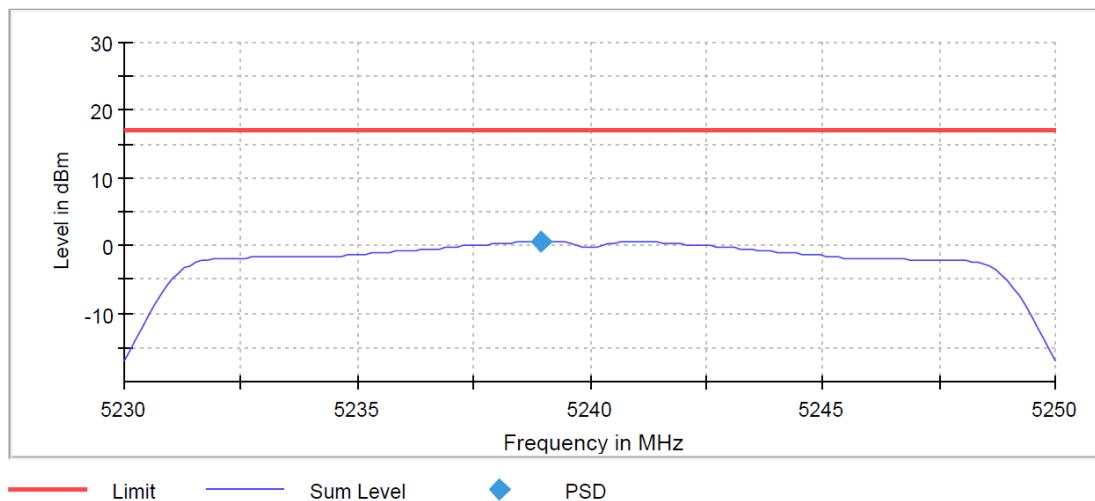

**Diagram 7**

Power Spectral Density



Date: 14.NOV.2018 12:41:45

DUT operating at 5180 MHz 20 MHz BW MSC0 SISO 2, 6 dBi antenna gain  
 Power spectral density

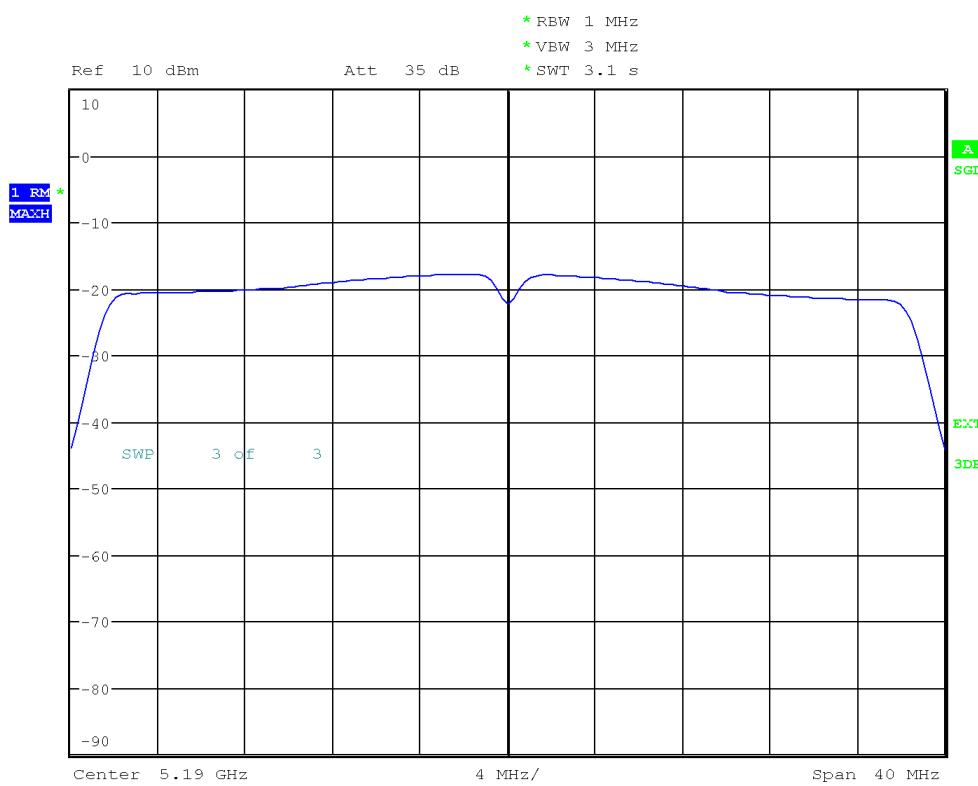
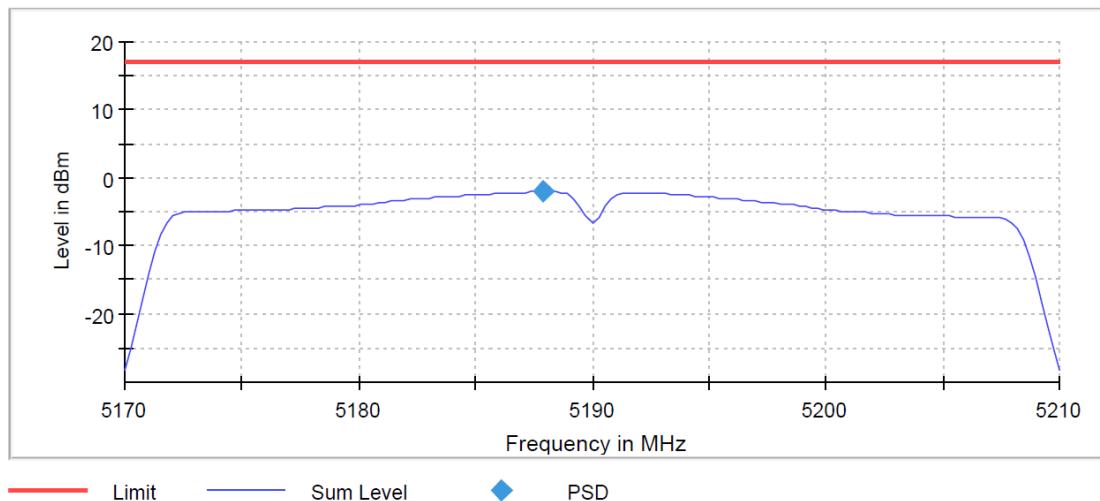


**Diagram 8**


Date: 14.NOV.2018 12:43:00

DUT operating at 5220 MHz 20 MHz BW MSC0 SISO 2, 6 dBi antenna gain  
 Power spectral density

**Diagram 9**

Power Spectral Density

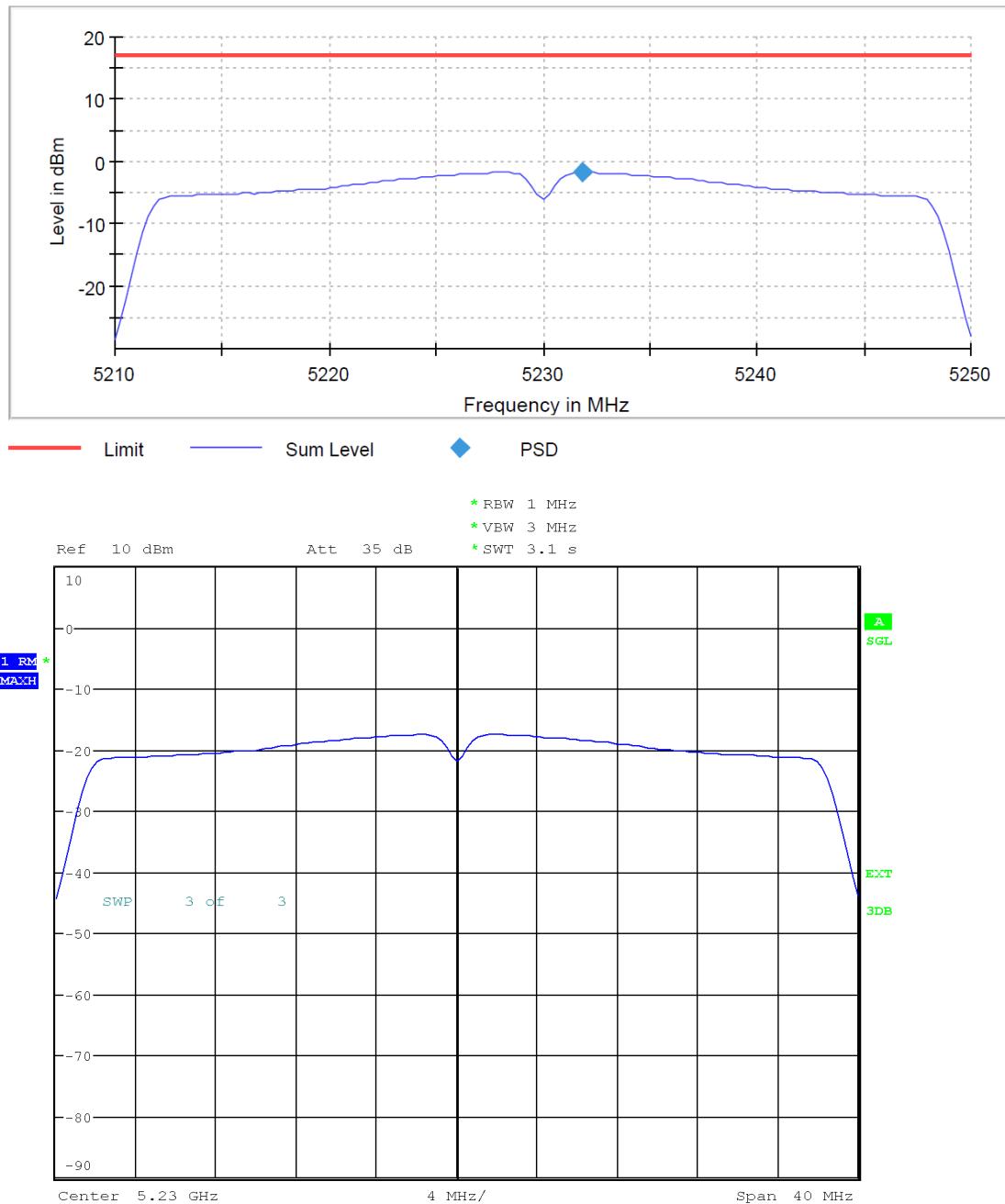




Date: 14.NOV.2018 12:44:16

DUT operating at 5240 MHz 20 MHz BW MSC0 SISO 2, 6 dBi antenna gain  
 Power spectral density

**Diagram 10**

Power Spectral Density

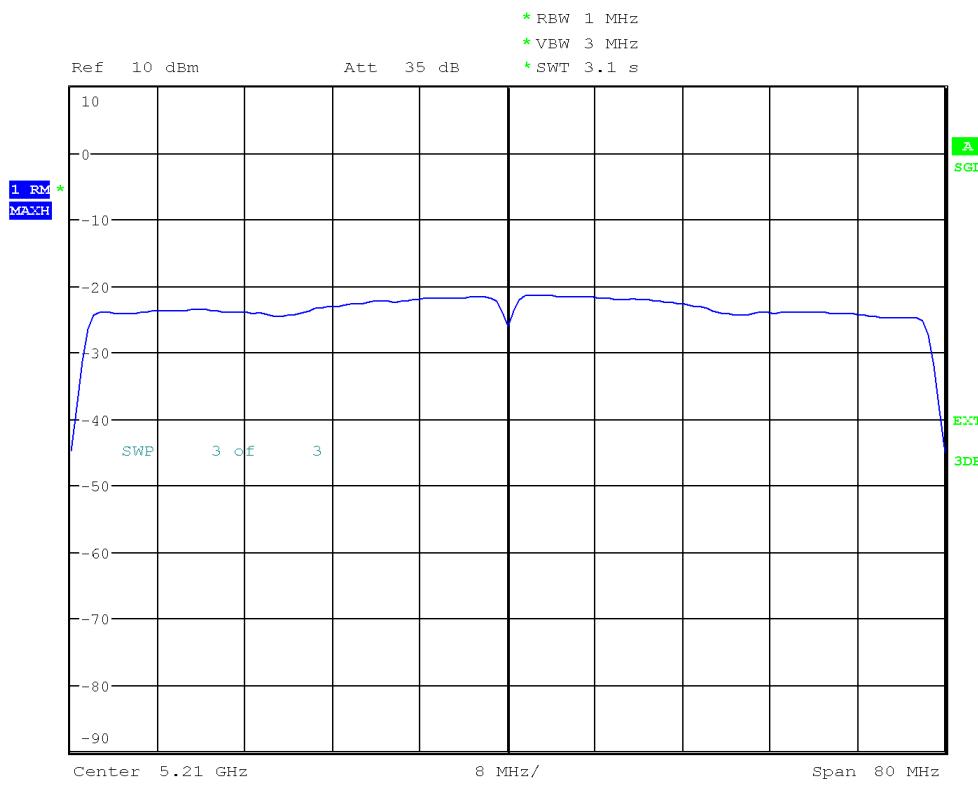
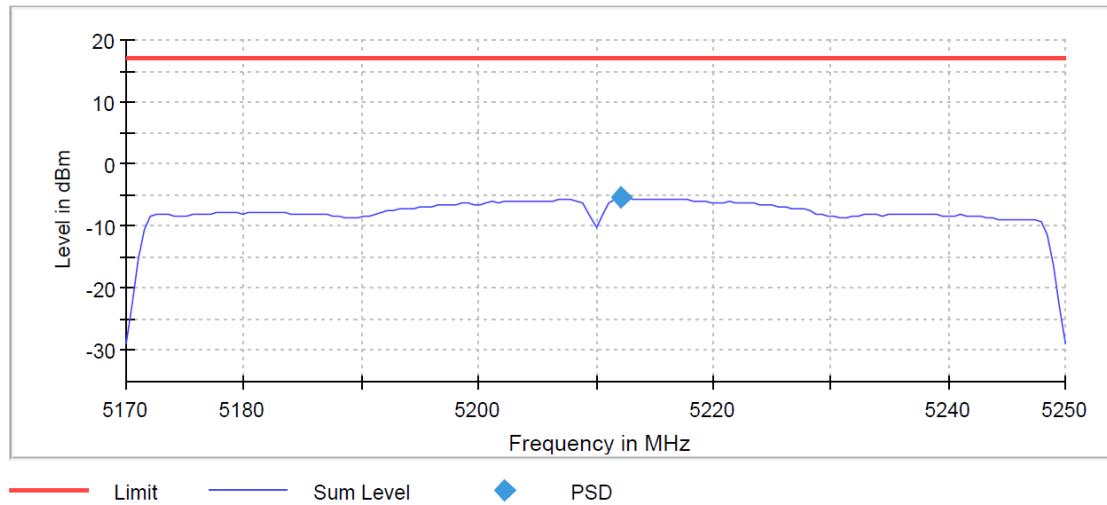



Date: 14.NOV.2018 12:45:39

DUT operating at 5190 MHz 40 MHz BW MSC0 SISO 2, 6 dBi antenna gain  
 Power spectral density

**Diagram 11**

Power Spectral Density


Date: 14.NOV.2018 12:47:00

DUT operating at 5230 MHz 40 MHz BW MSC0 SISO 2, 6 dBi antenna gain  
 Power spectral density

**Diagram 12**

Power Spectral Density



Date: 14.NOV.2018 12:48:29

DUT operating at 5210 MHz 80 MHz BW MSC0 SISO 2, 6 dBi antenna gain  
 Power spectral density

**Maximum emission outside of the frequency bands of operation according to FCC 47 CFR part 15.407 (b) (1) and Unwanted emission in the restricted bands according to FCC 47 CFR part 15.407 (b) (7)**

| Date       | Temperature | Humidity   |
|------------|-------------|------------|
| 2018-10-18 | 22°C ± 3 °C | 48 % ± 5 % |
| 2018-10-19 | 22°C ± 3 °C | 34 % ± 5 % |
| 2018-10-21 | 22°C ± 3 °C | 44 % ± 5 % |
| 2018-10-31 | 23°C ± 3 °C | 32 % ± 5 % |
| 2018-11-01 | 22°C ± 3 °C | 35 % ± 5 % |
| 2018-11-05 | 23°C ± 3 °C | 38 % ± 5 % |
| 2018-11-06 | 22°C ± 3 °C | 34 % ± 5 % |

**Test setup and procedure**

The measurements were performed according to ANSI C63.10 clause 12.7 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 II.G.1-6.

The measurements were performed on units with the integral antennas, with transmission below 98% of duty cycle and with normal modulation.

During test a LCD monitor was connected to DUT and data stream was transferred from DUT to the terminal.

The test of radiated emission was performed in a semi anechoic chamber. The measurements were performed with both horizontal and vertical polarizations of the antenna. The antenna distance during the measurements in frequency range 30 MHz to 18 GHz was 3.0 m.

The antenna distance during the measurements in frequency range 18 GHz to 40 GHz was 1.0 m.

The EUT height above the reference ground plane was 0.8 m in the frequency range 30-1000 MHz and 1.5 m in the frequency range 1-40 GHz.

The measurement procedure is as follows:

1. A pre-measurement is performed with peak detector. In addition in the frequency range 1 to 8.2 GHz, premeasurement was done with RMS detector, too, due to insufficient dynamic. For measurement < 1 GHz the test object is measured in eight directions with the antenna at three heights, 1.0 m, 1.5 m and 2.0. For measurement between 1 GHz – 40 GHz the test object is measured in seventeen directions with the antenna at one height, 1.5 m.
2. For measurements in the frequency range 1 – 18 GHz, RF absorbers were covering an floor area to comply with site validation requirements according to CISPR 16-1-4:2010.
3. If the emission is close or above the limit during the pre-measurement, the test object is scanned 360 degrees and the antenna height scanned from 1 to 4 m for maximum response. Then the emission is measured with the quasi-peak detector on frequencies below 1 GHz and with the average/peak detector above 1 GHz.

The following RBW were used:

30 MHz-1 GHz: RBW=120 kHz

1-40 GHz: RBW=1 MHz

Number of sweep points and sweep time was set to fulfil need for trace stability and measured point per pixel.

Test set-up photos during the tests can be found in the photo section in the separate document, REPORT-ANNEX, AT-DG2 Photos.

| Measurement equipment                    | RISE number |
|------------------------------------------|-------------|
| Semi anechoic chamber, Edison            | 504114      |
| Computer Lenovo ThinkCentre              | -           |
| Software R&S EMC32, ver.9.15.00          | 503889      |
| EMI test receiver R&S ESU 26             | 902210      |
| EMI test receiver R&S ESU 40             | 901385      |
| EMI test receiver R&S ESI 40             | 503125      |
| Antenna Schaffner CBL 6143               | 504079      |
| Antenna ETS-Lindgren 3115                | 902175      |
| Standard gain horn, 18-26 GHz, 20240-20  | 503674      |
| Standard gain horn, 26-40 GHz, 22240-20  | 503674      |
| Low Noise Amplifier Miteq, 0.1-18 GHz    | 504160      |
| Low Noise Amplifier Miteq, 18-26.5 GHz   | 503285      |
| Low Noise Amplifier Miteq 18-40 GHz      | 503278      |
| Step attenuator Narda743-60              | BX41644     |
| Coaxial cable                            | BX50672     |
| Coaxial cable                            | 504102      |
| Coaxial cable                            | 504103      |
| Coaxial cable                            | 504104      |
| Coaxial cable                            | 504162      |
| Multimeter Fluke 83                      | 501522      |
| Temperature and humidity meter Testo 625 | 504117      |
| Semi anechoic chamber, Tesla             | 503881      |
| Software R&S EMC32, ver.9.15.00          | BX62351     |
| EMI test receiver R&S ESU 40             | 901385      |
| Antenna ETS-Lindgren 3115                | 902175      |
| Standard gain horn, 8-12.75 GHz          | 503939      |
| Standard gain horn, 12.75-18 GHz         | 503900      |
| Low Noise Amplifier Miteq                | 901545      |
| Huber Suhner antenna cable N-N           | BX62218     |
| Coaxial cable                            | 503697      |
| Coaxial cable                            | BX61530     |
| Coaxial cable                            | 503508      |
| Coaxial cable                            | 503509      |
| Coaxial cable                            | 504206      |
| Coaxial cable                            | 900679      |
| Coaxial cable                            | 900226      |
| Coaxial cable                            | 504035      |
| Coaxial cable                            | 503274      |
| Temperature and humidity meter Testo 625 | 504188      |

## Results

The pre-measurement emission spectra for the worst case configuration can be found in the diagrams below:

|             |                                                                                            |
|-------------|--------------------------------------------------------------------------------------------|
| Diagram 1:  | Ambient, 30-1000 MHz, vertical and horizontal polarization                                 |
| Diagram 2:  | 30-1000 MHz, MIMO 5180 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization      |
| Diagram 3:  | Ambient, 1-8.2 GHz, vertical and horizontal polarization                                   |
| Diagram 4:  | 1-8.2 GHz, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization        |
| Diagram 5:  | Ambient, 8.2-12.75 GHz, vertical and horizontal polarization                               |
| Diagram 6:  | 8.2-12.75 GHz, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization    |
| Diagram 7:  | Ambient, 12.75-18 GHz, vertical and horizontal polarization                                |
| Diagram 8:  | 12.75 GHz-18 GHz, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization |
| Diagram 9:  | Ambient, 18-26.5 GHz, vertical and horizontal polarization                                 |
| Diagram 10: | 18 GHz-26.5, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization      |
| Diagram 11: | Ambient, 26.5-40 GHz, vertical and horizontal polarization                                 |
| Diagram 12: | 26.5-40, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization          |

Note 1: Worst-case plots are attached.

Note 2: The results in the diagrams are not corrected for duty cycle.

## Final measurements

| Frequency (MHz) | QP level (dB $\mu$ V/m) | CAV level (dB $\mu$ V/m) | Peak level (dB $\mu$ V/m) | Corr (dB) | Limit (dB $\mu$ V/m) | Height (m) | Azimuth (deg) | Polarization |
|-----------------|-------------------------|--------------------------|---------------------------|-----------|----------------------|------------|---------------|--------------|
| 30.75           | 29.8                    | N/A                      | 35.0                      | 28.4      | 40                   | 1.72       | 8             | Vertical     |
| 189.84          | 34.7                    | N/A                      | 36.3                      | 17.9      | 43.5                 | 1.82       | 207           | Horizontal   |
| 374.09          | 38.2                    | N/A                      | 40.3                      | 22.2      | 46                   | 1          | 164           | Horizontal   |
| 770.08          | 40.1                    | N/A                      | 43.7                      | 27.8      | 46                   | 1.27       | 223           | Vertical     |
| 855.66          | 28.5                    | N/A                      | 41.6                      | 28.5      | 46                   | 1.95       | 222           | Horizontal   |
| 924.12          | 40.5                    | N/A                      | 44.0                      | 28.9      | 46                   | 1.05       | 356           | Vertical     |

Below 1 GHz, quasi peak is applied.

Note: Values of CAV level and peak level in the upper table are corrected for duty cycle off 96.2%, (0.16dB), applicable for channel at 5180 MHz, 20 MHz bandwidth and MCS1.

| Frequency (MHz) | CAV level (dBm) | Peak level (dBm) | Corr (dB) | Limit (dBm) | Height (m) | Azimuth (deg) | Polarization |
|-----------------|-----------------|------------------|-----------|-------------|------------|---------------|--------------|
| 5091.70         | -49.2           | -36.8            | -54.4     | -41.2 (CAV) | 1.19       | 218           | Vertical     |
| 5148.90         | -44.9           | -28.2            | -54.3     | -41.2 (CAV) | 1.50       | 142           | Vertical     |
| 5350.40         | -42.9           | -31.5            | -53.9     | -41.2 (CAV) | 1.0        | 139           | Horizontal   |
| 5390.70         | -50.0           | -37.7            | -53.8     | -41.2 (CAV) | 1.46       | 223           | Vertical     |
| 10479.94        | -50.3           | -35.9            | -102.7    | -27 (PK)    | 1.52       | 322           | Vertical     |
| 15719.84        | -59.0           | -45.9            | -97.5     | -41.2 (CAV) | 2.21       | 93            | Vertical     |

Average power, CAV, is used for compliance above 1 GHz in the restricted bands, (corresponding class B)

In the restricted bands is peak limit 20 dB higher than CAV limit.

Outside restricted bands, peak limit of -27 dBm is applied.

Note: Values of CAV level and peak level in the upper table are corrected for duty cycle off 96.2 %, (0.16dB), applicable for channel at 5240 MHz, 20 MHz bandwidth and MCS1.

Conversion from the field to eirp and vice versa was done according ANSI C63.10 Annex G and KDB 789033 D02 General UNII Test Procedures New Rules v02r01 II.G.1, respectively.

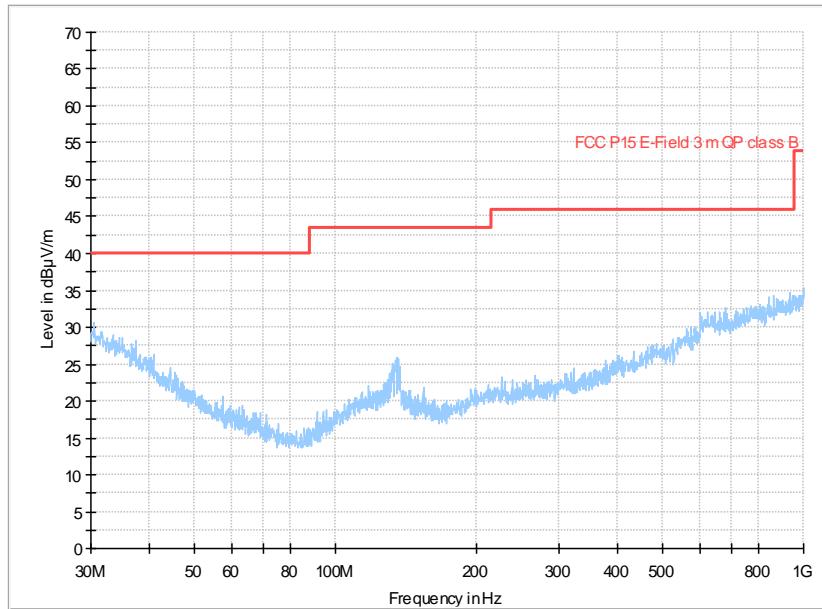
## Remark

Justification measurements were performed of the different antenna configurations, frequency bandwidth, MCS index, channel and placement. The presented results in the reports was judged to represent a worst case scenario based on the justification measurement.

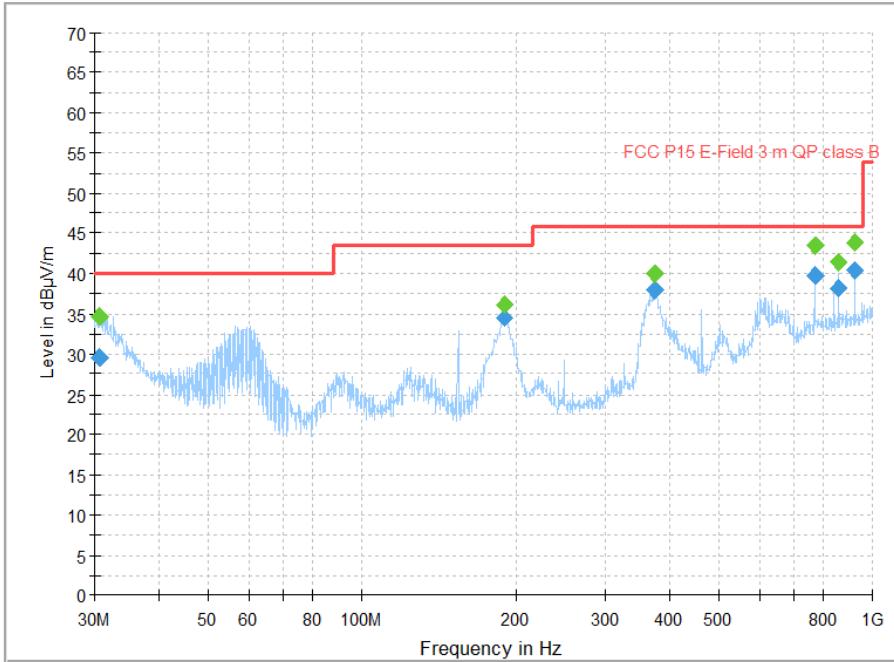
## Limits

According to 47CFR 15.407(b), e.i.r.p. of the emission produced by the intentional radiator shall be below -27 dBm outside the frequency band in which the 5 GHz WiFi radiator is operating for frequencies over 1 GHz and except restricted bands defined in §15.205 as shown in paragraph 15.407(b)(7).

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits based on the field strength, specified in Section 15.209(a).


Below 1 GHz applies general field strength limits set in §15.209.

Test engineer: Ermin Pasalic

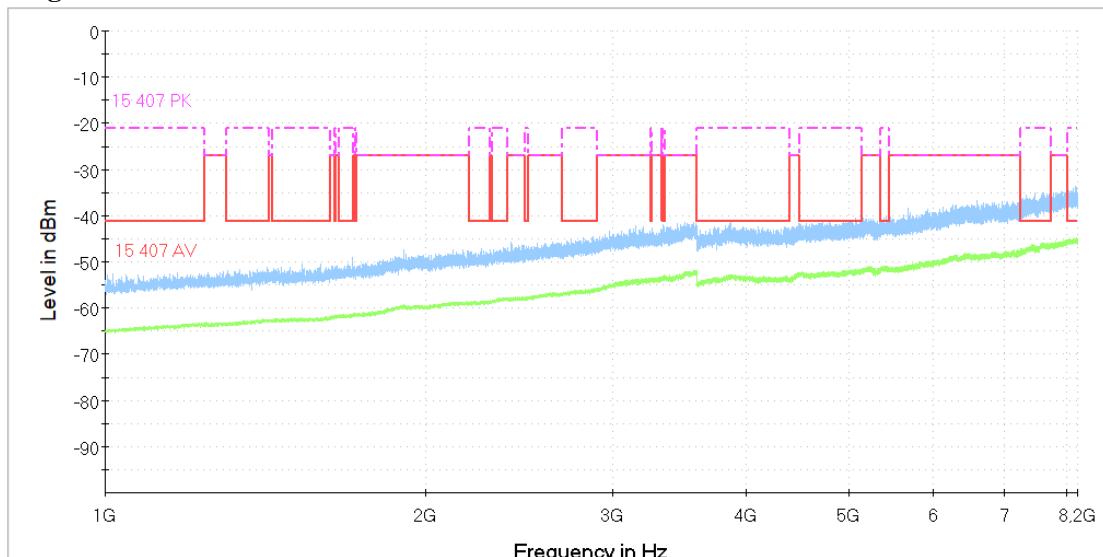

|           |     |
|-----------|-----|
| Complies? | Yes |
|-----------|-----|

**Diagram 1**

Full Spectrum



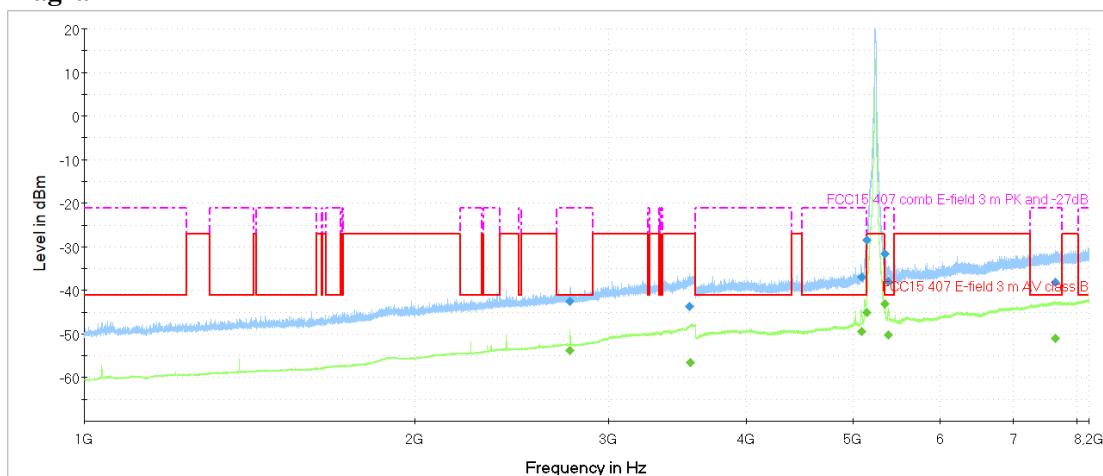
Ambient, 30-1000 MHz, vertical and horizontal polarization


**Diagram 2**


30-1000 MHz, MIMO 5180 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization

Note: blue dots present E-field level measured by quasi peak detector. They compares to the limit for compliance.

The green dots present field measured by peak detector. There is no requirement for peak level.

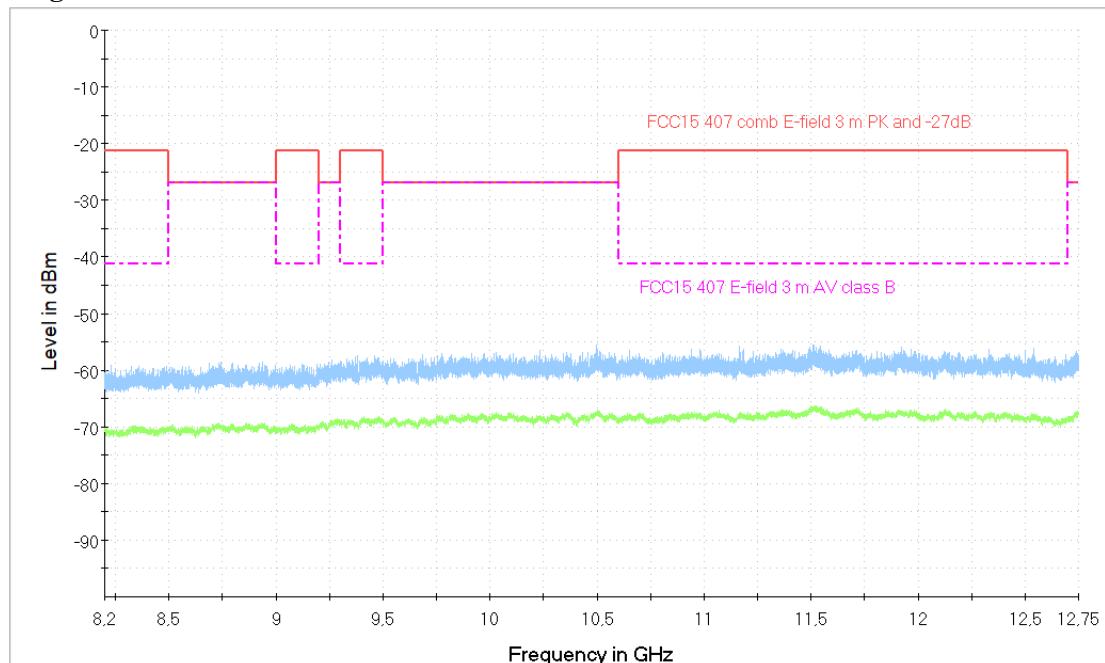

The blue trace is measured E-field by peak detector in the pre-test.

**Diagram 3**

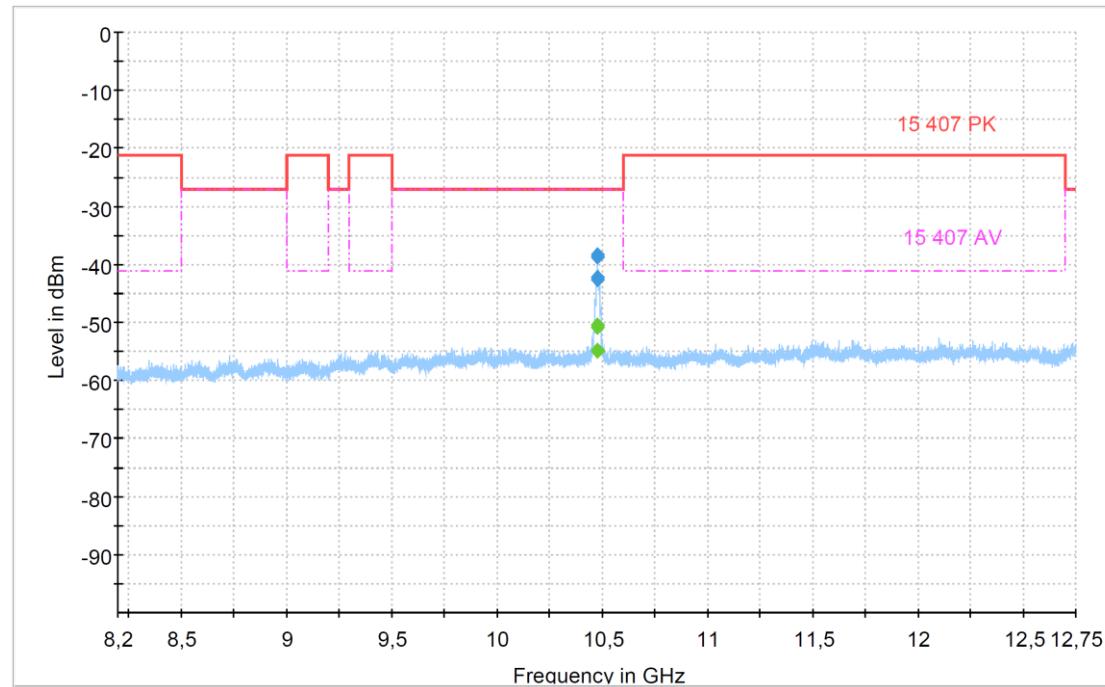

Ambient, 1-8.2 GHz, vertical and horizontal polarization

Note: blue trace is emission measured by peak detector, green trace is emission measured by RMS detector.

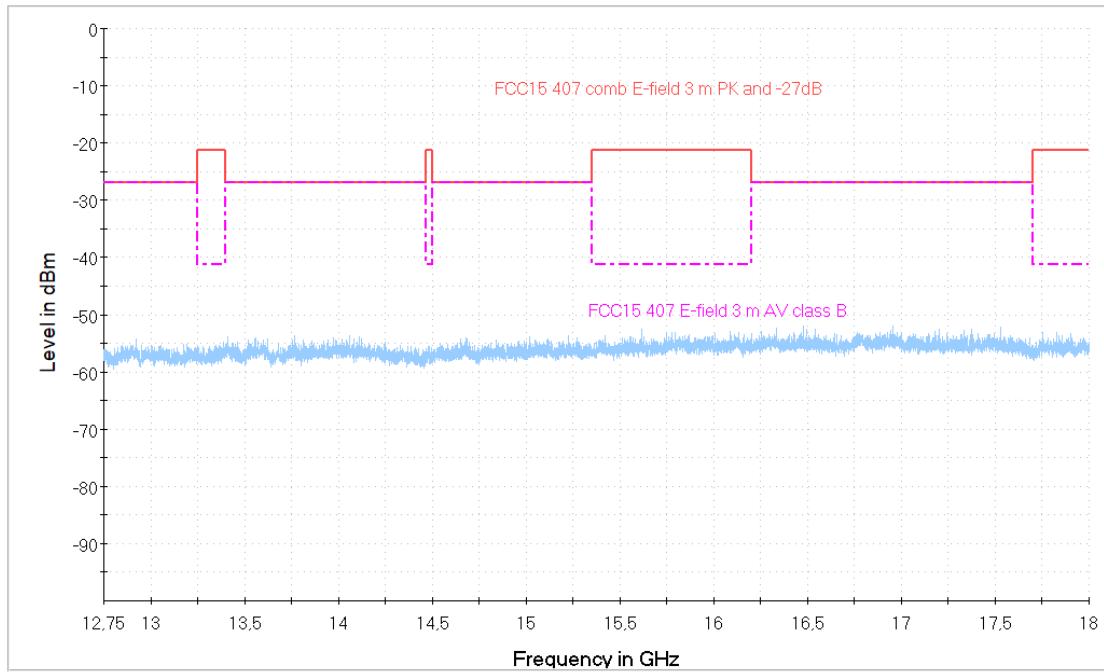
In addition to the peak detector, RMS detector was used in pre-test to improve dynamic. Limit lines cover requirements in the restricted and no-restricted frequency bands.


**Diagram 4**

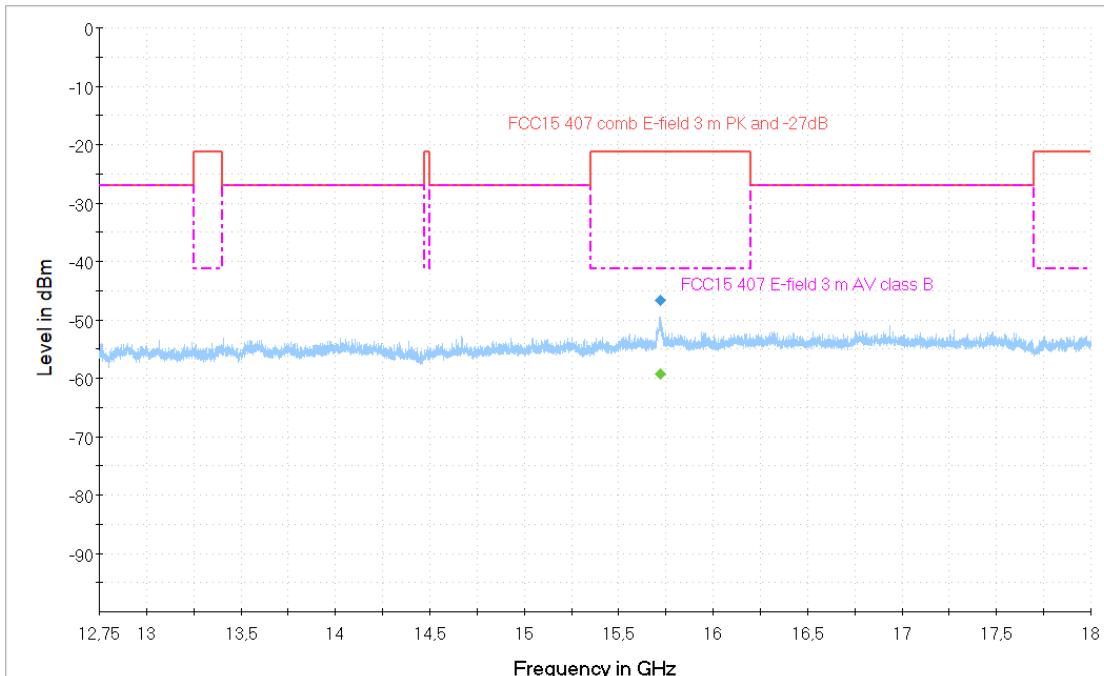

1-8.2 GHz, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization


Note 1: levels over limits are in the band 5150 MHz to 5250 MHz. Levels at the edge will be presented in the particular chapter; ‘Band edge measurements according to 47CFR 2.1049’, on pages 91-99.

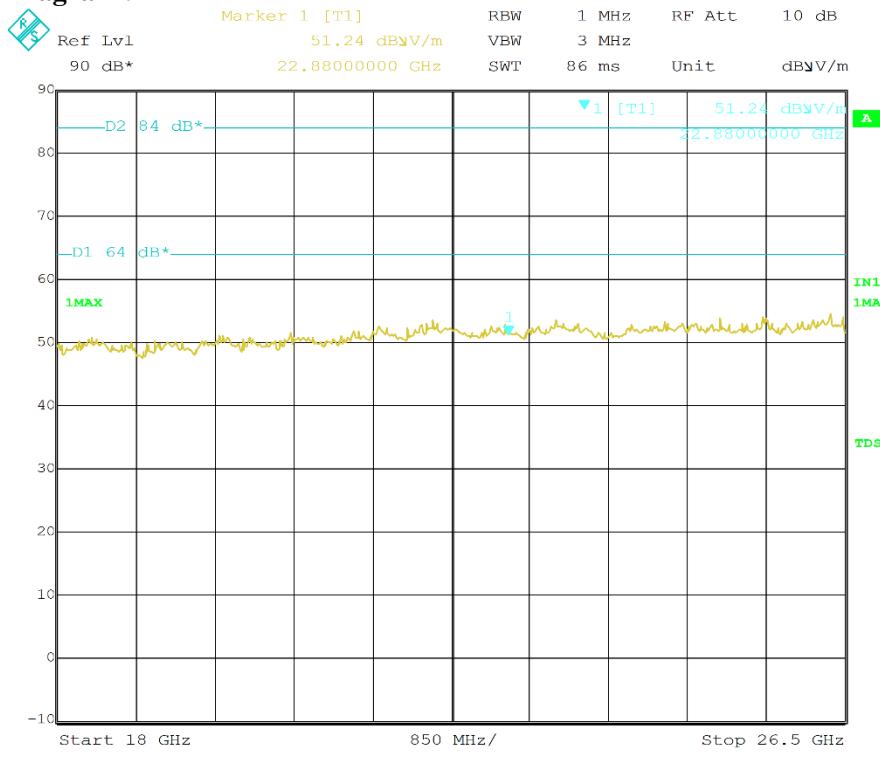
Note 2: blue dots present field level measured by peak detector. They compares to the peak limit, (pink line) for compliance. The green dots present field measured by average detector. They compares to the average limit, (red line) for compliance.


Note 2 applies to diagrams 4 to 8 in this chapter.

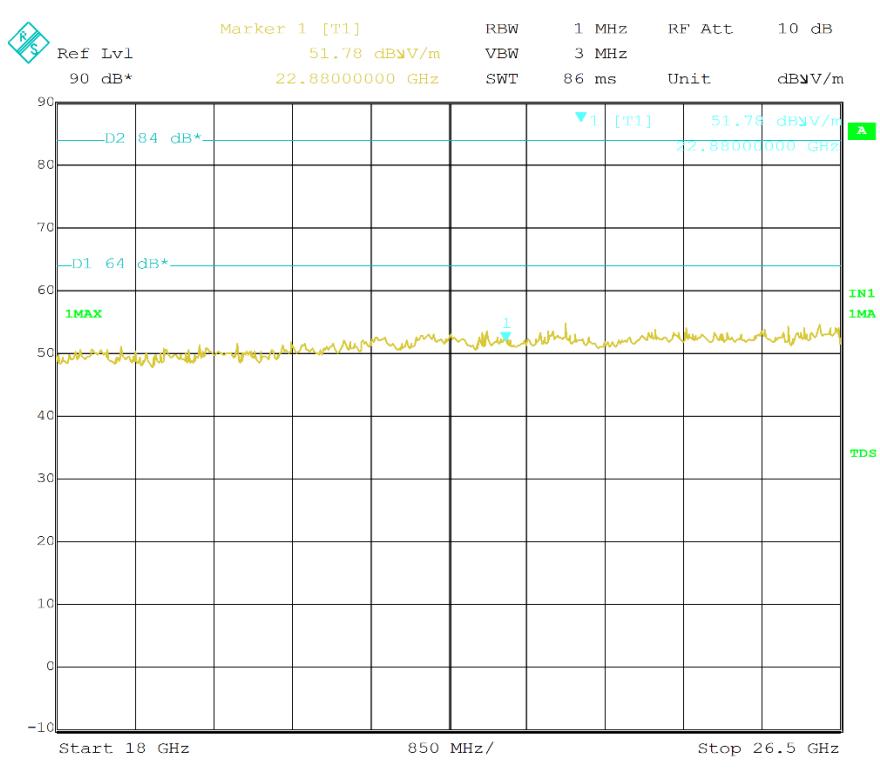
**Diagram 5**



Ambient, 8.2-12.75 GHz, vertical and horizontal polarization

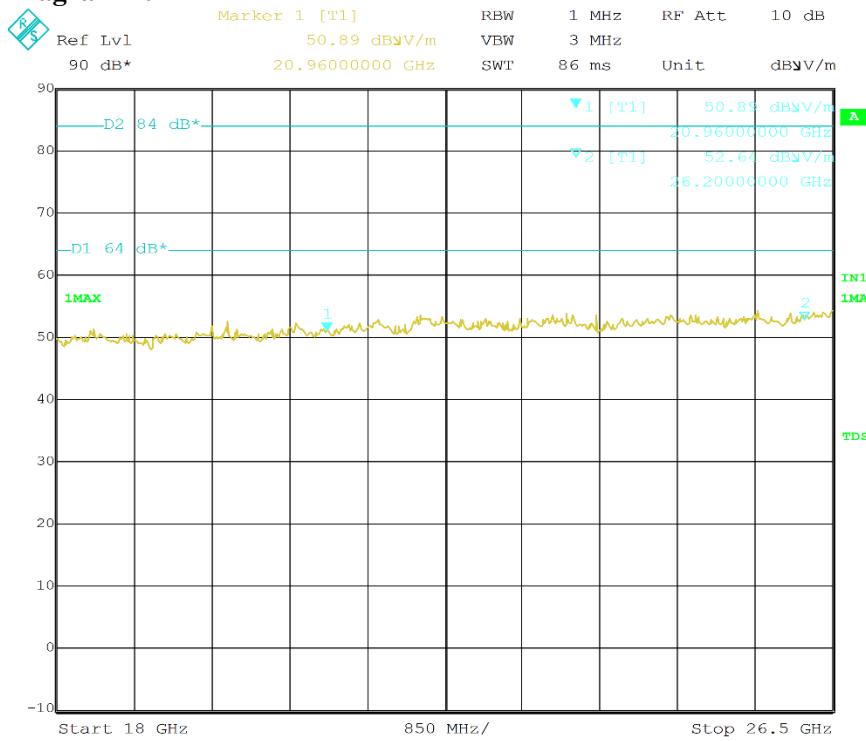
**Diagram 6**



8.2-12.75 GHz, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization

**Diagram 7**



Ambient, 12.75-18 GHz, vertical and horizontal polarization

**Diagram 8**

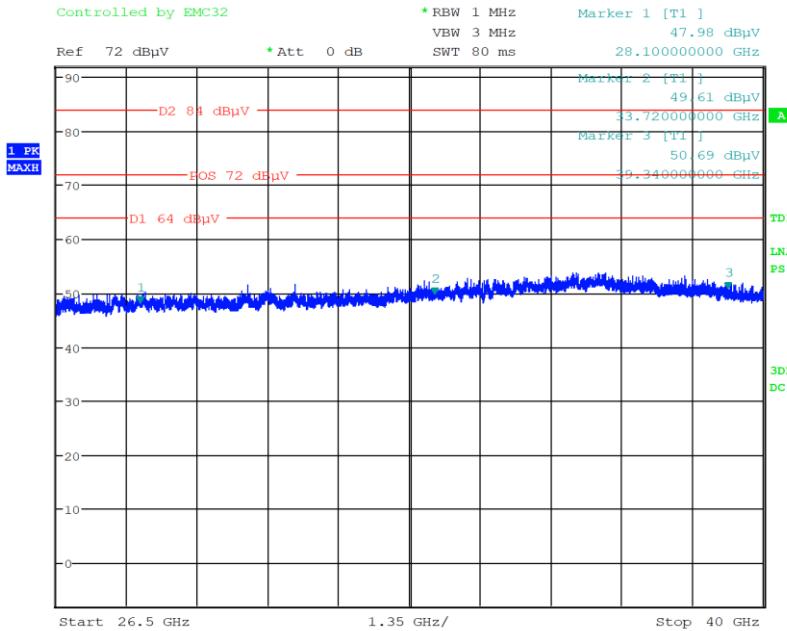


12.75-18 GHz, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 vertical and horizontal polarization

**Diagram 9**


Ambient, 18-26,5 GHz, vertical polarization

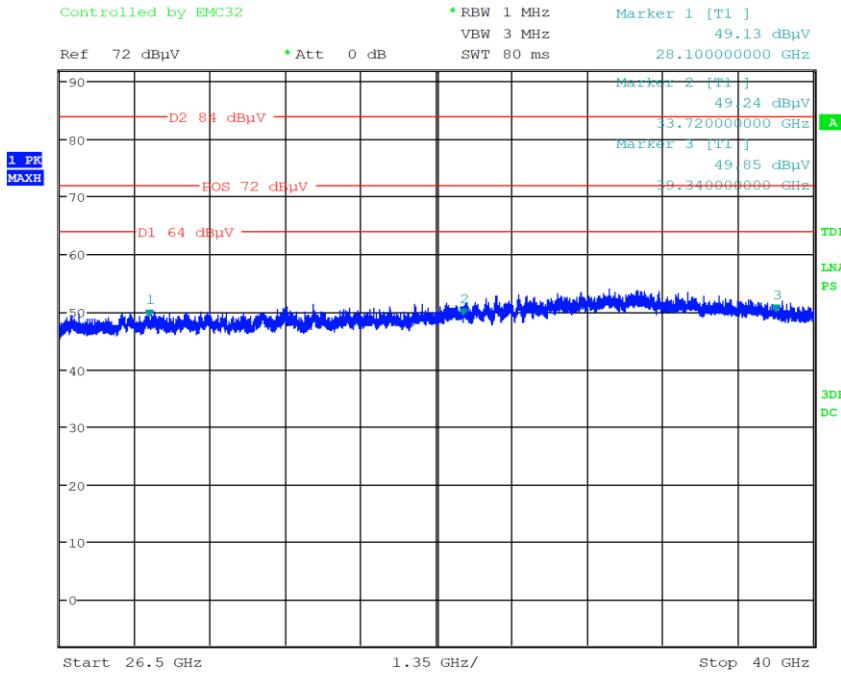


Ambient, 18-26,5 GHz, horizontal polarization


**Diagram 10**

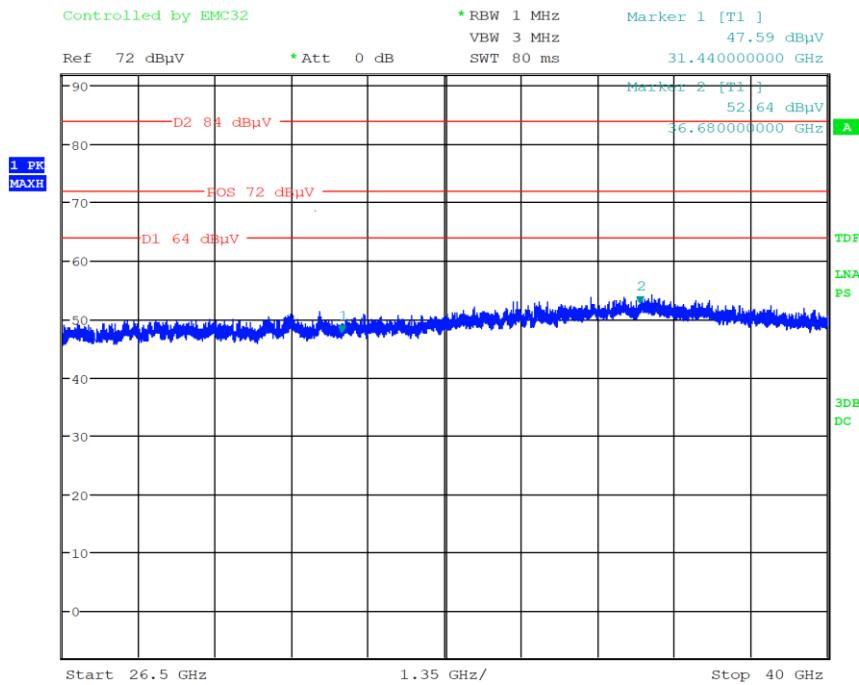

Date: 1.NOV.2018 12:46:49

18 -26.5 GHz, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 horizontal polarization


Note: in the range 18-26.5 GHz spurious emission is tested by measurement of E-field at 1 m. E.I.R.P. limit of -27 dBm/MHz is converted to the field measured at 1 m and presented in the diagrams as D1 64 dB, (blue line). D1 64 dB is used for compliance assessment. D2 84 dB, (blue line), is informative.

Yellow trace is E-field measured at 1 m distance by peak detector.

**Diagram 11**



Date: 1.NOV.2018 14:20:11

Ambient, 26,5-40 GHz, vertical polarization



Date: 1.NOV.2018 14:18:09

Ambient, 26,5-40 GHz, horizontal polarization

**Diagram 12**


Date: 1.NOV.2018 14:10:33

26.5-40 GHz, MIMO 5240 MHz, BW 20 MHz, MCS1, p17 horizontal polarization

Note: in the range 26.5-40 GHz spurious emission is tested by measurement of E-field at 1 m. E.I.R.P. limit of -27 dBm/MHz is converted to the field measured at 1 m and presented in the diagrams as D1 64 dB $\mu$ V, (red line). D1 64 dB $\mu$ V is used for compliance assessment.

D2 84 dB $\mu$ V, (red line), is informative.

The blue trace is E-field measured at 1 m distance by peak detector.

**Conducted emission according to FCC 47 CFR part 15.407 (b) (6) and FCC 47 CFR part 15.207**

| Date       | Temperature | Humidity   |
|------------|-------------|------------|
| 2018-11-06 | 22°C ± 3 °C | 34 % ± 5 % |

**Test setup and procedure**

The measurements were performed according to ANSI C63.10 clause 6.

The measurements were performed on units with the integral antennas and with transmission below 98% of duty cycle and with normal modulation.

Measurements were performed on the AC side of PoE injector. PoE injector is auxiliary equipment providing the PoE to USB adapter with 48 V DC, which subsequently powers the DUT with 5 V DC.

During test a LCD monitor was connected to DUT and data stream was transferred from DUT to the terminal.

Test set-up photos during the tests can be found in the photo section in the separate document, REPORT-ANNEX, AT-DG2 Photos.

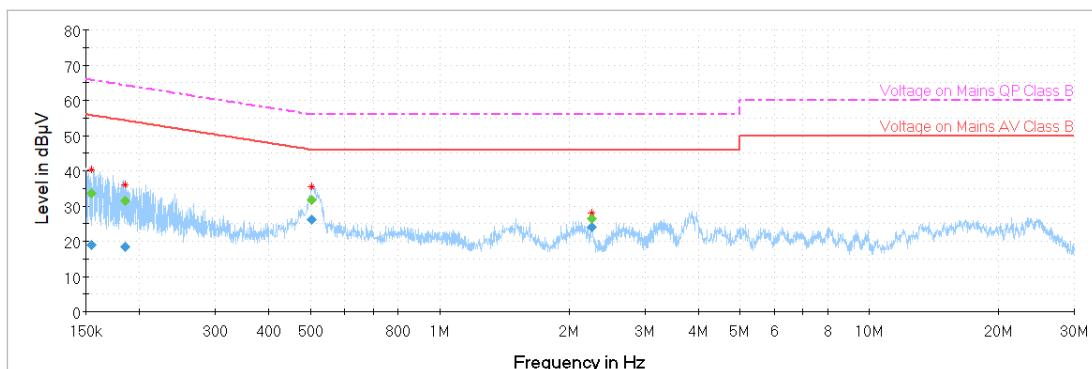
| Measurement equipment                    | RISE number |
|------------------------------------------|-------------|
| Semi anechoic chamber, Edison            | 504114      |
| Computer Lenovo ThinkCentre              | -           |
| Software R&S EMC32, ver.9.15.00          | 503889      |
| EMI test receiver R&S ESU 26             | 902210      |
| LISN Schwarzbeck NNLA 8120               | BX70761     |
| LISN Schwarzbeck NNBL 8226-2             | 902060      |
| Limiter, EM-7600                         | BX42883     |
| Coaxial cable                            | BX50672     |
| Coaxial cable                            | 504102      |
| Coaxial cable                            | 504103      |
| Coaxial cable                            | 504104      |
| Multimeter Fluke 83                      | 501522      |
| Temperature and humidity meter Testo 625 | 504117      |

## Results

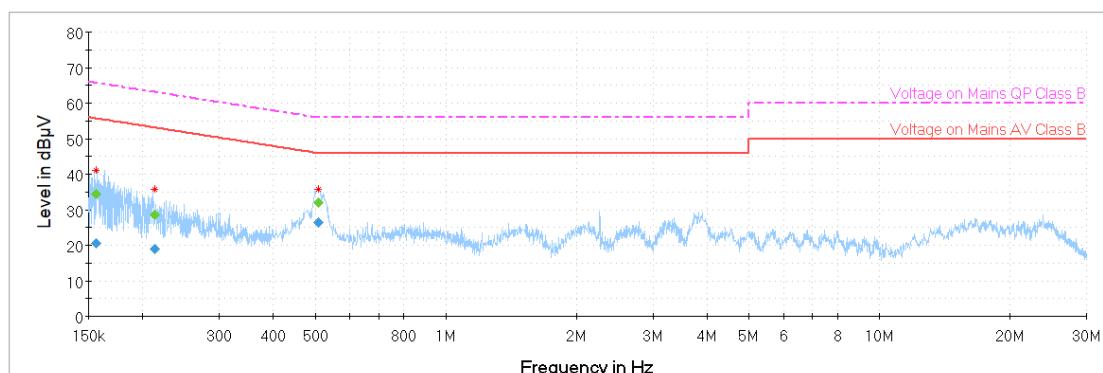
The conducted emission spectra can be found in the diagrams below:

|            |                                                 |
|------------|-------------------------------------------------|
| Diagram 1: | 120 V AC, Ambient, neutral terminal, PoE active |
| Diagram 2: | 120 V AC, Ambient, phase terminal, PoE active   |
| Diagram 3: | 120 V AC, 5180 MHz, neutral terminal            |
| Diagram 4: | 120 V AC, 5180 MHz, phase terminal              |
| Diagram 5: | 120 V AC, 5220 MHz, neutral terminal            |
| Diagram 6: | 120 V AC, 5220 MHz, phase terminal              |
| Diagram 7: | 120 V AC, 5240 MHz, neutral terminal            |
| Diagram 8: | 120 V AC, 5240 MHz, phase terminal              |

## Limits


According to 47CFR 15.207,

| Frequency (MHz) | Quasi-peak value (dB $\mu$ V) | Average value (dB $\mu$ V/m) |
|-----------------|-------------------------------|------------------------------|
| 0.15-0.5        | 66-56*                        | 56-46*                       |
| 0.5-5           | 56                            | 46                           |
| 5-30            | 60                            | 50                           |


\*=Decreases with the logarithm of the frequency

Test engineer: Ermin Pasalic

|           |     |
|-----------|-----|
| Complies? | Yes |
|-----------|-----|

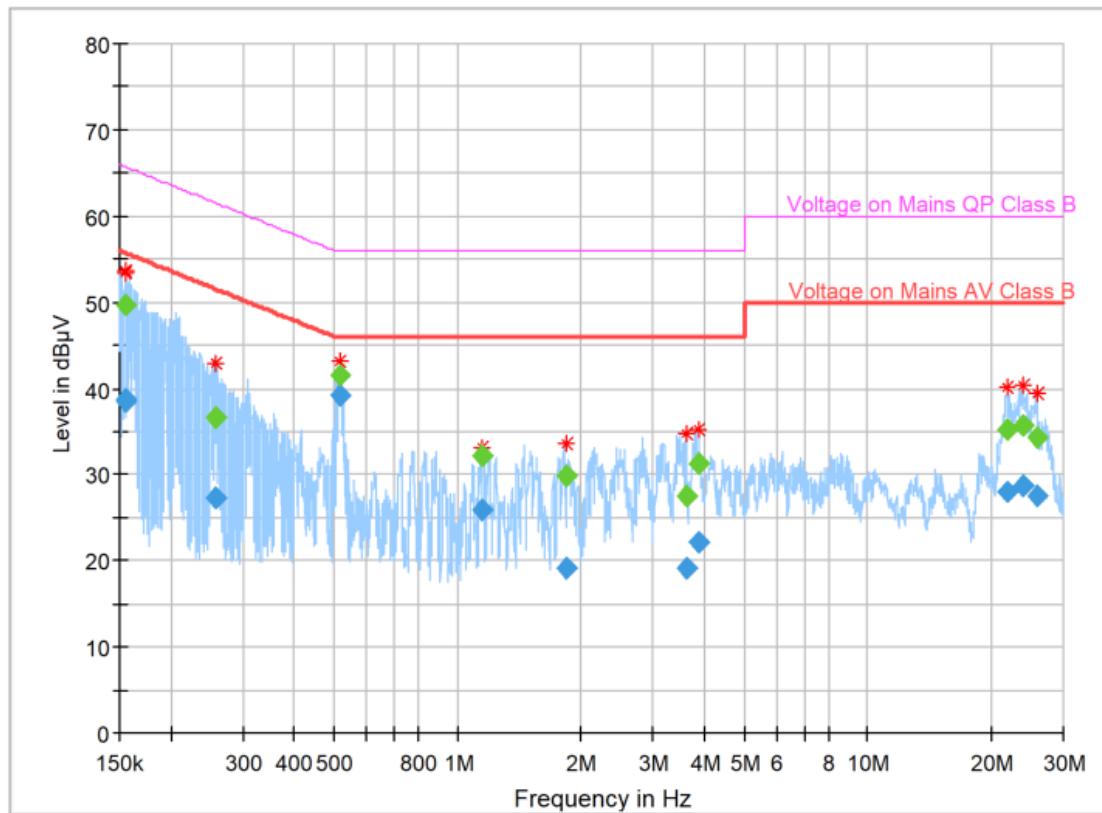
**Diagram 1:**


120 V AC, Ambient, neutral terminal, PoE active

**Diagram 2:**

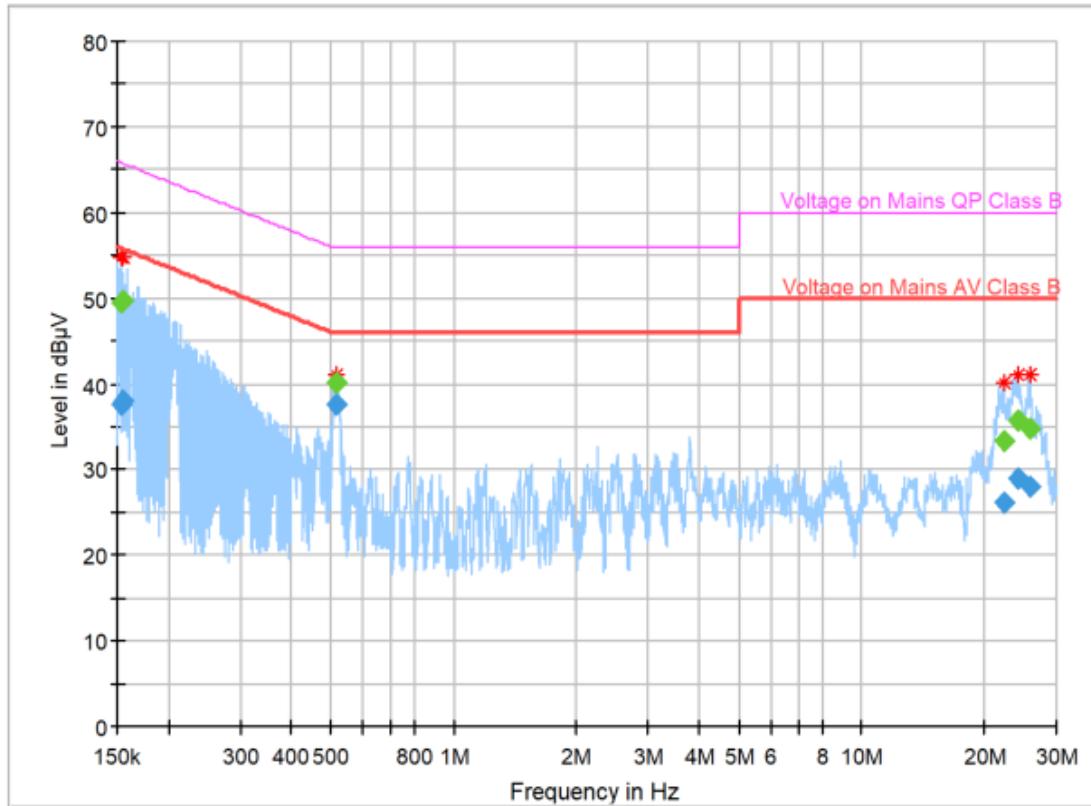

120 V AC, Ambient, phase terminal, PoE active

Note: Blue trace is emission measured with peak detector in the pre-test.


Red dots are emission levels measured with peak detector in the pre-test.

Blue dots are emission levels measured by average detector in final test. Blue dots shall be compared to red limit line, Voltage on Mains AV Class B.

Green dots are emission levels measured by quasi peak detector in final test. Green dots shall be compared to the pink limit line, Voltage on Mains QP Class B.

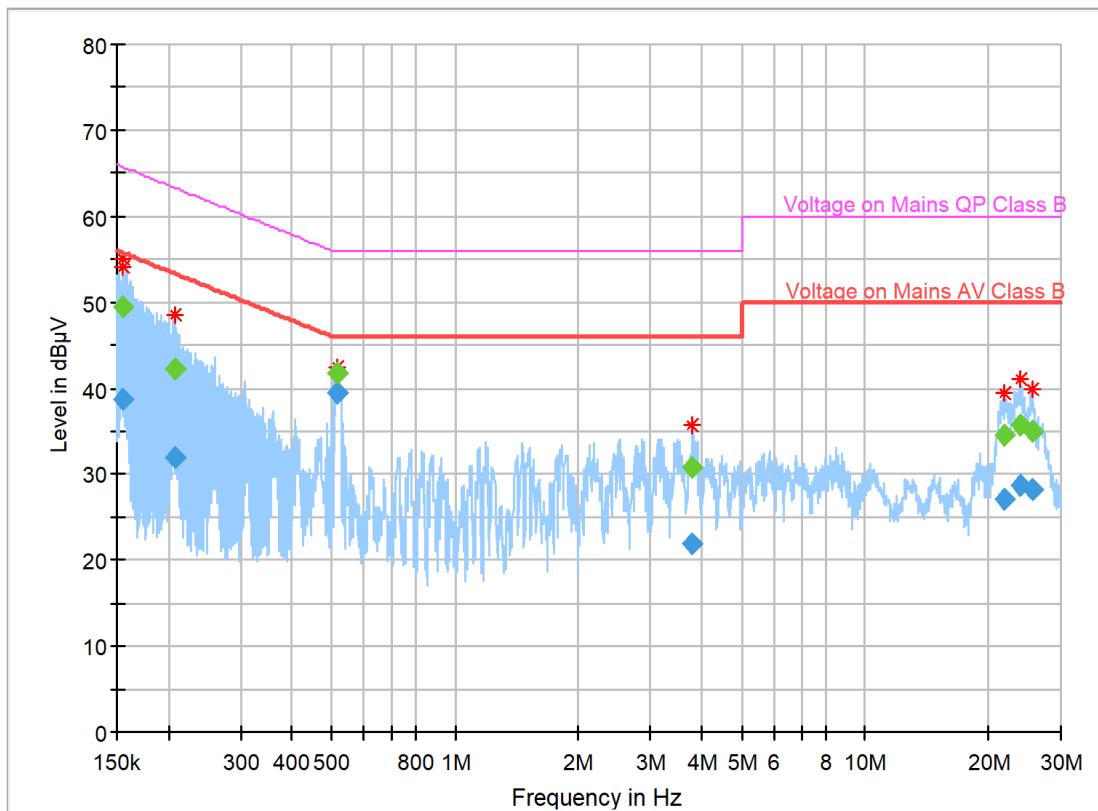

The blue dots together with the red limit line and green dots together with the pink limit line shall be used for compliance assessment.

This note is applicable on all diagrams in this chapter.

**Diagram 3:**

**Final Result**

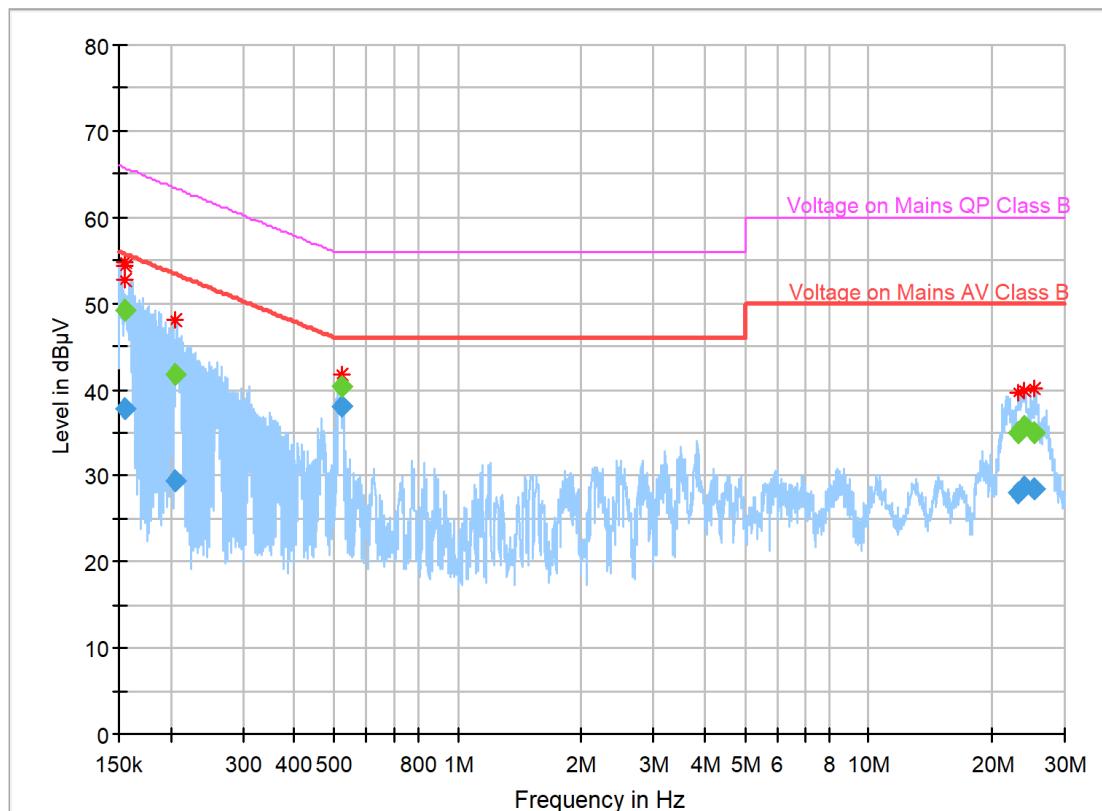
| Frequency (MHz) | CAverage (dB $\mu$ V) | QuasiPeak (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|-----------------------|------------------------|--------------------|-------------|-----------------|-----------------|------|------------|
| 0.154441        | 38.54                 | ---                    | 55.76              | 17.22       | 5000.0          | 9.000           | N    | 9.9        |
| 0.154441        | ---                   | 49.70                  | 65.76              | 16.06       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155627        | 38.68                 | ---                    | 55.69              | 17.01       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155627        | ---                   | 49.73                  | 65.69              | 15.97       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155945        | 38.65                 | ---                    | 55.68              | 17.03       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155945        | ---                   | 49.66                  | 65.68              | 16.01       | 5000.0          | 9.000           | N    | 9.9        |
| 0.257484        | 27.33                 | ---                    | 51.51              | 24.18       | 5000.0          | 9.000           | N    | 9.9        |
| 0.257484        | ---                   | 36.71                  | 61.51              | 24.81       | 5000.0          | 9.000           | N    | 9.9        |
| 0.519696        | 39.21                 | ---                    | 46.00              | 6.79        | 5000.0          | 9.000           | N    | 9.9        |
| 0.519696        | ---                   | 41.54                  | 56.00              | 14.46       | 5000.0          | 9.000           | N    | 9.9        |
| 1.147877        | 25.88                 | ---                    | 46.00              | 20.12       | 5000.0          | 9.000           | N    | 9.9        |
| 1.147877        | ---                   | 32.23                  | 56.00              | 23.77       | 5000.0          | 9.000           | N    | 9.9        |
| 1.835289        | 19.14                 | ---                    | 46.00              | 26.87       | 5000.0          | 9.000           | N    | 9.9        |
| 1.835289        | ---                   | 29.88                  | 56.00              | 26.12       | 5000.0          | 9.000           | N    | 9.9        |
| 3.604183        | 19.02                 | ---                    | 46.00              | 26.98       | 5000.0          | 9.000           | N    | 10.0       |
| 3.604183        | ---                   | 27.42                  | 56.00              | 28.58       | 5000.0          | 9.000           | N    | 10.0       |
| 3.856410        | 22.19                 | ---                    | 46.00              | 23.81       | 5000.0          | 9.000           | N    | 10.0       |
| 3.856410        | ---                   | 31.27                  | 56.00              | 24.73       | 5000.0          | 9.000           | N    | 10.0       |
| 21.853870       | 28.10                 | ---                    | 50.00              | 21.90       | 5000.0          | 9.000           | N    | 10.9       |
| 21.853870       | ---                   | 35.14                  | 60.00              | 24.86       | 5000.0          | 9.000           | N    | 10.9       |
| 23.925136       | 28.72                 | ---                    | 50.00              | 21.28       | 5000.0          | 9.000           | N    | 11.1       |
| 23.925136       | ---                   | 35.62                  | 60.00              | 24.38       | 5000.0          | 9.000           | N    | 11.1       |
| 25.782156       | 27.50                 | ---                    | 50.00              | 22.50       | 5000.0          | 9.000           | N    | 11.2       |
| 25.782156       | ---                   | 34.22                  | 60.00              | 25.78       | 5000.0          | 9.000           | N    | 11.2       |


120 V AC, 5180 MHz, neutral terminal

**Diagram 4:**


### Final Result

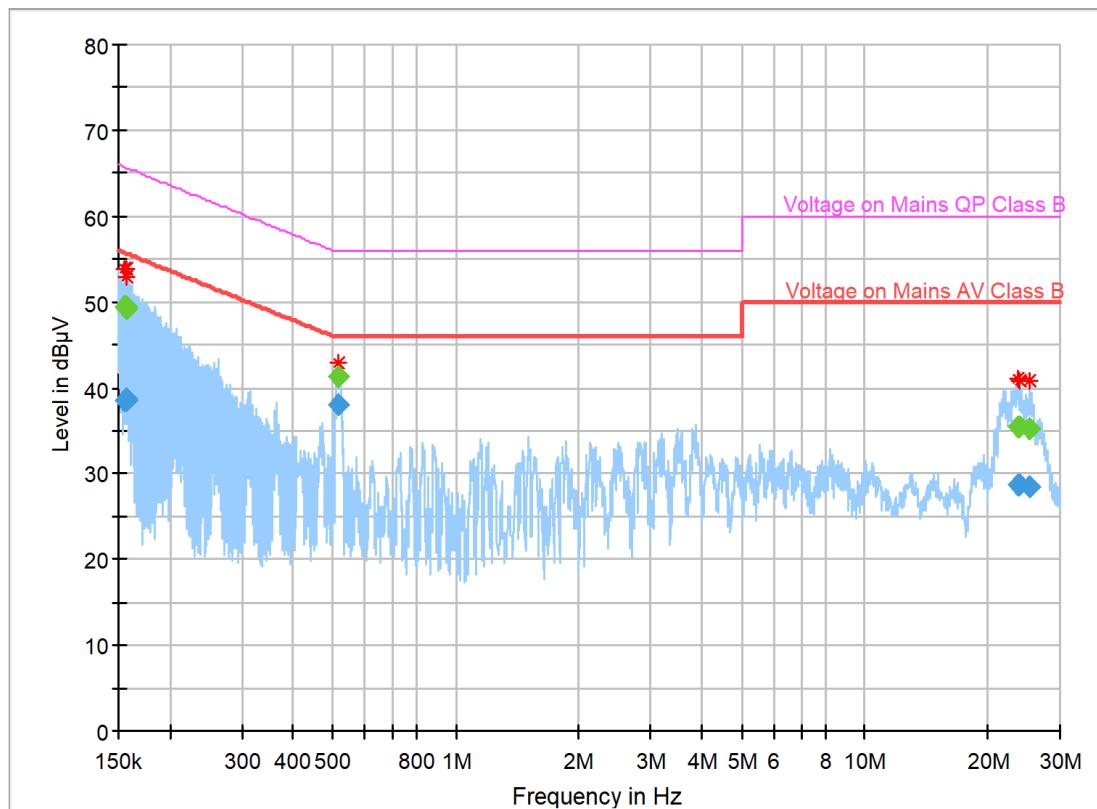
| Frequency (MHz) | CAverage (dB $\mu$ V) | QuasiPeak (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|-----------------------|------------------------|--------------------|-------------|-----------------|-----------------|------|------------|
| 0.153676        | ---                   | 49.43                  | 65.80              | 16.37       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.153676        | 37.47                 | ---                    | 55.80              | 18.33       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.155194        | ---                   | 49.77                  | 65.72              | 15.95       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.155194        | 37.98                 | ---                    | 55.72              | 17.73       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.518999        | ---                   | 40.18                  | 56.00              | 15.82       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.518999        | 37.65                 | ---                    | 46.00              | 8.35        | 5000.0          | 9.000           | L1   | 9.9        |
| 22.401328       | ---                   | 33.31                  | 60.00              | 26.69       | 5000.0          | 9.000           | L1   | 10.9       |
| 22.401328       | 26.07                 | ---                    | 50.00              | 23.93       | 5000.0          | 9.000           | L1   | 10.9       |
| 24.229952       | ---                   | 35.64                  | 60.00              | 24.36       | 5000.0          | 9.000           | L1   | 11.0       |
| 24.229952       | 28.85                 | ---                    | 50.00              | 21.15       | 5000.0          | 9.000           | L1   | 11.0       |
| 25.840048       | ---                   | 34.81                  | 60.00              | 25.19       | 5000.0          | 9.000           | L1   | 11.2       |
| 25.840048       | 28.08                 | ---                    | 50.00              | 21.92       | 5000.0          | 9.000           | L1   | 11.2       |


120 V AC, 5180 MHz, phase terminal

**Diagram 5:**


### Final\_Result

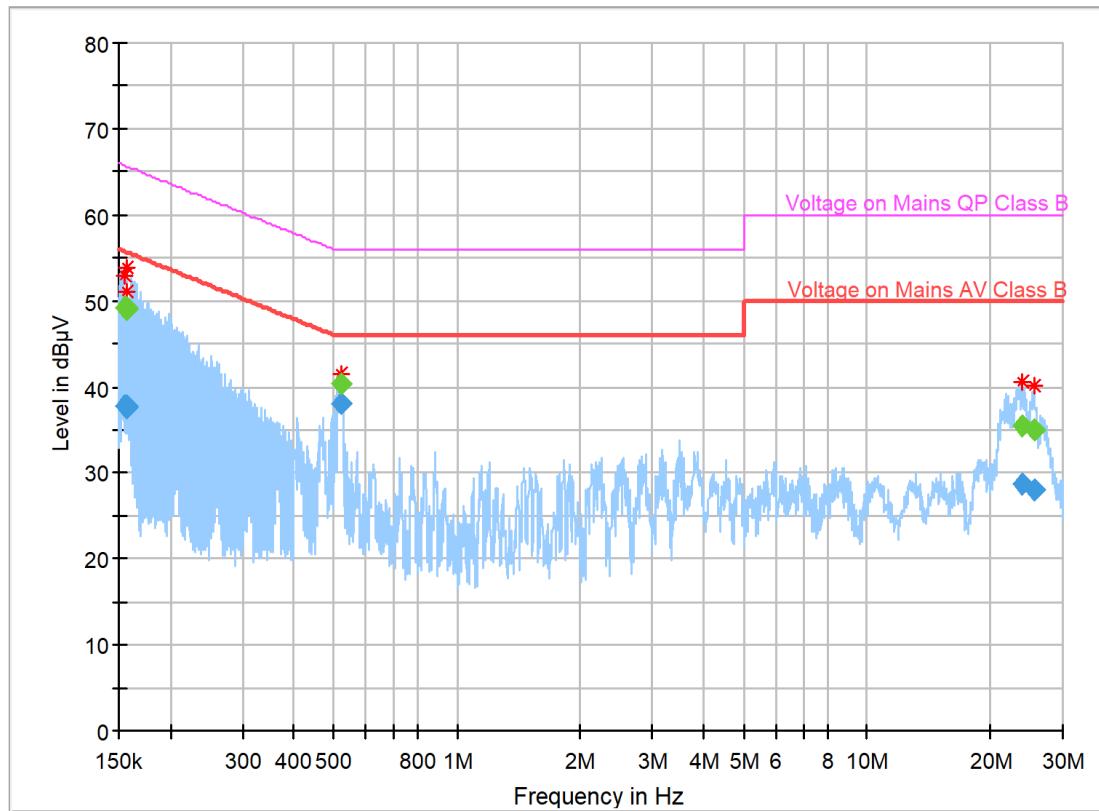
| Frequency (MHz) | CAverage (dB $\mu$ V) | QuasiPeak (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|-----------------------|------------------------|--------------------|-------------|-----------------|-----------------|------|------------|
| 0.155470        | ---                   | 49.56                  | 65.70              | 16.15       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155470        | 38.63                 | ---                    | 55.70              | 17.07       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155819        | 38.60                 | ---                    | 55.68              | 17.08       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155819        | ---                   | 49.47                  | 65.68              | 16.21       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155861        | 38.61                 | ---                    | 55.68              | 17.07       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155861        | ---                   | 49.51                  | 65.68              | 16.17       | 5000.0          | 9.000           | N    | 9.9        |
| 0.206948        | ---                   | 42.26                  | 63.33              | 21.06       | 5000.0          | 9.000           | N    | 9.9        |
| 0.206948        | 31.85                 | ---                    | 53.33              | 21.48       | 5000.0          | 9.000           | N    | 9.9        |
| 0.519119        | ---                   | 41.71                  | 56.00              | 14.29       | 5000.0          | 9.000           | N    | 9.9        |
| 0.519119        | 39.52                 | ---                    | 46.00              | 6.48        | 5000.0          | 9.000           | N    | 9.9        |
| 3.797452        | ---                   | 30.86                  | 56.00              | 25.14       | 5000.0          | 9.000           | N    | 10.0       |
| 3.797452        | 21.90                 | ---                    | 46.00              | 24.10       | 5000.0          | 9.000           | N    | 10.0       |
| 21.835713       | ---                   | 34.42                  | 60.00              | 25.58       | 5000.0          | 9.000           | N    | 10.9       |
| 21.835713       | 27.06                 | ---                    | 50.00              | 22.94       | 5000.0          | 9.000           | N    | 10.9       |
| 23.960818       | ---                   | 35.69                  | 60.00              | 24.31       | 5000.0          | 9.000           | N    | 11.1       |
| 23.960818       | 28.76                 | ---                    | 50.00              | 21.24       | 5000.0          | 9.000           | N    | 11.1       |
| 25.499840       | ---                   | 34.95                  | 60.00              | 25.05       | 5000.0          | 9.000           | N    | 11.2       |
| 25.499840       | 28.33                 | ---                    | 50.00              | 21.67       | 5000.0          | 9.000           | N    | 11.2       |


120 V AC, 5220 MHz, neutral terminal

**Diagram 6:**


### Final Result

| Frequency (MHz) | CAverage (dBµV) | QuasiPeak (dBµV) | Limit (dBµV) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|-----------------|------------------|--------------|-------------|-----------------|-----------------|------|------------|
| 0.155445        | ---             | 49.23            | 65.70        | 16.48       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.155445        | 37.83           | ---              | 55.70        | 17.87       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.155466        | 37.85           | ---              | 55.70        | 17.85       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.155466        | ---             | 49.27            | 65.70        | 16.44       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.155531        | 37.84           | ---              | 55.70        | 17.86       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.155531        | ---             | 49.24            | 65.70        | 16.46       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.206167        | ---             | 41.83            | 63.36        | 21.52       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.206167        | 29.41           | ---              | 53.36        | 23.95       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.520388        | ---             | 40.39            | 56.00        | 15.61       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.520388        | 38.00           | ---              | 46.00        | 8.00        | 5000.0          | 9.000           | L1   | 9.9        |
| 23.277818       | ---             | 34.99            | 60.00        | 25.01       | 5000.0          | 9.000           | L1   | 11.1       |
| 23.277818       | 27.90           | ---              | 50.00        | 22.10       | 5000.0          | 9.000           | L1   | 11.1       |
| 23.841370       | ---             | 35.58            | 60.00        | 24.42       | 5000.0          | 9.000           | L1   | 11.0       |
| 23.841370       | 28.80           | ---              | 50.00        | 21.20       | 5000.0          | 9.000           | L1   | 11.0       |
| 25.399316       | ---             | 35.09            | 60.00        | 24.91       | 5000.0          | 9.000           | L1   | 11.1       |
| 25.399316       | 28.42           | ---              | 50.00        | 21.58       | 5000.0          | 9.000           | L1   | 11.1       |


120 V AC, 5220 MHz, phase terminal

**Diagram 7:**


### Final\_Result

| Frequency (MHz) | CAverage (dBµV) | QuasiPeak (dBµV) | Limit (dBµV) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|-----------------|------------------|--------------|-------------|-----------------|-----------------|------|------------|
| 0.155713        | ---             | 49.35            | 65.69        | 16.34       | 5000.0          | 9.000           | N    | 9.9        |
| 0.155713        | 38.57           | ---              | 55.69        | 17.12       | 5000.0          | 9.000           | N    | 9.9        |
| 0.156072        | 38.62           | ---              | 55.67        | 17.05       | 5000.0          | 9.000           | N    | 9.9        |
| 0.156072        | ---             | 49.36            | 65.67        | 16.31       | 5000.0          | 9.000           | N    | 9.9        |
| 0.156442        | 38.57           | ---              | 55.65        | 17.09       | 5000.0          | 9.000           | N    | 9.9        |
| 0.156442        | ---             | 49.32            | 65.65        | 16.33       | 5000.0          | 9.000           | N    | 9.9        |
| 0.517909        | ---             | 41.35            | 56.00        | 14.65       | 5000.0          | 9.000           | N    | 9.9        |
| 0.517909        | 37.99           | ---              | 46.00        | 8.01        | 5000.0          | 9.000           | N    | 9.9        |
| 23.559615       | ---             | 35.49            | 60.00        | 24.51       | 5000.0          | 9.000           | N    | 11.0       |
| 23.559615       | 28.68           | ---              | 50.00        | 21.32       | 5000.0          | 9.000           | N    | 11.0       |
| 23.973133       | ---             | 35.46            | 60.00        | 24.54       | 5000.0          | 9.000           | N    | 11.1       |
| 23.973133       | 28.69           | ---              | 50.00        | 21.31       | 5000.0          | 9.000           | N    | 11.1       |
| 25.348101       | ---             | 35.14            | 60.00        | 24.86       | 5000.0          | 9.000           | N    | 11.2       |
| 25.348101       | 28.41           | ---              | 50.00        | 21.59       | 5000.0          | 9.000           | N    | 11.2       |

120 V AC, 5240 MHz, neutral terminal

**Diagram 8:**


### Final\_Result

| Frequency (MHz) | CAverage (dB $\mu$ V) | QuasiPeak (dB $\mu$ V) | Limit (dB $\mu$ V) | Margin (dB) | Meas. Time (ms) | Bandwidth (kHz) | Line | Corr. (dB) |
|-----------------|-----------------------|------------------------|--------------------|-------------|-----------------|-----------------|------|------------|
| 0.155664        | 37.83                 | ---                    | 55.69              | 17.87       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.155664        | ---                   | 49.20                  | 65.69              | 16.49       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.156361        | 37.75                 | ---                    | 55.66              | 17.90       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.156361        | ---                   | 49.12                  | 65.66              | 16.54       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.156726        | ---                   | 48.96                  | 65.64              | 16.68       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.156726        | 37.63                 | ---                    | 55.64              | 18.00       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.521021        | ---                   | 40.38                  | 56.00              | 15.62       | 5000.0          | 9.000           | L1   | 9.9        |
| 0.521021        | 38.01                 | ---                    | 46.00              | 7.99        | 5000.0          | 9.000           | L1   | 9.9        |
| 23.848034       | ---                   | 35.41                  | 60.00              | 24.59       | 5000.0          | 9.000           | L1   | 11.0       |
| 23.848034       | 28.72                 | ---                    | 50.00              | 21.28       | 5000.0          | 9.000           | L1   | 11.0       |
| 25.636735       | ---                   | 34.97                  | 60.00              | 25.03       | 5000.0          | 9.000           | L1   | 11.1       |
| 25.636735       | 28.05                 | ---                    | 50.00              | 21.95       | 5000.0          | 9.000           | L1   | 11.1       |

120 V AC, 5240 MHz, phase terminal

**Frequency stability according to FCC 47 CFR part 15.407 (g)**

| Date       | Temperature  | Humidity   |
|------------|--------------|------------|
| 2018-11-14 | 22 °C ± 3 °C | 29 % ± 5 % |
| 2018-11-15 | 21 °C ± 3 °C | 35 % ± 5 % |

**Procedure**

According §15.4707(g) it shall be ensured that frequency stability of device is such that an emission is maintained within the band of operation under all conditions of normal operation. In the KDB 789033 D02 General UNII Test Procedures New Rules v02r01 it is not suggested particular test procedure to verify frequency stability.

At the lower edge, 5150 MHz, we measured power level. At the higher band edge, 5250 MHz, it is accepted due to practical reasons, according KDB 789033 D02 General UNII Test Procedures New Rules v02r01 to test 26 dB EBW or alternatively 99 % OBW for compliance instead for power level.

Maximum power level is measured at lower band edge, 5150 MHz, and below at each temperature step. This test was performed in conducted mode on unit with the temporary antenna connectors, with transmission below 98% of duty cycle and with normal modulation. Difference between power level at each temperature and power level at rooms temperature, was added to the power level from edge test in radiated mode. The highest level was compared to the limit for compliance.

99% OBW was measured at each temperature step. If high edge of 99 % OBW was lower than 5250 MHz for all temperatures, it was considered that device comply at high band edge.

Test was done at temperatures 50 °C , 40 °C, 30 °C, 20 °C, 10 °C and 0 °C.

The manufacturer declared temperature range between 5 °C and 30 °C.

Test was done with bandwidth 20 MHz, 40 MHz and 80 MHz and with power class 9.

DUT complied with the requirements after tuning of output power.

- for 20 MHz BW, maximum applicable power class was 8 dBm/p8
- for 40 MHz BW, maximum applicable power class was 5 dBm/p5
- for 80 MHz BW, maximum applicable power class was 6 dBm/p6

| Measurement equipment                                         | RISE number |
|---------------------------------------------------------------|-------------|
| Semi anechoic chamber, Edison                                 | 504114      |
| Computer Lenovo ThinkCentre                                   | -           |
| Software R&S EMC32, ver.9.15.00                               | 503889      |
| EMI test receiver R&S ESU 26                                  | 902210      |
| Antenna ETS-Lindgren 3115                                     | 902175      |
| Step attenuator Narda743-60                                   | BX41644     |
| Coaxial cable                                                 | BX50672     |
| Coaxial cable                                                 | 504102      |
| Coaxial cable                                                 | 504103      |
| Coaxial cable                                                 | 504104      |
| Multimeter Fluke 83                                           | 501522      |
| Temperature and humidity meter Testo 625, with wire sensor 2A | 504117      |
| Temperature chamber                                           | 503360      |
| Test site Marconi                                             | 15:121      |
| Spectrum analyser R&S FSQ 26                                  | BX50694     |
| Coaxial cable                                                 | BX81424     |
| Coaxial cable                                                 | BX81436     |
| Coaxial cable                                                 | BX50685     |
| 120 V AC/60 Hz AC Power source HP 6813B                       | 503 091     |
| DC power supply HP E3632A                                     | 503 170     |
| Multimeter Fluke 85 III                                       | 503 418     |
| Temperature and humidity meter Testo 625                      | 504117      |

## Results

### Lower band edge, 5150 MHz; ch 36

|                                                    | Ch 36; 5180 MHz, 20 MHz BW |                 |              |                 |
|----------------------------------------------------|----------------------------|-----------------|--------------|-----------------|
|                                                    | AV [dBm]                   | Diff [dB]       | PK [dB]      | Diff [dB]       |
| 50                                                 | -53.3                      | -0.2            | -32.7        | -2.4            |
| 40                                                 | -52.7                      | 0.6             | -31.8        | -1.5            |
| 30                                                 | -52.9                      | 0.4             | -30.2        | 0.1             |
| <b>20</b>                                          | <b>-53.3</b>               | <b>0</b>        | <b>-30.3</b> | <b>0</b>        |
| 10                                                 | -53.0                      | 0.3             | -31.4        | -1.1            |
| 0                                                  | -52.6                      | 0.7             | -32.4        | -2.1            |
| Power level in radiated mode;<br>8 dBm/p8<br>[dBm] | -45.7                      | -45.0<br>Note 1 | -22.6        | -22.5<br>Note 2 |
| LIMIT [dBm]                                        | -41.2                      | -41.2           | -21.2        | -21.2           |

## Lower band edge, 5150 MHz; ch 38

|                                              | Ch 38; 5190 MHz, 40 MHz BW |                 |              |                 |
|----------------------------------------------|----------------------------|-----------------|--------------|-----------------|
|                                              | AV [dBm]                   | Diff [dB]       | PK [dB]      | Diff [dB]       |
| 50                                           | -49.9                      | 2               | -31.0        | 3.6             |
| 40                                           | -51.1                      | 0.8             | -34.4        | 0.2             |
| 30                                           | -49.5                      | 2.4             | -31.1        | 3.5             |
| <b>20</b>                                    | <b>-51.9</b>               | <b>0</b>        | <b>-34.6</b> | <b>0</b>        |
| 10                                           | -50.7                      | 1.2             | -37.8        | -3.2            |
| 0                                            | -53.1                      | -1.2            | -34.0        | 0.6             |
| Power level in radiated mode; 5 dBm/p5 [dBm] | -46.2                      | -43.8<br>Note 1 | -27.8        | -24.2<br>Note 2 |
| LIMIT [dBm]                                  | -41.2                      | -41.2           | -21.2        | -21.2           |

## Lower band edge, 5150 MHz; ch 42

|                                              | Ch 42; 5230 MHz, 80 MHz BW |                 |              |                 |
|----------------------------------------------|----------------------------|-----------------|--------------|-----------------|
|                                              | AV [dBm]                   | Diff [dB]       | PK [dB]      | Diff [dB]       |
| 50                                           | -48.6                      | 0               | -32.5        | -0.1            |
| 40                                           | -49.2                      | -0.6            | -32.8        | -0.4            |
| 30                                           | -49.0                      | -0.4            | -33.2        | -0.8            |
| <b>20</b>                                    | <b>-48.6</b>               | <b>0</b>        | <b>-32.4</b> | <b>0</b>        |
| 10                                           | -48.5                      | 0.1             | -31.7        | 0.7             |
| 0                                            | -49.8                      | -1.2            | -34.2        | -1.8            |
| Power level in radiated mode; 6 dBm/p6 [dBm] | -41.9                      | -41.8<br>Note 1 | -24.2        | -23.5<br>Note 2 |
| LIMIT [dBm]                                  | -41.2                      | -41.2           | -21.2        | -21.2           |

Note 1: The highest AV level at lower edge including temperature variation

Note 2: The highest peak level at lower edge including temperature variation

## Higher band edge, 5250 MHz

| Temperature [°C] | 99 % OBW - high edge [MHz]     |                                |                                | Limit [MHz] |
|------------------|--------------------------------|--------------------------------|--------------------------------|-------------|
|                  | Ch 48<br>5240 MHz<br>20 MHz BW | Ch 46<br>5230 MHz<br>40 MHz BW | Ch 42<br>5210 MHz<br>80 MHz BW |             |
| 50               | 5248.94                        | 5248.08                        | 5247.79                        | 5250        |
| 40               | 5248.89                        | 5248.06                        | 5247.76                        | 5250        |
| 30               | 5248.92                        | 5248.08                        | 5247.86                        | 5250        |
| 20               | 5248.92                        | 5248.08                        | 5247.89                        | 5250        |
| 10               | 5248.95                        | 5248.08                        | 5247.82                        | 5250        |
| 0                | 5248.95                        | 5248.09                        | 5247.89                        | 5250        |

Note: High edge of 26 dB EBW was not considered in the climate test because, it was clear from test in rooms temperature that higher edge of EBW was higher than limit of 5250 MHz.

**Remark**

Test procedure according ANSI C63.10 clause 6.8.1 suggests measurement of frequency to verify frequency stability.

There is not requirement in the standard for maximum frequency variation and we think it is not enough to test just frequency of this type of wideband equipment, 5 GHz RLAN, and be sure from this test if all emission is maintained within the band of operation or not. We have to link frequency variation to the parameters related to the edge. Requirement for the power level at the band edge is set in the standard.

We think much more reliable test is power level test at the edges.

**Limits**

According to 47CFR 15.407 (g) the device shall achieve such frequency stability that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user manual.

Test engineer: Ermin Pasalic

|           |     |
|-----------|-----|
| Complies? | Yes |
|-----------|-----|

**26 dB bandwidth measurements according to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 II.C.1.**

|                    |                             |                        |
|--------------------|-----------------------------|------------------------|
| Date<br>2018-11-14 | Temperature<br>22 °C ± 3 °C | Humidity<br>29 % ± 5 % |
|--------------------|-----------------------------|------------------------|

**Test setup and procedure**

The measurements were performed according to ANSI C63.10 cl. 12.4.1/6.9.2 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 II.C.1.

Conducted measurements were performed on units with the temporary antenna connectors, with transmission below 98% of duty cycle and with normal modulation.

Test set-up photos during the tests can be found in the photo section in the separate document, REPORT-ANNEX, AT-DG2 Photos.

| Measurement equipment                    | RISE number |
|------------------------------------------|-------------|
| Test site Marconi                        | 15:121      |
| Spectrum analyser R&S FSQ 26             | BX50694     |
| Coaxial cable                            | BX81424     |
| Coaxial cable                            | BX81436     |
| Coaxial cable                            | BX50685     |
| 120 V AC/60 Hz AC Power source HP 6813B  | 503 091     |
| DC power supply HP E3632A                | 503 170     |
| Multimeter Fluke 85 III                  | 503 418     |
| Temperature and humidity meter Testo 625 | 503 498     |

**Results**

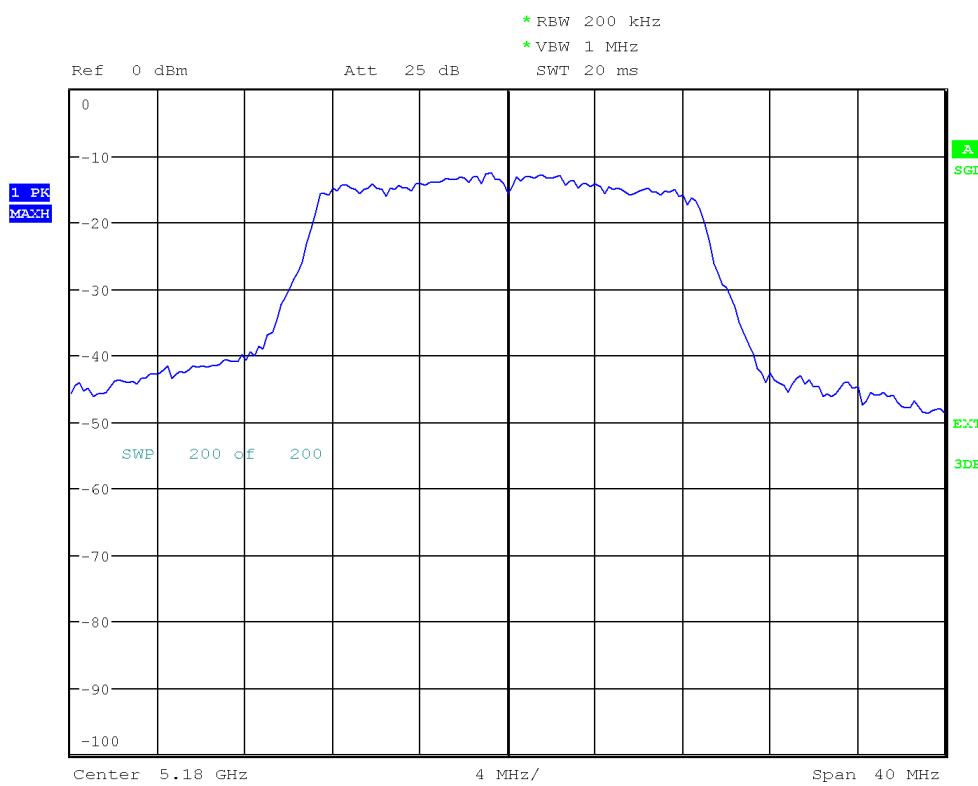
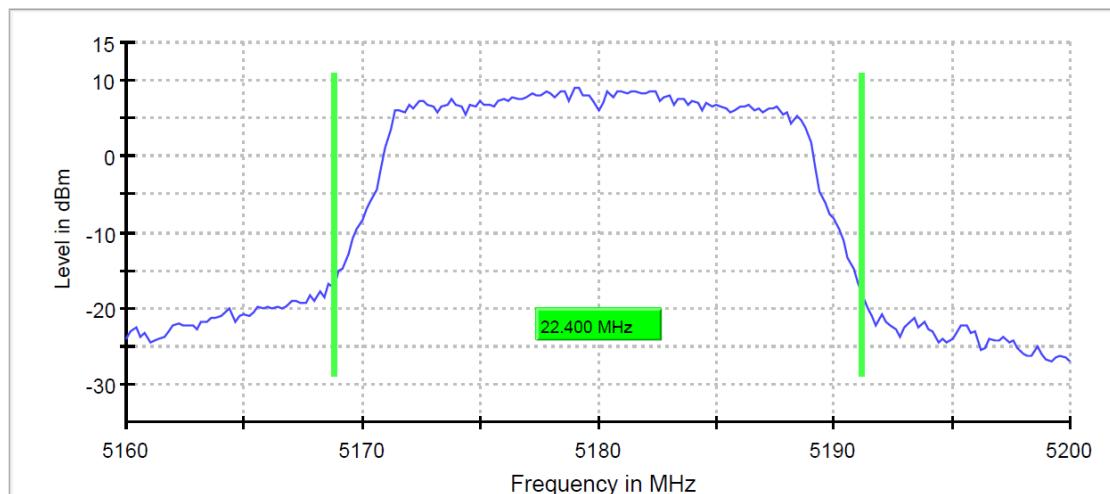
| SISO 2 (chain 2 – 6 dBi antenna gain)               |             | 802.11ac          |                    |           |
|-----------------------------------------------------|-------------|-------------------|--------------------|-----------|
| T <sub>nom</sub> 20°C,<br>V <sub>nom</sub> 120 V AC |             |                   |                    |           |
| f<br>[MHz]                                          | BW<br>[MHz] | EBW left<br>[MHz] | EBW right<br>[MHz] | EBW [MHz] |
| 5180                                                | 20          | 5168.8            | 5191.2             | 22.4      |
| 5220                                                | 20          | 5209.0            | 5231.2             | 22.2      |
| 5240                                                | 20          | 5229.0            | 5251.0             | 22.0      |
| 5190                                                | 40          | 5169.7            | 5210.0             | 40.3      |
| 5230                                                | 40          | 5209.7            | 5250.3             | 40.5      |
| 5210                                                | 80          | 5167.4            | 5252.6             | 85.2      |

The 26 dB BW measurements can be found in the diagrams below:

|            |                               |
|------------|-------------------------------|
| Diagram 1: | 5180 MHz 20 MHz BW, 26 dB EBW |
| Diagram 2: | 5220 MHz 20 MHz BW, 26 dB EBW |
| Diagram 3: | 5240 MHz 20 MHz BW, 26 dB EBW |
| Diagram 4: | 5190 MHz 40 MHz BW, 26 dB EBW |
| Diagram 5: | 5230 MHz 40 MHz BW, 26 dB EBW |
| Diagram 6: | 5210 MHz 80 MHz BW, 26 dB EBW |

### **Limits**

No limits specified in the §15.407.

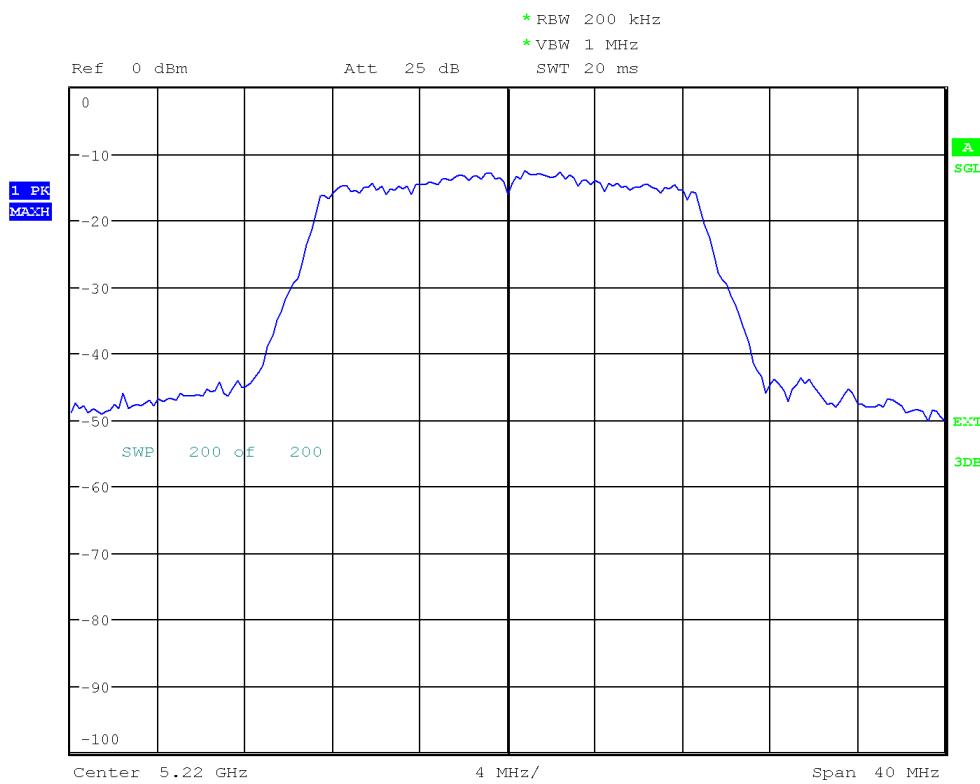
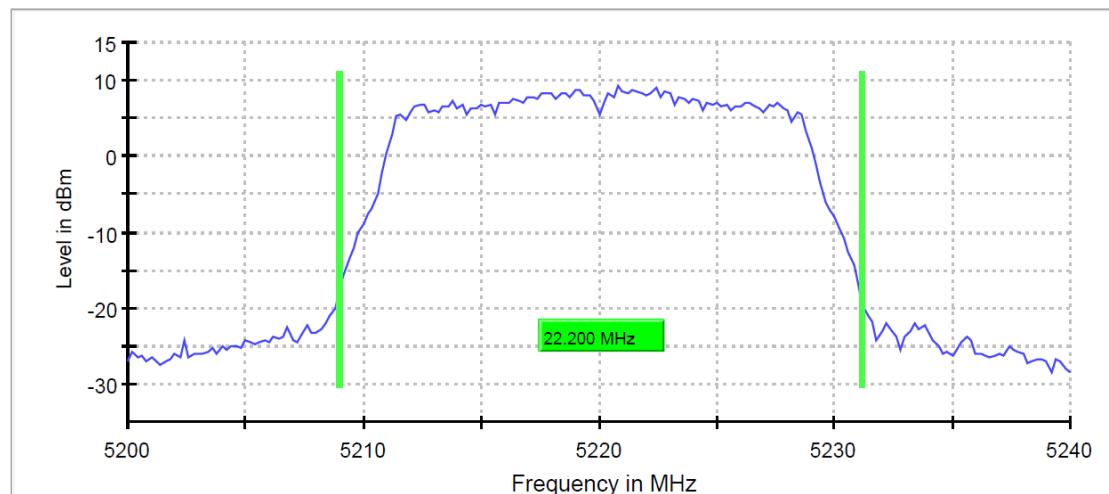


Note: There is not particular requirement, but information is needed for configuration of instruments and for assessment if operating channel is inside allowed frequency band.

Test engineer: Ermin Pasalic

|           |     |
|-----------|-----|
| Complies? | N/A |
|-----------|-----|

**Diagram 1**

26 dB Bandwidth

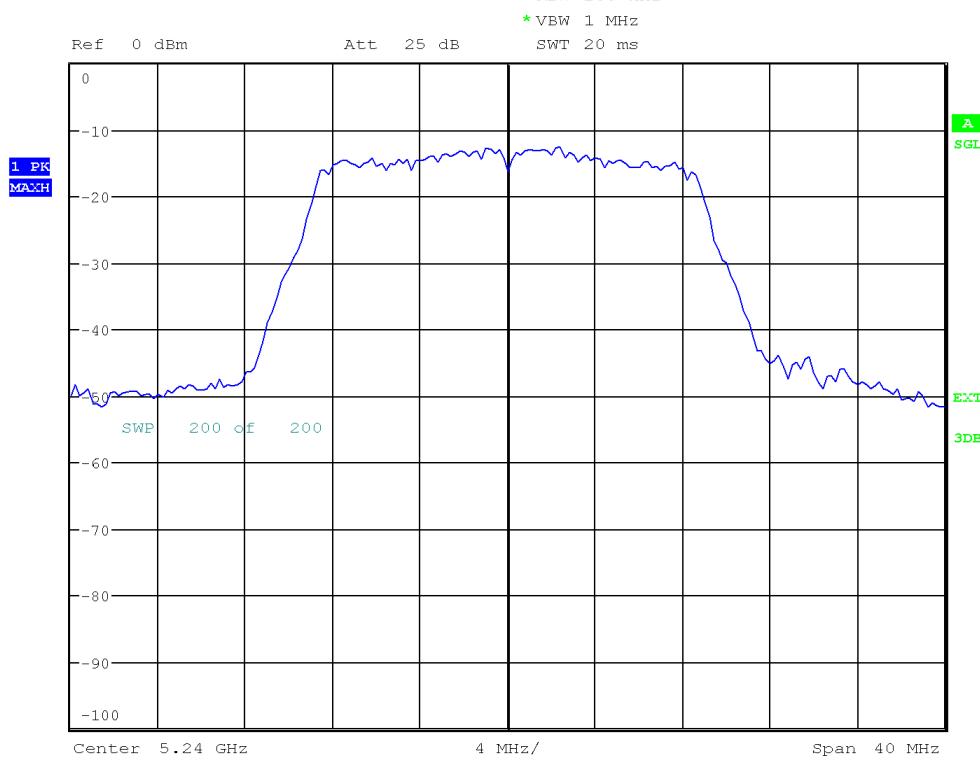
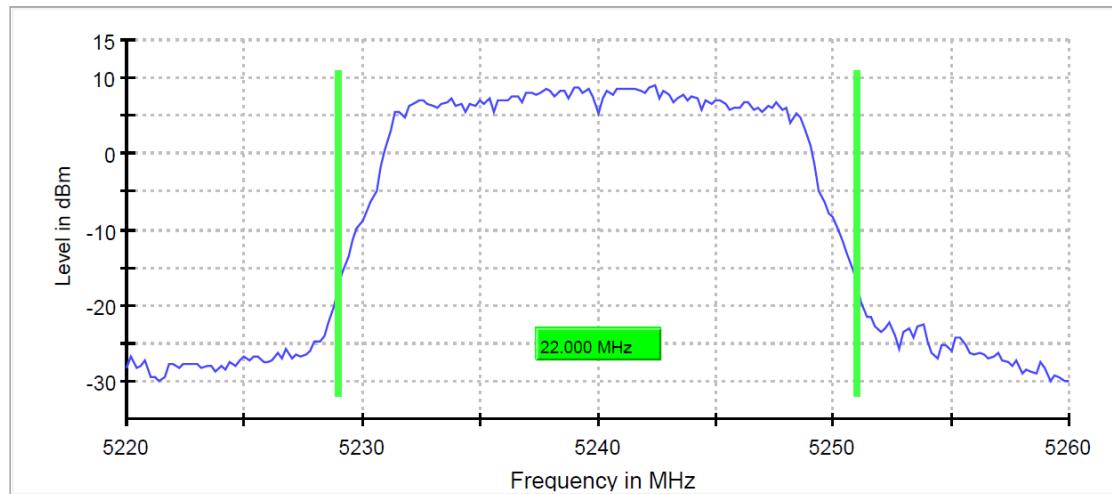




Date: 14.NOV.2018 15:35:47

DUT operating at 5180 MHz and 20 MHz BW; 26 dB EBW

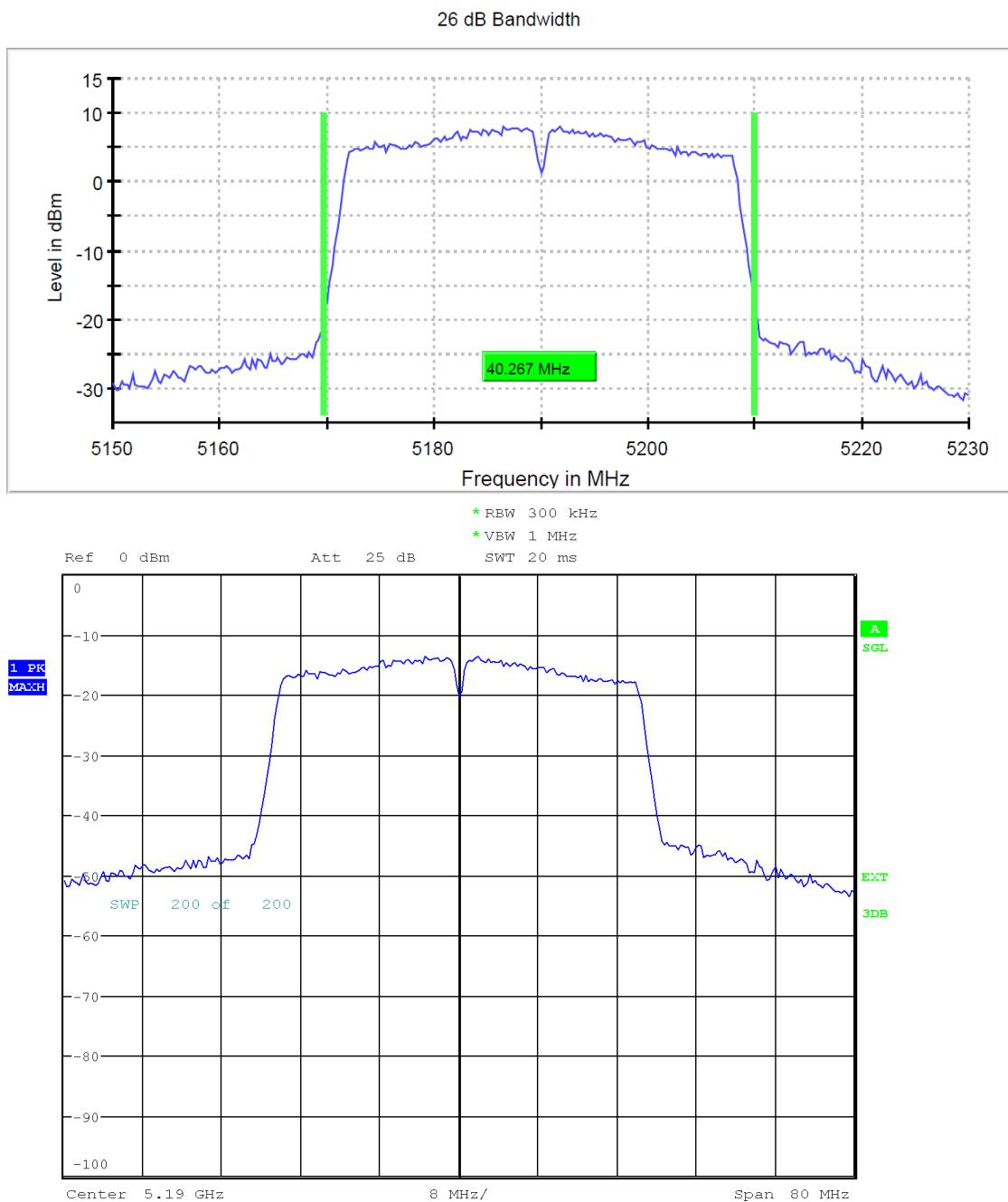
Diagram 2

26 dB Bandwidth


Date: 14.NOV.2018 15:43:27

DUT operating at 5220 MHz and 20 MHz BW; 26 dB EBW

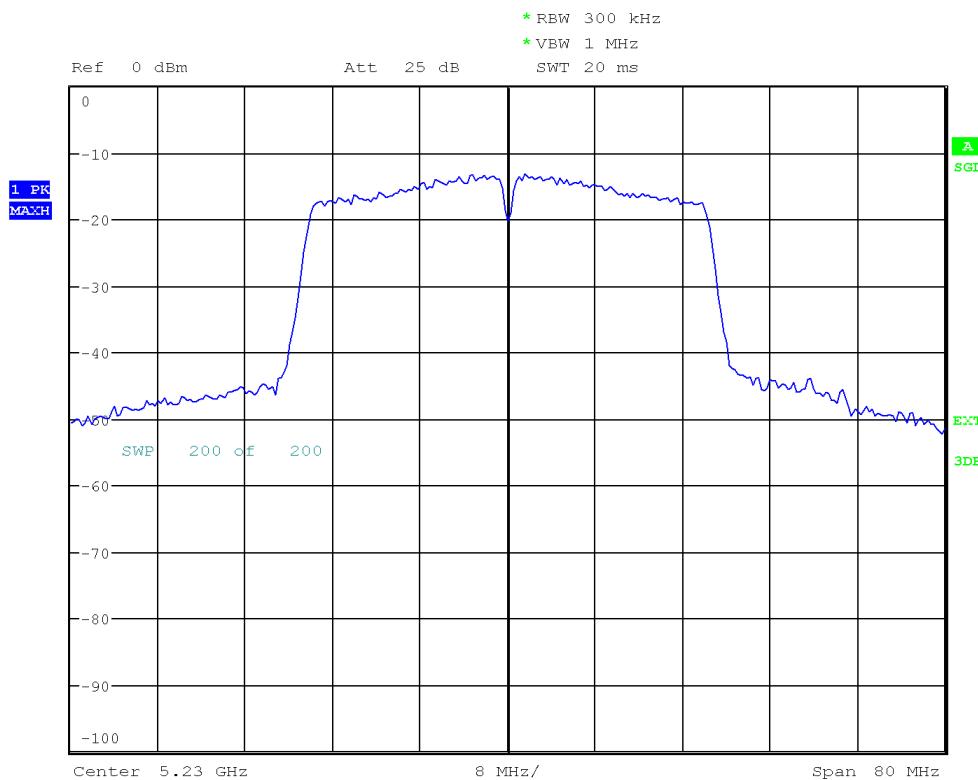
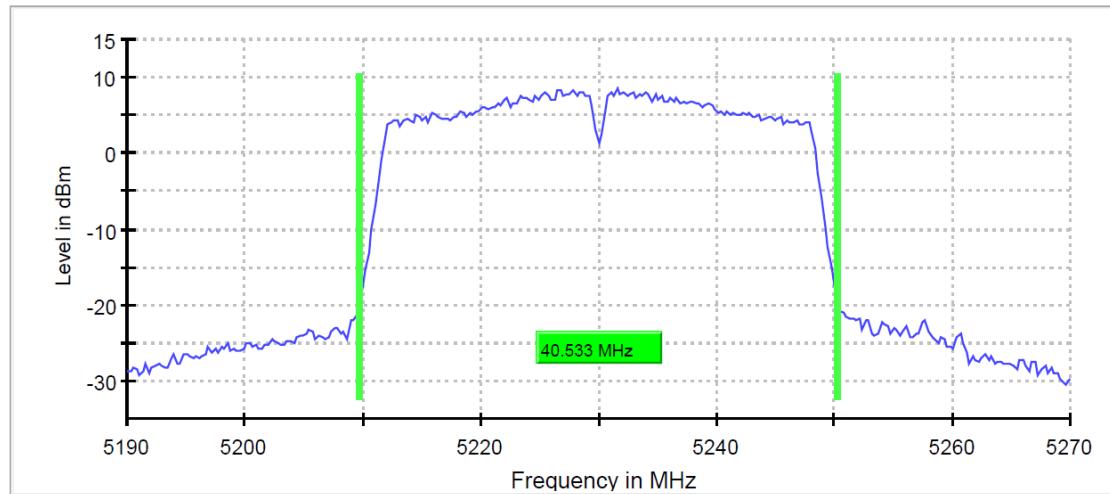

**Diagram 3**

26 dB Bandwidth



Date: 14.NOV.2018 15:51:41

DUT operating at 5240 MHz and 20 MHz BW; 26 dB EBW

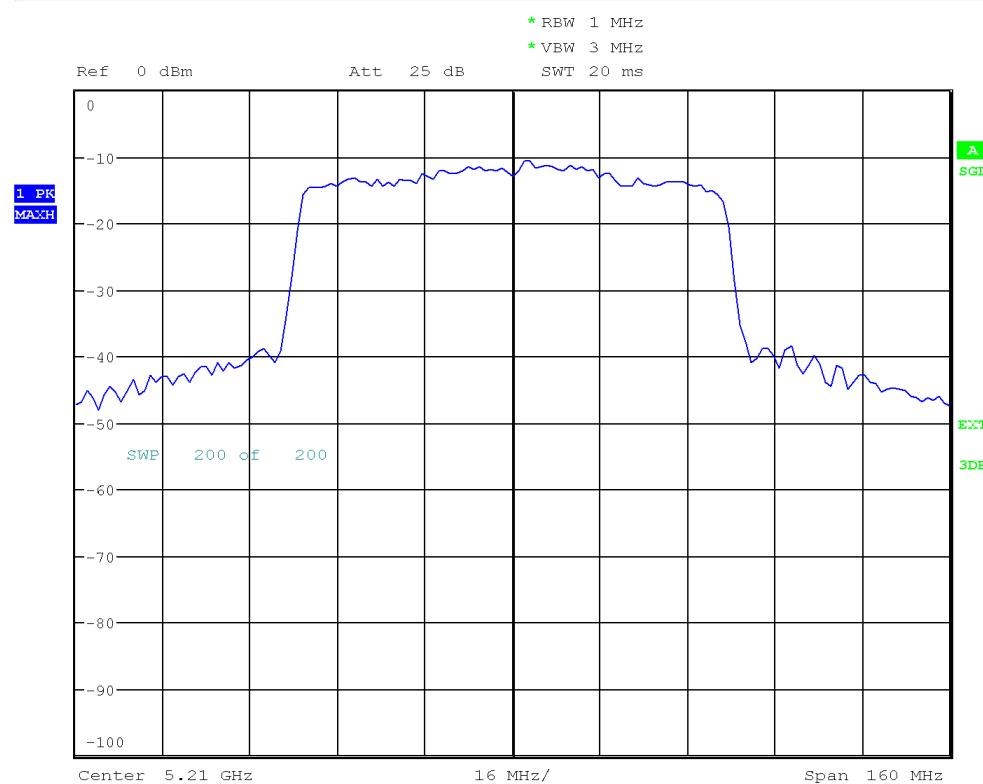
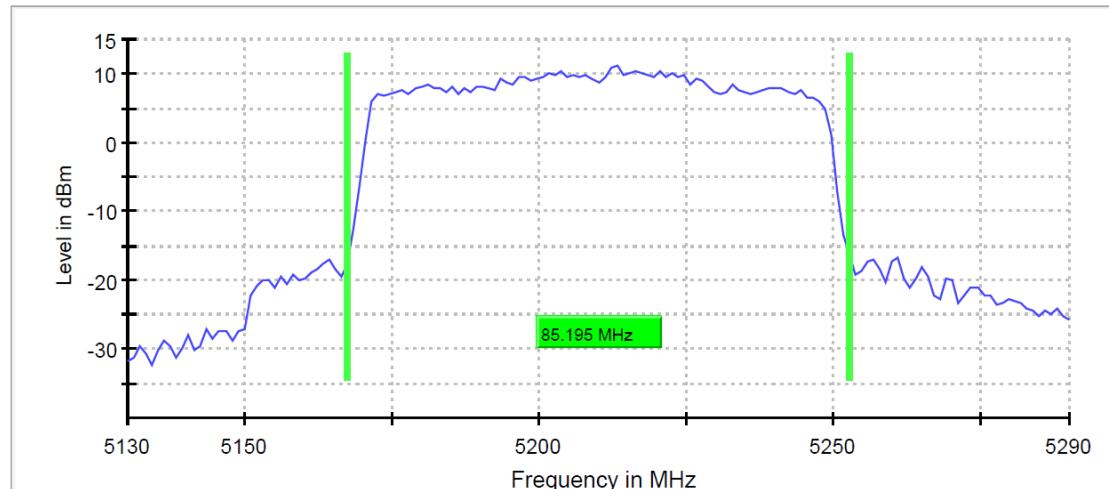


**Diagram 4**


Date: 14.NOV.2018 16:06:32

DUT operating at 5190 MHz and 40 MHz BW; 26 dB EBW

**Diagram 5**

26 dB Bandwidth


Date: 14.NOV.2018 16:17:06

DUT operating at 5230 MHz and 40 MHz BW; 26 dB EBW

**Diagram 6**

26 dB Bandwidth



Date: 14.NOV.2018 16:32:02

DUT operating at 5210 MHz and 80 MHz BW; 26 dB EBW

**99% occupied bandwidth - OBW measurements according to 47CFR 2.1049**

|                    |                             |                        |
|--------------------|-----------------------------|------------------------|
| Date<br>2018-11-14 | Temperature<br>22 °C ± 3 °C | Humidity<br>29 % ± 5 % |
|--------------------|-----------------------------|------------------------|

**Test setup and procedure**

The measurements were performed according to ANSI C63.10, clause 12.4.2/6.9.3 and KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 II.D

Conducted measurements were performed on units with the temporary antenna connectors, with transmission below 98% of duty cycle and with normal modulation.

The test was performed with max peak detector.

Test set-up photos during the tests can be found in the photo section in the separate document, REPORT-ANNEX, AT-DG2 Photos.

| Measurement equipment                    | RISE number |
|------------------------------------------|-------------|
| Test site Marconi                        | 15:121      |
| Spectrum analyser R&S FSQ 26             | BX50694     |
| Coaxial cable                            | BX81424     |
| Coaxial cable                            | BX81436     |
| Coaxial cable                            | BX50685     |
| 120 V AC/60 Hz AC Power source HP 6813B  | 503 091     |
| DC power supply HP E3632A                | 503 170     |
| Multimeter Fluke 85 III                  | 503 418     |
| Temperature and humidity meter Testo 625 | 503 498     |

**Results**

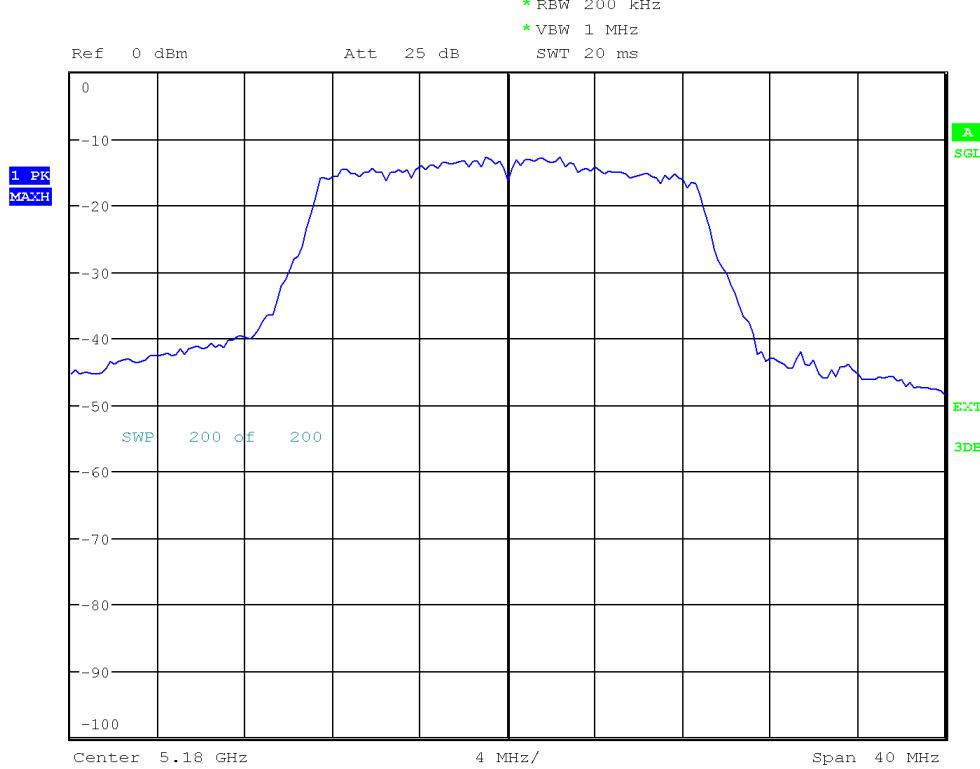
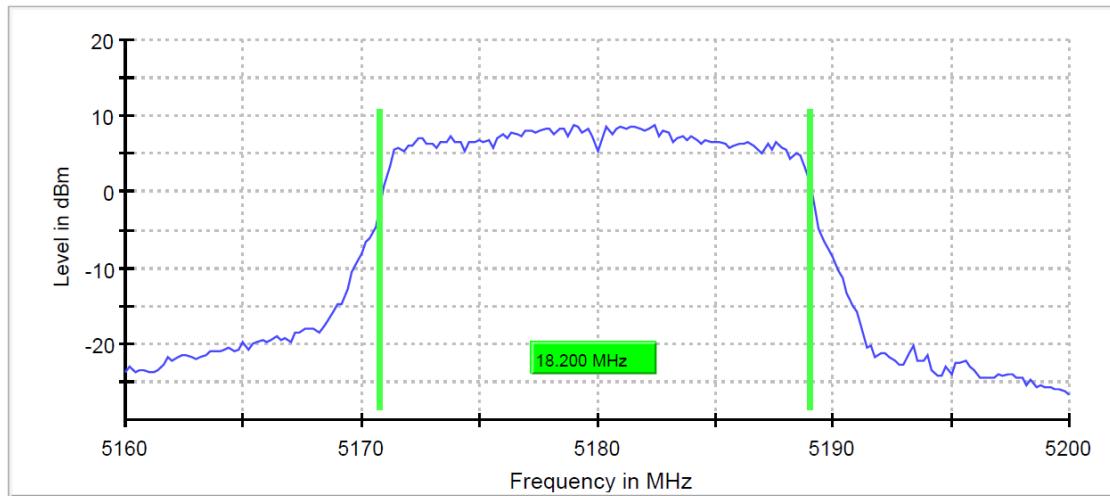
| SISO 2 (chain 2 – 6 dBi antenna gain)              |             | 802.11ac          |                    |              |
|----------------------------------------------------|-------------|-------------------|--------------------|--------------|
| T <sub>nom</sub> 20°C<br>V <sub>nom</sub> 120 V AC |             |                   |                    |              |
| f<br>[MHz]                                         | BW<br>[MHz] | OBW left<br>[MHz] | OBW right<br>[MHz] | OBW<br>[MHz] |
| 5180                                               | 20          | 5170.8            | 5189.0             | 18.2         |
| 5220                                               | 20          | 5211.0            | 5229.2             | 18.2         |
| 5240                                               | 20          | 5231.0            | 5249.0             | 18.0         |
| 5190                                               | 40          | 5171.9            | 5208.1             | 36.3         |
| 5230                                               | 40          | 5211.9            | 5248.1             | 36.3         |
| 5210                                               | 80          | 5172.0            | 5247.9             | 75.9         |

The 99% OBW measurements can be found in the diagrams below:

|            |                             |
|------------|-----------------------------|
| Diagram 1: | 5180 MHz 20 MHz BW, 99% OBW |
| Diagram 2: | 5220 MHz 20 MHz BW, 99% OBW |
| Diagram 3: | 5240 MHz 20 MHz BW, 99% OBW |
| Diagram 4: | 5190 MHz 40 MHz BW, 99% OBW |
| Diagram 5: | 5230 MHz 40 MHz BW, 99% OBW |
| Diagram 6: | 5210 MHz 80 MHz BW, 99% OBW |

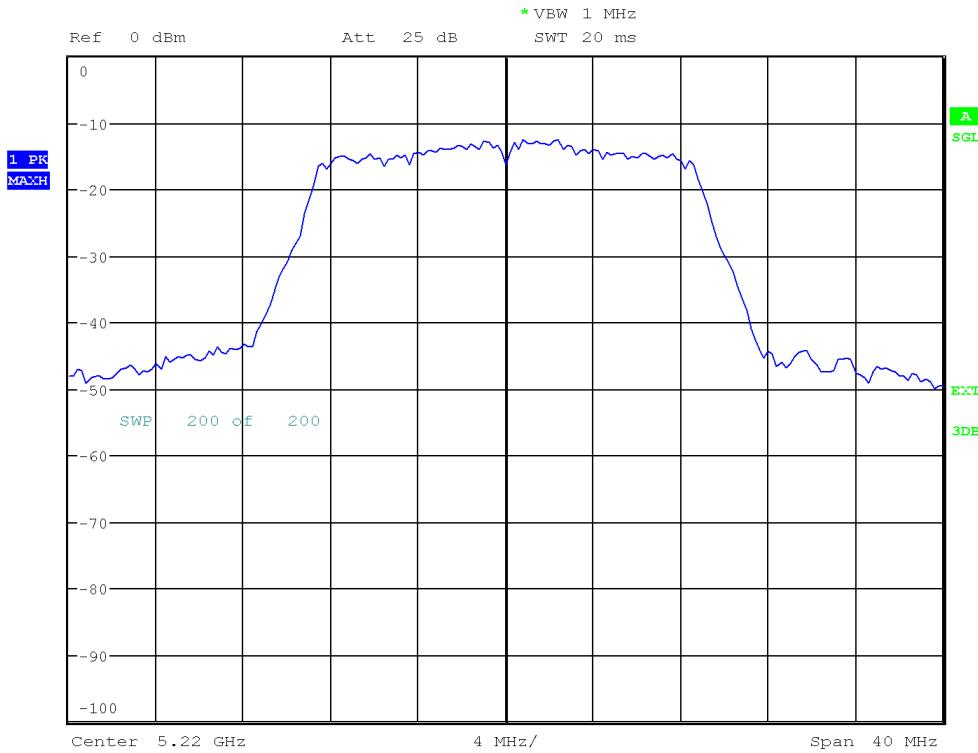
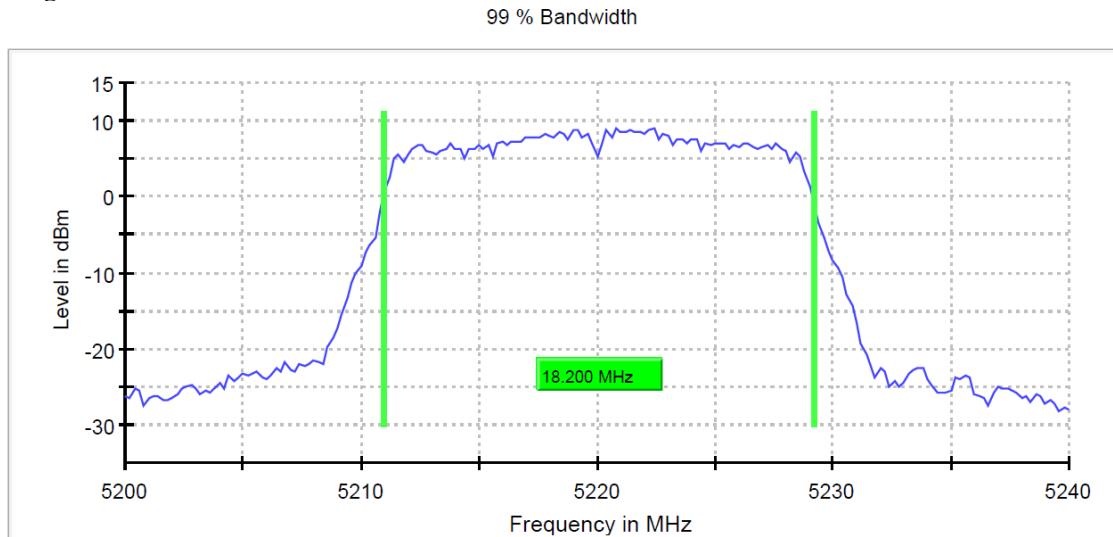
### **Limits**

No limits specified in the §15.407 except as alternative limit for unwanted emissions in the U-NII-2A from devices operating in U-NII-1, according KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 III.B.2.a)(i).



According this alternative limit, higher edge of 99 % OBW shall be below 5250 MHz.

Test engineer: Ermin Pasalic

|           |                                         |
|-----------|-----------------------------------------|
| Complies? | <input checked="" type="checkbox"/> Yes |
|-----------|-----------------------------------------|

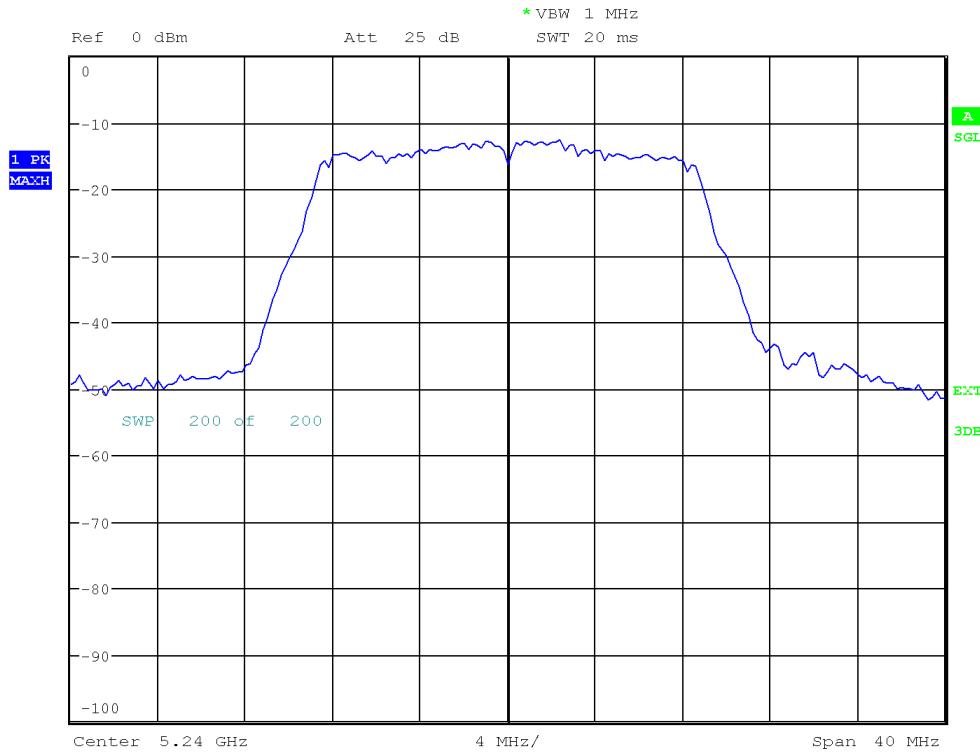
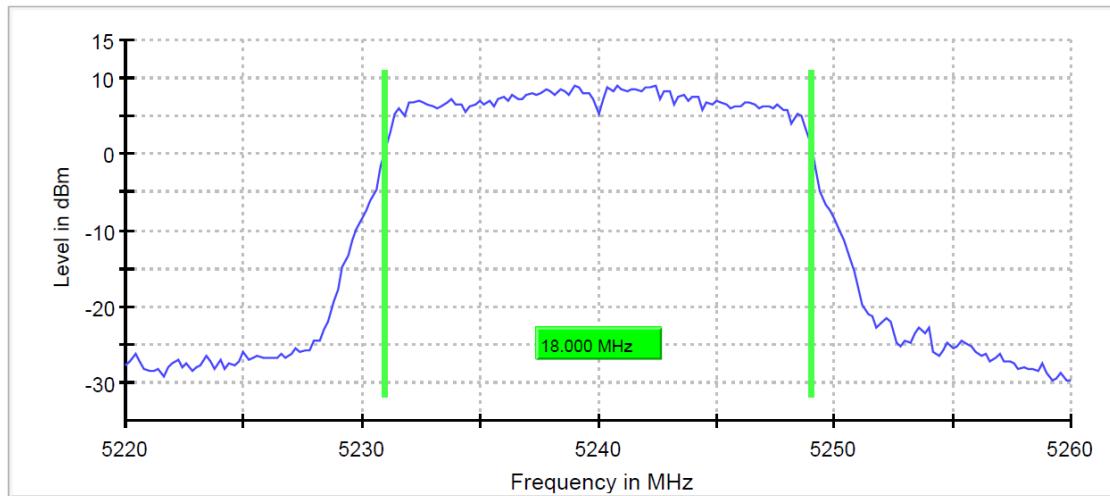


**Diagram 1**

99 % Bandwidth



Date: 14.NOV.2018 15:38:23

DUT operating at 5180 MHz and 20 MHz BW; 99% OBW

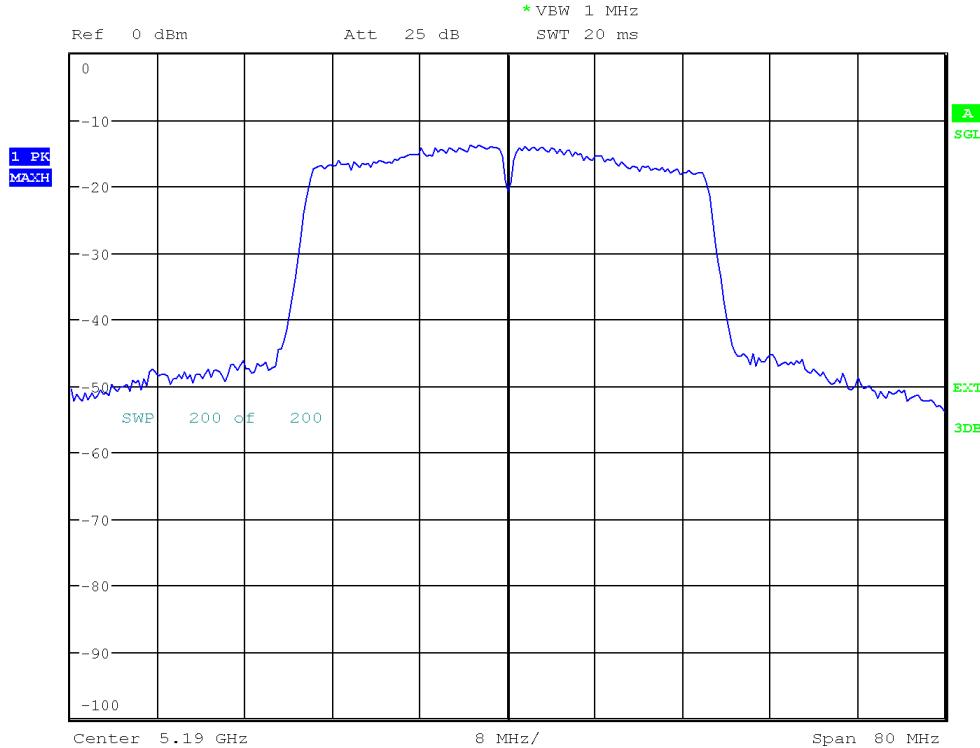
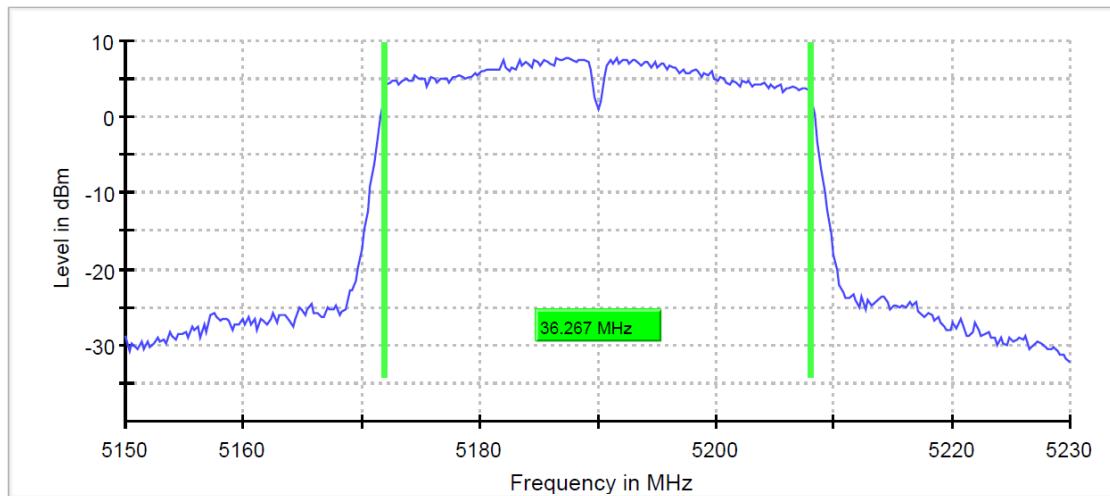


**Diagram 2**


Date: 14.NOV.2018 15:47:26

DUT operating at 5220 MHz and 20 MHz BW; 99% OBW

**Diagram 3**

99 % Bandwidth

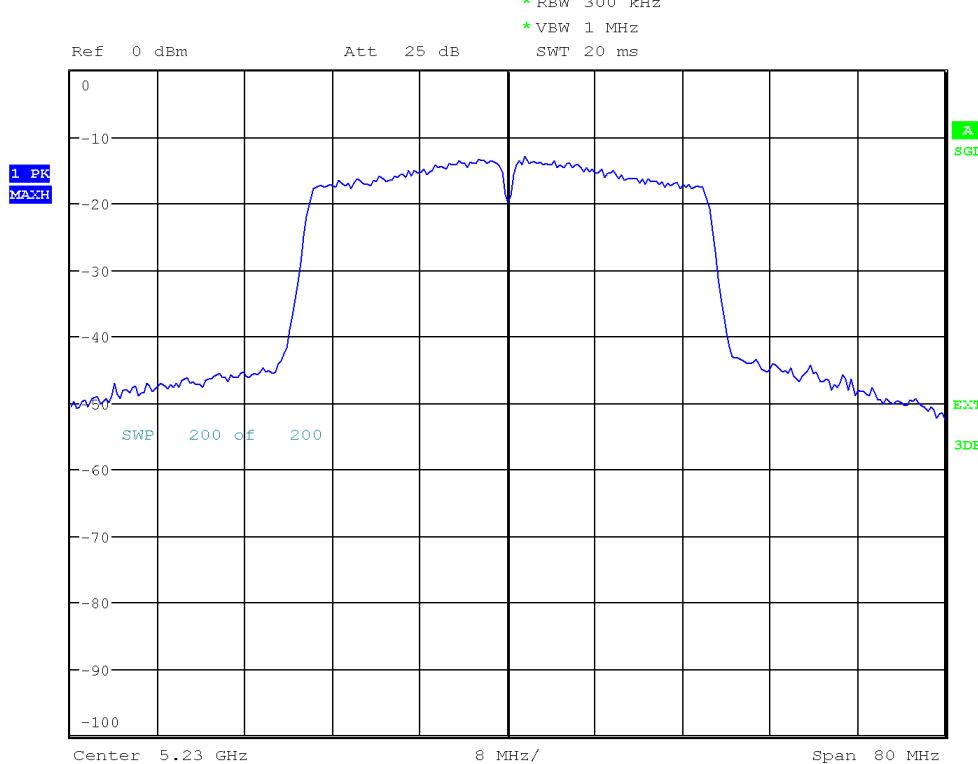
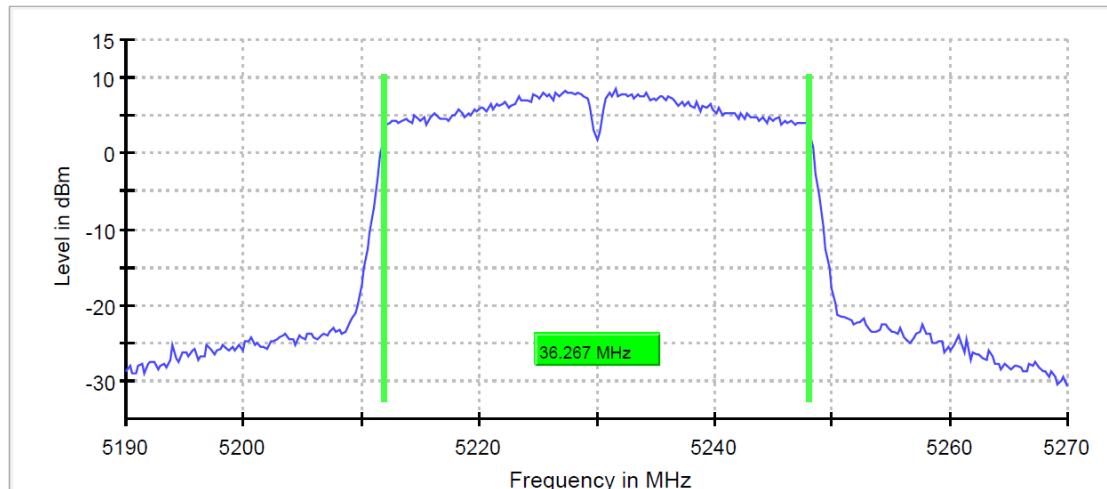




Date: 14.NOV.2018 15:58:33

DUT operating at 5240 MHz and 20 MHz BW; 99% OBW

**Diagram 4**

99 % Bandwidth

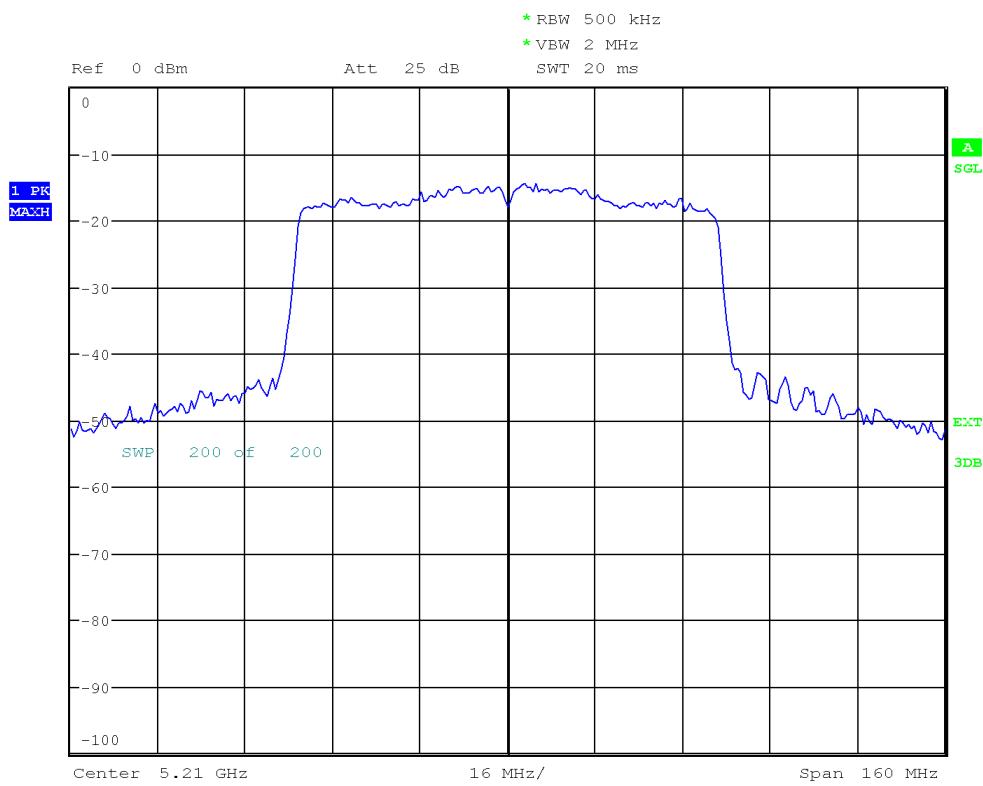
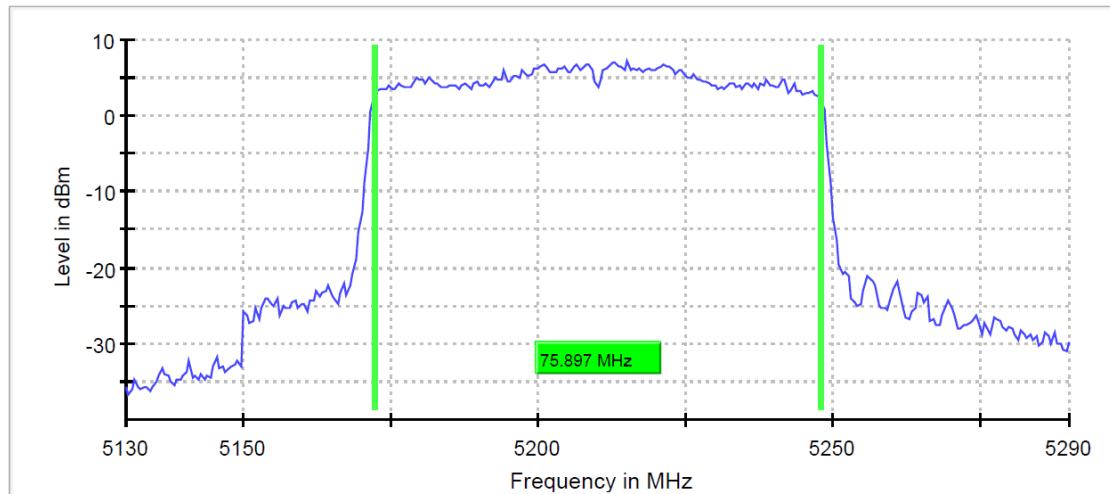




Date: 14.NOV.2018 16:10:29

DUT operating at 5190 MHz and 40 MHz BW; 99% OBW

**Diagram 5**

99 % Bandwidth


Date: 14.NOV.2018 16:22:55

DUT operating at 5230 MHz and 40 MHz BW; 99% OBW

**Diagram 6**

99 % Bandwidth



Date: 14.NOV.2018 16:45:22

DUT operating at 5210 MHz and 80 MHz BW; 99% OBW

**Band edge measurements according to 47CFR 2.1049**

| Date       | Temperature  | Humidity   |
|------------|--------------|------------|
| 2018-11-06 | 22 °C ± 3 °C | 34 % ± 5 % |
| 2018-11-25 | 21 °C ± 3 °C | 31 % ± 5 % |

**Test setup and procedure**

The measurements were performed according to ANSI C63.10-2013, clause 12.7.4.4. and KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 II.G.3.d.(ii), II.G.5, II.G.6 and III.B.2.a)(i).

Radiated measurements were performed on units with the integrated antennas with transmission below 98% of duty cycle and with normal modulation. The presented results of peak and average power in the table below are measured results with applied correction for duty. The results in the diagrams are not corrected for duty cycle.

Test set-up photos during the tests can be found in the photo section in the separate document, REPORT-ANNEX, AT-DG2 Photos.

| Measurement equipment                    | RISE number |
|------------------------------------------|-------------|
| Semi anechoic chamber, Edison            | 504114      |
| Computer Lenovo ThinkCentre              | -           |
| Software R&S EMC32, ver.9.15.00          | 503889      |
| EMI test receiver R&S ESU 26             | 902210      |
| Antenna ETS-Lindgren 3115                | 902175      |
| Step attenuator Narda743-60              | BX41644     |
| Coaxial cable                            | BX50672     |
| Coaxial cable                            | 504102      |
| Coaxial cable                            | 504103      |
| Coaxial cable                            | 504104      |
| Multimeter Fluke 83                      | 501522      |
| Temperature and humidity meter Testo 625 | 504117      |

## Results

Operation band 5150-5250 MHz

| MIMO                                 |             | 802.11ac        |                        |                        |              |                       |                       |
|--------------------------------------|-------------|-----------------|------------------------|------------------------|--------------|-----------------------|-----------------------|
| $T_{nom}$ 20°C<br>$V_{nom}$ 120 V AC |             | 5150 MHz - edge |                        |                        |              |                       |                       |
| f<br>[MHz]                           | BW<br>[MHz] | Peak<br>[dBm]   | Peak<br>Limit<br>[dBm] | Peak<br>Margin<br>[dB] | CAV<br>[dBm] | CAV<br>Limit<br>[dBm] | CAV<br>Margin<br>[dB] |
| Ch 36, 5180 MHz;<br>8 dBm/p8         | 20          | -22.6           | -21.2                  | 1.4                    | -45.7        | -41.2                 | 4.5                   |
| Ch 38, 5190 MHz;<br>5 dBm/p5         | 40          | -27.8           | -21.2                  | 6.6                    | -46.2        | -41.2                 | 5.0                   |
| Ch 42, 5210 MHz;<br>6 dBm/p6         | 80          | -24.2           | -21.2                  | 3.1                    | -41.9        | -41.2                 | 0.7                   |

In the restricted bands peak limit is 20 dB higher than CAV limit.

The limit of -27 dBm/MHz according KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 III.B.2.a)(i) at the edge 5150 MHz and just below is not applicable due to the restricted band.

Outside restricted bands, peak limit of -27 dBm is applied.

Note: Peak and CAV values in the upper table are corrected for duty cycle according following table:

| Operating frequency, f<br>and bandwidth, BW | Duty cycle [%] | Correction [dB] |
|---------------------------------------------|----------------|-----------------|
| 5180 MHz, 20 MHz                            | 98.6           | 0.06            |
| 5190 MHz, 40 MHz                            | 95.7           | 0.19            |
| 5210 MHz, 80 MHz                            | 92.3           | 0.35            |

Applicable restricted bands:

4500 – 5150 MHz

5350 – 5460 MHz

Operation band:

5150-5250 MHz

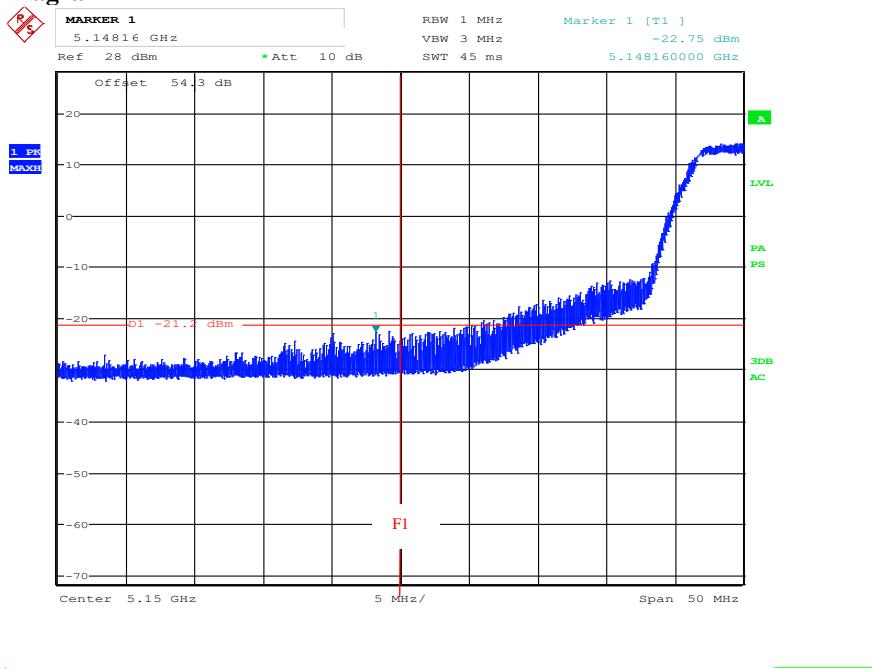
| MIMO                                 |             |                    | 802.11ac           |                |                        |
|--------------------------------------|-------------|--------------------|--------------------|----------------|------------------------|
| $T_{nom}$ 20°C<br>$V_{nom}$ 120 V AC |             | 5250 MHz - edge    |                    |                |                        |
| f<br>[MHz]                           | BW<br>[MHz] | EBW right<br>[MHz] | OBW right<br>[MHz] | Limit<br>[MHz] | OBW<br>Margin<br>[MHz] |
| Ch 48, 5240 MHz;<br>13 dBm/p13       | 20          | 5251.02            | <b>5249.46</b>     | 5250           | 0.54                   |
| Ch 46, 5230 MHz;<br>13 dBm/p13       | 40          | 5250.91            | <b>5248.49</b>     | 5250           | 1.51                   |
| Ch 42, 5210 MHz;<br>13 dBm/p13       | 80          | 5250.84            | <b>5248.25</b>     | 5250           | 1.75                   |

The band edge measurements can be found in the diagrams below:

|            |                                                         |
|------------|---------------------------------------------------------|
| Diagram 1: | Ch 36, 5180 MHz 20 MHz BW, 8 dBm/p8, 5150 MHz-Band edge |
| Diagram 2: | Ch 38, 5190 MHz 40 MHz BW, 5 dBm/p5, 5150 MHz-Band edge |
| Diagram 3: | Ch 42, 5210 MHz 80 MHz BW, 6 dBm/p6, 5150 MHz-Band edge |
| Diagram 4: | Ch 48, 5240 MHz 20 MHz BW, p13, 5250 MHz-Band edge      |
| Diagram 5: | Ch 46, 5230 MHz 40 MHz BW, p13, 5250 MHz-Band edge      |
| Diagram 6: | Ch 42, 5210 MHz 80 MHz BW, p13, 5250 MHz-Band edge      |

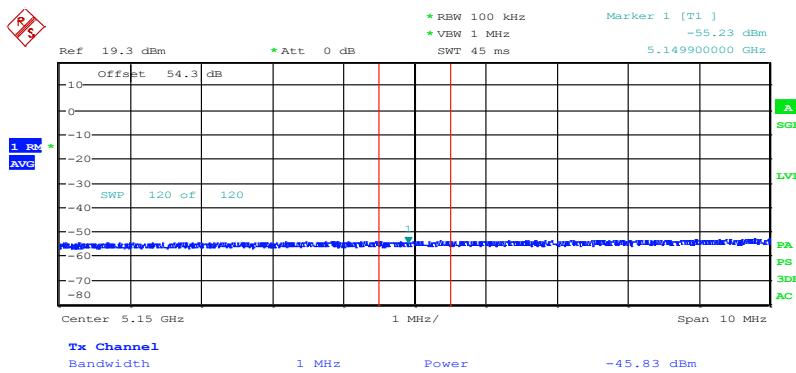
Note: The results in the diagrams are not corrected for duty cycle.

## Limits


According to 47CFR 15.407(b), e.i.r.p. of the emission produced by the intentional radiator shall be below -27 dBm outside the frequency band in which the 5 GHz WiFi radiator is operating for frequencies over 1 GHz and except restricted bands defined in §15.205 as shown in paragraph 15.407(b)(7).

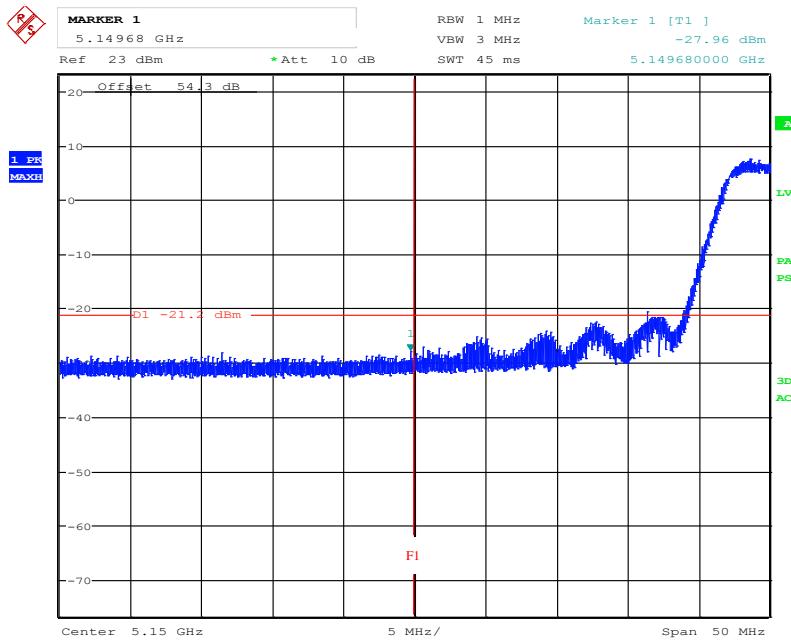
Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits based on the field strength, specified in Section 15.209(a).

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Dec. 14, 2017 III.B.2.a) (i) for devices operating in the 5.15-5.25 GHz band, the -27 dBm/MHz peak EIRP limit applies outside of the lower pair of U-NII bands. i.e., 5.15-5.35. However, any transmission that does not intentionally extend into the 5.25-5.35 GHz band must be down 26 dB above 5.25 GHz per section 15.215 (c). As practical matter, the 99% bandwidth may be used in lieu of the 26 dB bandwidth. If the emission does intentionally extend into the 5.25-5.35 GHz band, DFS and TPC must be implemented per section 15.407(h).


Test engineer: Ermin Pasalic

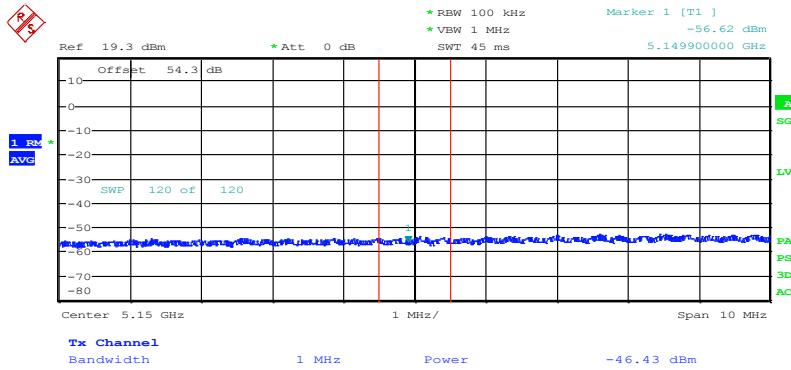
|           |     |
|-----------|-----|
| Complies? | Yes |
|-----------|-----|

**Diagram 1**



Date: 25.NOV.2018 18:40:00

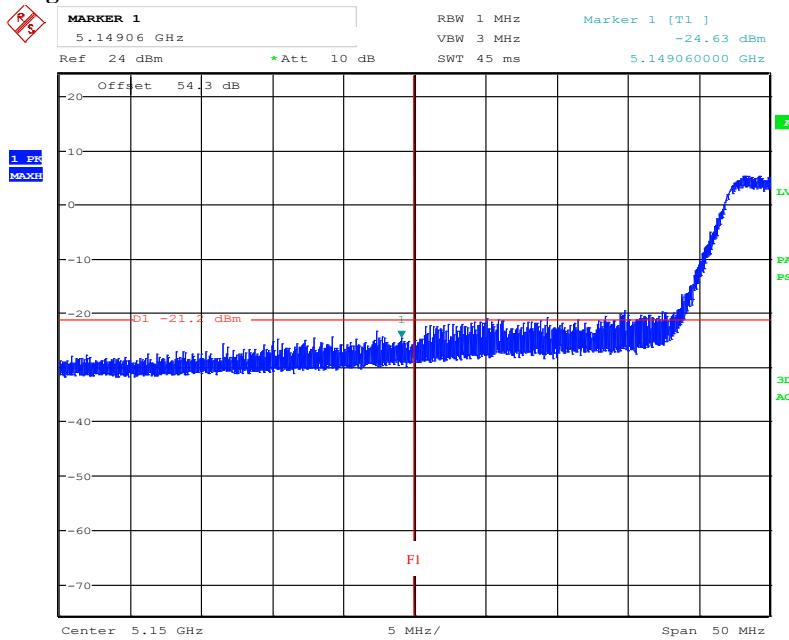
Note: the highest level for frequencies 5.15 GHz, (red line F1), and below shall be after correction below limit, -21.2 dBm. The highest value after correction can be seen in the table on the page 91.




Date: 25.NOV.2018 18:31:21

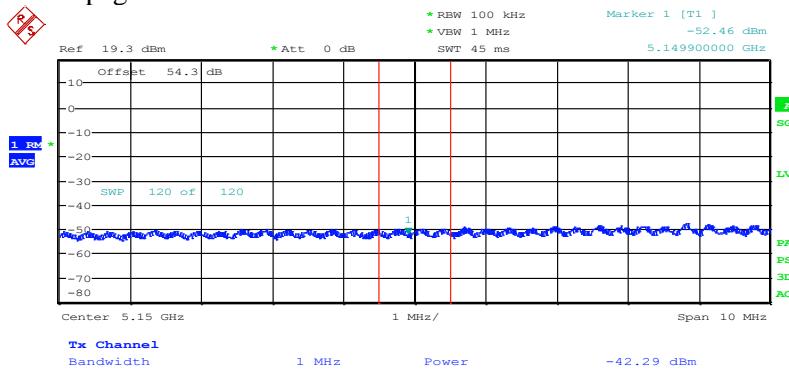
Ch 36, 5180 MHz 20 MHz BW, 8 dBm/p8, 5150 MHz-Band edge  
 Requirement is based on Average RMS power and peak power.

**Diagram 2**



Date: 25.NOV.2018 19:10:17

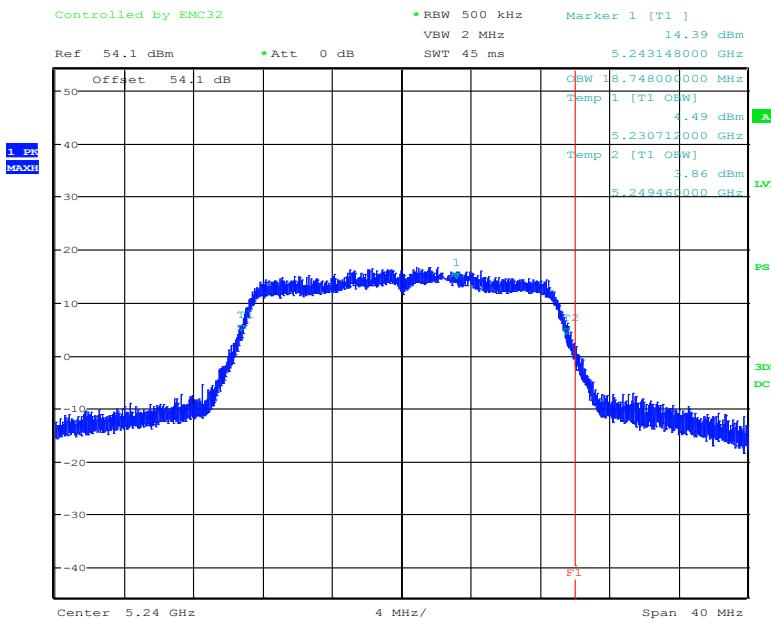
Note: the highest level for frequencies 5.15 GHz, (red line F1), and below shall be after correction below limit, -21.2 dBm. The highest value after correction can be seen in the table on the page 91.




Date: 25.NOV.2018 19:11:55

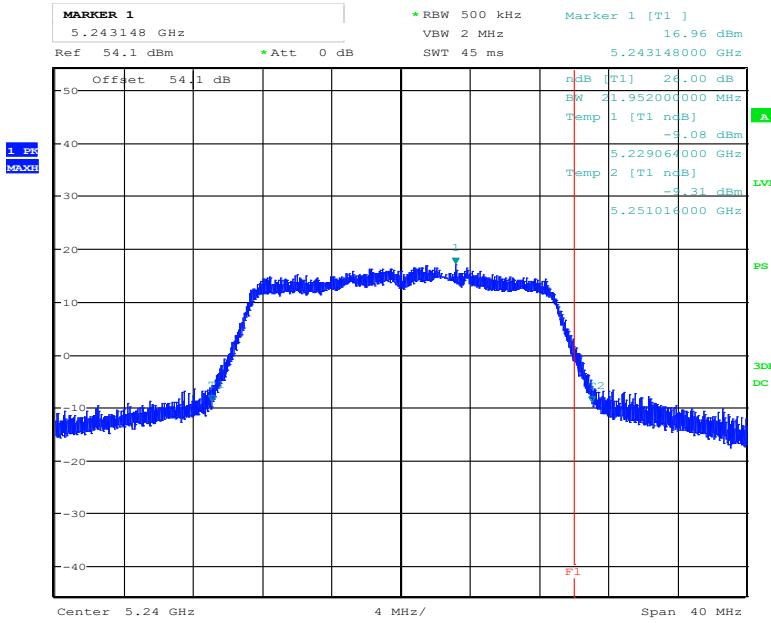
Ch 38, 5190 MHz 40 MHz BW, 5 dBm/p5, 5150 MHz-Band edge  
 Requirement is based on Average RMS power and peak power

**Diagram 3**



Date: 25.NOV.2018 19:00:16

Note: the highest level for frequencies 5.15 GHz, (red line F1), and below shall be after correction below limit, -21.2 dBm. The highest value after correction can be seen in the table on the page 91.

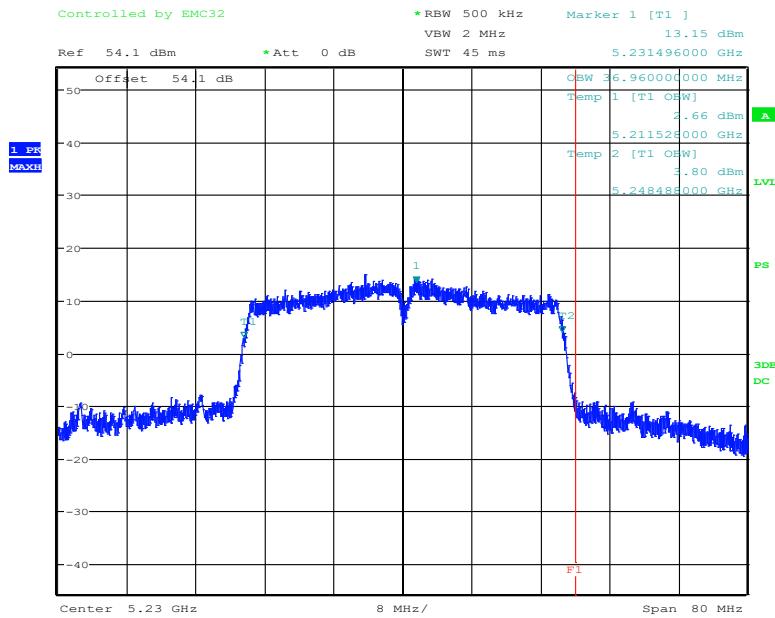



Date: 25.NOV.2018 19:01:59

Ch 42, 5210 MHz 80 MHz BW, 6 dBm/p6, 5150 MHz-Band edge  
 Requirement is based on Average RMS power and peak power

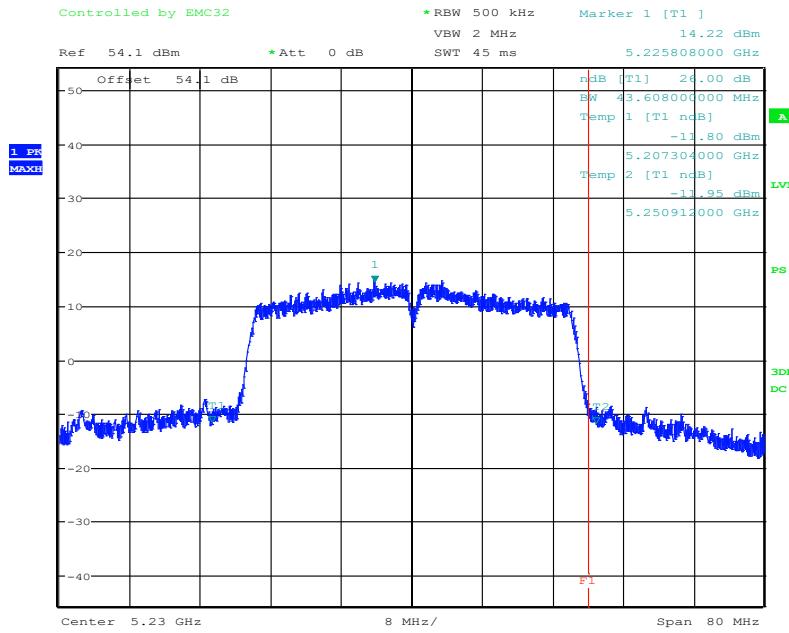
**Diagram 4**


Date: 6.NOV.2018 12:24:31


OBW; the higher edge of OBW – T2 shall be below 5250 MHz, (red line, F1)



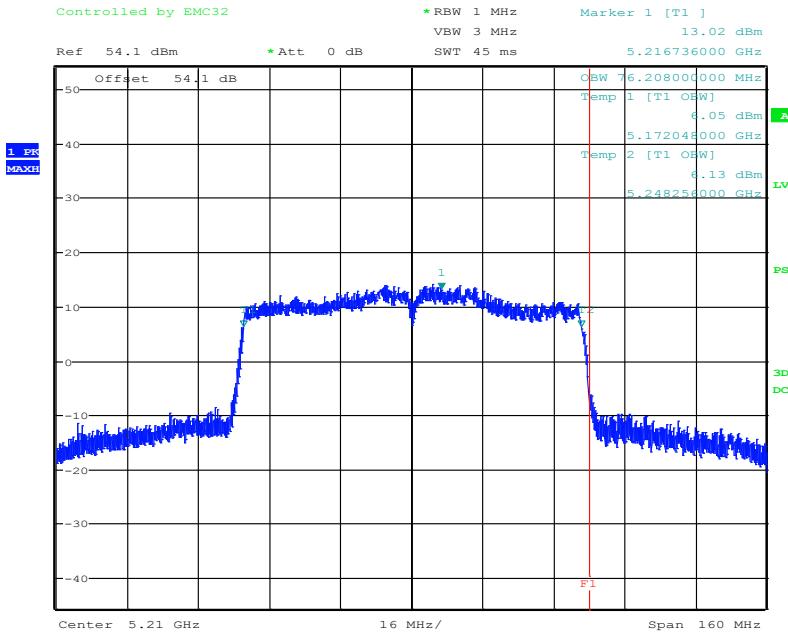
Date: 6.NOV.2018 12:23:35


According KDB, it is accepted, due to practical reasons, that higher edge of EBW falls over 5250 MHz, but higher edge of OBW shall fall below 5250 MHz for compliance.

Ch 48, 5240 MHz 20 MHz BW, p13, 5250 MHz-Band edge

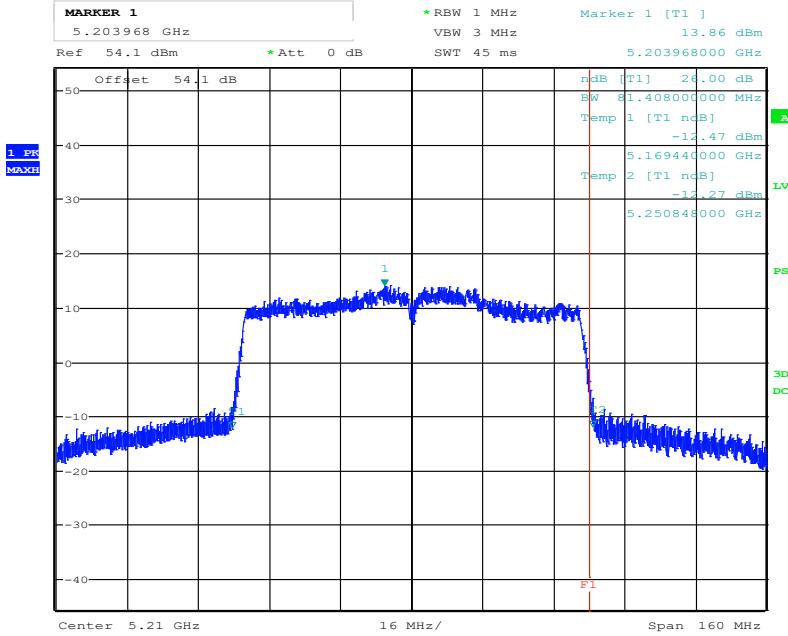
**Diagram 5**


Date: 6.NOV.2018 12:31:08


OBW; the higher edge of OBW – T2 shall be below 5250 MHz, (red line, F1)



Date: 6.NOV.2018 12:32:21


According KDB, it is accepted, due to practical reasons, that higher edge of EBW falls over 5250 MHz, but higher edge of OBW shall fall below 5250 MHz for compliance.

Ch 46, 5230 MHz 40 MHz BW, p13, 5250 MHz-Band edge

**Diagram 6**


Date: 6.NOV.2018 12:39:38

OBW; the higher edge of OBW – T2 shall be below 5250 MHz, (red line, F1)



Date: 6.NOV.2018 12:40:45

According KDB, it is accepted, due to practical reasons, that higher edge of EBW falls over 5250 MHz, but higher edge of OBW shall fall below 5250 MHz for compliance.

Ch 42, 5210 MHz 80 MHz BW, p13, 5250 MHz-Band edge