

# **FCC SAR EVALUATION REPORT**

FCC ID: 2ADBRK968

For

Product Name: smart mobile phone

Brand Name: KALIHO, K-CEL, K-TEN

Model Name: K968

Series Model: A600

Test Report Number: STS1410012H01

ANSI/IEEE Std. C95.1

Test Standard: FCC 47 CFR Part 2 (2.1093)

IEEE 1528: 2003

Issued for

Shenzhen Kaliho Technology Development Limited

19F. Block A, Stars plaza, HuaQiang North Road, FuTian District, Shenzhen, China

Issued by

Shenzhen STS Test Services Co., Ltd.

1/F, Building 2, Zhuoke Science Park, Chongqing Road, Fuyong, Baoan District, Shenzhen, China

TEL: +86-755 3688 6288

FAX: +86-755 3688 6277

E-mail:sts@stsapp.com

This test report may be reproduced in full only.

All Test Data Presented in this report is only applicable to presented Test sample.

# **Test Report Certification**

Applicant's name ......: Shenzhen Kaliho Technology Development Limited

Shenzhen, China

Manufacture's Name .....: Shenzhen Kaliho Technology Development Limited

Address ...... Floor 4, Flat F, XingHui Technology industrial park, Huaning West

Rd., Dalang Street, Longhua, Baoan district, Shenzhen

**Product description** 

Product name .....: smart mobile phone

Trademark .....: KALIHO. K-CEL. K-TEN

Model and/or type reference : K968 Serial Model : A600

Standards .....: ANSI/IEEE Std. C95.1

FCC 47 CFR Part 2 (2.1093)

IEEE 1528: 2003

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test.....

Date of Issue ...... 16 Oct. 2014

Test Result ...... Pass

Testing Engineer

(Tony Liu)

Technical Manager:

(Vita Li)

Authorized Signatory:

(Bovey Yang)

| TABLE OF CONTENS                                            |         |
|-------------------------------------------------------------|---------|
| 1. General Information                                      | 4       |
| 1.1 EUT Description                                         | 4       |
| 1.2 Test Environment:                                       | 5       |
| 2. Test Standards And Limits                                | 6       |
| 3. SAR Measurement System                                   | 8       |
| 3.1 Definition Of Specific Absorption Rate (SAR)            | 8       |
| 3.2 SAR System                                              | 8       |
| 3.2.1 Probe 3.2.2 Phantom                                   | 9<br>10 |
| 3.2.3 Device Holder                                         | 10      |
| 4. Tissue Simulating Liquids                                | 11      |
| 4.1 Simulating Liquids Parameter Check                      | 11      |
| 5. SAR System Validation                                    | 12      |
| 5.1 Validation System                                       | 12      |
| 5.2 Validation Result                                       | 12      |
| 6. SAR Evaluation Procedures                                | 13      |
| 7. EUT Antenna Location Sketch                              | 14      |
| 8. EUT Test Position                                        | 15      |
| 8.1 Define Two Imaginary Lines On The Handset               | 15      |
| 9. Measurement Uncertainty                                  | 17      |
| 10. Conducted Power Measurement                             | 19      |
| 11. Test Photos And Results                                 | 23      |
| 11.1 EUT Photos                                             | 23      |
| 11.2 Setup Photos                                           | 26      |
| 12. SAR Result Summary                                      | 30      |
| Appendix A. System Validation Plots                         | 35      |
| Appendix B. SAR Test Plots                                  | 47      |
| Appendix C. Probe Calibration And Dipole Calibration Report | 77      |

# 1. General Information

# 1.1 EUT Description

| Equipment              | smart mobile phone                                                                                       |                                                                                                                         |  |  |  |  |
|------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Brand Name             | KALIHO. K-CEL. K-TEN                                                                                     |                                                                                                                         |  |  |  |  |
| Model Name.            | K968                                                                                                     |                                                                                                                         |  |  |  |  |
| Serial Model           | A600                                                                                                     |                                                                                                                         |  |  |  |  |
| FCC ID                 | FCC IC: 2ADBRK968                                                                                        |                                                                                                                         |  |  |  |  |
| Model Difference       | Only difference in model na                                                                              | ame                                                                                                                     |  |  |  |  |
|                        | Input: AC100-240V, 0.2 A, 5                                                                              |                                                                                                                         |  |  |  |  |
| Adapter                | Output: DC 5V, 500mA                                                                                     |                                                                                                                         |  |  |  |  |
| Battery                | Rated Voltage: 3.7V<br>Charge Limit: 4.2V<br>Capacity:1000mAh                                            |                                                                                                                         |  |  |  |  |
| Hardware Version       | Z35-V3.0                                                                                                 |                                                                                                                         |  |  |  |  |
| Software Version       | N/A                                                                                                      |                                                                                                                         |  |  |  |  |
|                        | GSM 850: 824.2 ~ 848.8 MH                                                                                | lz                                                                                                                      |  |  |  |  |
|                        | PCS1900: 1850.2 ~ 1909.8 N                                                                               | MHz                                                                                                                     |  |  |  |  |
|                        | WCDMA II: 1852.4~1907.6N                                                                                 | 1Hz                                                                                                                     |  |  |  |  |
| Frequency Range        | WCDMA V: 826.4~846.6 MH                                                                                  | łz                                                                                                                      |  |  |  |  |
|                        | WLAN 802.11b/g/n(HT20): 2412 MHz ~ 2462 MHz;                                                             |                                                                                                                         |  |  |  |  |
|                        | WLAN 802.11n(HT40): 2422 MHz~2452 MHz                                                                    |                                                                                                                         |  |  |  |  |
|                        | Bluetooth: 2402 ~ 2480 MHz                                                                               |                                                                                                                         |  |  |  |  |
|                        | GSM 850: 31.72 dBm                                                                                       | 802.11b: 11.88 dBm                                                                                                      |  |  |  |  |
| Transmit               | GSM 1900: 29.71 dBm                                                                                      | 802.11g: 10.41 dBm                                                                                                      |  |  |  |  |
| Power(Average):        | WCDMA II: 22.94 dBm                                                                                      | 802.11n HT20: 9.40 dBm                                                                                                  |  |  |  |  |
|                        | WCDMA V: 22.71 dBm                                                                                       | 802.11n HT40: 9.28 dBm                                                                                                  |  |  |  |  |
| Max. Reported SAR(1g): | Head: GSM 850: 0.406 W/kg GSM 1900: 0.771 W/kg WCDMA II: 0.806 W/kg WCDMA V: 0.555 W/kg WIFI: 0.189 W/kg | Body:<br>GSM 850: 0.579 W/kg<br>GSM 1900: 0.552 W/kg<br>WCDMA II: 0.728 W/kg<br>WCDMA V: 0.459 W/kg<br>WIFI: 0.161 W/kg |  |  |  |  |
|                        | GSM: GSM Voice; GPRS Cla                                                                                 | ass 12; EDGE Class 12;                                                                                                  |  |  |  |  |
| Operating Mode:        | WCDMA: RMC/HSDPA/HSUPA Release 6;                                                                        |                                                                                                                         |  |  |  |  |
| Operating Mode.        | WLAN: 802.11 b/g/n(HT20/HT40);                                                                           |                                                                                                                         |  |  |  |  |
|                        | Bluetooth: V2.1+EDR                                                                                      |                                                                                                                         |  |  |  |  |
| Antenna Specification: | GSM/WCDMA: PIFA Antenn                                                                                   | a                                                                                                                       |  |  |  |  |
| Antenna opecinication. | Bluetooth/WIFI: PIFA Antenr                                                                              | na                                                                                                                      |  |  |  |  |
| Test Mode:             | Maximum continuous output                                                                                |                                                                                                                         |  |  |  |  |
| SIM Card:              | Support dual-SIM, dual standby, the multiple SIM card with                                               |                                                                                                                         |  |  |  |  |
| Silvi Calu.            | lines cannot transmitting at the                                                                         | he same time                                                                                                            |  |  |  |  |
| DTM Mode               | Not Support                                                                                              |                                                                                                                         |  |  |  |  |
| Hospot Mode            | Not Support                                                                                              |                                                                                                                         |  |  |  |  |

### 1.2 Test Environment:

Ambient conditions in the SAR laboratory:

| Items            | Required | Actual |  |  |
|------------------|----------|--------|--|--|
| Temperature (°C) | 18-25    | 22~23  |  |  |
| Humidity (%RH)   | 30-70    | 55~65  |  |  |

### 1.3 Test Factory

Shenzhen STS Test Services Co., Ltd.

Add.: 1/F, Building 2, Zhuoke Science Park, Chongqing Road, Fuyong, Bao' an District, Shenzhen, China



#### 2. Test Standards And Limits

| No.           | Identity                  | Document Title                                          |
|---------------|---------------------------|---------------------------------------------------------|
| 1             | 47 CFR Part 2             | Frequency Allocations and Radio Treaty Matters; General |
|               |                           | Rules and Regulations                                   |
| 2             | ANSI/IEEE Std. C95.1-1992 | IEEE Standard for Safety Levels with Respect to Human   |
|               |                           | Exposure to Radio Frequency Electromagnetic Fields, 3   |
|               |                           | kHz to 300 GHz                                          |
| 3             | IEEE Std. 1528-2003       | Recommended Practice for Determining the Peak           |
|               |                           | Spatial-Average Specific Absorption Rate (SAR) in the   |
|               |                           | Human Head from Wireless Communications Devices:        |
|               |                           | Measurement Techniques                                  |
| 4             | FCC KDB 447498 D01 v05r02 | Mobile and Portable Device RF Exposure Procedures and   |
|               |                           | Equipment Authorization Policies                        |
| 5             | FCC KDB 865664 D01 v01r03 | SAR Measurement 100 MHz to 6 GHz                        |
| 6             | FCC KDB 865664 D01 v01r03 | SAR Measurement 100 MHz to 6 GHz                        |
| 7             | FCC KDB 941225 D01        | SAR Measurement Procedures for 3G Devices               |
| 8             | FCC KDB 248227 D01        | SAR Measurement Procedures for 802.11 a/b/g             |
| الـــنّـــــا |                           | Transmitters                                            |

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. According to EN 50360 and 1999/519/EC the limit for General Population/Uncontrolled exposure should be applied for this device, it is 2.0 W/kg as averaged over any 10 gram of tissue.

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.4 8.0 20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles

0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 10 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

#### Population/Uncontrolled Environments:

are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

#### Occupational/Controlled Environments:

are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).



### 3. SAR Measurement System

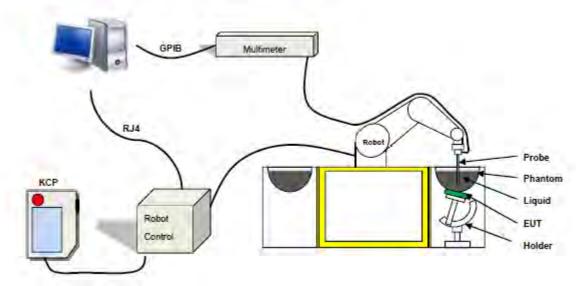
#### 3.1 Definition Of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density ( $\rho$ ). The equation description is as below:

$$SAR = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by


$$SAR = \frac{\sigma E^2}{\rho}$$

Where:  $\sigma$  is the conductivity of the tissue,

 $\rho$  is the mass density of the tissue and E is the RMS electrical field strength.

#### 3.2 SAR System

SATIMO SAR System Diagram:



Comosar is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The Comosar system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

The following figure shows the system.



The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The OpenSAR software computes the results to give a SAR value in a 1g or 10g mass.

#### 3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 17/14 EP221 with following specifications is used

- Dynamic range: 0.01-100 W/kg
- Tip Diameter :5 mm
- Distance between probe tip and sensor center: 2.7mm
- Distance between sensor center and the inner phantom surface: 4 mm (repeatability better than +/- 1mm)
- Probe linearity: < 0.25 dB
- Axial Isotropy: < 0.25 dB
- Spherical Isotropy: < 0.25 dB
- Calibration range: 450MHz to 2600MHz for head & body simulating liquid. Angle between probe axis (evaluation axis) and suface normal line:1ess than 30°



Figure 1 - Satimo COMOSAR Dosimetric E field Dipole

#### 3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.



SN 32/14 SAM116

3.2.3 Device Holder



The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of  $\pm$  0.5 mm would produce a SAR uncertainty of  $\pm$  20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.

# 4. Tissue Simulating Liquids

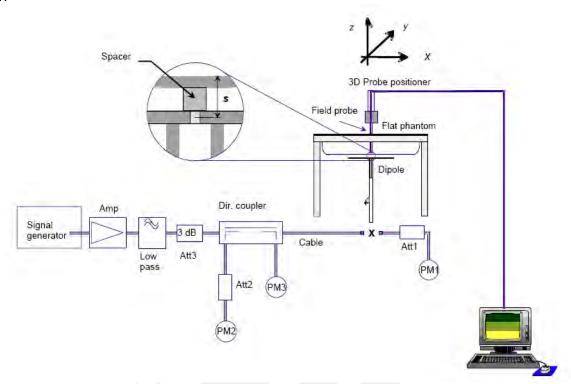
### 4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

#### **LIQUID MEASUREMENT RESULTS**

Date: October 13, 2014 Ambient condition: Temperature 22.3°C Relative humidity: 49%

| Head Simula | atinf Liquid  |               | <b>.</b> |          | D : (: F0/1  | 1: 1/ 150/3 |
|-------------|---------------|---------------|----------|----------|--------------|-------------|
| Frequency   | Temp.<br>[°C] | Parameters    | Target   | Measured | Deviation[%] | Limited[%]  |
| 835 MHz     | 22.30         | Permitivity:  | 41.50    | 41.27    | -0.55        | ±5          |
| 033 IVITZ   | 22.50         | Conductivity: | 0.90     | 0.91     | 1.11         | ± 5         |
| 1900 MHz    | 22.30         | Permitivity:  | 40.00    | 39.57    | -1.07        | ± 5         |
| 1900 MH2    |               | Conductivity: | 1.40     | 1.403    | 0.21         | ± 5         |
| 2450 MHz    | 22.30         | Permitivity:  | 39.20    | 39.33    | 0.00         | ± 5         |
| 2450 MHz    | 22.30         | Conductivity: | 1.80     | 1.77     | 1.67         | ± 5         |


| Body Simulatinf Liquid |               | Danamatan     | Toward | Manager  | D as intimation 10/1 | 1 1 14 150/ 1 |  |
|------------------------|---------------|---------------|--------|----------|----------------------|---------------|--|
| Frequency              | Temp.<br>[°C] | Parameters    | Target | Measured | Deviation[%]         | Limited[%]    |  |
| 835 MHz                | 22.30         | Permitivity:  | 55.20  | 55.50    | 0.54                 | ± 5           |  |
| 033 IVITZ              | 22.50         | Conductivity: | 0.97   | 0.96     | -1.03                | ± 5           |  |
| 1900 MHz               | 22.30         | Permitivity:  | 53.30  | 51.68    | -3.04                | ± 5           |  |
|                        |               | Conductivity: | 1.52   | 1.51     | 0.66                 | ± 5           |  |
| 0450 144               | 22.30         | Permitivity:  | 52.70  | 54.19    | 1.67                 | ± 5           |  |
| 2450 MHz               | 22.30         | Conductivity: | 1.95   | 1.92     | 1.54                 | ±5            |  |

# 5. SAR System Validation

#### 5.1 Validation System

Each SATIMO system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the SATIMO software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder.

The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.



#### 5.2 Validation Result

Comparing to the original SAR value provided by SATIMO, the validation data should be within its specification of 10 %.

| Freq.(MHz) | Power(mW) | Tested<br>Value<br>(W/Kg) | Normalized<br>SAR<br>(W/kg) | Target(W/Kg) | Tolerance(%) | Date       |
|------------|-----------|---------------------------|-----------------------------|--------------|--------------|------------|
| 835 Head   | 100       | 0.937                     | 9.37                        | 9.71         | -3.50        | 2014-10-13 |
| 835 Body   | 100       | 0.968                     | 9.68                        | 10.19        | -5.00        | 2014-10-13 |
| 1900 Head  | 100       | 3.840                     | 38.4                        | 40.01        | -4.02        | 2014-10-13 |
| 1900 Body  | 100       | 4.142                     | 41.42                       | 40.32        | 2.73         | 2014-10-13 |
| 2450 Head  | 100       | 5.393                     | 53.93                       | 53.96        | -0.06        | 2014-10-13 |
| 2450 Body  | 100       | 5.123                     | 51.23                       | 52.37        | -2.18        | 2014-10-13 |

#### Note:

1. The tolerance limit of System validation ±10%.

#### 6. SAR Evaluation Procedures

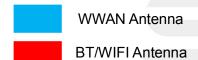
The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm \* 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 \* 30 \* 30 mm or 32 \* 32 \* 32 mm is assessed by measuring 5 or 8 \* 5 or 8\*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

#### Area Scan& Zoom Scan

First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below

When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for


other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

# 7. EUT Antenna Location Sketch

Top



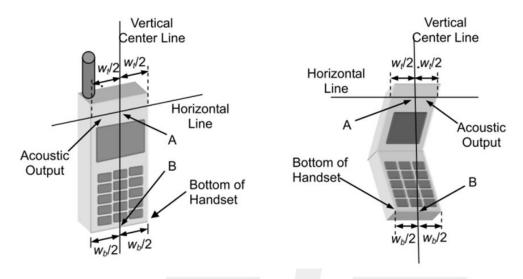
Bottom



Right

The simultaneous transmission possibilities are listed as below:

| Simultaneous TX | Configuration    | Head | Body |
|-----------------|------------------|------|------|
| Combination     |                  |      |      |
| 1               | GSM 850+WIFI/BT  | Yes  | Yes  |
| 2               | GSM 1900+WIFI/BT | Yes  | Yes  |
| 3               | WCDMA II+WIFI/BT | Yes  | Yes  |
| 4               | WCDMA V+WIFI/BT  | Yes  | Yes  |


Note: WLAN and BT share the same antenna, and cannot transmit simultaneously

#### 8. EUT Test Position

This EUT was tested in Right Cheek, Right Titled, Left Cheek, Left Titled, Front Face and Rear Face.

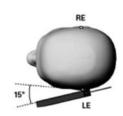
#### 8.1 Define Two Imaginary Lines On The Handset

- (1)The vertical centerline passes through two points on the front side of the handset the midpoint of the width wt of the handset at the level of the acoustic output, and the midpoint of the width wb of the handset.
- (2)The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output. The horizontal line is also tangential to the face of the handset at point A.
- (3)The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets.



#### Cheek Position

- 1)To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the ear and mouth reference point (M: Mouth, RE: Right Ear, and LE: Left Ear) and align the center of the ear piece with the line RE-LE.
- 2)To move the device towards the phantom with the ear piece aligned with the the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost




#### Title Position

- (1)To position the device in the "cheek" position described above.
- (2) While maintaining the device in the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until with the ear is lost.







- Body-worn Position Conditions
  (1) To position the EUT parallel to the phantom surface.
  (2) To adjust the EUT parallel to the flat phantom.
  (3) To adjust the distance between the EUT surface and the flat phantom to 5mm.



# 9. Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2003. This uncertainty represents an expanded uncertainty expressed at

approximately the 95% confidence level using a coverage factor of k=2.

| NO                  | Source                                          | Tol(%) | Prob. Dist. | Div. | ci<br>(1g)            | ci<br>(10g)           | 1gUi | 10gUi | Veff |  |
|---------------------|-------------------------------------------------|--------|-------------|------|-----------------------|-----------------------|------|-------|------|--|
| Measurement System□ |                                                 |        |             |      |                       |                       |      |       |      |  |
| 1                   | Probe calibration                               | 5.8    | N           | 1    | 1                     | 1                     | 5.8  | 5.8   | ∞    |  |
| 2                   | Axial isotropy                                  | 3.5    | R           | √3   | (1-cp) <sup>1/2</sup> | (1-cp) <sup>1/2</sup> | 1.43 | 1.43  | 80   |  |
| 3                   | Hemispherical isotropy                          | 5.9    | R           | √3   | √Cp                   | √Cp                   | 2.41 | 2.41  | 8    |  |
| 4                   | Boundary effect                                 | 1.0    | R           | √3   | 1                     | 1                     | 0.58 | 0.58  | 8    |  |
| 5                   | Linearity                                       | 4.7    | R           | √3   | 1                     | 1                     | 2.71 | 2.71  | 8    |  |
| 6                   | System Detection limits                         | 1.0    | R           | √3   | 1                     | 1                     | 0.58 | 0.58  | 80   |  |
| 7                   | Readout<br>electronics                          | 0.5    | N           | 1    | 1                     | 1                     | 0.50 | 0.50  | 8    |  |
| 8                   | Response time                                   | 0      | R           | √3   | 1                     | 1                     | 0    | 0     | 80   |  |
| 9                   | Integration time                                | 1.4    | R           | √3   | 1                     | 1                     | 0.81 | 0.81  | 8    |  |
| 10                  | Ambient noise                                   | 3.0    | R           | √3   | 1                     | 1                     | 1.73 | 1.73  | 80   |  |
| 11                  | Ambient reflections                             | 3.0    | R           | √3   | 1                     | 1                     | 1.73 | 1.73  | 8    |  |
| 12                  | Probe positioner mech. restrictions             | 1.4    | R           | √3   | 1                     | 1                     | 0.81 | 0.81  | 8    |  |
| 13                  | Probe positioning with respect to phantom shell | 1.4    | R           | √3   | 1                     | 1                     | 0.81 | 0.81  | 8    |  |
| 14                  | Max.SAR<br>evaluation                           | 1.0    | R           | √3   | 1                     | 1                     | 0.6  | 0.6   | 8    |  |
| Test s              | ample related                                   |        |             |      |                       |                       |      |       |      |  |
| 15                  | Device positioning                              | 2.6    | N           | 1    | 1                     | 1                     | 2.6  | 2.6   | 11   |  |

|       |                                         |     |                                                         |    |      |      |        |        | = - |
|-------|-----------------------------------------|-----|---------------------------------------------------------|----|------|------|--------|--------|-----|
| 16    | Device holder                           | 3   | N                                                       | 1  | 1    | 1    | 3.0    | 3.0    | 7   |
| 17    | Drift of output power                   | 5.0 | R                                                       | √3 | 1    | 1    | 2.89   | 2.89   | ∞   |
| Phaní | tom and set-up                          |     |                                                         |    |      |      |        |        |     |
| 18    | Phantom<br>uncertainty                  | 4.0 | R                                                       | √3 | 1    | 1    | 2.31   | 2.31   | ∞   |
| 19    | Liquid conductivity (target)            | 2.5 | N                                                       | 1  | 0.78 | 0.71 | 1.95   | 1.78   | 5   |
| 20    | Liquid conductivity (meas)              | 4   | N                                                       | 1  | 0.23 | 0.26 | 0.92   | 1.04   | 5   |
| 21    | Liquid Permittivity (target)            | 2.5 | N                                                       | 1  | 0.78 | 0.71 | 1.95   | 1.78   | ∞   |
| 22    | Liquid Permittivity (meas)              | 5.0 | N                                                       | 1  | 0.23 | 0.26 | 1.15   | 1.30   | ∞   |
| Comb  | pined standard                          |     | RSS $U_{C} = \sqrt{\sum_{i=1}^{n} C_{i}^{2} U_{i}^{2}}$ |    |      |      | 10.63% | 10.54% |     |
|       | Expanded uncertainty $U = k \ U_C$ ,k=2 |     |                                                         |    |      |      | 21.26% | 21.08% |     |

# 10. Conducted Power Measurement

### **Test Result:**

| Burst Average Power (dBm) |       |         |       |        |         |       |  |  |  |
|---------------------------|-------|---------|-------|--------|---------|-------|--|--|--|
| Band                      |       | GSM 835 |       |        | PCS1900 |       |  |  |  |
| Channel                   | 128   | 190     | 251   | 512    | 661     | 810   |  |  |  |
| Frequency (MHz)           | 824.2 | 836.6   | 848.8 | 1850.2 | 1880.0  | 1909  |  |  |  |
| GSM (GMSK, 1-Slot)        | 31.56 | 31.72   | 31.63 | 29.55  | 29.71   | 29.69 |  |  |  |
| GPRS (GSMK, 1-Slot)       | 31.33 | 31.24   | 31.34 | 28.62  | 28.79   | 28.79 |  |  |  |
| GPRS (GSMK, 2-Slot)       | 27.23 | 26.12   | 27.35 | 25.29  | 25.75   | 25.46 |  |  |  |
| GPRS (GSMK, 3-Slot)       | 25.37 | 25.53   | 25.7  | 24.53  | 24.79   | 24.78 |  |  |  |
| GPRS (GSMK, 4-Slot)       | 24.46 | 24.65   | 24.49 | 23.27  | 23.1    | 23.12 |  |  |  |
| EGPRS (GMSK, 1-Slot)      | 31.19 | 31.17   | 31.11 | 29.37  | 29.49   | 29.55 |  |  |  |
| EGPRS (GMSK, 2-Slot)      | 28.43 | 28.25   | 28.17 | 26.41  | 26.54   | 26.62 |  |  |  |
| EGPRS (GMSK, 3-Slot)      | 26.21 | 25.93   | 25.91 | 24.75  | 24.55   | 24.42 |  |  |  |
| EGPRS (GMSK, 4-Slot)      | 24.28 | 24.48   | 24.49 | 23.26  | 23.31   | 23.42 |  |  |  |

| Source Based time Average Power (dBm) |       |         |       |        |         |        |  |  |  |
|---------------------------------------|-------|---------|-------|--------|---------|--------|--|--|--|
| Band                                  |       | GSM 835 |       |        | PCS1900 |        |  |  |  |
| Channel                               | 128   | 190     | 251   | 512    | 661     | 810    |  |  |  |
| Frequency (MHz)                       | 824.2 | 836.6   | 848.8 | 1850.2 | 1880.0  | 1909.8 |  |  |  |
| GSM (GMSK, 1-Slot)                    | 22.56 | 22.72   | 22.63 | 20.55  | 20.71   | 20.69  |  |  |  |
| GPRS (GSMK, 1-Slot)                   | 22.33 | 22.24   | 22.34 | 19.62  | 19.79   | 19.79  |  |  |  |
| GPRS (GSMK, 2-Slot)                   | 21.23 | 20.12   | 21.35 | 19.29  | 19.75   | 19.46  |  |  |  |
| GPRS (GSMK, 3-Slot)                   | 21.11 | 21.27   | 21.44 | 20.27  | 20.53   | 20.52  |  |  |  |
| GPRS (GSMK, 4-Slot)                   | 21.46 | 21.65   | 21.49 | 20.27  | 20.1    | 20.12  |  |  |  |
| EGPRS (GMSK, 1-Slot)                  | 22.19 | 22.17   | 22.11 | 20.37  | 20.49   | 20.55  |  |  |  |
| EGPRS (GMSK, 2-Slot)                  | 22.43 | 22.25   | 22.17 | 20.41  | 20.54   | 20.62  |  |  |  |
| EGPRS (GMSK, 3-Slot)                  | 21.95 | 21.67   | 21.65 | 20.49  | 20.29   | 20.16  |  |  |  |
| EGPRS (GMSK, 4-Slot)                  | 21.28 | 21.48   | 21.49 | 20.26  | 20.31   | 20.42  |  |  |  |

Note 1:

The Frame Power (Source-based time-averaged Power) is scaled the maximum burst average power based on time slots. The calculated methods are show as following:

Frame Power = Max burst power (1 Up Slot) – 9 dB Frame Power = Max burst power (2 Up Slot) – 6 dB Frame Power = Max burst power (3 Up Slot) – 4.26 dB

Frame Power = Max burst power (4 Up Slot) – 3 dB

#### **WCDMA**

|         | band    | V     | VCDMA 85 | 50    | WCDMA 1900 |       |       |  |
|---------|---------|-------|----------|-------|------------|-------|-------|--|
| Item    | ARFCN   | 4132  | 4182     | 4233  | 9262       | 9400  | 9538  |  |
|         | subtest |       | dBm      |       |            | dBm   |       |  |
| RMC     | non     | 22.58 | 22.71    | 22.67 | 22.76      | 22.94 | 22.89 |  |
|         | 1       | 22.23 | 22.37    | 22.34 | 22.56      | 22.47 | 22.43 |  |
| HSDPA   | 2       | 21.59 | 21.78    | 21.77 | 20.34      | 20.52 | 20.49 |  |
| 1105171 | 3       | 20.49 | 20.63    | 20.69 | 19.27      | 19.48 | 19.39 |  |
|         | 4       | 20.50 | 20.71    | 20.68 | 18.84      | 19.04 | 18.99 |  |
|         | 1       | 22.17 | 22.41    | 22.35 | 20.49      | 20.70 | 20.67 |  |
|         | 2       | 20.41 | 20.57    | 20.54 | 21.29      | 21.50 | 21.40 |  |
| HSUPA   | 3       | 20.48 | 20.64    | 20.68 | 19.40      | 19.52 | 19.53 |  |
|         | 4       | 22.15 | 22.32    | 22.33 | 21.21      | 21.35 | 21.27 |  |
|         | 5       | 20.28 | 20.42    | 20.41 | 19.32      | 19.51 | 19.49 |  |

According to 3GPP 25.101 sub-clause 6.2.2, the maximum output power is allowed to be reduced by following the table.

Table 6.1aA: UE maximum output power with HS-DPCCH and E-DCH

| UE Transmit Channel Configuration                                 | CM(db)    | MPR(db)     |
|-------------------------------------------------------------------|-----------|-------------|
| For all combinations of ,DPDCH,DPCCH HS-DPDCH,E-DPDCH and E-DPCCH | 0≤ CM≤3.5 | MAX(CM-1,0) |

Note: CM=1 for  $\beta$  c/ $\beta$  d=12/15,  $\beta$  hs/  $\beta$  c=24/15.For all other combinations of DPDCH, DPCCH, HS-DPCCH,

E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

The device supports MPR to solve linearity issues (ACLR or SEM) due to the higher peak-to average ratios (PAR) of the HSUPA signal. This prevents saturating the full range of the TX DAC inside of device and provides a reduced power output to the RF transceiver chip according to the Cubic Metric (a function of the combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH).

When E-DPDCH channels are present the beta gains on those channels are reduced firsts to try to get the power under the allowed limit. If the beta gains are lowered as far as possible, then a hard limiting is applied at the maximum allowed level.

The SW currently recalculates the cubic metric every time the beta gains on the E-DPDCH are reduced. The cubic metric will likely get lower each time this is done. However, there is no reported reduction of maximum output power in the HSUPA mode since the device also provides a compensation for the power back-off by increasing the gain of TX\_AGC in the transceiver (PA) device.

The end effect is that the DUT output power is identical to the case where there is no MPR in the device.

# WIFI

| Mode              | Channel<br>Number | Frequency<br>(MHz) | Average Power (dBm) |
|-------------------|-------------------|--------------------|---------------------|
| 000 441           | 1                 | 2412               | 11.61               |
| 802.11b<br>(DSSS) | 6                 | 2441               | 11.44               |
| (2000)            | 11                | 2462               | 11.88               |
| 202.44            | 1                 | 2412               | 9.80                |
| 802.11g<br>(OFDM) | 6                 | 2441               | 10.41               |
| (OI DIVI)         | 11                | 2462               | 10.01               |
| 000.44            | 1                 | 2412               | 8.87                |
| 802.11g<br>(OFDM) | 6                 | 2441               | 9.28                |
| (OI DIVI)         | 11                | 2462               | 9.40                |
|                   | 3                 | 2422               | 6.71                |
| 802.11n40         | 6                 | 2437               | 6.92                |
|                   | 9                 | 2452               | 7.28                |

# Bluetooth (2.4Gband)

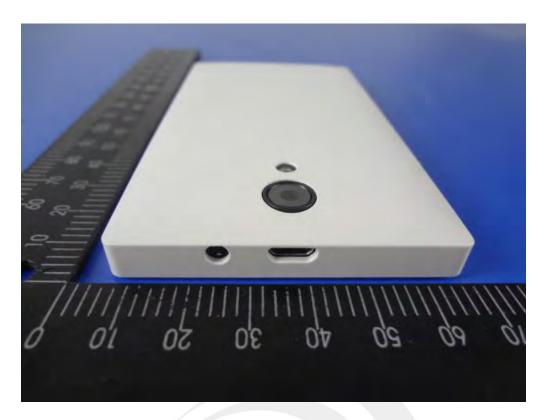
| Mode             | Channel<br>Number | Frequency<br>(MHz) | Maximum Conducted<br>Peak Output Power<br>(dBm) |
|------------------|-------------------|--------------------|-------------------------------------------------|
|                  | 0                 | 2402               | -1.61                                           |
| GFSK(1M)         | 39                | 2441               | -1.59                                           |
|                  | 78                | 2480               | -1.19                                           |
|                  | 0                 | 2402               | -2.83                                           |
| π/4-DQPSK(2Mbps) | 39                | 2441               | -2.59                                           |
|                  | 78                | 2480               | -2.04                                           |
|                  | 0                 | 2402               | -3.62                                           |
| 8-DPSK(3Mbps)    | 39                | 2441               | -3.31                                           |
|                  | 78                | 2480               | -2.94                                           |

### Turn up

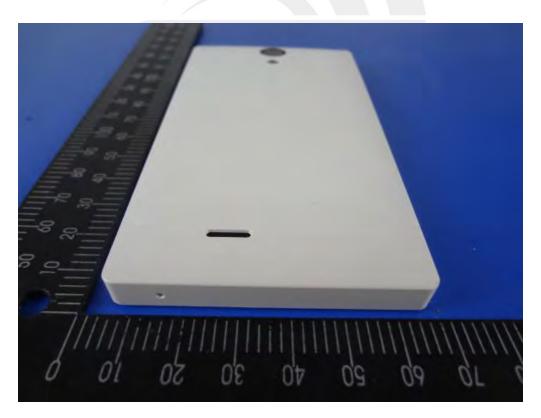
| urri up       |                                                    |
|---------------|----------------------------------------------------|
| Mode          | The Tune-up Maximum Power (Customer Declared)(dBm) |
|               | Decialed/(dbill)                                   |
| GSM 850       | 31±1dBm                                            |
| GPRS 850-1TS  | 31±1dBm                                            |
| GPRS 850-2TS  | 27±1dBm                                            |
| GPRS 850-3TS  | 25±1dBm                                            |
| GPRS 850-4TS  | 24±1dBm                                            |
| EGPRS 850-1TS | 31±1dBm                                            |
| EGPRS 850-2TS | 28±1dBm                                            |
| EGPRS 850-3TS | 26±1dBm                                            |
| EGPRS 850-4TS | 24±1dBm                                            |
| GSM 1900      | 29±1dBm                                            |


| GPRS 1900-1TS       | 28±1dBm |
|---------------------|---------|
| GPRS 1900-2TS       | 25±1dBm |
| GPRS 1900-3TS       | 24±1dBm |
| GPRS 1900-4TS       | 23±1dBm |
| EGPRS 1900-1TS      | 29±1dBm |
| EGPRS 1900-2TS      | 26±1dBm |
| EGPRS 1900-3TS      | 24±1dBm |
| EGPRS 1900-4TS      | 23±1dBm |
| WCDMA Band V        | 22±1dBm |
| HSDPA Band V Sub-1  | 22±1dBm |
| HSDPA Band V Sub-2  | 21±1dBm |
| HSDPA Band V Sub-3  | 20±1dBm |
| HSDPA Band V Sub-4  | 20±1dBm |
| HSUPA Band V Sub-1  | 22±1dBm |
| HSUPA Band V Sub-2  | 20±1dBm |
| HSUPA Band V Sub-3  | 20±1dBm |
| HSUPA Band V Sub-4  | 22±1dBm |
| HSUPA Band V Sub-5  | 20±1dBm |
| WCDMA Band II       | 22±1dBm |
| HSDPA Band II Sub-1 | 22±1dBm |
| HSDPA Band II Sub-2 | 20±1dBm |
| HSDPA Band II Sub-3 | 19±1dBm |
| HSDPA Band II Sub-4 | 18±1dBm |
| HSUPA Band II Sub-1 | 20±1dBm |
| HSUPA Band II Sub-2 | 21±1dBm |
| HSUPA Band II Sub-3 | 19±1dBm |
| HSUPA Band II Sub-4 | 21±1dBm |
| HSUPA Band II Sub-5 | 19±1dBm |
| IEEE 802.11b        | 11±1dBm |
| IEEE 802.11g        | 10±1dBm |
| IEEE 802.11n20      | 9±1dBm  |
| IEEE 802.11n40      | 7±1dBm  |
| Bluetooth 1Mbps     | -2±1dBm |
| Bluetooth 2Mbps     | -3±1dBm |
| Bluetooth 3Mbps     | -4±1dBm |

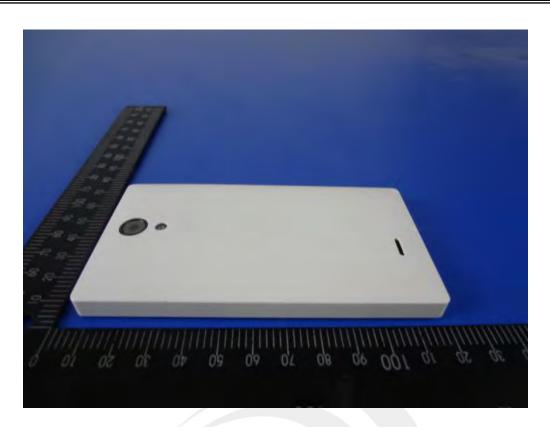
# 11. Test Photos And Results


# 11.1 EUT Photos

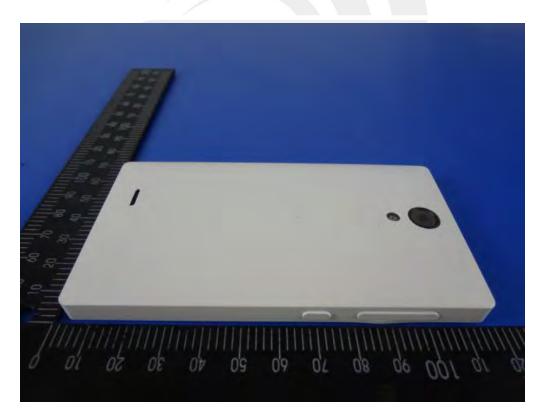



Front side



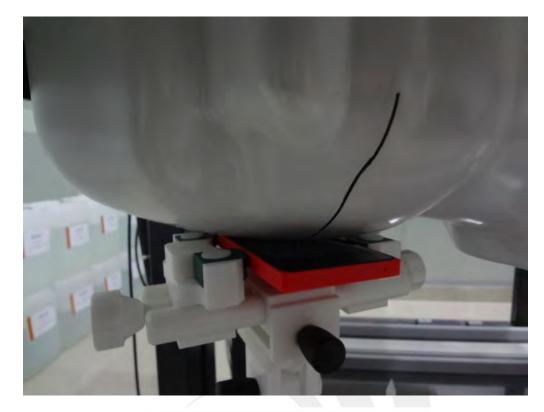

Back side



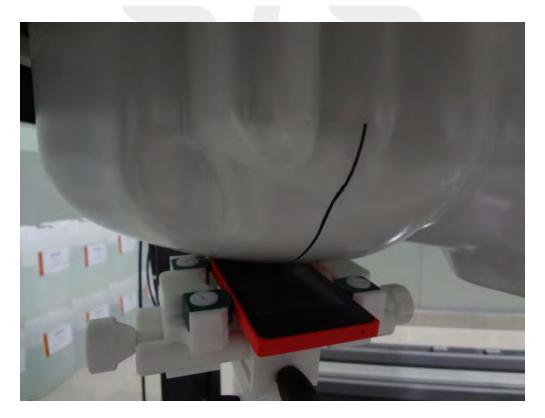

Top side



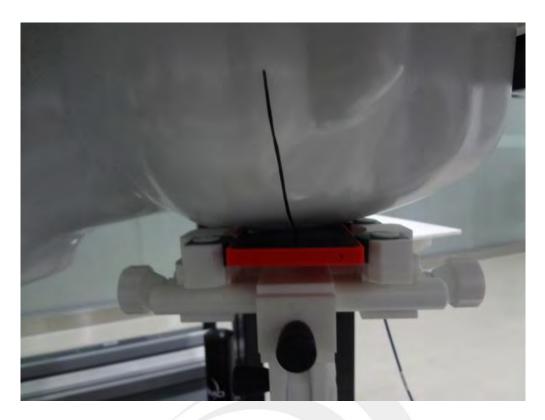
Bottom side




Left side



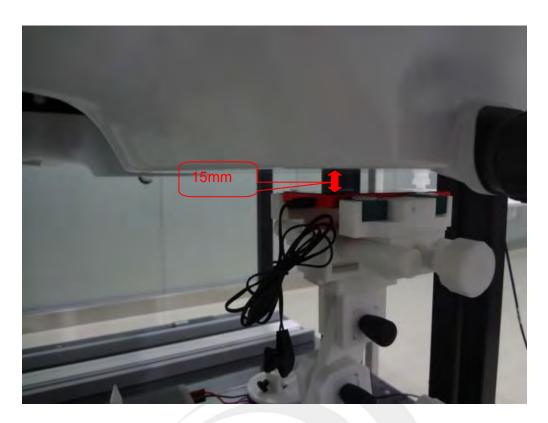

Right side


# 11.2 Setup Photos

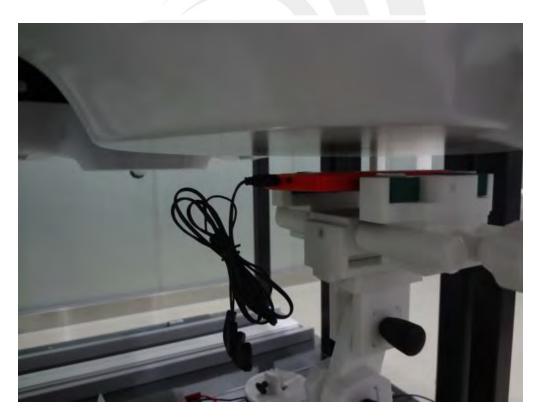



Right Touch

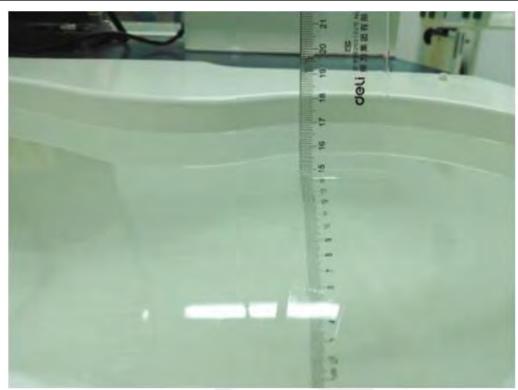



Right Tilt




Left Touch




Left Tilt



Front side



Back side



Liquid depth (15 mm)

# 12. SAR Result Summary

| Test Case of Head |                      |       |         | Result 1g | Power    | Max.Turn-up | Meas.Output | Scaled<br>SAR |
|-------------------|----------------------|-------|---------|-----------|----------|-------------|-------------|---------------|
| Band              | Test Position        | Mode  | Channel | (W/Kg)    | Drift(%) | Power(dBm)  | Power(dBm)  | (W/Kg)        |
|                   | Right Touch<br>Cheek | Voice | CH 190  | 0.381     | -2.17    | 32          | 31.72       | 0.406         |
|                   | Right Tilt           | Voice | CH 190  | 0.269     | -1.77    | 32          | 31.72       | 0.287         |
| GSM 835           | Left Touch<br>Cheek  | Voice | CH 190  | 0.349     | 1.20     | 32          | 31.72       | 0.372         |
| GOIVI GGG         | Left Tilt            | Voice | CH 190  | 0.339     | -2.30    | 32          | 31.72       | 0.361         |
|                   | Body Front           | Voice | CH 190  | 0.535     | 0.76     | 32          | 31.72       | 0.570         |
|                   | Body back            | Voice | CH 190  | 0.543     | -0.95    | 32          | 31.72       | 0.579         |

Note:

The worst mode is voice mode.

Two card slot can't work at the same time.

The test separation of all above table is 15mm.

| Test Case of Head |                      |       |         | Result 1g | Power    | Max.Turn-up | Meas.Output | Scaled<br>SAR |
|-------------------|----------------------|-------|---------|-----------|----------|-------------|-------------|---------------|
| Band              | Test Position        | Mode  | Channel | (W/Kg)    | Drift(%) | Power(dBm)  | Power(dBm)  | (W/Kg)        |
|                   | Right Touch<br>Cheek | Voice | CH 661  | 0.230     | 0.24     | 30          | 29.71       | 0.246         |
|                   | Right Tilt           | Voice | CH 661  | 0.177     | -0.53    | 30          | 29.71       | 0.189         |
| GSM 1900          | Left Touch<br>Cheek  | Voice | CH 661  | 0.253     | -1.04    | 30          | 29.71       | 0.271         |
| GOIVI 1000        | Left Tilt            | Voice | CH 661  | 0.110     | 0.91     | 30          | 29.71       | 0.118         |
|                   | Body Front           | Voice | CH 661  | 0.516     | 1.78     | 30          | 29.71       | 0.552         |
|                   | Body back            | Voice | CH 661  | 0.175     | 4.06     | 30          | 29.71       | 0.187         |

#### Note:

The worst mode is voice mode.

Two card slot can't work at the same time.

The test separation of all above table is 15mm.

|                         | Result 1g            | Power | Max.Turn-up | Meas.Output | Scaled<br>SAR |            |            |        |
|-------------------------|----------------------|-------|-------------|-------------|---------------|------------|------------|--------|
| Band                    | Test Position        | Mode  | Channel     | (W/Kg)      | Drift(%)      | Power(dBm) | Power(dBm) | (W/Kg) |
|                         | Right Touch<br>Cheek | RMC   | CH<br>9400  | 0.795       | -0.49         | 23         | 22.94      | 0.806  |
|                         | Right Tilt           | RMC   | CH<br>9400  | 0.064       | -0.55         | 23         | 22.94      | 0.065  |
| WCDMA II<br>RMC12.2Kbps | Left Touch<br>Cheek  | RMC   | CH<br>9400  | 0.780       | 0.56          | 23         | 22.94      | 0.791  |
| mode                    | Left Tilt            | RMC   | CH<br>9400  | 0.242       | -1.01         | 23         | 22.94      | 0.245  |
|                         | Body Front           | RMC   | CH<br>9400  | 0.356       | 1.39          | 23         | 22.94      | 0.361  |
|                         | Body back            | RMC   | CH<br>9400  | 0.718       | -0.17         | 23         | 22.94      | 0.728  |

Note:

The worst mode is voice mode.

Two card slot can't work at the same time.

The test separation of all above table is 15mm.

| Test Case of Hea       | ad                   |      |         |                     |                |                           |                           | Scaled        |
|------------------------|----------------------|------|---------|---------------------|----------------|---------------------------|---------------------------|---------------|
| Band                   | Test<br>Position     | Mode | Channel | Result 1g<br>(W/Kg) | Power<br>Drift | Max.Turn-up<br>Power(dBm) | Meas.Output<br>Power(dBm) | SAR<br>(W/Kg) |
|                        | Right Touch<br>Cheek | RMC  | CH 4182 | 0.525               | 1.11           | 23                        | 22.71                     | 0.555         |
|                        | Right Tilt           | RMC  | CH 4182 | 0.403               | -0.11          | 23                        | 22.71                     | 0.426         |
| WCDMA V<br>RMC12.2Kbps | Left Touch<br>Cheek  | RMC  | CH 4182 | 0.492               | -0.12          | 23                        | 22.71                     | 0.520         |
| mode                   | Left Tilt            | RMC  | CH 4182 | 0.479               | -0.38          | 23                        | 22.71                     | 0.507         |
|                        | Body Front           | RMC  | CH 4182 | 0.623               | -0.44          | 23                        | 22.71                     | 0.659         |
|                        | Body back            | RMC  | CH 4182 | 0.422               | -0.52          | 23                        | 22.71                     | 0.446         |

Note:

The worst mode is voice mode.

Two card slot can't work at the same time.

The test separation of all above table is 15mm.

#### WIFI

| Test Case of Head                       |                      |         |         | Result g | Power | Max.Turn-up | Meas.Output | Scaled        |
|-----------------------------------------|----------------------|---------|---------|----------|-------|-------------|-------------|---------------|
| Band                                    | Test Position        | Mode    | Channel | (W/Kg)   | Drift | Power(dBm)  | Power(dBm)  | SAR<br>(W/Kg) |
|                                         | Right Touch<br>Cheek | 802.11b | CH 11   | 0.102    | -0.43 | 12          | 11.88       | 0.105         |
|                                         | Right Tilt           | 802.11b | CH 11   | 0.107    | 2.91  | 12          | 11.88       | 0.110         |
| WIFI                                    | Left Touch<br>Cheek  | 802.11b | CH 11   | 0.151    | -1.23 | 12          | 11.88       | 0.156         |
| *************************************** | Left Tilt            | 802.11b | CH 11   | 0.183    | -0.19 | 12          | 11.88       | 0.189         |
|                                         | Body Front           | 802.11b | CH 11   | 0.156    | -0.19 | 12          | 11.88       | 0.161         |
|                                         | Body back            | 802.11b | CH 11   | 0.114    | 1.94  | 12          | 11.88       | 0.118         |

Note:

The test separation of all above table is 15mm.

Two Sim card slot can't work at the same time.

#### Simultaneous Multi-band Transmission Evaluation:

Application Simultaneous Transmission information:

| Position | Simultaneous state       |  |  |  |
|----------|--------------------------|--|--|--|
|          | 1. GSM Voice + WIFI      |  |  |  |
|          | 2. WCDMA+ WIFI           |  |  |  |
| Head     | 3. GSM Voice + Bluetooth |  |  |  |
|          | 4. WCDMA+ Bluetooth      |  |  |  |
|          | 1. GSM Voice + WIFI      |  |  |  |
|          | 2. WCDMA + WIFI          |  |  |  |
| Body     | 3. GSM Voice + Bluetooth |  |  |  |
|          | 4. WCDMA + Bluetooth     |  |  |  |

#### NOTE:

1. For simultaneous transmission at head and body exposure position, 2transmitters simultaneous transmission was the worst state.

- 2. Based upon KDB 447498 D01 v05, BT SAR is excluded as below table.
- 3. If the test separation distance is <5mm, 5mm is used for excluded SAR calculation.
- 4. For minimum test separation distance  $\leq$  50mm,Bluetooth standalone SAR is excluded according to [(max. power of channel, including tune-up tolerance, mW)/ (min. test separation distance, mm)  $\cdot [\sqrt{f}]$  (GHz) /x]  $\leq$  3.0 for 1-g SAR and  $\leq$  7.5 for 10-g extremity SAR
- 5. The reported SAR summation is calculated based on the same configuration and test position.
- 6. KDB 447498 / 4.3.2 (2) when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:
- a) (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)]·[ $\sqrt{f}$  (GHz) /x] W/kg for test separation distances  $\leq 50$  mm; Where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR.

b) 0.4W/Kg for 1-g SAR and 1.0W/Kg for 10-g SAR, when the separation distance is >50mm.

|  | Estimated SAR |      |     | Tune up<br>wer | Antenna     | Frequency(GHz) | Stand alone<br>SAR(1g) |
|--|---------------|------|-----|----------------|-------------|----------------|------------------------|
|  |               |      | dBm | mW             | to user(mm) |                | [W/kg]                 |
|  |               | Head |     | 0.794          | 5           | 2480           | 0.033                  |
|  | ВТ            | Body | -1  |                | 15          | 2480           | 0.011                  |

| Simultaneous Mode | Position  | Mode      | Max. 1-g SAR<br>(W/kg) | 1-g Sum SAR<br>(W/kg) |  |
|-------------------|-----------|-----------|------------------------|-----------------------|--|
|                   |           | GSM Voice | 0.771                  | 0.96                  |  |
|                   | Head      | WIFI      | 0.189                  |                       |  |
| GSM Voice +WIFI   | Body-worn | GSM Voice | 0.579                  | 0.74                  |  |
|                   |           | WIFI      | 0.161                  | 0.74                  |  |
|                   |           | GSM Voice | 0.771                  | 0.004                 |  |
| CCM Vaine + DT    | Head      | Bluetooth | 0.033                  | 0.804                 |  |
| GSM Voice + BT    | Body-worn | GSM Voice | 0.579                  | 0.500                 |  |
|                   |           | Bluetooth | 0.011                  | 0.590                 |  |
| WORM PMO, WIEL    | 111       | WCDMA RMC | 0.806                  | 0.995                 |  |
|                   | Head      | WIFI      | 0.189                  |                       |  |
| WCDMA RMC+ WIFI   | Body-worn | WCDMA RMC | 0.728                  | 0.000                 |  |
|                   |           | WIFI      | 0.161                  | 0.889                 |  |
|                   |           | WCDMA RMC | 0.806                  | 0.000                 |  |
| MODAM DAMO : ST   | Head      | Bluetooth | 0.033                  | 0.839                 |  |
| WCDMA RMC + BT    | Dedume    | WCDMA RMC | 0.728                  | 0.739                 |  |
| A second          | Body-worn | Bluetooth | 0.011                  |                       |  |

Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna.

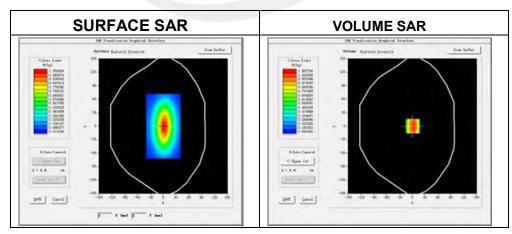
When the sum of SAR 1g of all simultaneously transmitting antennas in an operating mode and exposure condition combination is within the SAR limit (SAR 1g 1.6 W/kg), the simultaneous transmission SAR is not required. When the sum of SAR 1g is greater than the SAR limit (SAR 1g 1.6 W/kg), SAR test exclusion is determined by the SPLSR.

# 13. Equipment List

| NO.  | Instrument                            | Manufactur | Model              | S/N                      | Cal. Date   | Cal. Due Date |
|------|---------------------------------------|------------|--------------------|--------------------------|-------------|---------------|
| 110. | mod differe                           | er         | WOOG               |                          | Gai. Date   | Odi. Duc Date |
| 1    | 835MHz Dipole                         | SATIMO     | SID835             | SN 30/14                 | Sep.1, 2014 | Sep.1, 2015   |
|      |                                       |            |                    | DIP0G835-332             | •           |               |
| 2    | 1900MHz Dipole                        | SATIMO     | SID1900            | SN 30/14<br>DIP0G835-332 | Sep.1, 2014 | Sep.1, 2015   |
| 3    | 2450 MHz Dipole                       | SATIMO     | SID 2450           | SN 30/14<br>DIP2G450-335 | Sep.1, 2014 | Sep.1, 2015   |
|      | E Field Broke                         | SATIMO SS  | 0055               | SN 17/14                 | Sep.1, 2014 | Sep.1, 2015   |
| 3    | E-Field Probe                         |            | SSE5               | EP221                    |             |               |
| 4    | Antenna                               | SATIMO     | ANTA3              | SN 17/13<br>ZNTA45       | Sep.1, 2014 | Sep.1, 2015   |
| 5    | Phantom1                              | SATIMO     | SAM                | SN 32/14<br>SAM115       | Sep.1, 2014 | Sep.1, 2015   |
| 6    | Phantom2                              | SATIMO     | SAM                | SN 32/14<br>SAM116       | Sep.1, 2014 | Sep.1, 2015   |
| 7    | Dielectric Probe<br>Kit               | Agilent    | E5071C             | MY461076<br>15           | Sep.1, 2014 | Sep.1, 2015   |
| 8    | MultiMeter                            | Keithley   | MultiMeter<br>2000 | 4050073                  | Sep.1, 2014 | Sep.1, 2015   |
| 9    | Signal Generator                      | R&S        | SMF100A            | 1167.0000k02/<br>104260  | Sep.1, 2014 | Sep.1, 2015   |
| 10   | Power Meter                           | Agilent    | 5738A              | 11290                    | Sep.1, 2014 | Sep.1, 2015   |
| 11   | Power Sensor                          | R&S        | NRP-Z21            | 103971                   | Sep.1, 2014 | Sep.1, 2015   |
| 12   | Power Amplifier                       | SATIMO     | 6552B              | 22374                    | Sep.1, 2014 | Sep.1, 2015   |
| 13   | Wireless<br>Communication<br>Test Set | Agilent    | 8960-E5515C        | MY50260493               | Sep.1, 2014 | Sep.1, 2015   |
| 14   | Network Analyzer                      | RS         | 5071C              | EMY46103472              | Sep.1, 2014 | Sep.1, 2015   |

# **Appendix A. System Validation Plots**

### **System Performance Check Data(835MHz Head)**


Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.10.13

#### Experimental conditions.

| Phantom                           | Validation plane |
|-----------------------------------|------------------|
| Device Position                   | -                |
| Band                              | 835MHz           |
| Channels                          | -                |
| Signal                            | CW               |
| Frequency (MHz)                   | 835MHz           |
| Relative permittivity (real part) | 41.27            |
| Relative permittivity             | 18.72            |
| Conductivity (S/m)                | 0.91             |
| Power drift (%)                   | 0.45             |
| Ambient Temperature:              | 22.7°C           |
| Liquid Temperature:               | 22.3°C           |
| ConvF:                            | 4.83             |
| Crest factor:                     | 1:1              |



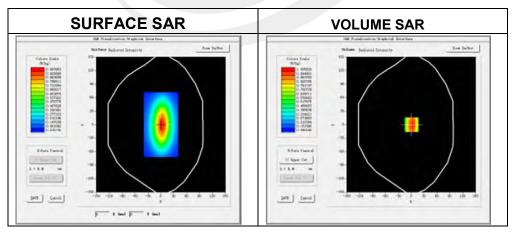
Maximum location: X=1.00, Y=0.00

SAR Peak: 1.46 W/kg

| SAR 10g (W/Kg) | 0.608155 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.93716  |

# Report No.: STS1410012H01 **Z Axis Scan** Z (mm) 0 19 24 4 9 14 29 SAR(W/Kg) 0.97891 0.66265 0.5042 0.3512 1.3472 0.2505 0.11794 1.2-0.02.55.07.5 12.5 17.5 22.5 27.5 32.5 40.0 Z (mm)

## **System Performance Check Data(835MHz Body)**

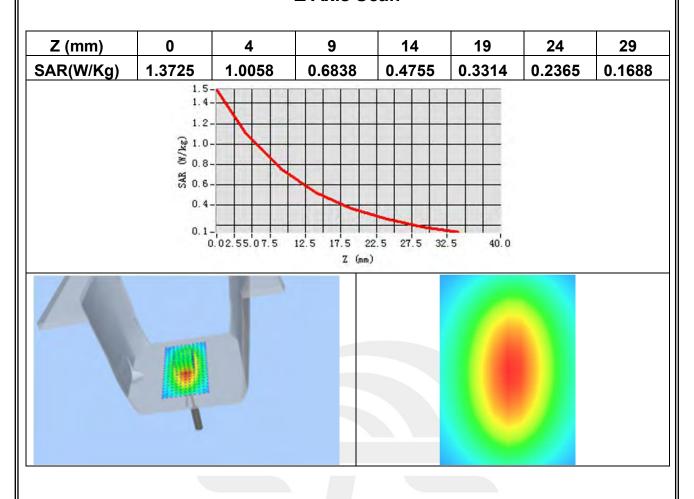

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.10.13

#### Experimental conditions.

| Probe                             |                  |
|-----------------------------------|------------------|
| Phantom                           | Validation plane |
| Device Position                   | -                |
| Band                              | 835MHz           |
| Channels                          | -                |
| Signal                            | CW               |
| Frequency (MHz)                   | 835MHz           |
| Relative permittivity (real part) | 55.50            |
| Relative permittivity             | 21.408187        |
| Conductivity (S/m)                | 0.96             |
| Power drift (%)                   | 0.090000         |
| Ambient Temperature:              | 22.7°C           |
| Liquid Temperature:               | 22.3°C           |
| ConvF:                            | 5.02             |
| Crest factor:                     | 1:1              |




Maximum location: X=1.00, Y=0.00

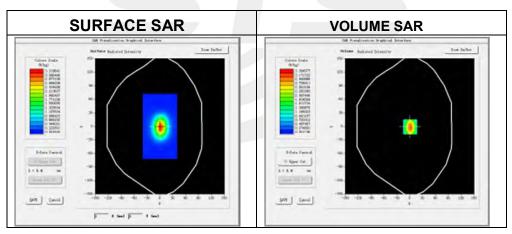
SAR Peak: 1.48 W/kg

| SAR 10g (W/Kg) | 0.693221 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.967939 |

## **Z Axis Scan**



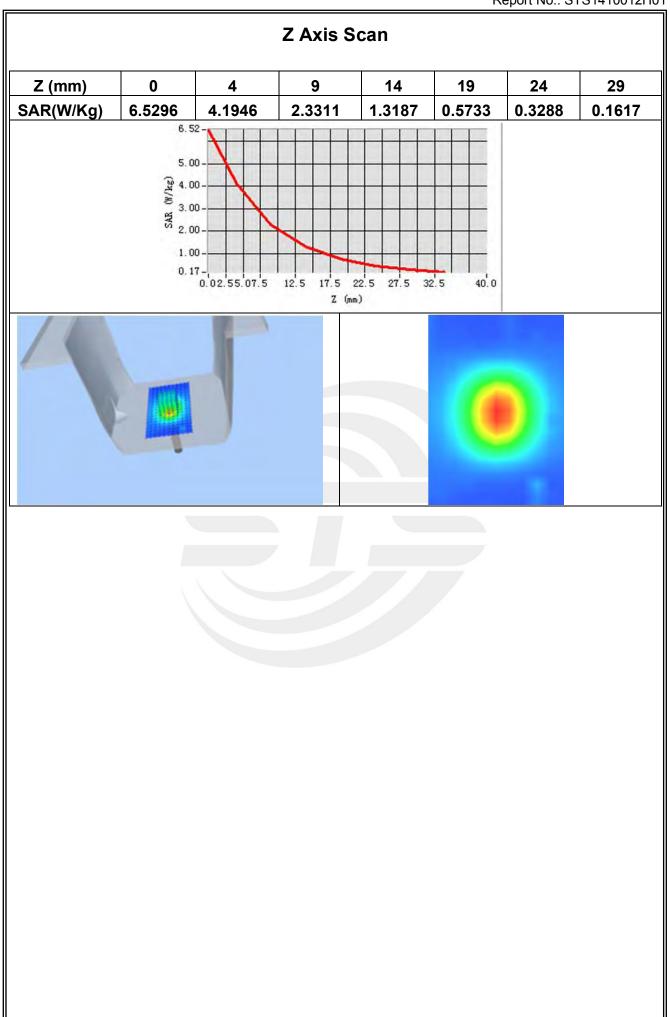
### System Performance Check Data(1900MHz Head)


Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.10.13

#### Experimental conditions.


| Phantom                           | Validation plane |
|-----------------------------------|------------------|
| Device Position                   | -                |
| Band                              | 1900MHz          |
| Channels                          | -                |
| Signal                            | CW               |
| Frequency (MHz)                   | 1900MHz          |
| Relative permittivity (real part) | 39.57            |
| Relative permittivity             | 13.26            |
| Conductivity (S/m)                | 1.40             |
| Power drift (%)                   | 0.47             |
| Ambient Temperature:              | 22.7°C           |
| Liquid Temperature:               | 22.3°C           |
| Probe                             | SN 17/14 EP221   |
| ConvF:                            | 4.71             |
| Crest factor:                     | 1:1              |



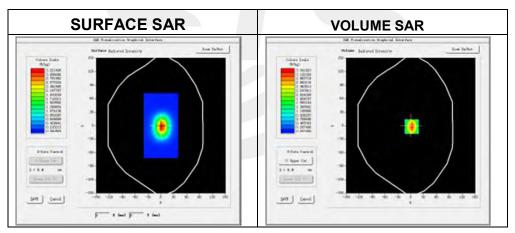
Maximum location: X=1.00, Y=0.00

SAR Peak: 5.39 W/kg

| SAR 10g (W/Kg) | 1.967525 |
|----------------|----------|
| SAR 1g (W/Kg)  | 3.840170 |



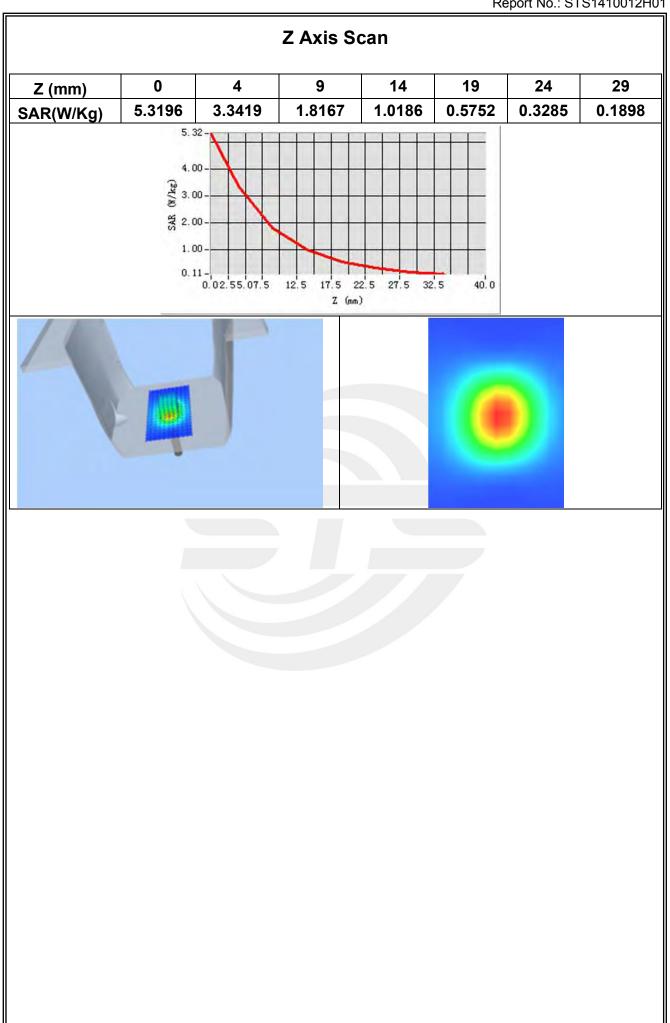
### System Performance Check Data(1900MHz Body)


Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.10.13

#### **Experimental conditions.**


| Device Position                   | -              |
|-----------------------------------|----------------|
| Band                              | 1900MHz        |
| Channels                          | -              |
| Signal                            | CW             |
| Frequency (MHz)                   | 1900           |
| Relative permittivity (real part) | 51.68          |
| Relative permittivity             | 12.87531       |
| Conductivity (S/m)                | 1.51           |
| Power drift (%)                   | 0.37           |
| Ambient Temperature:              | 22.7°C         |
| Liquid Temperature:               | 22.3°C         |
| Probe                             | SN 17/14 EP221 |
| ConvF:                            | 4.85           |
| Crest factor:                     | 1:1            |



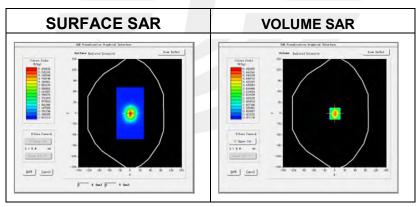
Maximum location: X=2.00, Y=2.00

SAR Peak: 5.27 W/kg

| SAR 10g (W/Kg) | 2.124122 |
|----------------|----------|
| SAR 1g (W/Kg)  | 4.141824 |



## System Performance Check Data(2450 MHz Head)


Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.10.13

#### Experimental conditions.

| Phantom                           | Validation plane |
|-----------------------------------|------------------|
| Device Position                   | -                |
| Band                              | 2450MHz          |
| Channels                          | -                |
| Signal                            | CW               |
| Frequency (MHz)                   | 2450MHz          |
| Relative permittivity (real part) | 39.33            |
| Relative permittivity             | 13.207           |
| Conductivity (S/m)                | 1.77             |
| Power drift (%)                   | -1.2             |
| Ambient Temperature:              | 22.7°C           |
| Liquid Temperature:               | 22.3°C           |
| Probe                             | SN 17/14 EP221   |
| ConvF:                            | 4.11             |
| Crest factor:                     | 1:1              |



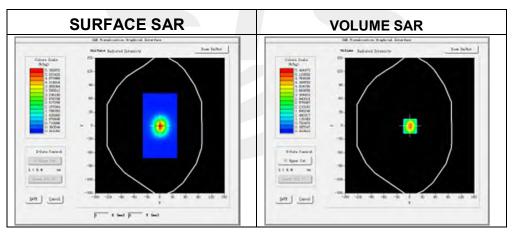
Maximum location: X=1.00, Y=0.00

SAR Peak: 10.40 W/kg

| SAR 10g (W/Kg) | 2.563006 |
|----------------|----------|
| SAR 1g (W/Kg)  | 5.392723 |

|                     |                  |                                                                  | Z Axis S | can          |              |              |              |
|---------------------|------------------|------------------------------------------------------------------|----------|--------------|--------------|--------------|--------------|
| Z (mm)<br>SAR(W/Kg) | 0 10.7621        | 4<br>7.9862                                                      | 9 3.6672 | 14<br>1.9872 | 19<br>0.5979 | 24<br>0.2875 | 29<br>0.1721 |
|                     | SAR (#/kg) 8. 4. | 54 -<br>00 -<br>00 -<br>00 -<br>00 -<br>07 -<br>0. 02. 55. 07. 5 |          | 22.5 27.5 32 |              |              |              |
|                     |                  |                                                                  |          |              |              |              |              |
|                     |                  |                                                                  |          |              |              |              |              |
|                     |                  |                                                                  |          |              |              |              |              |
|                     |                  |                                                                  |          |              |              |              |              |

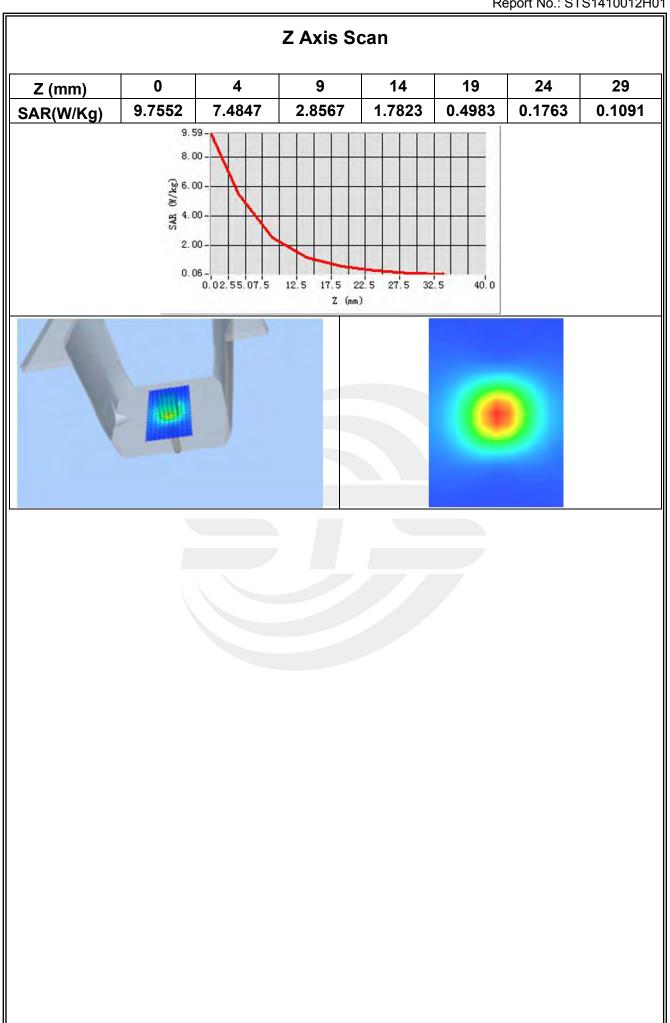
### System Performance Check Data(2450MHz Body)


Type: Phone measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2014.10.13

#### **Experimental conditions.**


| Device Position                   | -              |
|-----------------------------------|----------------|
| Band                              | 2450MHz        |
| Channels                          | -              |
| Signal                            | CW             |
| Frequency (MHz)                   | 2450MHz        |
| Relative permittivity (real part) | 54.19          |
| Relative permittivity             | 11.97          |
| Conductivity (S/m)                | 1.92           |
| Power drift (%)                   | 0.37           |
| Ambient Temperature:              | 22.7°C         |
| Liquid Temperature:               | 22.3°C         |
| Probe                             | SN 17/14 EP221 |
| ConvF:                            | 4.25           |
| Crest factor:                     | 1:1            |

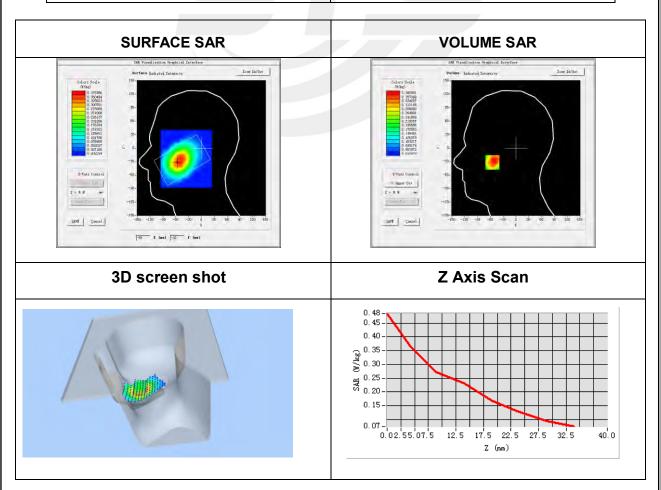


Maximum location: X=1.00, Y=1.00

SAR Peak: 9.46 W/kg

| SAR 10g (W/Kg) | 2.294654 |
|----------------|----------|
| SAR 1g (W/Kg)  | 5.122832 |



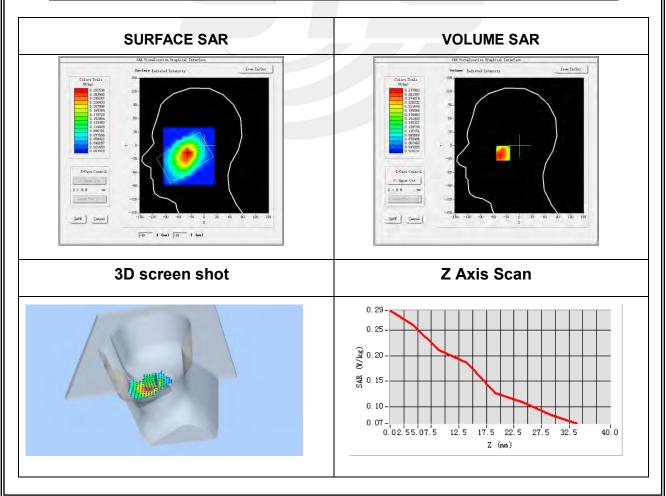

# **Appendix B. SAR Test Plots**

Plot 1: DUT: smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.83                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Right head                          |
| Device Position                   | Cheek                               |
| Band                              | GSM850                              |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 8.0)            |
| Frequency (MHz)                   | 836.400024                          |
| Relative permittivity (real part) | 41.5                                |
| Conductivity (S/m)                | 0.90                                |
| Variation (%)                     | -2.17                               |

Maximum location: X=-55.00, Y=-32.00 SAR Peak: 0.55 W/kg

|                | •        |
|----------------|----------|
| SAR 10g (W/Kg) | 0.260367 |
| SAR 1g (W/Kg)  | 0.381295 |

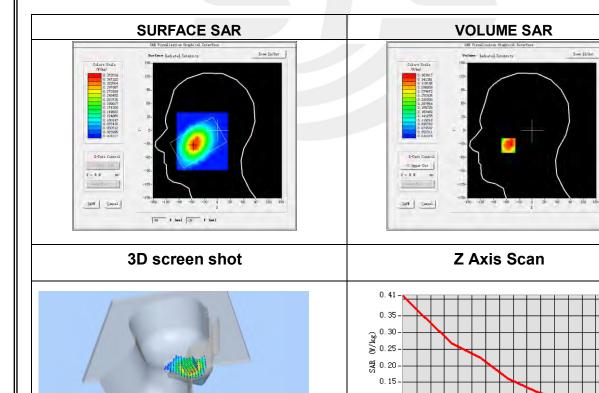



Plot 2: DUT: smart mobile phone; EUT Model: K968

| 2014-10-13                                 |
|--------------------------------------------|
| SN 17/14 EP221                             |
| 4.83                                       |
| dx=8mm dy=8mm, h= 5.00 mm                  |
| 5x5x7,dx=8mm dy=8mm                        |
| dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Right head                                 |
| Tilt                                       |
| GSM850                                     |
| Middle                                     |
| TDMA (Crest factor: 8.0)                   |
| 836.4                                      |
| 41.5                                       |
| 0.90                                       |
| -1.77                                      |
|                                            |

Maximum location: X=-36.00, Y=-20.00 SAR Peak: 0.37 W/kg

| SAR 10g (W/Kg) | 0.195717 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.269209 |




Plot 3: DUT: Smart mobile phone; EUT Model: K968

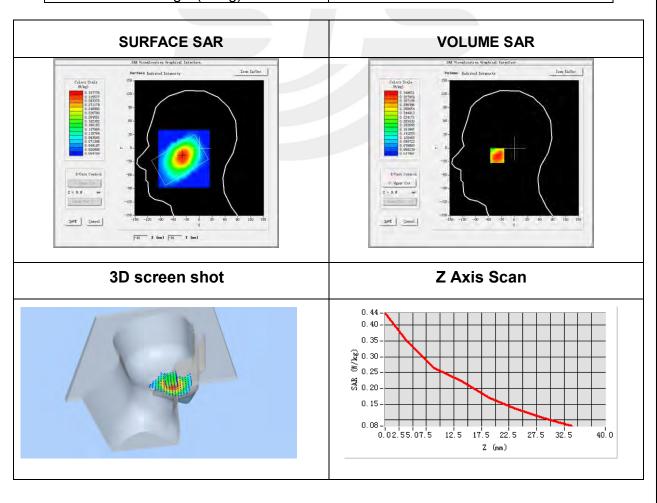
| Test Data                         | 2014-10-13                                                        |
|-----------------------------------|-------------------------------------------------------------------|
| Probe                             | SN 17/14 EP221                                                    |
| ConvF                             | 4.83                                                              |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm                                         |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm<br>dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                                                         |
| Device Position                   | Cheek                                                             |
| Band                              | GSM850                                                            |
| Channels                          | Middle                                                            |
| Signal                            | TDMA (Crest factor: 8.0)                                          |
| Frequency (MHz)                   | 836.4                                                             |
| Relative permittivity (real part) | 41.5                                                              |
| Conductivity (S/m)                | 0.90                                                              |
| Variation (%)                     | 1.20                                                              |

Maximum location: X=-55.00, Y=-33.00 SAR Peak: 0.46 W/kg

| SAR 10g (W/Kg) | 0.250655 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.349181 |



0.07 - 0.02.55.07.5 12.5 17.5 22.5 27.5 32.5

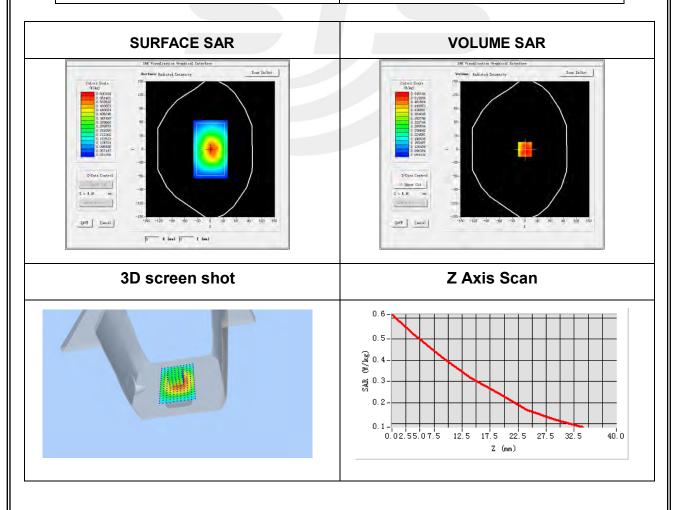

Z (mm)

Plot 4: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                                                         |
|-----------------------------------|--------------------------------------------------------------------|
| Probe                             | SN 17/14 EP221                                                     |
| ConvF                             | 4.83                                                               |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm                                          |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                                                          |
| Device Position                   | Tilt                                                               |
| Band                              | GSM850                                                             |
| Channels                          | Middle                                                             |
| Signal                            | TDMA (Crest factor: 8.0)                                           |
| Frequency (MHz)                   | 836.4                                                              |
| Relative permittivity (real part) | 41.5                                                               |
| Conductivity (S/m)                | 0.90                                                               |
| Variation (%)                     | -2.30                                                              |

Maximum location: X=-40.00, Y=-16.00 SAR Peak: 0.48 W/kg

| SAR 10g (W/Kg) | 0.239598 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.338869 |

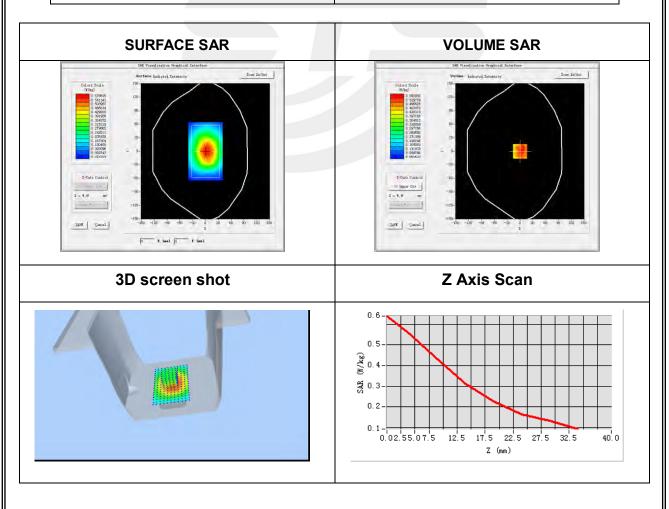



Plot 5: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 5.02                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Validation plane                    |
| Device Position                   | Body Front                          |
| Band                              | GSM850                              |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 8.0)            |
| Frequency (MHz)                   | 836.40                              |
| Relative permittivity (real part) | 55.20                               |
| Conductivity (S/m)                | 0.97                                |
| Variation (%)                     | 0.76                                |

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.75 W/kg

| SAR 10g (W/Kg) | 0.378869 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.535857 |

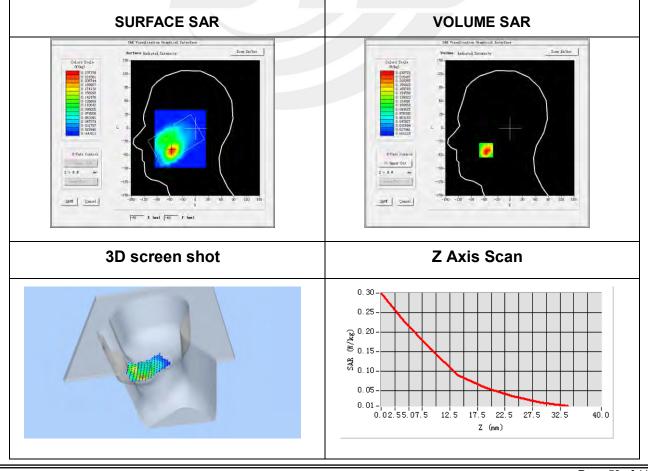



Plot 6: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                                                         |
|-----------------------------------|--------------------------------------------------------------------|
| Probe                             | SN 17/14 EP221                                                     |
| ConvF                             | 5.02                                                               |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm                                          |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Validation plane                                                   |
| Device Position                   | Body Behind                                                        |
| Band                              | GSM850                                                             |
| Channels                          | Middle                                                             |
| Signal                            | TDMA (Crest factor: 8.0)                                           |
| Frequency (MHz)                   | 836.40                                                             |
| Relative permittivity (real part) | 55.20                                                              |
| Conductivity (S/m)                | 0.97                                                               |
| Variation (%)                     | -0.95                                                              |

Maximum location: X=0.00, Y=0.00 SAR Peak: 0.76 W/kg

| SAR 10g (W/Kg) | 0.378511 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.543476 |

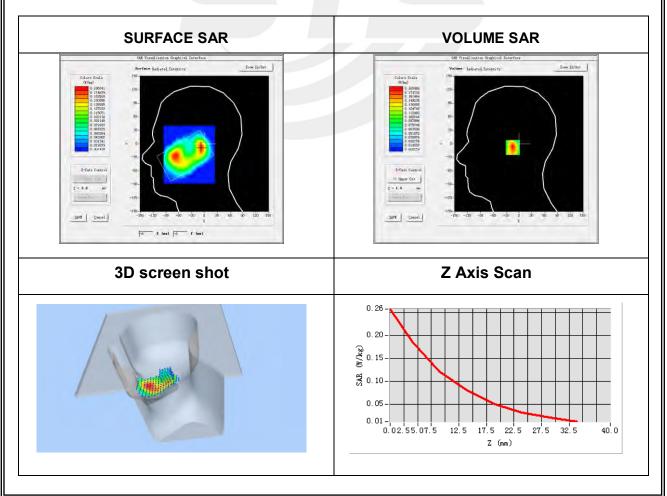



Plot 7: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.71                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Right head                          |
| Device Position                   | Cheek                               |
| Band                              | GSM1900                             |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 8.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 40.00                               |
| Conductivity (S/m)                | 1.40                                |
| Variation (%)                     | 0.24                                |

Maximum location: X=-56.00, Y=-49.00 SAR Peak: 0.37 W/kg

| SAR 10g (W/Kg) | 0.125156 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.230262 |

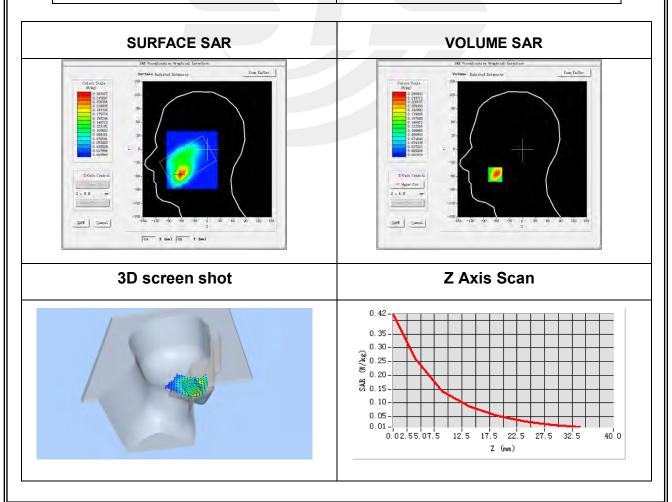



Plot 8: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.71                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Right head                          |
| Device Position                   | Tilt                                |
| Band                              | GSM1900                             |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 8.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 40.00                               |
| Conductivity (S/m)                | 1.40                                |
| Variation (%)                     | -0.53                               |

Maximum location: X=-8.00, Y=-8.00 SAR Peak: 0.27 W/kg

| SAR 10g (W/Kg) | 0.101552 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.177428 |

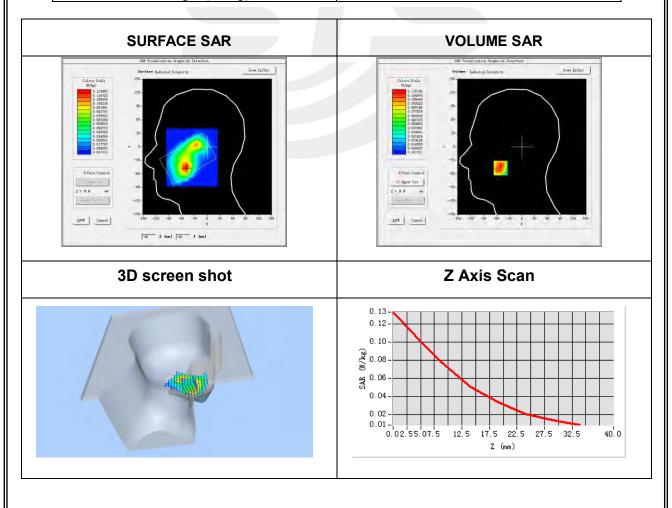



Plot 9: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.71                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                           |
| Device Position                   | Cheek                               |
| Band                              | GSM1900                             |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 8.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 40.00                               |
| Conductivity (S/m)                | 1.40                                |
| Variation (%)                     | -1.04                               |

Maximum location: X=-63.00, Y=-56.00 SAR Peak: 0.42 W/kg

| SAR 10g (W/Kg) | 0.133772 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.252956 |

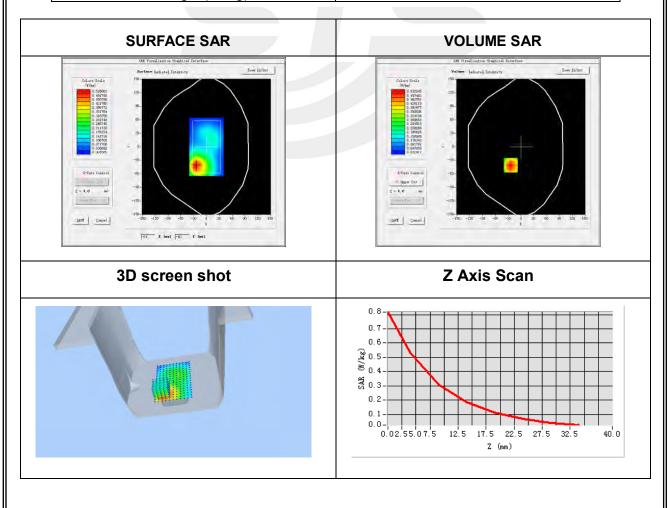



Plot 10: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.71                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                           |
| Device Position                   | Tilt                                |
| Band                              | GSM1900                             |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 8.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 40.00                               |
| Conductivity (S/m)                | 1.40                                |
| Variation (%)                     | 0.91                                |

Maximum location: X=-50.00, Y=-47.00 SAR Peak: 0.18 W/kg

| SAR 10g (W/Kg) | 0.066458 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.110296 |

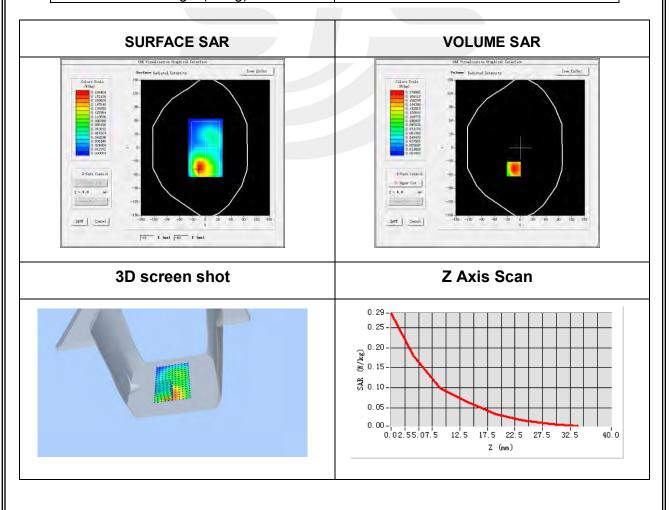



Plot 11: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
|                                   |                                     |
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.85                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Validation plane                    |
| Device Position                   | Body Front                          |
| Band                              | GSM1900                             |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 8.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 53.30                               |
| Conductivity (S/m)                | 1.52                                |
| Variation (%)                     | 1.78                                |

Maximum location: X=5.00, Y=-37.00 SAR Peak: 0.07 W/kg

| SAR 10g (W/Kg) | 0.289889 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.516068 |

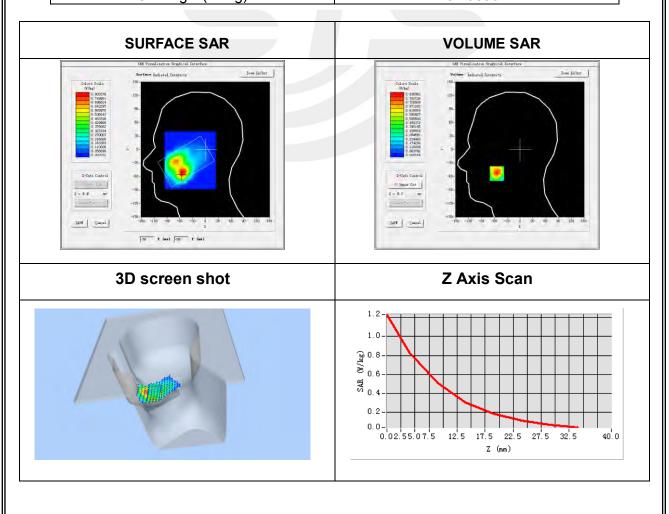



Plot 12: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.85                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Validation plane                    |
| Device Position                   | Body Behind                         |
| Band                              | GSM1900                             |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 8.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 53.30                               |
| Conductivity (S/m)                | 1.52                                |
| Variation (%)                     | 4.06                                |

Maximum location: X=-15.00, Y=-47.00 SAR Peak: 0.28 W/kg

| SAR 10g (W/Kg) | 0.099308 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.175066 |

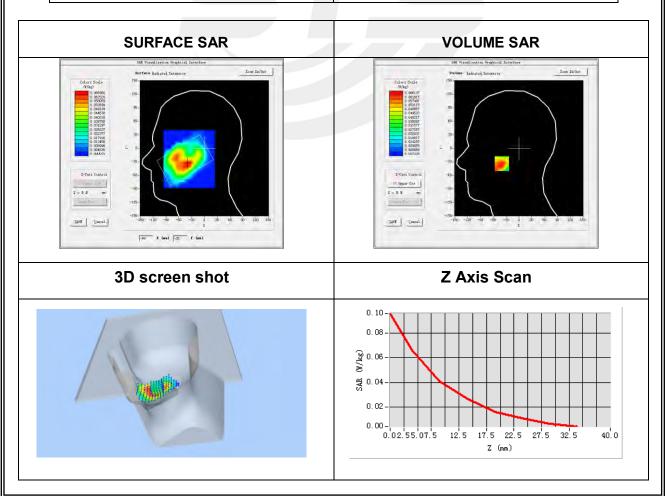



Plot 13: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.71                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Right head                          |
| Device Position                   | Cheek                               |
| Band                              | WCDMA II                            |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 1.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 40.00                               |
| Conductivity (S/m)                | 1.40                                |
| Variation (%)                     | -0.49                               |

Maximum location: X=-54.00, Y=-53.00 SAR Peak: 1.23 W/kg

| SAR 10g (W/Kg) | 0.437147 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.795364 |

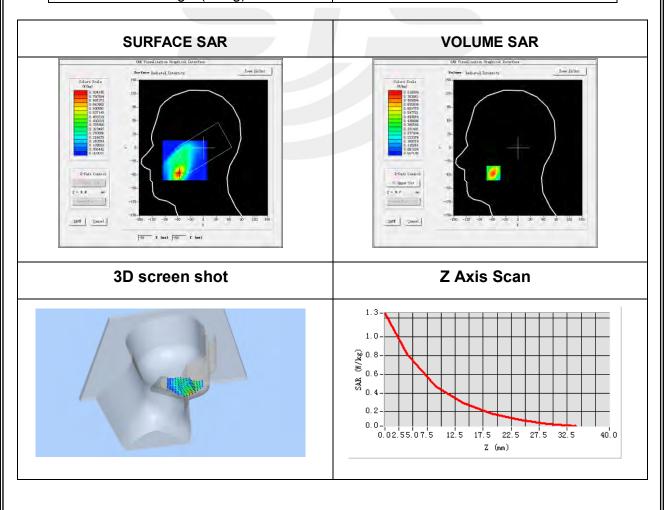



Plot 14: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.71                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Right head                          |
| Device Position                   | Tilt                                |
| Band                              | WCDMA II                            |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 1.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 40.00                               |
| Conductivity (S/m)                | 1.40                                |
| Variation (%)                     | -0.55                               |

Maximum location: X=-39.00, Y=-34.00 SAR Peak: 0.10 W/kg

| OAD 40 = (\AU\/\circ | 0.000040 |
|----------------------|----------|
| SAR 10g (W/Kg)       | 0.038043 |
| SAR 1g (W/Kg)        | 0.064040 |

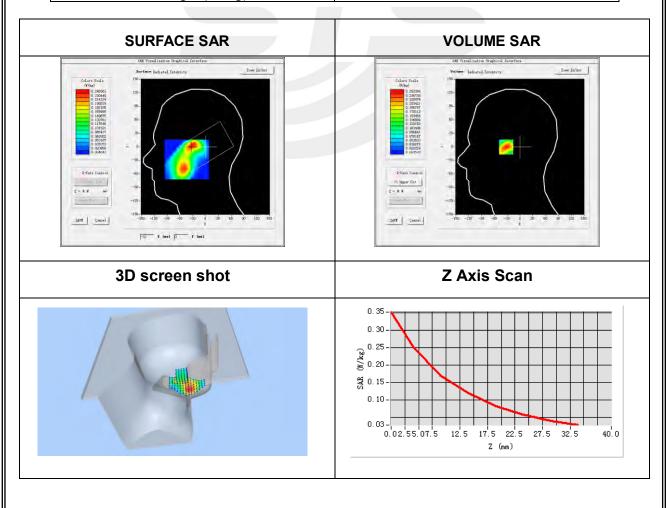



Plot 15: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.71                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                           |
| Device Position                   | Cheek                               |
| Band                              | WCDMA II                            |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 1.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 40.00                               |
| Conductivity (S/m)                | 1.40                                |
| Variation (%)                     | 0.56                                |

Maximum location: X=-57.00, Y=-56.00 SAR Peak: 1.27 W/kg

| SAR 10g (W/Kg) | 0.406648 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.780448 |

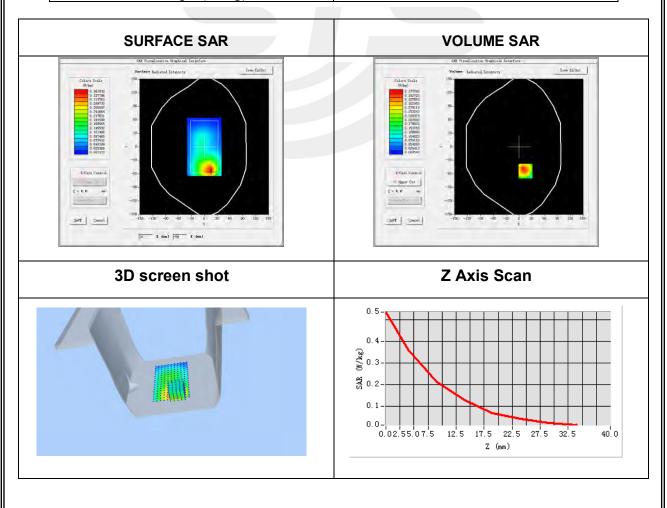



Plot 16: DUT: Smart mobile phone; EUT Model: K968

| Toot Data                         | 2014 10 12                          |
|-----------------------------------|-------------------------------------|
| Test Data                         | 2014-10-13                          |
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.71                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                           |
| Device Position                   | Tilt                                |
| Band                              | WCDMA II                            |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 1.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 40.00                               |
| Conductivity (S/m)                | 1.40                                |
| Variation (%)                     | -1.01                               |

Maximum location: X=-31.00, Y=2.00 SAR Peak: 0.35 W/kg

| SAR 10g (W/Kg) | 0.143220 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.242025 |

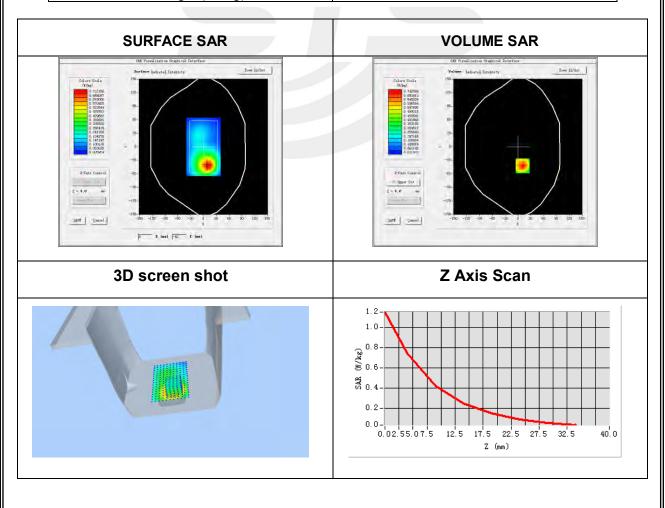



Plot 17: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.85                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
| 20011100011                       | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Validation plane                    |
| Device Position                   | Body Front                          |
| Band                              | WCDMA II                            |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 1.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 53.30                               |
| Conductivity (S/m)                | 1.52                                |
| Variation (%)                     | 1.39                                |

Maximum location: X=15.00, Y=-54.00 SAR Peak: 0.66 W/kg

| SAR 10g (W/k | (g) 0.194063 |
|--------------|--------------|
| SAR 1g (W/k  | (g) 0.356226 |

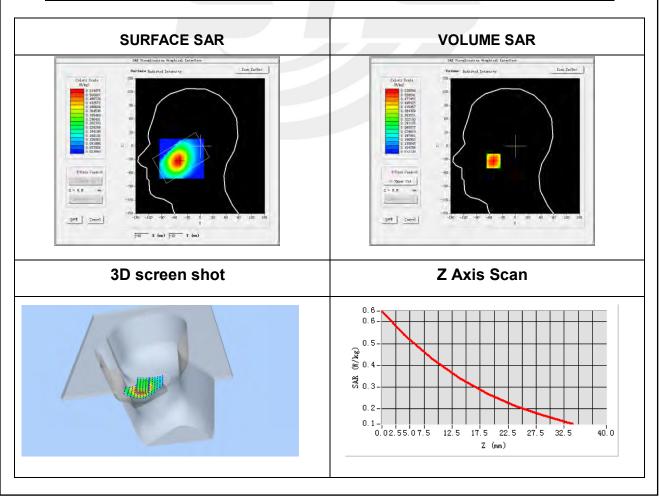



Plot 18: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| iesi Dala                         | 2014-10-13                          |
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 4.85                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Validation plane                    |
| Device Position                   | Body Behind                         |
| Band                              | WCDMA II                            |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 1.0)            |
| Frequency (MHz)                   | 1880.0                              |
| Relative permittivity (real part) | 53.30                               |
| Conductivity (S/m)                | 1.52                                |
| Variation (%)                     | -0.17                               |

Maximum location: X=11.00, Y=-42.00 SAR Peak: 1.15 W/kg

| SAR 10g (W/Kg) | 0.393047 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.718261 |

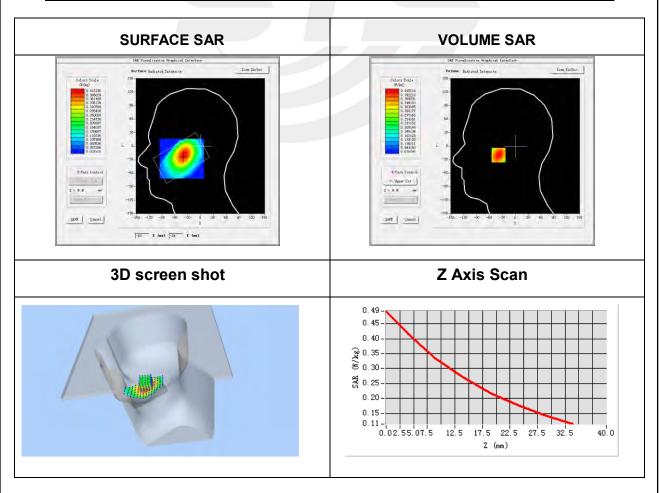



Plot 19: DUT: Smart mobile phone; EUT Model: K968

|   | 2014-10-13                                                                                                                                 | Test Data                                                                                                                          |
|---|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|   | SN 17/14 EP221                                                                                                                             | Probe                                                                                                                              |
|   | 4.83                                                                                                                                       | ConvF                                                                                                                              |
|   | dx=8mm dy=8mm, h= 5.00 mm                                                                                                                  | Area Scan                                                                                                                          |
|   | 5x5x7,dx=8mm dy=8mm dz=5mm,                                                                                                                | ZoomScan                                                                                                                           |
| m | Complete/ndx=8mm dy=8mm, h= 5.00 mm                                                                                                        |                                                                                                                                    |
|   | Right head                                                                                                                                 | Phantom                                                                                                                            |
|   | Cheek                                                                                                                                      | Device Position                                                                                                                    |
|   | WCDMA 850                                                                                                                                  | Band                                                                                                                               |
|   | Middle                                                                                                                                     | Channels                                                                                                                           |
|   | TDMA (Crest factor: 1.0)                                                                                                                   | Signal                                                                                                                             |
|   | 836.6                                                                                                                                      | Frequency (MHz)                                                                                                                    |
|   | 41.5                                                                                                                                       | Relative permittivity (real part)                                                                                                  |
|   | 0.90                                                                                                                                       | Conductivity (S/m)                                                                                                                 |
|   | 1.11                                                                                                                                       | Variation (%)                                                                                                                      |
|   | 5x5x7,dx=8mm dy=8mm dz=5mm, Complete/ndx=8mm dy=8mm, h= 5.00 mm Right head Cheek WCDMA 850 Middle TDMA (Crest factor: 1.0) 836.6 41.5 0.90 | ZoomScan  Phantom  Device Position  Band  Channels  Signal  Frequency (MHz)  Relative permittivity (real part)  Conductivity (S/m) |

Maximum location: X=-51.00, Y=-33.00 SAR Peak: 0.66 W/kg

| SAR 10g (W/Kg) | 0.385516 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.524964 |

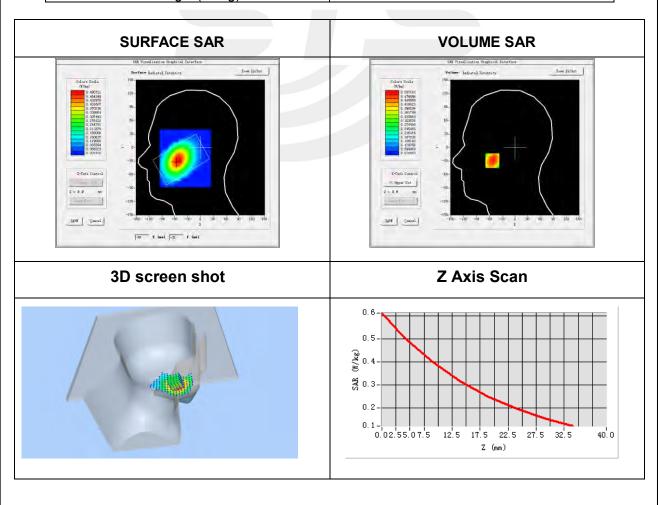



Plot 20: DUT: smart mobile phone; EUT Model: K968

| 2014-10-13                                 |
|--------------------------------------------|
| SN 17/14 EP221                             |
| 4.83                                       |
| dx=8mm dy=8mm, h= 5.00 mm                  |
| 5x5x7,dx=8mm dy=8mm                        |
| dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Right head                                 |
| Tilt                                       |
| GSM850                                     |
| Middle                                     |
| TDMA (Crest factor: 1.0)                   |
| 836.6                                      |
| 41.5                                       |
| 0.90                                       |
| -0.11                                      |
|                                            |

Maximum location: X=-39.00, Y=-20.00 SAR Peak: 0.49 W/kg

| SAR 10g (W/Kg) | 0.303185 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.402583 |

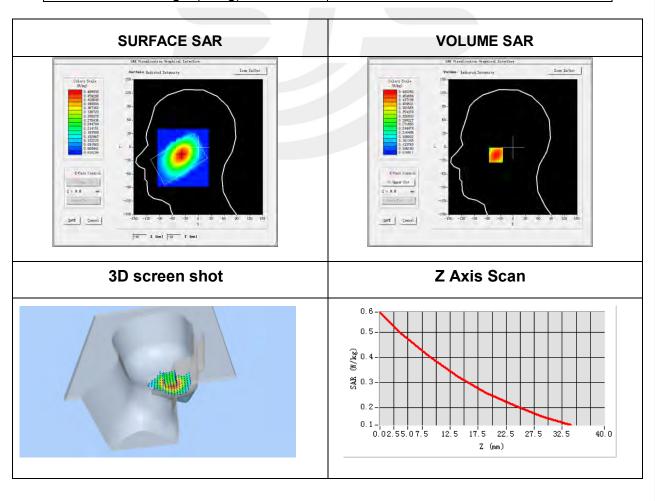



Plot 21: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                                                        |
|-----------------------------------|-------------------------------------------------------------------|
| Probe                             | SN 17/14 EP221                                                    |
| ConvF                             | 4.83                                                              |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm                                         |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm<br>dz=5mm,Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                                                         |
| Device Position                   | Cheek                                                             |
| Band                              | WCDMA V                                                           |
| Channels                          | Middle                                                            |
| Signal                            | TDMA (Crest factor: 1.0)                                          |
| Frequency (MHz)                   | 836.6                                                             |
| Relative permittivity (real part) | 41.5                                                              |
| Conductivity (S/m)                | 0.90                                                              |
| Variation (%)                     | -0.12                                                             |

Maximum location: X=-53.00, Y=-29.00 SAR Peak: 0.62 W/kg

| SAR 10g (W/Kg) | 0.360733 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.491640 |

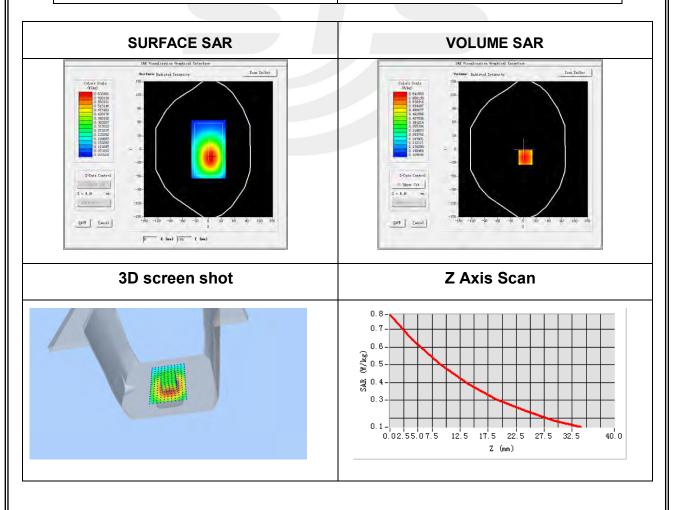



Plot 22: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                                                         |
|-----------------------------------|--------------------------------------------------------------------|
| Probe                             | SN 17/14 EP221                                                     |
| ConvF                             | 4.83                                                               |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm                                          |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                                                          |
| Device Position                   | Tilt                                                               |
| Band                              | WCDMA V                                                            |
| Channels                          | Middle                                                             |
| Signal                            | TDMA (Crest factor: 1.0)                                           |
| Frequency (MHz)                   | 836.6                                                              |
| Relative permittivity (real part) | 41.5                                                               |
| Conductivity (S/m)                | 0.90                                                               |
| Variation (%)                     | -0.38                                                              |

Maximum location: X=-40.00, Y=-17.00 SAR Peak: 0.58 W/kg

| o, o o         |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.360618 |
| SAR 1g (W/Kg)  | 0.479324 |

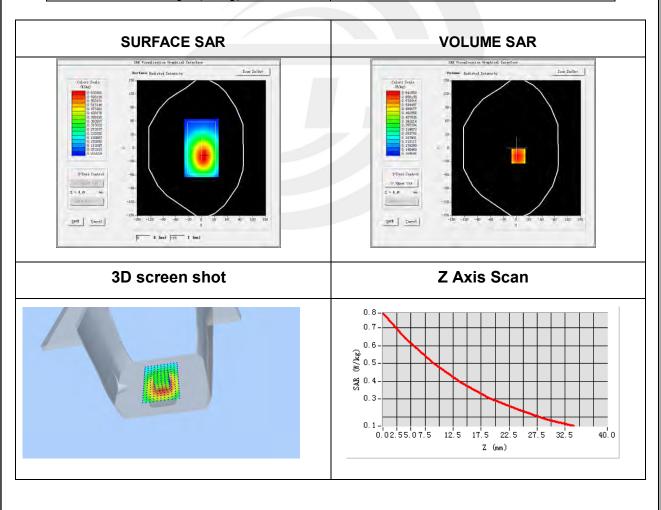



Plot 23: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                          |
|-----------------------------------|-------------------------------------|
| Probe                             | SN 17/14 EP221                      |
| ConvF                             | 5.02                                |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm           |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,         |
|                                   | Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Validation plane                    |
| Device Position                   | Body Front                          |
| Band                              | WCDMA V                             |
| Channels                          | Middle                              |
| Signal                            | TDMA (Crest factor: 1.0)            |
| Frequency (MHz)                   | 836.6                               |
| Relative permittivity (real part) | 55.20                               |
| Conductivity (S/m)                | 0.97                                |
| Variation (%)                     | -0.44                               |

Maximum location: X=5.00, Y=-18.00 SAR Peak: 0.78 W/kg

| SAR 10g (W/Kg) | 0.461694 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.622672 |

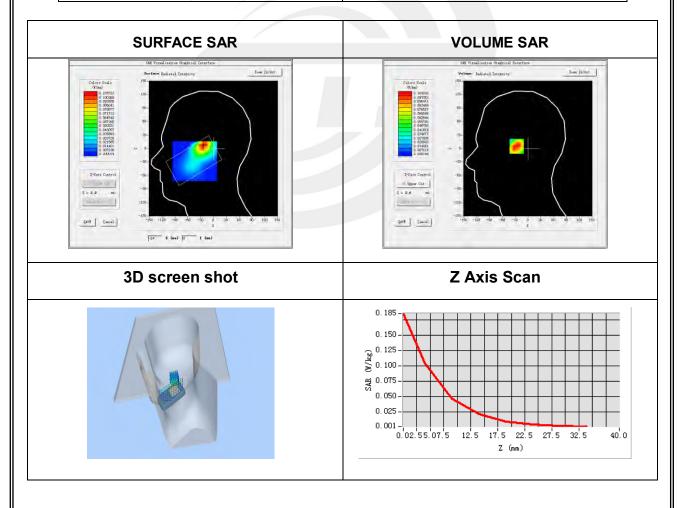



Plot 24: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                                                         |
|-----------------------------------|--------------------------------------------------------------------|
| Probe                             | SN 17/14 EP221                                                     |
| ConvF                             | 5.02                                                               |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm                                          |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Validation plane                                                   |
| Device Position                   | Body Behind                                                        |
| Band                              | WCDMA V                                                            |
| Channels                          | Middle                                                             |
| Signal                            | TDMA (Crest factor: 1.0)                                           |
| Frequency (MHz)                   | 836.6                                                              |
| Relative permittivity (real part) | 55.20                                                              |
| Conductivity (S/m)                | 0.97                                                               |
| Variation (%)                     | -0.52                                                              |

Maximum location: X=-3.00, Y=-20.00 SAR Peak: 0.53 W/kg

| SAR 10g (W/Kg) | 0.318550 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.422401 |

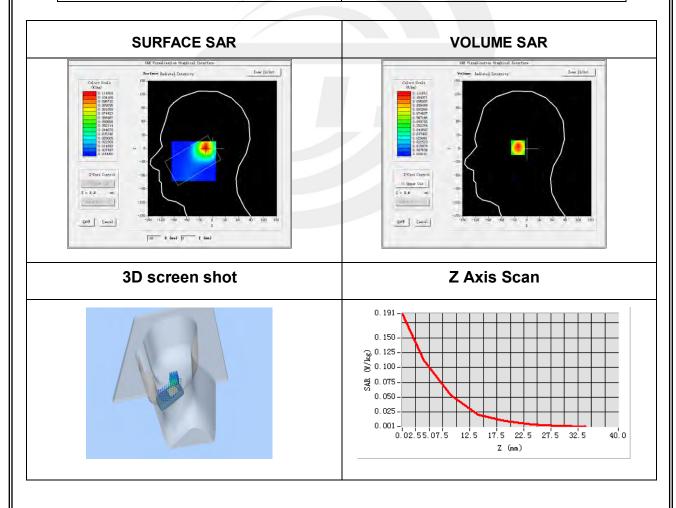



Plot 25: DUT: Smart mobile phone; EUT Model: K968

| 2014-10-13                                                         |
|--------------------------------------------------------------------|
| SN 17/14 EP221                                                     |
| 4.11                                                               |
| dx=8mm dy=8mm, h= 5.00 mm                                          |
| 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Right head                                                         |
| Cheek                                                              |
| IEEE 802.11b ISM                                                   |
| High                                                               |
| TDMA (Crest factor: 1.0)                                           |
| 2462                                                               |
| 39.2                                                               |
| 1.80                                                               |
| -0.43                                                              |
|                                                                    |

Maximum location: X=-24.00, Y=7.00 SAR Peak: 0.19 W/kg

| SAR 10g (W/Kg) | 0.048030 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.102016 |

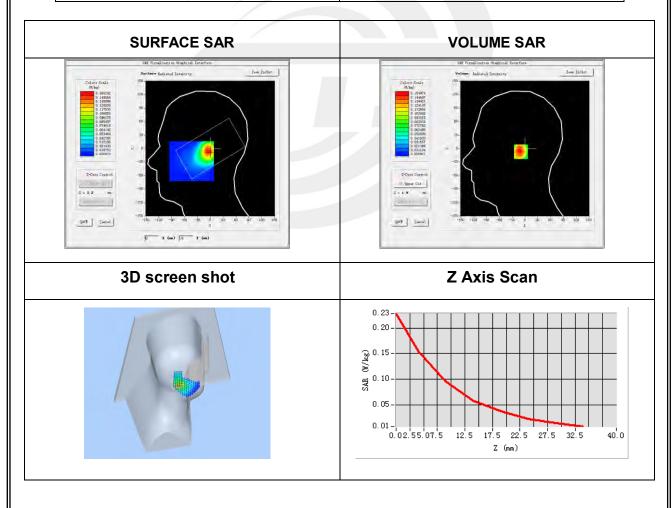



Plot 26: DUT: Smart mobile phone; EUT Model: K968

| 2014-10-13                                                         |
|--------------------------------------------------------------------|
| SN 17/14 EP221                                                     |
| 4.11                                                               |
| dx=8mm dy=8mm, h= 5.00 mm                                          |
| 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Right head                                                         |
| Tilt                                                               |
| IEEE 802.11b ISM                                                   |
| High                                                               |
| TDMA (Crest factor: 1.0)                                           |
| 2462                                                               |
| 39.2                                                               |
| 1.80                                                               |
| 2.91                                                               |
|                                                                    |

Maximum location: X=-17.00, Y=2.00 SAR Peak: 0.20 W/kg

| SAR 10g (W/Kg) | 0.051638 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.107483 |

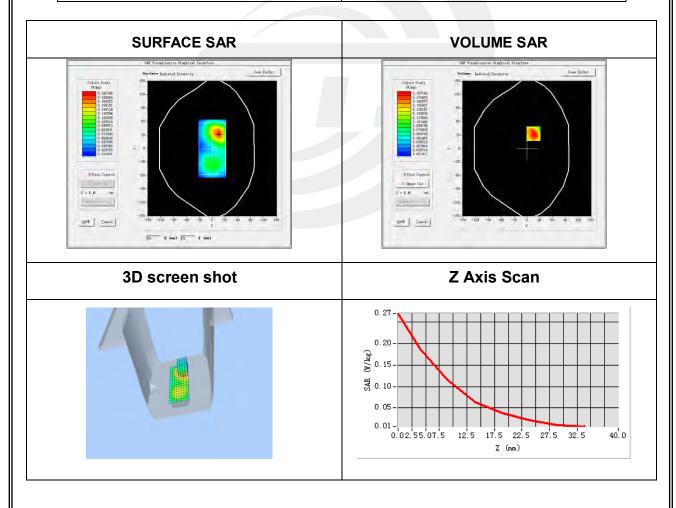



Plot 27: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                                                         |
|-----------------------------------|--------------------------------------------------------------------|
| Probe                             | SN 17/14 EP221                                                     |
| ConvF                             | 4.11                                                               |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm                                          |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                                                          |
| Device Position                   | Cheek                                                              |
| Band                              | IEEE 802.11b ISM                                                   |
| Channels                          | High                                                               |
| Signal                            | TDMA (Crest factor: 1.0)                                           |
| Frequency (MHz)                   | 2462                                                               |
| Relative permittivity (real part) | 39.2                                                               |
| Conductivity (S/m)                | 1.80                                                               |
| Variation (%)                     | -1.23                                                              |

Maximum location: X=-2.00, Y=-7.00 SAR Peak: 0.23 W/kg

| SAR 10g (W/Kg) | 0.086199 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.150848 |

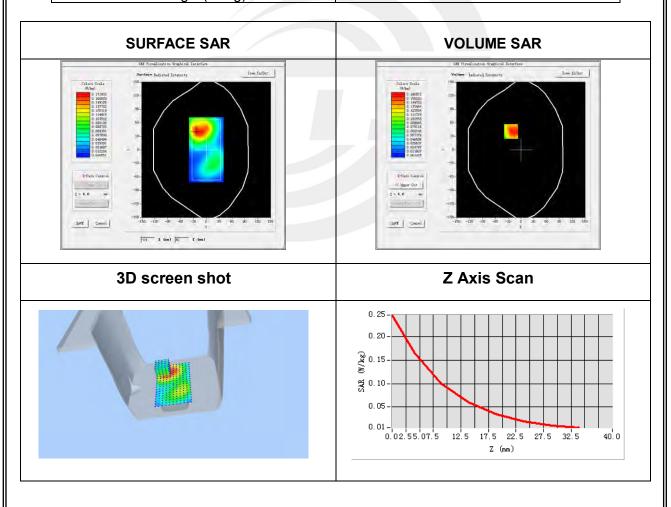



Plot 28: DUT: Smart mobile phone; EUT Model: K968

| Test Data                         | 2014-10-13                                                         |
|-----------------------------------|--------------------------------------------------------------------|
| Probe                             | SN 17/14 EP221                                                     |
| ConvF                             | 4.11                                                               |
| Area Scan                         | dx=8mm dy=8mm, h= 5.00 mm                                          |
| ZoomScan                          | 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Phantom                           | Left head                                                          |
| Device Position                   | Tilt                                                               |
| Band                              | IEEE 802.11b ISM                                                   |
| Channels                          | High                                                               |
| Signal                            | TDMA (Crest factor: 1.0)                                           |
| Frequency (MHz)                   | 2462                                                               |
| Relative permittivity (real part) | 39.2                                                               |
| Conductivity (S/m)                | 1.80                                                               |
| Variation (%)                     | -0.19                                                              |

Maximum location: X=15.00, Y=33.00 SAR Peak: 0.30 W/kg

| SAR 10g (W/Kg) | 0.102047 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.182940 |

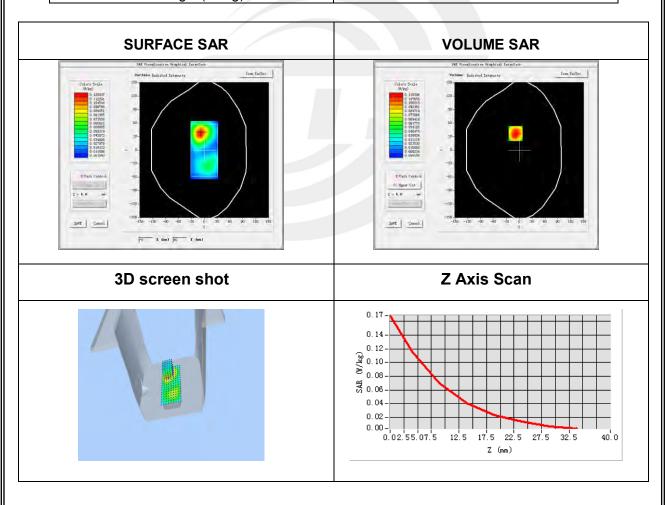



Plot 29: DUT: Smart mobile phone; EUT Model: K968

| 2014-10-13                                                         |
|--------------------------------------------------------------------|
| SN 17/14 EP221                                                     |
| 4.25                                                               |
| dx=8mm dy=8mm, h= 5.00 mm                                          |
| 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Validation plane                                                   |
| Body Front                                                         |
| IEEE 802.11b ISM                                                   |
| High                                                               |
| TDMA (Crest factor: 1.0)                                           |
| 2462                                                               |
| 52.7                                                               |
| 1.95                                                               |
| -0.19                                                              |
|                                                                    |

Maximum location: X=-23.00, Y=41.00 SAR Peak: 0.25 W/kg

| SAR 10g (W/Kg)   | 0.094434 |  |
|------------------|----------|--|
| J GAR 109 (W/Rg) | 0.034404 |  |
|                  | 0.450000 |  |
| SAR 1g (W/Kg)    | 0.156800 |  |




Plot 30: DUT: Smart mobile phone; EUT Model: K968

| 2014-10-13                                                         |
|--------------------------------------------------------------------|
| SN 17/14 EP221                                                     |
| 4.25                                                               |
| dx=8mm dy=8mm, h= 5.00 mm                                          |
| 5x5x7,dx=8mm dy=8mm dz=5mm,<br>Complete/ndx=8mm dy=8mm, h= 5.00 mm |
| Validation plane                                                   |
| Body Behind                                                        |
| IEEE 802.11b ISM                                                   |
| High                                                               |
| TDMA (Crest factor: 1.0)                                           |
| 2462                                                               |
| 52.7                                                               |
| 1.95                                                               |
| 1.94                                                               |
|                                                                    |

Maximum location: X=-9.00, Y=37.00 SAR Peak: 0.19 W/kg

| SAR 10g (W/Kg) | 0.062562 |
|----------------|----------|
| SAR 1g (W/Kg)  | 0.113653 |



# Appendix C. Probe Calibration And Dipole Calibration Report



# COMOSAR E-Field Probe Calibration Report

Ref : ACR:262.1,14,SATU.A

SHENZHEN STS TEST SERVICES CO., LTD.

1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING
ROAD
FUYONG, BAO' AN DISTRICT, SHENZHEN, CHINA

SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE

SERIAL NO.: SN 17/14 EP221

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennetaw, GA 30144



## Summary:

This document presents the method and results from an accordited COMOSAR Desimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALISAR test bench, for use with a SATIMO COMOSAR system only. All calibration results are morable to national cartrology institutions.



#### COMOSAR E-FIELD PROBE CALIBRATION REPORT

But ACR 2021 14 SATUA

|               | Name          | Function        | Date      | Signature      |
|---------------|---------------|-----------------|-----------|----------------|
| Prepared by   | Jérôme LUC    | Product Manager | 9/19/2014 | 75             |
| Checked by:   | Jerôme LUC    | Product Manager | 9/19/2014 | To             |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 9/19/2014 | Non-Pattheyald |

|               | Customer Name                           |
|---------------|-----------------------------------------|
| Distribution: | Shenzhen STS Test<br>Services Co., Ltd. |

| Issue | Date      | Modifications   |
|-------|-----------|-----------------|
| A     | 9/19/2014 | Initial release |
|       |           |                 |
|       |           |                 |
|       |           |                 |
|       |           |                 |

Page: 29



Ref. ACR-262.L14.SATU-A

## TABLE OF CONTENTS

| 1 | De  | vice Under Test                 |   |
|---|-----|---------------------------------|---|
| 2 | Pro | duct Description                |   |
|   | 2.1 | General Information             | 4 |
| 3 | Me  | asurement Method 4              |   |
|   | 3.1 | Linearity                       | 4 |
|   |     | Sensitivity                     | 5 |
|   | 3.3 | Lower Detection Limit           | 5 |
|   | 3.4 | Isotropy                        | 5 |
|   | 3.5 | Boundary Effect                 | 5 |
| 4 | Me  | asurement Uncertainty5          |   |
| 5 | Cal | libration Measurement Results 6 |   |
|   | 5.1 | Sensitivity in air              | 6 |
|   | 5.2 | Linearity                       | 7 |
|   | 5.3 | Sensitivity in liquid           | 7 |
|   | 5.4 | Isotropy                        | 8 |
| 6 | Lis | t of Equipment 9                |   |

Page. 39

Ref. ACR 262.1.14.SATU.A

#### 1 DEVICE UNDER TEST.

| Device                                   | e Under Test                     |
|------------------------------------------|----------------------------------|
| Device Type                              | COMOSAR DOSIMETRIC E FIELD PROBE |
| Manufacturer                             | Satimo                           |
| Model                                    | SSE5                             |
| Serial Number                            | SN 17/14 EP221                   |
| Product Condition (new / used)           | New                              |
| Frequency Range of Probe                 | 0.4 GHz- 6 GHz                   |
| Resistance of Three Dipoles at Connector | Dipole 1: R1=0.179 MΩ            |
| and the second confidence of the second  | Dipole 2: R2=0.167 MΩ            |
|                                          | Dipole 3: R3=0.178 MΩ            |

A yearly calibration interval is recommended.

#### 2 PRODUCT DESCRIPTION

## 2.1 GENERAL INFORMATION

Satimo's COMOSAR E field Probes are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards.



Figure 1 - Satimo COMOSAR Dosimetric E field Dipole

| Probe Length                               | 330 mm |
|--------------------------------------------|--------|
| Length of Individual Dipoles               | 4.5 mm |
| Maximum external diameter                  | 8 mm   |
| Probe Tip External Diameter                | 5 mm   |
| Distance between dipoles / probe extremity | 2.7 mm |

## 3 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards provide recommended practices for the probe calibrations, including the performance characteristics of interest and methods by which to assess their affect. All calibrations / measurements performed meet the fore mentioned standards.

## 3.1 LINEARITY

The evaluation of the linearity was done in free space using the waveguide, performing a power sweep to cover the SAR range 0.01W/kg to 100W/kg.

Page: 4/9

Ref. ACR. 262.1.14.SATU.A.

#### 3.2 SENSITIVITY

The sensitivity factors of the three dipoles were determined using a two step calibration method (air and tissue simulating liquid) using waveguides as outlined in the standards.

## 3.3 LOWER DETECTION LIMIT

The lower detection limit was assessed using the same measurement set up as used for the linearity measurement. The required lower detection limit is 10 mW/kg.

## 3.4 ISOTROPY

The axial isotropy was evaluated by exposing the probe to a reference wave from a standard dipole with the dipole mounted under the flat phantom in the test configuration suggested for system validations and checks. The probe was rotated along its main axis from 0 - 360 degrees in 15 degree steps. The hemispherical isotropy is determined by inserting the probe in a thin plastic box filled with tissue-equivalent liquid, with the plastic box illuminated with the fields from a half wave dipole. The dipole is rotated about its axis (0°-180°) in 15° increments. At each step the probe is rotated about its axis (0°-360°).

## 3.5 BOUNDARY EFFECT

The boundary effect is defined as the deviation between the SAR measured data and the expected exponential decay in the liquid when the probe is oriented normal to the interface. To evaluate this effect, the liquid filled flat phantom is exposed to fields from either a reference dipole or waveguide. With the probe normal to the phantom surface, the peak spatial average SAR is measured and compared to the analytical value at the surface.

#### 4 MEASUREMENT UNCERTAINTY

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty associated with an E-field probe calibration using the waveguide technique. All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

| ERROR SOURCES             | Uncertainty<br>value (%) | Probability<br>Distribution | Divisor | ci | Standard<br>Uncertainty (%) |
|---------------------------|--------------------------|-----------------------------|---------|----|-----------------------------|
| Incident or forward power | 3.00%                    | Rectangular                 | √3      | 1  | 1,732%                      |
| Reflected power           | 3.00%                    | Rectangular                 | √3      | 1  | 1.732%                      |
| Liquid conductivity       | 5.00%                    | Rectangular                 | √3      | 1  | 2.887%                      |
| Liquid permittivity       | 4.00%                    | Rectangular                 | √3      | 1  | 2.309%                      |
| Field homogeneity         | 3.00%                    | Rectangular                 | √3      | 1  | 1,732%                      |
| Field probe positioning   | 5.00%                    | Rectangular                 | √3      | 1. | 2.887%                      |
| Field probe linearity     | 3.00%                    | Rectangular                 | √3      | 1  | 1.732%                      |

Page: 5/9



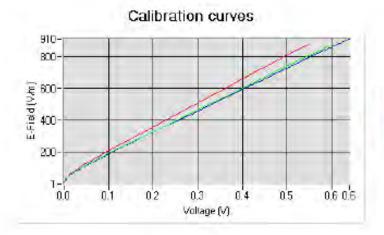
## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR. 262.1.14.SATU.A

| Combined standard uncertainty                    | 5.831% |
|--------------------------------------------------|--------|
| Expanded uncertainty 95 % confidence level k = 2 | 12.0%  |

## 5 CALIBRATION MEASUREMENT RESULTS

|                    | Calibration Parameters |  |
|--------------------|------------------------|--|
| Liquid Temperature | 21 °C                  |  |
| Lab Temperature    | 21 °C                  |  |
| Lab Humidity       | 45 %                   |  |

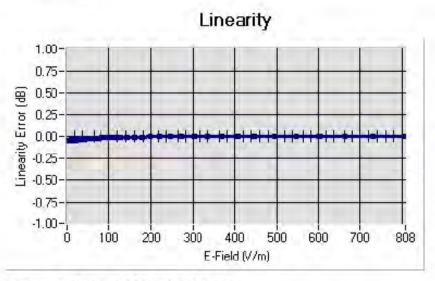

# 5.1 SENSITIVITY IN AIR

| Normx dipole               | Normy dipole               | Normz dipole               |
|----------------------------|----------------------------|----------------------------|
| 1 (μV/(V/m) <sup>2</sup> ) | 2 (μV/(V/m) <sup>2</sup> ) | 3 (µV/(V/m) <sup>2</sup> ) |
| 4.81                       | 6.15                       | 6.02                       |

| DCP dipole 1 | DCP dipole 2 | DCP dipole 3 |
|--------------|--------------|--------------|
| (mV)         | (mV)         | (mV)         |
| 95           | 100          | 90           |

Calibration curves ei=f(V) (i=1,2,3) allow to obtain H-field value using the formula:

$$E = \sqrt{E_1^2 + E_2^2 + E_3^2}$$




Dipole 1 Dipole 2 Dipole 3

Page: 6/9

Ref. ACR 262.1.14.SATU.A

## 5.2 LINEARITY



Linearity: [1+/-1.16% (+/-0.05dB)

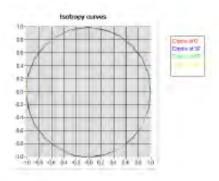
# 5.3 SENSITIVITY IN LIQUID

| Liquid | Frequency<br>(MHz +/-<br>100MHz) | Permittivity | Epsilon (S/m) | ConvF |
|--------|----------------------------------|--------------|---------------|-------|
| HL450  | 450                              | 43.90        | 0.87          | 4.84  |
| BL450  | 450                              | 58.63        | 0.98          | 4.98  |
| HL750  | 750                              | 42.06        | 0.89          | 4.53  |
| BL750  | 750                              | 56.57        | 0.99          | 4.70  |
| HL850  | 835                              | 42.81        | 0.89          | 4.83  |
| BL850  | 835                              | 53.46        | 0.96          | 5.02  |
| HL900  | 900                              | 42.47        | 0.96          | 4.74  |
| BL900  | 900                              | 56.69        | 1.08          | 4.89  |
| HL1800 | 1800                             | 41.31        | 1.38          | 4.25  |
| BL1800 | 1800                             | 53.27        | 1.51          | 4.34  |
| HL1900 | 1900                             | 41.09        | 1.42          | 4.71  |
| BL1900 | 1900                             | 54.20        | 1.54          | 4.85  |
| HL2000 | 2000                             | 39.72        | 1.43          | 4.27  |
| BL2000 | 2000                             | 53.91        | 1.53          | 4.44  |
| HL2450 | 2450                             | 39.05        | 1.77          | 4.11  |
| BL2450 | 2450                             | 52.97        | 1.93          | 4.25  |
| HL2600 | 2600                             | 38.35        | 1.92          | 4.20  |
| BL2600 | 2600                             | 51.81        | 2.19          | 4.32  |

## LOWER DETECTION LIMIT: 7mW/kg

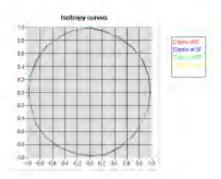
Page: 7/9




## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref. ACR. 262.1.14.SATU.A

# 5.4 ISOTROPY


# HL900 MHz

- Axial isotropy: 0.04 dB - Hemispherical isotropy: 0.07 dB



# HL1800 MHz

- Axial isotropy: 0.05 dB - Hemispherical isotropy: 0.08 dB



Page: 8/9



Ref. ACR. 262.1.14.SATU.A

# 6 LIST OF EQUIPMENT

| Equipment<br>Description         | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                         |
|----------------------------------|-------------------------|--------------------|-----------------------------------------------|--------------------------------------------------|
| Flat Phantom                     | Satimo                  | SN-20/09-SAM71     | Validated. No cal required.                   | Validated. No ca<br>required.                    |
| COMOSAR Test Bench               | Version 3               | NA                 | Validated. No cal<br>required.                | Validated. No ca<br>required.                    |
| Network Analyzer                 | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                          |
| Reference Probe                  | Satimo                  | EP 94 SN 37/08     | 10/2013                                       | 10/2014                                          |
| Multimeter                       | Keithley 2000           | 1188656            | 12/2013                                       | 12/2016                                          |
| Signal Generator                 | Agilent E4438C          | MY49070581         | 12/2013                                       | 12/2016                                          |
| Amplifier                        | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to<br>test. No cal required. |
| Power Meter                      | HP E4418A               | US38261498         | 12/2013                                       | 12/2016                                          |
| Power Sensor                     | HP ECP-E26A             | US37181460         | 12/2013                                       | 12/2016                                          |
| Directional Coupler              | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to<br>test. No cal required. |
| Waveguide                        | Mega Industries         | 069Y7-158-13-712   | Validated. No cal required.                   | Validated. No cal<br>required.                   |
| Waveguide Transition             | Mega Industries         | 069Y7-158-13-701   | Validated. No cal<br>required.                | Validated. No cal<br>required.                   |
| Waveguide Termination            | Mega Industries         | 069Y7-158-13-701   | Validated. No cal required.                   | Validated. No cal required.                      |
| Temperature / Humidity<br>Sensor | Control Company         | 11-661-9           | 8/2012                                        | 8/2015                                           |

Page: 9/9



# SAR Reference Dipole Calibration Report

Ref: ACR.262.5.14.SATU.A

# SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD

SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 835 MHZ

SERIAL NO.: SN 30/14 DIP0G835-332

# Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



09/01/2014

#### Sugary:

This document presents the method and results from an according SAR reference dipole califration performed in SATIMO USA using the COMOSAR test bench. All calibration possible are transible to rational methology institutions.



## SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR. 262.5.14.SATU.A

|               | Name          | Function        | Date      | Signature    |
|---------------|---------------|-----------------|-----------|--------------|
| Prepared by : | Jérôme LUC    | Product Manager | 9/19/2014 | JES          |
| Checked by :  | Jérôme LUC    | Product Manager | 9/19/2014 | 25           |
| Approved by:  | Kim RUTKOWSKI | Quality Manager | 9/19/2014 | ALM MUTARISM |

|               | Customer Name                           |  |  |
|---------------|-----------------------------------------|--|--|
| Distribution: | Shenzhen STS Test<br>Services Co., Ltd. |  |  |

| Issue | Date      | Modifications   |
|-------|-----------|-----------------|
| A     | 9/19/2014 | Initial release |
|       |           |                 |
|       |           |                 |
|       |           |                 |

Page: 2/11



1 Introduction 4

Ref. ACR. 262.5.14.SATU.A.

## TABLE OF CONTENTS

|   |     | vice Under Test                          |    |
|---|-----|------------------------------------------|----|
| 3 | Pro | duct Description                         |    |
|   | 3.1 | General Information                      | 4  |
| 4 | Me  | asurement Method                         |    |
|   | 4.1 | Return Loss Requirements                 | 5  |
|   | 4.2 | Mechanical Requirements                  | 5  |
| 5 | Me  | asurement Uncertainty                    |    |
|   | 5.1 | Return Loss                              | 5  |
|   | 5.2 | Dimension Measurement                    | 5  |
|   | 5,3 | Validation Measurement                   | 5  |
| 6 | Cal | libration Measurement Results 6          |    |
|   | 6.1 | Return Loss and Impedance In Head Liquid | 6  |
|   | 6.2 | Return Loss and Impedance In Body Liquid | 6  |
|   | 6.3 | Mechanical Dimensions                    | 6  |
| 7 | Val | lidation measurement                     |    |
|   | 7.1 | Head Liquid Measurement                  | 7  |
|   | 7.2 | SAR Measurement Result With Head Liquid_ | 8  |
|   | 7.3 | Body Liquid Measurement                  | 9  |
|   | 7.4 | SAR Measurement Result With Body Liquid  | 10 |
| 8 | Lis | t of Equipment 11                        |    |
|   |     |                                          |    |

Page: 3/11

Ref. ACR 262.5.14.SATU.A.

#### 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

## 2 DEVICE UNDER TEST

| Device Under Test              |                                  |  |  |  |
|--------------------------------|----------------------------------|--|--|--|
| Device Type                    | COMOSAR 835 MHz REFERENCE DIPOLE |  |  |  |
| Manufacturer                   | Satimo                           |  |  |  |
| Model                          | SID835                           |  |  |  |
| Serial Number                  | SN 30/14 DIP0G835-332            |  |  |  |
| Product Condition (new / used) | New                              |  |  |  |

A yearly calibration interval is recommended.

## 3 PRODUCT DESCRIPTION

## 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref. ACR 262.5.14.SATU.A

#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

#### 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

## 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

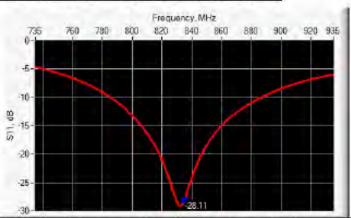
#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Length |  |
|-------------|--------------------------------|--|
| 3 - 300     | 0.05 mm                        |  |

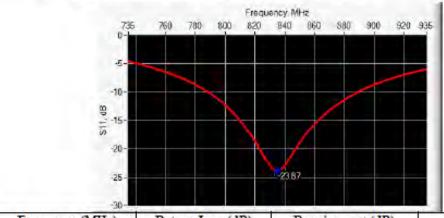
#### 5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


| Scan Volume | Expanded Uncertainty |  |
|-------------|----------------------|--|
| 1 g         | 20.3 %               |  |
| 10 g        | 20,1 %               |  |

Page: 5/11

Ref. ACR. 262.5.14.SATU.A


## 6 CALIBRATION MEASUREMENT RESULTS

# 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID



Frequency (MHz) Return Loss (dB) Requirement (dB) Impedance 835 -28.11 -20  $51.6 \Omega + 3.6 j\Omega$ 

## 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance                   |
|-----------------|------------------|------------------|-----------------------------|
| 835             | -23.87           | -20              | $49.0 \Omega + 6.3 j\Omega$ |

## 6.3 MECHANICAL DIMENSIONS

| Frequency MHz | Lmm         |          | h mm        |          | d mm       |          |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. | -        | 6.35±1%.   |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %. | PASS     | 89.8 ±1 %.  | PASS     | 3.6 ±1 %.  | PASS     |

Page: 6/11



Ref: ACR.262.5.14.SATU.A

| 900  | 149.0 ±1 %. | 83.3 ±1 %. | 3.6 ±1 %. |
|------|-------------|------------|-----------|
| 1450 | 89.1 ±1 %.  | 51.7 ±1 %. | 3.6 ±1 %. |
| 1500 | 80.5 ±1 %.  | 50.0 ±1 %. | 3.6 ±1 %. |
| 1640 | 79.0 ±1 %.  | 45.7 ±1 %. | 3.6 ±1 %. |
| 1750 | 75.2 ±1 %.  | 42.9 ±1 %. | 3.6 ±1 %. |
| 1800 | 72.0 ±1 %.  | 41.7 ±1 %. | 3.6 ±1 %. |
| 1900 | 68.0 ±1 %.  | 39.5 ±1 %. | 3.6 ±1 %. |
| 1950 | 66.3 ±1 %.  | 38.5 ±1 %. | 3.6 ±1 %. |
| 2000 | 64.5 ±1 %.  | 37.5 ±1 %. | 3.6 ±1 %. |
| 2100 | 61.0 ±1 %.  | 35.7 ±1 %. | 3.6 ±1 %. |
| 2300 | 55.5 ±1 %.  | 32.6 ±1 %. | 3.6 ±1 %. |
| 2450 | 51.5 ±1%.   | 30.4 ±1 %. | 3.6 ±1 %. |
| 2600 | 48.5 ±1 %.  | 28.8 ±1 %. | 3.6 ±1 %. |
| 3000 | 41.5 ±1%.   | 25.0 ±1 %. | 3.6 ±1 %. |
| 3500 | 37.0±1 %.   | 26.4 ±1 %. | 3.6 ±1 %. |
| 3700 | 34.7±1 %.   | 26.4 ±1 %. | 3.6 ±1 %. |

## 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

## 7.1 HEAD LIQUID MEASUREMENT

| Frequency<br>MHz | Relative permittivity ( $\epsilon_{r}'$ ) |          | Conductivity (σ) S/m |          |
|------------------|-------------------------------------------|----------|----------------------|----------|
|                  | required                                  | measured | required             | measured |
| 300              | 45.3 ±5 %                                 |          | 0.87 ±5 %            |          |
| 450              | 43.5 ±5 %                                 |          | 0.87 ±5 %            |          |
| 750              | 41.9 ±5 %                                 |          | 0.89 ±5 %            |          |
| 835              | 41.5 ±5 %                                 | PASS     | 0.90 ±5 %            | PASS     |
| 900              | 41.5 ±5 %                                 |          | 0.97 ±5 %            |          |
| 1450             | 40.5 ±5 %                                 |          | 1.20 ±5 %            |          |
| 1500             | 40.4 ±5 %                                 |          | 1.23 ±5 %            |          |
| 1640             | 40.2 ±5 %                                 |          | 1.31 ±5 %            |          |
| 1750             | 40.1 ±5 %                                 |          | 1.37 ±5 %            |          |
| 1800             | 40.0 ±5 %                                 |          | 1.40 ±5 %            |          |
| 1900             | 40.0 ±5 %                                 |          | 1.40 ±5 %            |          |
| 1950             | 40.0 ±5 %                                 |          | 1.40 ±5 %            |          |
| 2000             | 40.0 ±5 %                                 |          | 1.40 ±5 %            |          |

Page: 7/11



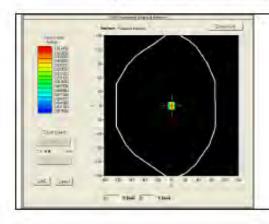
Ref. ACR. 262.5.14.SATU.A

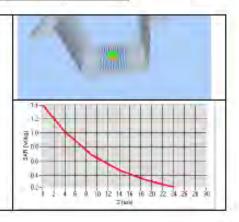
|   | 2100 | 39.8 ±5 % | 1.49 15 % |
|---|------|-----------|-----------|
|   | 2300 | 39.5 ±5 % | 1.67 ±5 % |
|   | 2450 | 39.2 ±5 % | 1.80 ±5 % |
|   | 2600 | 39.0 ±5 % | 1.96 ±5 % |
| Г | 3000 | 38.5 ±5 % | 2,40 ±5 % |
|   | 3500 | 37.9 ±5 % | 2.91 ±5 % |
|   |      |           |           |

## 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                   |
|-------------------------------------------|----------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                               |
| Probe                                     | SN 18/11 EPG122                              |
| Liquid                                    | Head Liquid Values: eps' : 42.3 sigma : 0.92 |
| Distance between dipole center and liquid | 15.0 mm                                      |
| Area scan resolution                      | dx=8mm/dy=8mm                                |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                          |
| Frequency                                 | 835 MHz                                      |
| Input power                               | 20 dBm                                       |
| Liquid Temperature                        | 21 °C                                        |
| Lab Temperature                           | 21 °C                                        |
| Lab Humidity                              | 45 %                                         |


| Frequency<br>MHz | 1 g SAR  | (W/kg/W)    | 10 g SAR | (W/kg/W)    |
|------------------|----------|-------------|----------|-------------|
|                  | required | measured    | required | measured    |
| 300              | 2.85     |             | 1.94     |             |
| 450              | 4.58     | 11 2 2 2 1  | 3.06     |             |
| 750              | 8.49     |             | 5.55     |             |
| 835              | 9.56     | 9.63 (0.96) | 6.22     | 6.15 (0.62) |
| 900              | 10.9     |             | 6.99     |             |
| 1450             | 29       |             | 16       |             |
| 1500             | 30.5     | 10 2 2 1    | 16.8     |             |
| 1640             | 34.2     | 10 2 21     | 18.4     |             |
| 1750             | 36.4     | 1 2 2 2 1   | 19.3     |             |
| 1800             | 38.4     |             | 20.1     |             |
| 1900             | 39.7     | 1 = = = 1   | 20.5     |             |
| 1950             | 40.5     | 1 = = 11    | 20.9     |             |
| 2000             | 41.1     | 11 2 21     | 21.1     |             |
| 2100             | 43.6     | 17 2 71     | 21.9     |             |
| 2300             | 48.7     |             | 23.3     |             |


Page: 8/11



Ref. ACR 262.5.14.SATU.A

| 2450 | 52.4 | 24   |  |
|------|------|------|--|
| 2600 | 55.3 | 24.6 |  |
| 3000 | 63.8 | 25.7 |  |
| 3500 | 67.1 | 25   |  |





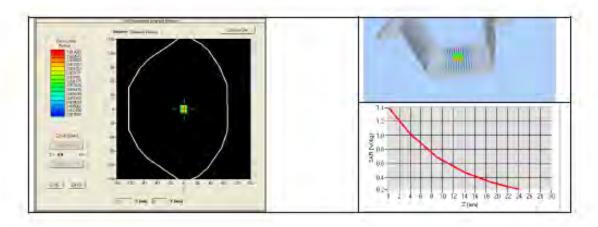
# 7.3 BODY LIQUID MEASUREMENT

| Frequency<br>MHz | Relative pen | mittivity (ɛˌ/) | Conductiv  | ity (ơ) S/m |
|------------------|--------------|-----------------|------------|-------------|
|                  | required     | measured        | required   | measured    |
| 150              | 61.9 ±5 %    |                 | 0.80 ±5 %  |             |
| 300              | 58.2 ±5 %    |                 | 0.92 ±5 %  |             |
| 450              | 56.7 ±5 %    |                 | 0.94±5%    |             |
| 750              | 55.5 ±5 %    |                 | 0.96±5%    |             |
| 835              | 55.2 ±5 %    | PASS            | 0.97±5%    | PASS        |
| 900              | 55.0 ±5 %    |                 | 1.05 ±5 %  |             |
| 915              | 55.0 ±5 %    |                 | 1.06 ±5 %  |             |
| 1450             | 54.0 ±5 %    |                 | 1.30 ±5 %  |             |
| 1610             | 53.8 ±5 %    |                 | 1.40 ±5 %  |             |
| 1800             | 53.3 ±5 %    |                 | 1.52 ±5 %  |             |
| 1900             | 53.3 ±5 %    |                 | 1.52 ±5 %  |             |
| 2000             | 53.3 ±5 %    |                 | 1.52 ±5 %  |             |
| 2100             | 53.2 ±5 %    |                 | 1.62 ±5 %  |             |
| 2450             | 52.7 ±5 %    |                 | 1.95 ±5 %  |             |
| 2600             | 52.5 ±5 %    |                 | 2.16 ±5 %  |             |
| 3000             | 52.0 ±5 %    |                 | 2.73 ±5 %  |             |
| 3500             | 51.3 ±5 %    |                 | 3.31 ±5 %  |             |
| 5200             | 49.0 ±10 %   |                 | 5.30 ±10 % |             |
| 5300             | 48.9 ±10 %   |                 | 5.42 ±10 % |             |
| 5400             | 48.7 ±10 %   |                 | 5.53 ±10 % |             |

Page: 9/11



## SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref. ACR:262.5.14.SATU.A

| 5500 | 48.6 ±10 % | 5.65 ±10 % |
|------|------------|------------|
| 5600 | 48.5 ±10 % | 5.77 ±10 % |
| 5800 | 48.2 ±10 % | 6.00 ±10 % |

# 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| Software                                  | OPENSAR V4                                 |
|-------------------------------------------|--------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                             |
| Probe                                     | SN 18/11 EPG122                            |
| Liquid                                    | Body Liquid Values: eps': 54.1 sigma: 0.97 |
| Distance between dipole center and liquid | 15.0 mm                                    |
| Area scan resolution                      | dx=8mm/dy=8mm                              |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                        |
| Frequency                                 | 835 MHz                                    |
| Input power                               | 20 dBm                                     |
| Liquid Temperature                        | 21 °C                                      |
| Lab Temperature                           | 21 °C                                      |
| Lab Humidity                              | 45 %                                       |
|                                           |                                            |

| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 835              | 9.93 (0.99)      | 6.35 (0.63)       |



Page: 10/11



Ref. ACR. 262.5.14.SATU.A.

# 8 LIST OF EQUIPMENT

| Equipment Summary Sheet            |                         |                    |                                               |                                               |  |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|--|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |  |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | Validated, No cal required.                   | Validated. No ca<br>required.                 |  |
| COMOSAR Test Bench                 | Version 3               | NA                 | Validated. No cal required.                   | Validated. No ca<br>required.                 |  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                       |  |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2013                                       | 12/2016                                       |  |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2013                                       | 10/2014                                       |  |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2013                                       | 12/2016                                       |  |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2013                                       | 12/2016                                       |  |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |
| Power Meter                        | HP E4418A               | US38261498         | 12/2013                                       | 12/2018                                       |  |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2013                                       | 12/2016                                       |  |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |  |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2012                                        | 8/2015                                        |  |

Page: 11/11



# SAR Reference Dipole Calibration Report

Ref: ACR.262.8.14.SATU.A

# SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD

FUYONG, BAO' AN DISTRICT, SHENZHEN, CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 1900 MHZ

SERIAL NO.: SN 30/14 DIP1G900-333

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



09/01/2014

# Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.



## SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR. 262.8.14.SATU.A

|               | Name          | Function        | Date      | Signature    |
|---------------|---------------|-----------------|-----------|--------------|
| Prepared by : | Jérôme LUC    | Product Manager | 9/19/2014 | JE           |
| Checked by :  | Jérôme LUC    | Product Manager | 9/19/2014 | JES          |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 9/19/2014 | ALE MUTANOSA |

|               | Customer Name                           |
|---------------|-----------------------------------------|
| Distribution: | Shenzhen STS Test<br>Services Co., Ltd. |

| Issue | Date      | Modifications   |
|-------|-----------|-----------------|
| A     | 9/19/2014 | Initial release |
|       |           |                 |
|       |           |                 |
|       |           |                 |
|       |           |                 |

Page: 2/11



Ref. ACR. 262.8.14.SATU.A

## TABLE OF CONTENTS

| 1 | Int | roduction 4                              |    |
|---|-----|------------------------------------------|----|
| 2 | De  | vice Under Test4                         |    |
| 3 | Pro | oduct Description4                       |    |
|   | 3.1 | General Information                      | 4  |
| 4 | Me  | asurement Method                         |    |
|   | 4.1 | Return Loss Requirements                 | 5  |
|   | 4.2 | Mechanical Requirements                  | 5  |
| 5 | Me  | asurement Uncertainty                    |    |
|   | 5.1 | Return Loss                              | 5  |
|   | 5.2 | Dimension Measurement                    | 5  |
|   | 5.3 | Validation Measurement                   | 5  |
| 6 | Cal | libration Measurement Results6           |    |
|   | 6.1 | Return Loss and Impedance In Head Liquid | 6  |
|   | 6.2 | Return Loss and Impedance In Body Liquid | 6  |
|   | 6.3 | Mechanical Dimensions                    | 6  |
| 7 | Va  | lidation measurement                     |    |
|   | 7.1 | Head Liquid Measurement                  | 7  |
|   | 7.2 | SAR Measurement Result With Head Liquid  | 8  |
|   | 7.3 | Body Liquid Measurement                  | 9  |
|   | 7.4 | SAR Measurement Result With Body Liquid  | 10 |
| 8 | Lis | t of Equipment11                         |    |

Page: 3/11

Ref ACR 262.8.14.SATU.A

## 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

## 2 DEVICE UNDER TEST

| Device Under Test              |                                   |  |
|--------------------------------|-----------------------------------|--|
| Device Type                    | COMOSAR 1900 MHz REFERENCE DIPOLE |  |
| Manufacturer                   | Satimo                            |  |
| Model                          | SID1900                           |  |
| Serial Number                  | SN 30/14 DIP1G900-333             |  |
| Product Condition (new / used) | New                               |  |

A yearly calibration interval is recommended.

## 3 PRODUCT DESCRIPTION

## 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref. ACR 262.8.14.SATU.A.

#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

## 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

## 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Expanded Uncertainty on Return Loss |
|-------------------------------------|
| 0.1 dB                              |
|                                     |

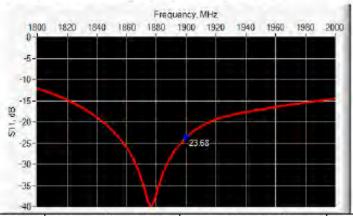
#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Length (mm) | Expanded Uncertainty on Len |  |
|-------------|-----------------------------|--|
| 3 - 300     | 0.05 mm                     |  |

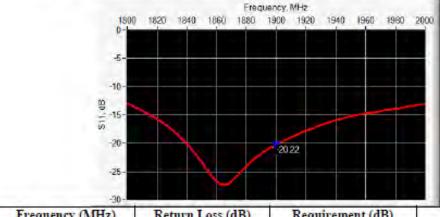
## 5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| 1 g         | 20.3 %               |
| 10 g        | 20.1 %               |

Page: 5/11

Ref. ACR. 262.8.14.SATU.A.


#### 6 CALIBRATION MEASUREMENT RESULTS

# 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance                   |
|-----------------|------------------|------------------|-----------------------------|
| 1900            | -23.68           | -20              | $51.2 \Omega + 6.4 j\Omega$ |

# 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance                   |
|-----------------|------------------|------------------|-----------------------------|
| 1900            | -20.22           | -20              | $48.8 \Omega + 9.6 j\Omega$ |

# 6.3 MECHANICAL DIMENSIONS

| Frequency MHz | uency MHz L m |          | h mm        |          | dr         | nm       |
|---------------|---------------|----------|-------------|----------|------------|----------|
|               | required      | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %.   |          | 250.0 ±1 %. |          | 6.35±1%.   |          |
| 450           | 290.0 ±1 %.   |          | 166.7 ±1 %. |          | 6.35±1%.   |          |
| 750           | 176.0 ±1 %.   |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %.   |          | 89.8 ±1 %.  |          | 3.6 ±1 %.  |          |

Page: 6/11



Ref: ACR.262.8.14.SATU.A

| 900  | 149.0 ±1 %. |      | 83.3 ±1 %. |      | 3.6 ±1 %. |      |
|------|-------------|------|------------|------|-----------|------|
| 1450 | 89.1 ±1 %.  |      | 51.7 ±1 %. |      | 3.6 ±1 %. |      |
| 1500 | 80.5 ±1 %.  |      | 50.0 ±1 %. |      | 3.6 ±1 %. |      |
| 1640 | 79.0 ±1 %.  |      | 45.7 ±1 %. |      | 3.6 ±1 %. |      |
| 1750 | 75.2 ±1 %.  |      | 42.9 ±1 %. |      | 3.6 ±1 %. |      |
| 1800 | 72.0 ±1 %.  |      | 41.7 ±1 %. |      | 3.6 ±1 %. |      |
| 1900 | 68.0 ±1 %.  | PASS | 39.5 ±1 %. | PASS | 3.6 ±1 %. | PASS |
| 1950 | 66.3 ±1 %.  |      | 38.5 ±1 %. |      | 3.6 ±1 %. |      |
| 2000 | 64.5 ±1 %.  |      | 37.5 ±1 %. |      | 3.6 ±1 %. |      |
| 2100 | 61.0 ±1 %.  |      | 35.7 ±1 %. |      | 3.6 ±1 %. |      |
| 2300 | 55.5 ±1 %.  |      | 32.6 ±1 %. |      | 3.6 ±1 %. |      |
| 2450 | 51.5 ±1 %.  |      | 30.4 ±1 %. |      | 3.6 ±1 %. |      |
| 2600 | 48.5 ±1 %.  |      | 28.8 ±1 %. |      | 3.6 ±1 %. |      |
| 3000 | 41.5 ±1 %.  |      | 25.0 ±1 %. |      | 3.6 ±1 %. |      |
| 3500 | 37.0±1 %.   |      | 26.4 ±1 %. |      | 3.6 ±1 %. |      |
| 3700 | 34.7±1 %.   |      | 26.4 ±1 %. |      | 3.6 ±1 %. |      |

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

## 7.1 HEAD LIQUID MEASUREMENT

| Frequency<br>MHz | Relative per | mittivity (ε,') | Conductiv | ity (σ) S/m |
|------------------|--------------|-----------------|-----------|-------------|
|                  | required     | measured        | required  | measured    |
| 300              | 45.3 ±5 %    |                 | 0.87 ±5 % |             |
| 450              | 43.5 ±5 %    |                 | 0.87 ±5 % |             |
| 750              | 41.9 ±5 %    |                 | 0.89 ±5 % |             |
| 835              | 41.5 ±5 %    |                 | 0.90 ±5 % |             |
| 900              | 41.5 ±5 %    |                 | 0.97 ±5 % |             |
| 1450             | 40.5 ±5 %    |                 | 1.20 ±5 % |             |
| 1500             | 40.4 ±5 %    |                 | 1.23 ±5 % |             |
| 1640             | 40.2 ±5 %    |                 | 1.31 ±5 % |             |
| 1750             | 40.1 ±5 %    |                 | 1.37 ±5 % |             |
| 1800             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 1900             | 40.0 ±5 %    | PASS            | 1.40 ±5 % | PASS        |
| 1950             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |
| 2000             | 40.0 ±5 %    |                 | 1.40 ±5 % |             |

Page: 7/11



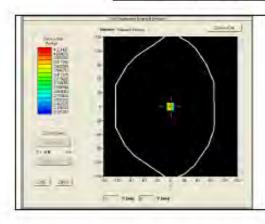
Ref. ACR 262.8.14.SATU.A

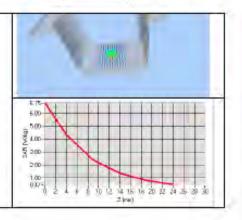
| 2100 | 39.8 ±5 % | 1,49 ±5 %  |
|------|-----------|------------|
| 2300 | 39.5 ±5 % | 1.67±5%    |
| 2450 | 39.2 ±5 % | 1.80 ±5 %  |
| 2600 | 39.0 ±5 % | 1.96 ± 5 % |
| 3000 | 38.5 ±5 % | 2.40±5%    |
| 3500 | 37.9 ±5 % | 2.91 ±5 %  |

# 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                          | OPENSAR V4                                 |  |  |
|---------------------------------------------------|--------------------------------------------|--|--|
| Phantom                                           | SN 20/09 SAM71                             |  |  |
| Probe                                             | SN 18/11 EPG122                            |  |  |
| Liquid                                            | Head Liquid Values: eps': 41.1 sigma: 1.42 |  |  |
| Distance between dipole center and liquid 10.0 mm |                                            |  |  |
| Area scan resolution                              | dx=8mm/dy=8mm                              |  |  |
| Zoon Scan Resolution                              | dx=8mm/dy=8m/dz=5mm                        |  |  |
| Frequency                                         | 1900 MHz                                   |  |  |
| Input power 20 dBm                                |                                            |  |  |
| iquid Temperature 21 °C                           |                                            |  |  |
| Lab Temperature                                   | 21 °C                                      |  |  |
| Lab Humidity                                      | 45 %                                       |  |  |


| Frequency<br>MHz | 1 g SAR  | (W/kg/W)     | 10 g SAR | (W/kg/W)    |
|------------------|----------|--------------|----------|-------------|
|                  | required | measured     | required | measured    |
| 300              | 2.85     |              | 1.94     |             |
| 450              | 4.58     |              | 3.06     |             |
| 750              | 8.49     |              | 5.55     |             |
| 835              | 9.56     |              | 6.22     |             |
| 900              | 10.9     |              | 6.99     |             |
| 1450             | 29       |              | 16       |             |
| 1500             | 30.5     |              | 16.8     |             |
| 1640             | 34.2     |              | 18.4     |             |
| 1750             | 36.4     |              | 19.3     |             |
| 1800             | 38.4     |              | 20.1     |             |
| 1900             | 39.7     | 39.84 (3.98) | 20.5     | 20.20 (2.02 |
| 1950             | 40.5     |              | 20.9     |             |
| 2000             | 41.1     |              | 21.1     |             |
| 2100             | 43.6     |              | 21.9     |             |
| 2300             | 48.7     |              | 23.3     |             |


Page: 8/11



Ref. ACR 262.8.14.SATU.A

| 2450 | 52.4 | 24   |
|------|------|------|
| 2600 | 55.3 | 24.6 |
| 3000 | 63.8 | 25.7 |
| 3500 | 67.1 | 25   |





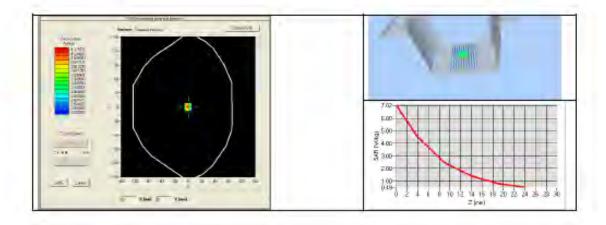
# 7.3 BODY LIQUID MEASUREMENT

| Frequency<br>MHz | Relative per | mittivity (ɛ,') | Conductiv  | ity (a) S/m |
|------------------|--------------|-----------------|------------|-------------|
|                  | required     | measured        | required   | measured    |
| 150              | 61.9 ±5 %    |                 | 0.80 ±5 %  |             |
| 300              | 58.2 ±5 %    |                 | 0.92 ±5 %  |             |
| 450              | 56.7 ±5 %    |                 | 0.94±5%    |             |
| 750              | 55.5 ±5 %    |                 | 0.96 ±5 %  |             |
| 835              | 55.2 ±5 %    |                 | 0.97±5%    |             |
| 900              | 55.0 ±5 %    |                 | 1.05 ±5 %  |             |
| 915              | 55.0 ±5 %    |                 | 1.06 ±5 %  |             |
| 1450             | 54.0 ±5 %    |                 | 1.30 ±5 %  |             |
| 1610             | 53.8 ±5 %    |                 | 1.40 ±5 %  |             |
| 1800             | 53.3 ±5 %    |                 | 1,52 ±5 %  |             |
| 1900             | 53.3 ±5 %    | PASS            | 1.52 ±5 %  | PASS        |
| 2000             | 53.3 ±5 %    |                 | 1.52 ±5 %  |             |
| 2100             | 53.2 ±5 %    |                 | 1.62 ±5 %  |             |
| 2450             | 52.7 ±5 %    |                 | 1.95 ±5 %  |             |
| 2600             | 52.5 ±5 %    |                 | 2.16±5%    |             |
| 3000             | 52.0 ±5 %    |                 | 2.73 ±5 %  |             |
| 3500             | 51.3 ±5 %    | -               | 3.31 ±5 %  |             |
| 5200             | 49.0 ±10 %   | 1               | 5.30 ±10 % |             |
| 5300             | 48.9 ±10 %   |                 | 5.42 ±10 % |             |
| 5400             | 48.7 ±10 %   |                 | 5.53 ±10 % |             |

Page: 9/11



## SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref. ACR 262.8.14.SATU.A

| 5500 | 48.6 ±10 % | 5.65 ±10 % |
|------|------------|------------|
| 5600 | 48.5 ±10 % | 5.77 ±10 % |
| 5800 | 48.2 ±10 % | 6.00 ±10 % |

# 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| Software                                  | OPENSAR V4                                   |
|-------------------------------------------|----------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                               |
| Probe                                     | SN 18/11 EPG122                              |
| Liquid                                    | Body Liquid Values: eps' : 54.2 sigma : 1.54 |
| Distance between dipole center and liquid | 10.0 mm                                      |
| Area scan resolution                      | dx=8mm/dy=8mm                                |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                          |
| Frequency                                 | 1900 MHz                                     |
| Input power                               | 20 dBm                                       |
| Liquid Temperature                        | 21 °C                                        |
| Lab Temperature                           | 21 °C                                        |
| Lab Humidity                              | 45 %                                         |

| Frequency<br>MHz | 1 g SAR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 1900             | 43.33 (4.33)     | 21.59 (2.16)      |



Page: 10/11



Ref. ACR. 262.8.14.SATU.A

# 8 LIST OF EQUIPMENT

|                                    | Equi                    | ipment Summary S   | Sheet                                         |                                               |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|-----------------------------------------------|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                      |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No ca<br>required.                 |
| COMOSAR Test Bench                 | Version 3               | NA                 | Validated. No cal required.                   | Validated. No ca<br>required.                 |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                       |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2013                                       | 12/2016                                       |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2013                                       | 10/2014                                       |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2013                                       | 12/2016                                       |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2013                                       | 12/2016                                       |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Power Meter                        | HP E4418A               | US38261498         | 12/2013                                       | 12/2016                                       |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2013                                       | 12/2016                                       |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to test. No cal required. |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2012                                        | 8/2015                                        |

Page: 11/11



# SAR Reference Dipole Calibration Report

Ref: ACR.262.10.14.SATU.A

# SHENZHEN STS TEST SERVICES CO., LTD. 1/F, BUILDING 2, ZHUOKE SCIENCE PARK, CHONGQING ROAD

FUYONG, BAO' AN DISTRICT, SHENZHEN, CHINA SATIMO COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 30/14 DIP2G450-335

Calibrated at SATIMO US 2105 Barrett Park Dr. - Kennesaw, GA 30144



09/01/2014

#### Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in SATIMO USA using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.



## SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR.262.10.14.SATU.A

|               | Name          | Function        | Date      | Signature    |
|---------------|---------------|-----------------|-----------|--------------|
| Prepared by : | Jérôme LUC    | Product Manager | 9/19/2014 | JS           |
| Checked by:   | Jérôme LUC    | Product Manager | 9/19/2014 | JES          |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 9/19/2014 | Jum Bertande |

|               | Customer Name                           |
|---------------|-----------------------------------------|
| Distribution: | Shenzhen STS Test<br>Services Co., Ltd. |

| Issue | Date      | Modifications   |
|-------|-----------|-----------------|
| A     | 9/19/2014 | Initial release |
|       |           |                 |
|       |           | 10 1 10         |
|       |           |                 |
|       |           |                 |

Page: 2/11



Ref: ACR. 262.10.14.SATU.A

## TABLE OF CONTENTS

|     | 1 Int | roduction 4                              |    |
|-----|-------|------------------------------------------|----|
| 3   | 2 De  | vice Under Test4                         |    |
| 1   | 3 Pro | oduct Description4                       |    |
|     | 3.1   | General Information                      | 4  |
| le. | 4 Me  | asurement Method                         |    |
|     | 4.1   | Return Loss Requirements                 | 5  |
|     | 4.2   | Mechanical Requirements                  | 5  |
|     | 5 Me  | easurement Uncertainty                   |    |
|     | 5.1   | Return Loss                              | 5  |
|     | 5.2   | Dimension Measurement                    | 5  |
|     | 5.3   |                                          | 5  |
|     | 6 Ca  | libration Measurement Results6           |    |
|     | 6.1   | Return Loss and Impedance In Head Liquid | 6  |
|     | 6.2   | Return Loss and Impedance In Body Liquid | 6  |
|     | 6.3   | Mechanical Dimensions                    | 6  |
|     | 7 Va  | lidation measurement                     |    |
|     | 7.1   | Head Liquid Measurement                  | 7  |
|     | 7.2   | SAR Measurement Result With Head Liquid  | 8  |
|     | 7.3   | Body Liquid Measurement                  | 9  |
|     | 7.4   | SAR Measurement Result With Body Liquid  | 10 |
|     | 8 Lis | t of Equipment 11                        |    |

Page: 3/11

Ref. ACR.262.10.14, SATU.A

## 1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

## 2 DEVICE UNDER TEST

| D                              | evice Under Test                  |
|--------------------------------|-----------------------------------|
| Device Type                    | COMOSAR 2450 MHz REFERENCE DIPOLE |
| Manufacturer                   | Satimo                            |
| Model                          | SID2450                           |
| Serial Number                  | SN 30/14 DIP2G450-335             |
| Product Condition (new / used) | New                               |

A yearly calibration interval is recommended.

## 3 PRODUCT DESCRIPTION

## 3.1 GENERAL INFORMATION

Satimo's COMOSAR Validation Dipoles are built in accordance to the IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards. The product is designed for use with the COMOSAR test bench only.



Figure 1 - Satimo COMOSAR Validation Dipole

Page: 4/11

Ref: ACR 262.10.14.SATU.A

#### 4 MEASUREMENT METHOD

The IEEE 1528, OET 65 Bulletin C and CEI/IEC 62209 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

## 4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constucted as outlined in the fore mentioned standards.

## 4.2 MECHANICAL REQUIREMENTS

The IEEE Std. 1528 and CEI/IEC 62209 standards specify the mechanical components and dimensions of the validation dipoles, with the dimensions frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness.

#### 5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

#### 5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

| Frequency band | Expanded Uncertainty on Return Loss |
|----------------|-------------------------------------|
| 400-6000MHz    | 0.1 dB                              |

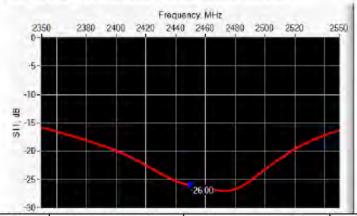
#### 5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

| Expanded Uncertainty on Length |
|--------------------------------|
| 0.05 mm                        |
|                                |

#### 5.3 VALIDATION MEASUREMENT

The guidelines outlined in the IEEE 1528, OET 65 Bulletin C, CENELEC EN50361 and CEI/IEC 62209 standards were followed to generate the measurement uncertainty for validation measurements.


| Scan Volume | Expanded Uncertainty |
|-------------|----------------------|
| 1 g         | 20.3 %               |
| 10 g        | 20.1 %               |

Page: 5/11

Ref: ACR 262:10.14.SATU.A.

## 6 CALIBRATION MEASUREMENT RESULTS

## 6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID



| Frequency (MHz) | Return Loss (dB) | Requirement (dB) | Impedance | 2450 | -26.00 | -20 | 46.1 Ω + 3.2 jΩ

## 6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID



Frequency (MHz) Return Loss (dB) Requirement (dB) Impedance 2450 -32.75 -20  $48.8 \Omega + 1.9 j\Omega$ 

## 6.3 MECHANICAL DIMENSIONS

| Frequency MHz | Ln          | nm       | hmm         |          | d mm       |          |
|---------------|-------------|----------|-------------|----------|------------|----------|
|               | required    | measured | required    | measured | required   | measured |
| 300           | 420.0 ±1 %. |          | 250.0 ±1 %. |          | 6.35 ±1 %. |          |
| 450           | 290.0 ±1 %. |          | 166.7 ±1 %. |          | 6.35 ±1 %. |          |
| 750           | 176.0 ±1 %. |          | 100.0 ±1 %. |          | 6.35 ±1 %. |          |
| 835           | 161.0 ±1 %. |          | 89.8 ±1 %.  |          | 3.6 ±1 %.  |          |

Page: 6/11



Ref: ACR.262.10.14.SATU.A

| 900  | 149.0 ±1 %. |      | 83.3 ±1 %. |      | 3.6 ±1 %. |      |
|------|-------------|------|------------|------|-----------|------|
| 1450 | 89.1 ±1 %.  |      | 51.7 ±1 %. |      | 3.6 ±1 %. |      |
| 1500 | 80.5 ±1 %.  |      | 50.0 ±1 %. |      | 3.6 ±1 %. |      |
| 1640 | 79.0 ±1 %.  |      | 45.7 ±1 %. |      | 3.6 ±1 %. |      |
| 1750 | 75.2 ±1 %.  |      | 42.9 ±1 %. |      | 3.6 ±1 %. |      |
| 1800 | 72.0 ±1 %.  |      | 41.7 ±1 %. |      | 3.6 ±1 %. |      |
| 1900 | 68.0 ±1 %.  |      | 39.5 ±1 %. |      | 3.6 ±1 %. |      |
| 1950 | 66.3 ±1 %.  |      | 38.5 ±1 %. |      | 3.6 ±1 %. |      |
| 2000 | 64.5 ±1 %.  |      | 37.5 ±1 %. |      | 3.6 ±1 %. |      |
| 2100 | 61.0 ±1 %.  |      | 35.7 ±1 %. |      | 3.6 ±1 %. |      |
| 2300 | 55.5 ±1 %.  |      | 32.6 ±1 %. |      | 3.6 ±1 %. |      |
| 2450 | 51.5 ±1 %.  | PASS | 30.4 ±1 %. | PASS | 3.6 ±1 %. | PASS |
| 2600 | 48.5 ±1 %.  |      | 28.8 ±1 %. |      | 3.6 ±1 %. |      |
| 3000 | 41.5 ±1 %.  |      | 25.0 ±1 %. |      | 3.6 ±1 %. |      |
| 3500 | 37.0±1 %.   |      | 26.4 ±1 %. |      | 3.6 ±1 %. |      |
| 3700 | 34.7±1 %.   |      | 26.4 ±1 %. |      | 3.6 ±1 %. |      |

#### 7 VALIDATION MEASUREMENT

The IEEE Std. 1528, OET 65 Bulletin C and CEI/IEC 62209 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

## 7.1 HEAD LIQUID MEASUREMENT

| Frequency<br>MHz | Relative per | Relative permittivity (ε <sub>r</sub> ') |           | ity (σ) S/m |
|------------------|--------------|------------------------------------------|-----------|-------------|
|                  | required     | measured                                 | required  | measured    |
| 300              | 45.3 ±5 %    |                                          | 0.87 ±5 % |             |
| 450              | 43.5 ±5 %    |                                          | 0.87 ±5 % |             |
| 750              | 41.9 ±5 %    |                                          | 0.89 ±5 % |             |
| 835              | 41.5 ±5 %    |                                          | 0.90 ±5 % |             |
| 900              | 41.5 ±5 %    |                                          | 0.97 ±5 % |             |
| 1450             | 40.5 ±5 %    |                                          | 1.20 ±5 % |             |
| 1500             | 40.4 ±5 %    |                                          | 1.23 ±5 % |             |
| 1640             | 40.2 ±5 %    |                                          | 1.31 ±5 % |             |
| 1750             | 40.1 ±5 %    |                                          | 1.37 ±5 % |             |
| 1800             | 40.0 ±5 %    |                                          | 1.40 ±5 % |             |
| 1900             | 40.0 ±5 %    |                                          | 1.40 ±5 % |             |
| 1950             | 40.0 ±5 %    |                                          | 1.40 ±5 % |             |
| 2000             | 40.0 ±5 %    |                                          | 1.40 ±5 % |             |

Page: 7/11



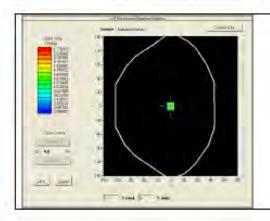
Ref: ACR. 262.10.14.SATU.A.

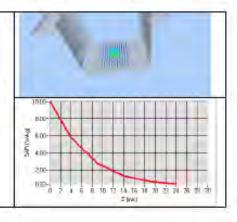
| 2100 | 39.8 ±5 % |      | 1.49 ±5 % |      |
|------|-----------|------|-----------|------|
| 2300 | 39.5 ±5 % |      | 1.67 ±5 % |      |
| 2450 | 39.2 ±5 % | PASS | 1.80 ±5 % | PASS |
| 2600 | 39.0 ±5 % |      | 1.96 ±5 % |      |
| 3000 | 38.5 ±5 % |      | 2.40 ±5 % |      |
| 3500 | 37.9 ±5 % |      | 2.91 ±5 % |      |

# 7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEEE Std. 1528 and CEI/IEC 62209 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

| Software                                  | OPENSAR V4                                 |
|-------------------------------------------|--------------------------------------------|
| Phantom                                   | SN 20/09 SAM71                             |
| Probe                                     | SN 18/11 EPG122                            |
| Liquid                                    | Head Liquid Values: eps3: 39.0 sigma: 1.77 |
| Distance between dipole center and liquid | 10.0 mm                                    |
| Area scan resolution                      | dx=8mm/dy=8mm                              |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                        |
| Frequency                                 | 2450 MHz                                   |
| Input power                               | 20 dBm                                     |
| Liquid Temperature                        | 21 °C                                      |
| Lab Temperature                           | 21 °C                                      |
| Lab Humidity                              | 45 %                                       |


| Frequency<br>MHz | 1g SAR ( | W/kg/W)  | 10 g SAR | (W/kg/W) |
|------------------|----------|----------|----------|----------|
|                  | required | measured | required | measured |
| 300              | 2.85     |          | 1.94     |          |
| 450              | 4.58     |          | 3.06     |          |
| 750              | 8.49     |          | 5.55     | 1 1      |
| 835              | 9.56     |          | 6.22     |          |
| 900              | 10.9     |          | 6.99     |          |
| 1450             | 29       | 1        | 16       |          |
| 1500             | 30.5     |          | 16.8     |          |
| 1640             | 34.2     |          | 18.4     |          |
| 1750             | 36.4     |          | 19.3     |          |
| 1800             | 38.4     |          | 20.1     |          |
| 1900             | 39.7     |          | 20.5     |          |
| 1950             | 40.5     |          | 20.9     |          |
| 2000             | 41.1     |          | 21.1     |          |
| 2100             | 43.6     |          | 21.9     |          |
| 2300             | 48.7     |          | 23.3     |          |


Page: 8/11



Ref: ACR. 262.10.14.SATU.A

| 2450 | 52.4 | 54.70 (5.47) | 24   | 24.11 (2.41) |
|------|------|--------------|------|--------------|
| 2600 | 55.3 |              | 24.6 |              |
| 3000 | 63.8 |              | 25.7 |              |
| 3500 | 67.1 |              | 25   |              |





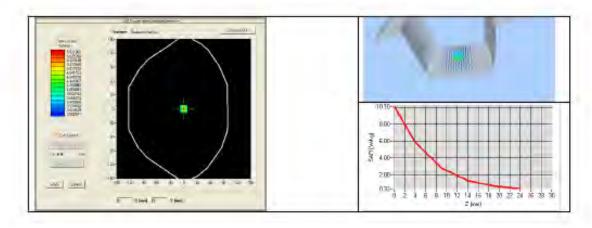
# 7.3 BODY LIQUID MEASUREMENT

| Frequency<br>MHz | Relative per | mittivity (ε,') | Conductiv  | ity (a) S/m |
|------------------|--------------|-----------------|------------|-------------|
|                  | required     | measured        | required   | measured    |
| 150              | 61.9 ±5 %    |                 | 0.80 ±5 %  |             |
| 300              | 58.2 ±5 %    |                 | 0.92 ±5 %  |             |
| 450              | 56.7 ±5 %    |                 | 0.94 ±5 %  |             |
| 750              | 55.5 ±5 %    |                 | 0.96 ±5 %  |             |
| 835              | 55.2 ±5 %    |                 | 0.97 ±5 %  |             |
| 900              | 55.0 ±5 %    |                 | 1.05 ±5 %  |             |
| 915              | 55.0 ±5 %    |                 | 1.06 ±5 %  |             |
| 1450             | 54.0 ±5 %    |                 | 1.30 ±5 %  |             |
| 1610             | 53.8 ±5 %    |                 | 1.40 ±5 %  |             |
| 1800             | 53.3 ±5 %    | -               | 1.52 ±5 %  |             |
| 1900             | 53.3 ±5 %    |                 | 1.52 25 %  |             |
| 2000             | 53.3 ±5 %    |                 | 1.52 25 %  |             |
| 2100             | 53.2 ±5 %    |                 | 1.62 25 %  |             |
| 2450             | 52.7 ±5 %    | PASS            | 1.95 ±5%   | PASS        |
| 2600             | 52.5 ±5 %    |                 | 2.16 ±5 %  |             |
| 3000             | 52.0 ±5 %    |                 | 2.73 ±5%   |             |
| 3500             | 51.3 ±5 %    |                 | 3.31 ±5 %  |             |
| 5200             | 49.0 ±10 %   |                 | 5.30 ±10 % |             |
| 5300             | 48.9 ±10 %   |                 | 5.42 ±10 % |             |
| 5400             | 48.7 ±10 %   |                 | 5.53 ±10 % |             |

Page: 9/11



## SAR REFERENCE DIPOLE CALIBRATION REPORT


Raf: ACR. 262.10.14.SATU.A

| 5500 | 48.6 ±10 % | 5.65 ±10 % |
|------|------------|------------|
| 5600 | 48.5 ±10 % | 5.77 ±10 % |
| 5800 | 48.2 ±10 % | 6.00 ±10 % |

# 7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

| Software                                  | OPENSAR V4                                 |  |  |
|-------------------------------------------|--------------------------------------------|--|--|
| Phantom                                   | SN 20/09 SAM71                             |  |  |
| Probe                                     | SN 18/11 EPG122                            |  |  |
| Liquid                                    | Body Liquid Values: eps*: 53.0 sigma: 1.93 |  |  |
| Distance between dipole center and liquid | 10.0 mm                                    |  |  |
| Area scan resolution                      | dx=8mm/dy=8mm                              |  |  |
| Zoon Scan Resolution                      | dx=8mm/dy=8m/dz=5mm                        |  |  |
| Frequency 2450 MHz                        |                                            |  |  |
| Input power                               | 20 dBm                                     |  |  |
| Liquid Temperature                        | 21 °C                                      |  |  |
| Lab Temperature                           | 21 °C                                      |  |  |
| Lab Humidity                              | 45 %                                       |  |  |

| Frequency<br>MHz | 1 g 5AR (W/kg/W) | 10 g SAR (W/kg/W) |
|------------------|------------------|-------------------|
|                  | measured         | measured          |
| 2450             | 55.65 (5.57)     | 24.56 (2.46)      |



Page: 10/11



Ref: ACR.262.10.14.SATU.A

# 8 LIST OF EQUIPMENT

|                                    | Equi                    | pment Summary S    | Sheet                                         |                                                  |  |
|------------------------------------|-------------------------|--------------------|-----------------------------------------------|--------------------------------------------------|--|
| Equipment<br>Description           | Manufacturer /<br>Model | Identification No. | Current<br>Calibration Date                   | Next Calibration<br>Date                         |  |
| SAM Phantom                        | Satimo                  | SN-20/09-SAM71     | Validated. No cal<br>required.                | Validated. No ca<br>required.                    |  |
| COMOSAR Test Bench                 | Version 3               | NA                 | Validated. No cal<br>required.                | Validated. No ca<br>required.                    |  |
| Network Analyzer                   | Rhode & Schwarz<br>ZVA  | SN100132           | 02/2013                                       | 02/2016                                          |  |
| Calipers                           | Carrera                 | CALIPER-01         | 12/2013                                       | 12/2016                                          |  |
| Reference Probe                    | Satimo                  | EPG122 SN 18/11    | 10/2013                                       | 10/2014                                          |  |
| Multimeter                         | Keithley 2000           | 1188656            | 12/2013                                       | 12/2016                                          |  |
| Signal Generator                   | Agilent E4438C          | MY49070581         | 12/2013                                       | 12/2016                                          |  |
| Amplifier                          | Aethercomm              | SN 046             | Characterized prior to test. No cal required. | Characterized prior to<br>test. No cal required  |  |
| Power Meter                        | HP E4418A               | US38261498         | 12/2013                                       | 12/2016                                          |  |
| Power Sensor                       | HP ECP-E26A             | US37181460         | 12/2013                                       | 12/2016                                          |  |
| Directional Coupler                | Narda 4216-20           | 01386              | Characterized prior to test. No cal required. | Characterized prior to<br>test. No cal required. |  |
| Temperature and<br>Humidity Sensor | Control Company         | 11-661-9           | 8/2012                                        | 8/2015                                           |  |

Page: 11/11