

MEASUREMENT REPORT

FCC PART15.256

FCC ID: 2ACSOGDRD87

APPLICANT: Beijing GODA Instruments Co., LTD.

Application Type: Certification

Product: 80G Radar Level Meter

Model No.: GDRD81, GDRD82, GDRD83, GDRD84, GDRD85,
GDRD87, GDRD88, GDRD89

Brand Name: GODA

FCC Classification: LPR - Level Probing Radar

FCC Rule Part(s): FCC PART15.256

Test Procedure(s): KDB890966 D01 Meas level Probing Radars v01r01
TR14-1007 Measurement of FMCW

Test Date: January 29 ~ March 01, 2019

Reviewed By:

Sunny Sun
(Sunny Sun)

Approved By:

Robin Wu
(Robin Wu)

The test results relate only to the samples tested.

This equipment has been shown to be capable of compliance with the applicable technical standards as indicated in the measurement report and was tested in accordance with the measurement procedures specified in KDB890966 D01 v01r01. Test results reported herein relate only to the item(s) tested.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

Revision History

Report No.	Version	Description	Issue Date	Note
1901RSU029-U1	Rev. 01	Initial Report	03-26-2019	Valid

CONTENTS

Description	Page
1. INTRODUCTION	6
1.1. Scope	6
1.2. MRT Test Location.....	6
2. PRODUCT INFORMATION.....	7
2.1. Equipment Description	7
2.2. Test Mode	8
2.3. EMI Suppression Device(s)/Modifications.....	8
2.4. Labeling Requirements	8
3. DESCRIPTION of TEST.....	9
3.1. Evaluation Procedure	9
3.2. AC Line Conducted Emissions.....	9
3.3. Radiated Emissions.....	10
4. ANTENNA REQUIREMENTS	11
5. TEST EQUIPMENT CALIBRATION DATE	12
6. MEASUREMENT UNCERTAINTY	14
7. TEST RESULT	15
7.1. Summary	15
7.2. Fundamental Bandwidth.....	16
7.2.1. Test Limit	16
7.2.2. Test Procedure used	16
7.2.3. Test Setting.....	16
7.2.4. Test Setup	16
7.2.5. Test Result.....	17
7.3. Fundamental Emissions	18
7.3.1. Test Limit	18
7.3.2. Test Procedure used	18
7.3.3. Test Setting.....	18
7.3.4. Test Setup	19
7.3.5. Test Results.....	20
7.4. Unwanted Emissions.....	21
7.4.1. Test Limit	21
7.4.2. Test Procedure used	21

7.4.3.	Test Procedure	21
7.4.4.	Test Setup	22
7.4.5.	Test Result.....	24
7.5.	Antenna Requirements.....	26
7.5.1.	Test Limit	26
7.5.2.	Test Procedure used	26
7.5.3.	Test Setting.....	26
7.5.4.	Test Setup	26
7.5.5.	Test Result.....	26
7.6.	Frequency Stability	27
7.6.1.	Test Limit	27
7.6.2.	Test Procedure used	27
7.6.3.	Test Procedure	27
7.6.4.	Test Setup	28
7.6.5.	Test Result.....	29
7.7.	AC Conducted Emissions Measurement.....	30
7.7.1.	Test Limit	30
7.7.2.	Test Setup	30
7.7.3.	Test Result.....	30
8.	CONCLUSION.....	31
Appendix A - Test Setup Photograph.....		32
Appendix B - EUT Photograph		33

§2.1033 General Information

Applicant:	Beijing GODA Instruments Co., LTD.			
Applicant Address:	Hongfu Enterprise Incubation Yard 10, No.2 Workshop 2-4, Chang Ping Dist. Beijing, 102209 China			
Manufacturer:	Beijing GODA Instruments Co., LTD.			
Manufacturer Address:	Hongfu Enterprise Incubation Yard 10, No.2 Workshop 2-4, Chang Ping Dist. Beijing, 102209 China			
Test Site:	MRT Technology (Suzhou) Co., Ltd			
Test Site Address:	D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China			
FCC Registration No.:	893164			
Test Device Serial No.:	N/A	<input type="checkbox"/> Production	<input checked="" type="checkbox"/> Pre-Production	<input type="checkbox"/> Engineering

Test Facility / Accreditations

Measurements were performed at MRT Laboratory located in Tian'edang Rd., Suzhou, China.

- MRT facility is a FCC registered (MRT Reg. No. 893164) test facility with the site description report on file and has met all the requirements specified in ANSI C63.4-2014.
- MRT facility is an IC registered (MRT Reg. No. 11384A-1) test laboratory with the site description on file at Industry Canada.
- MRT facility is a VCCI registered (R-20025, G-20034, C-20020, T-20020) test laboratory with the site description on file at VCCI Council.
- MRT Lab is accredited to ISO 17025 by the American Association for Laboratory Accreditation (A2LA) under the American Association for Laboratory Accreditation Program (A2LA Cert. No. 3628.01) in EMC, Telecommunications, Radio and SAR testing.

1. INTRODUCTION

1.1. Scope

Measurement and determination of electromagnetic emissions (EMC) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission and the Industry Canada Certification and Engineering Bureau.

1.2. MRT Test Location

The map below shows the location of the MRT LABORATORY, its proximity to the Taihu Lake. These measurement tests were conducted at the MRT Technology (Suzhou) Co., Ltd. Facility located at D8 Building, No.2 Tian'edang Rd., Wuzhong Economic Development Zone, Suzhou, China. The measurement facility compliant with the test site requirements specified in ANSI C63.4-2014.

2. PRODUCT INFORMATION

2.1. Equipment Description

Product Name:	80G Radar Level Meter
Model No.:	GDRD81, GDRD82, GDRD83, GDRD84, GDRD85, GDRD87, GDRD88, GDRD89
Brand Name:	GODA
Frequency Range:	76 ~ 81GHz
Modulation Type:	FMCW
Antenna Type:	Horn Antenna
Input Power:	DC 24V

Model Difference					
Model No.	Classification	Shell material	Antenna Material	Installation	Max. Antenna Gain
GDRD81	Liquid	Plastic / Aluminium alloy / Stainless steel	FEP / PP	Thread	32 dBi
GDRD82	Liquid	Plastic / Aluminium alloy / Stainless steel	316L+PTFE	Flange	32 dBi
GDRD83	Liquid	Plastic / Aluminium alloy / Stainless steel	FEP / 316L+PTFE	Thread	15 dBi
GDRD84	Liquid	Plastic / Aluminium alloy / Stainless steel	PP	Hanging	32 dBi
GDRD85	Health	Stainless steel	PTFE	Clamped connection	23 dBi
GDRD87	Solid	Plastic / Aluminium alloy / Stainless steel	Aluminium+PP, 316L+PTFE / PP	Flange	34 dBi
GDRD88	Protection	PA66	PP	Hanging	23 dBi
GDRD89	Marine	Stainless steel	316L+PTFE	Flange	32 dBi

Note: The products are made up of electronic part, housing part, process connection part, installation accessories part and antenna. All electronic parts including RF circuit are same within these models, and differences of other parts such as Shell Material, Installation method etc. can not affect RF performance of the product. Only the differences of antennas can affect the RF performance and we selected the sample with the largest antenna gain for all RF testing. The following table is the information of our RF test sample.

Model No.	Shell material	Antenna Material	Installation	Max. Antenna Gain
GDRD87	Stainless steel	316L+PP	Flange	34 dBi

2.2. Test Mode

The engineer test sample was provided by the manufacturer, it was configured into continuous transmit status after power on.

2.3. EMI Suppression Device(s)/Modifications

No EMI suppression device(s) were added and/or no modifications were made during testing.

2.4. Labeling Requirements

Per 2.1074 & 15.19; Docket 95-19

The label shall be permanently affixed at a conspicuous location on the device; instruction manual or pamphlet supplied to the user and be readily visible to the purchaser at the time of purchase.

However, when the device is so small wherein placement of the label with specified statement is not practical, only the FCC ID must be displayed on the device per Section 15.19(a)(5). Please see attachment for FCC ID label and label location.

3. DESCRIPTION of TEST

3.1. Evaluation Procedure

The measurement procedures described in the American National Standard for Testing Unlicensed Wireless Devices (KDB890966 D01 Meas level Probing Radars v01r01), and the requirement provided in FCC Part 15.256 were used in the measurement of the EUT.

Deviation from measurement procedure.....None

3.2. AC Line Conducted Emissions

The line-conducted facility is located inside an 8'x4'x4' shielded enclosure. A 1m x 2m wooden table 80cm high is placed 40cm away from the vertical wall and 80cm away from the sidewall of the shielded room. Two 10kHz-30MHz, 50Ω/50uH Line-Impedance Stabilization Networks (LISNs) are bonded to the shielded room floor. Power to the LISNs is filtered by external high-current high-insertion loss power line filters. These filters attenuate ambient signal noise from entering the measurement lines. These filters are also bonded to the shielded enclosure.

The EUT is powered from one LISN and the support equipment is powered from the second LISN. All interconnecting cables more than 1 meter were shortened to a 1 meter length by non-inductive bundling (serpentine fashion) and draped over the back edge of the test table. All cables were at least 40cm above the horizontal reference ground-plane. Power cables for support equipment were routed down to the second LISN while ensuring that that cables were not draped over the second LISN.

Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The RF output of the LISN was connected to the receiver and exploratory measurements were made to determine the frequencies producing the maximum emission from the EUT. The receiver was scanned from 150kHz to 30MHz. The detector function was set to peak mode for exploratory measurements while the bandwidth of the analyzer was set to 9kHz. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Each emission was also maximized by varying: power lines, the mode of operation or data exchange speed, or support equipment whichever determined the worst-case emission. Once the worst case emissions have been identified, the one EUT cable configuration/arrangement and mode of operation that produced these emissions are used for final measurements on the same test site. The analyzer is set to CISPR quasi-peak and average detectors with a 9kHz resolution bandwidth for final measurements.

An extension cord was used to connect to a single LISN which powered by EUT. The extension cord was calibrated with LISN, the impedance and insertion loss are compliance with the requirements as stated in ANSI C63.10-2013.

3.3. Radiated Emissions

The radiated test facilities consisted of an indoor 3 meter semi-anechoic chamber used for final measurements and exploratory measurements, when necessary. The measurement area is contained within the semi-anechoic chamber which is shielded from any ambient interference. For measurements above 1GHz absorbers are arranged on the floor between the turn table and the antenna mast in such a way so as to maximize the reduction of reflections. For measurements below 1GHz, the absorbers are removed. A MF Model 210SS turntable is used for radiated measurement. It is a continuously rotatable, remote controlled, metallic turntable and 2 meters (6.56 ft.) in diameter. The turn table is flush with the raised floor of the chamber in order to maintain its function as a ground plane. An 80cm high PVC support structure is placed on top of the turntable.

For all measurements, the spectrum was scanned through all EUT azimuths and from 1 to 4 meter receive antenna height using a broadband antenna from 30MHz up to the upper frequency shown in 15.33(b)(1) depending on the highest frequency generated or used in the device or on which the device operates or tunes. For frequencies above 1GHz, linearly polarized double ridge horn antennas were used. For frequencies below 30MHz, a calibrated loop antenna was used. When exploratory measurements were necessary, they were performed at 1 meter test distance inside the semi-anechoic chamber using broadband antennas, broadband amplifiers, and spectrum analyzers to determine the frequencies and modes producing the maximum emissions. Sufficient time for the EUT, support equipment, and test equipment was allowed in order for them to warm up to their normal operating condition. The test set-up for frequencies below 1GHz was placed on top of the 0.8 meter high, 1 x 1.5 meter table; and test set-up for frequencies 1-40GHz was placed on top of the 1.5 meter high, 1 x 1.5 meter table. The EUT, support equipment, and interconnecting cables were arranged and manipulated to maximize each emission. Appropriate precaution was taken to ensure that all emissions from the EUT were maximized and investigated. The system configuration, clock speed, mode of operation or video resolution, if applicable, turntable azimuth, and receive antenna height was noted for each frequency found.

Final measurements were made in the semi-anechoic chamber using calibrated, linearly polarized broadband and horn antennas. The test setup was configured to the setup that produced the worst case emissions. The spectrum analyzer was set to investigate all frequencies required for testing to compare the highest radiated disturbances with respect to the specified limits. The turntable containing the EUT was rotated through 360 degrees and the height of the receive antenna was varied 1 to 4 meters and stopped at the azimuth and height producing the maximum emission. Each emission was maximized by changing the orientation of the EUT through three orthogonal planes and changing the polarity of the receive antenna, whichever produced the worst-case emissions. According to 3dB Beam-Width of horn antenna, the horn antenna should be always directed to the EUT when rising height.

4. ANTENNA REQUIREMENTS

Excerpt from §15.203 of the FCC Rules/Regulations:

“An intentional radiator antenna shall be designed to ensure that no antenna other than that furnished by the responsible party can be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.”

- The antenna of the **80G Radar Level Meter** is **permanently attached**.
- There are no provisions for connection to an external antenna.

Conclusion:

The unit complies with the requirement of §15.203.

5. TEST EQUIPMENT CALIBRATION DATE

Radiated Emission - AC1

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR7	MRTSUE06001	1 year	2019/08/14
Signal Analyzer	R&S	FSV40	MRTSUE06218	1 year	2019/04/20
EXA Signal Analyzer	Keysight	N9010B	MRTSUE06452	1 year	2019/07/20
Loop Antenna	Schwarzbeck	FMZB 1519	MRTSUE06025	1 year	2019/11/09
Bilog Period Antenna	Schwarzbeck	VULB 9168	MRTSUE06172	1 year	2019/04/12
Broad-Band Horn Antenna	Schwarzbeck	BBHA9120D	MRTSUE06023	1 year	2019/10/20
Broad Band Horn Antenna	Schwarzbeck	BBHA 9170	MRTSUE06024	1 year	2019/12/17
Micro-Wave Antenna	MI-WWAVE	261U-25	MRTSUE06273	N/A	N/A
Micro-Wave Antenna	MI-WWAVE	261E-25	MRTSUE06276	N/A	N/A
Micro-Wave Antenna	MI-WWAVE	261F-25	MRTSUE06275	N/A	N/A
Micro-Wave Antenna	MI-WWAVE	261G	MRTSUE06274	N/A	N/A
RF Signal Generator	Keysight	E8257D	MRTSUE06453	N/A	N/A
Millimeter wave signal source frequency expander	Keysight	E8257DV15	MRTSUE06456	N/A	N/A
Millimeter wave signal source frequency expander	Keysight	E8257DV10	MRTSUE06458	N/A	N/A
USB wideband power sensor	Keysight	U8489A	MRTSUE06448	1 year	2019/07/24
Standard Gain Horn Antenna	A-INFOMW	LB-10-25-A	MRTSUE06410	N/A	N/A
Standard Gain Horn Antenna	A-INFOMW	LB-15-25-A	MRTSUE06409	N/A	N/A
Waveguide Harmonic Mixer	Keysight	M1970V	MRTSUE06271	N/A	N/A
Waveguide Harmonic Mixer	Keysight	M1970W	MRTSUE06272	N/A	N/A
SA Extension Module	Keysight	N9029AV06	MRTSUE06368	N/A	N/A
SA Extension Module	Keysight	N9029AV05	MRTSUE06367	N/A	N/A
Microwave System Amplifier	Agilent	83017A	MRTSUE06076	1 year	2019/11/16
Hygrothermograph	Testo	608-H1	MRTSUE06403	1 year	2019/08/15
Anechoic Chamber	TDK	Chamber-AC1	MRTSUE06212	1 year	2019/05/02

Conducted Emissions - SR2

Instrument	Manufacturer	Type No.	Asset No.	Cali. Interval	Cali. Due Date
EMI Test Receiver	R&S	ESR3	MRTSUE06185	1 year	2019/04/20
Two-Line V-Network	R&S	ENV216	MRTSUE06002	1 year	2019/06/15
Two-Line V-Network	R&S	ENV216	MRTSUE06003	1 year	2019/06/15
Thermohygrometer	Testo	608-H1	MRTSUE06404	1 year	2019/08/14
Shielding Anechoic Chamber	MIX-BEP	Chamber-SR2	MRTSUE06214	N/A	N/A

Software	Version	Function
e3	v 8.3.5	EMI Test Software

6. MEASUREMENT UNCERTAINTY

Where relevant, the following test uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $k = 2$.

Radiated Emission Measurement - AC1

Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$):

9kHz ~ 1GHz: 4.18dB

1GHz ~ 18GHz: 4.76dB

AC Conducted Emission Measurement - SR2

Measuring Uncertainty for a Level of Confidence of 95% ($U=2U_c(y)$):

150kHz~30MHz: \pm 3.46dB

7. TEST RESULT

7.1. Summary

Company Name: Beijing GODA Instruments Co., LTD.

FCC ID: 2ACSOGDRD87

FCC Part Section(s)	Test Description	Test Limit	Test Condition	Test Result	Reference
15.256(f)	Fundamental Bandwidth	Within the frequency band 75-85GHz	Radiated	Pass	Section 7.2
15.256(g)	Fundamental Emissions	Refer to Section 7.3		Pass	Section 7.3
15.256(h)	Unwanted Emissions	< FCC 15.209 limits		Pass	Section 7.4
15.256(i)(B) 15.256(j)	Antenna Requirements	Refer to Section 7.5	--	Pass	Section 7.5
15.255(f)(2) 15.215(c)	Frequency stability	Within the frequency band 75-85GHz	Radiated	Pass	Section 7.6
15.207	AC Conducted Emissions 150kHz - 30MHz	< FCC 15.207 limits	Line Conducted	N/A	Section 7.7

Notes:

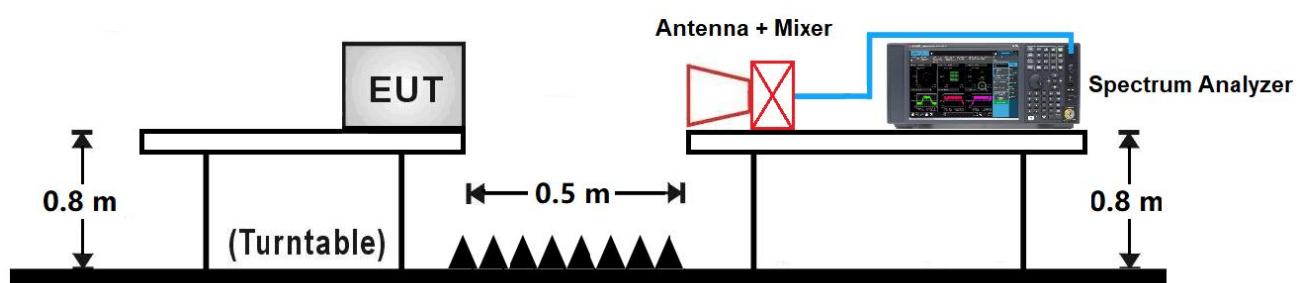
1. The radiation measurements are performed in X, Y, Z axis positioning. Only the worst case data is shown in the report.
2. "N/A" means that the test item is not applicable, and the detailed information refers to relevant section.

7.2. Fundamental Bandwidth

7.2.1. Test Limit

The fundamental bandwidth of an LPR emission is defined as the width of the signal between two points, one below and one above the center frequency, outside of which all emissions are attenuated by at least 10 dB relative to the maximum transmitter output power when measured in an equivalent resolution bandwidth.

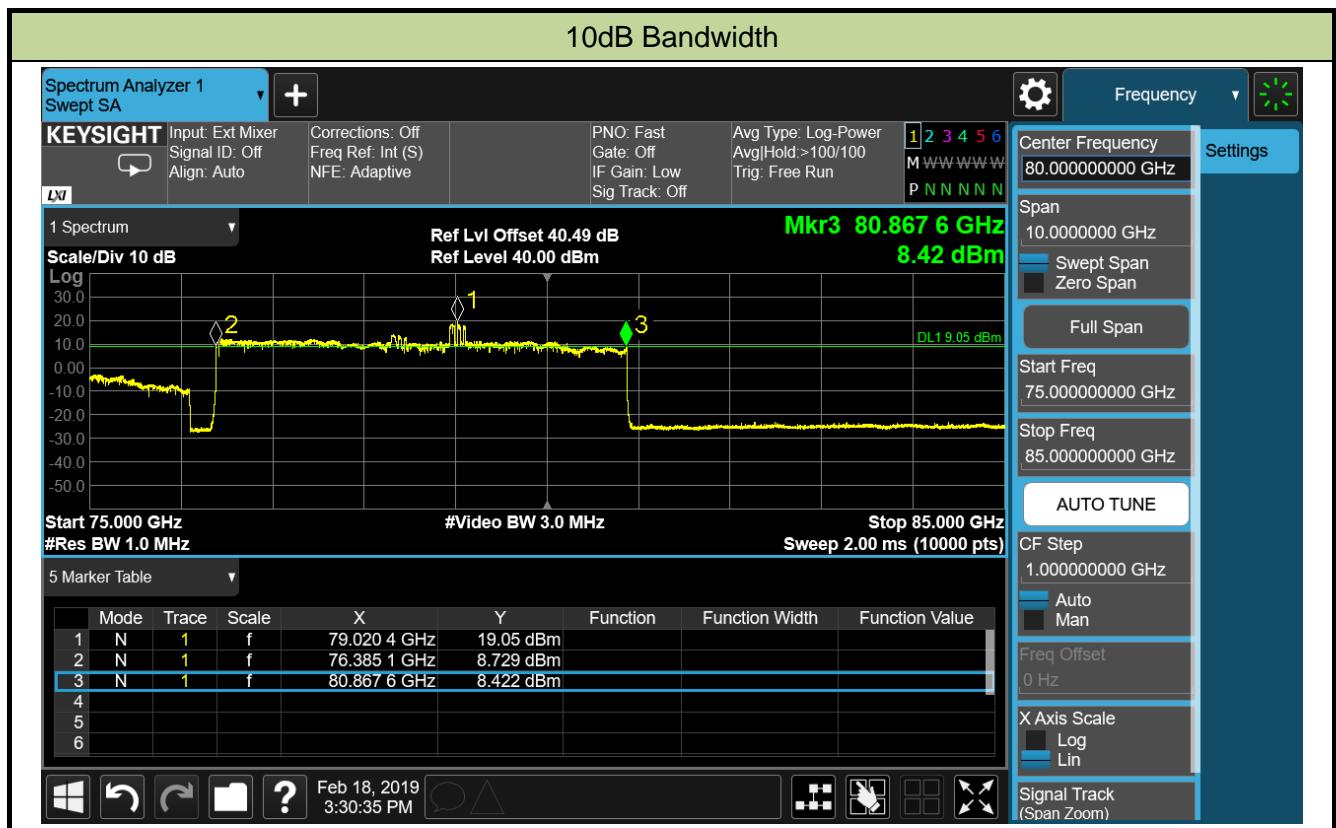
- (1) The minimum fundamental emission bandwidth shall be 50 MHz for LPR operation under the provisions of this section.
- (2) LPR devices operating under this section must confine their fundamental emission bandwidth within the 75-85 GHz bands under all conditions of operation.


7.2.2. Test Procedure used

KDB890966 D01 Meas level Probing Radars v01r01 Section D.

7.2.3. Test Setting

1. Observe fundamental emission on the spectrum analyzer with a peak detector, 1 MHz RBW and at least 3 MHz VBW.
2. Activate any frequency sweep, step or hop function of the EUT and select “Max Hold” function on the spectrum analyzer.
3. Perform multiple sweeps until the amplitude stabilizes.
4. Determine the 10 dB emission bandwidth.


7.2.4. Test Setup

7.2.5. Test Result

Product	80G Radar Level Meter	Temperature	24°C
Test Engineer	Vincent Yu	Relative Humidity	54%
Test Site	AC1	Test Date	2019/02/18

10dB Bandwidth		Limit
F _L (GHz)	76.3851	> 75 GHz
F _H (GHz)	80.8676	< 85 GHz
Bandwidth (GHz)	4.4825	> 50 MHz
Result		Pass

7.3. Fundamental Emissions

7.3.1. Test Limit

LPR EIRP Emission Limits		
Frequency band of operation	Average emission limit (EIRP in dBm measured in 1 MHz)	Peak emission limit (EIRP in dBm measured in 50 MHz)
75 ~ 85GHz	-3	34

Note: For a RBW less than 50 MHz, the peak EIRP limit (in dBm) is reduced by $20 \log(RBW/50)$ dB where RBW is the resolution bandwidth in megahertz. For FMCW modulation the correction should not be applied since these signals are narrowband signals with full power within the resolution bandwidth of the SA.

7.3.2. Test Procedure used

KDB890966 D01 Meas level Probing Radars v01r01 Section F.

TR14-1007 Measurement of FMCW

7.3.3. Test Setting

1. For radiated emission measurements, locate the receive test antenna at a far field distance boresighted on the LPR transmit antenna. Adjust the LPR and the test antenna for maximum main beam coupling.
2. Set the spectrum analyzer frequency span to enable viewing the entire sweep frequency span of the LPR signal.
3. Set the spectrum analyzer frequency span to enable viewing the entire sweep frequency span of the LPR signal.
4. Calculate the dwell time, T_D , of the sweep frequency signal per MHz of the sweep frequency span

$$T_D = T_S / \Delta F$$

Where:

T_S is the signal sweep frequency time in seconds

ΔF is the signal sweep frequency span in MHz

5. Set the detector to peak mode.
6. Set the RBW to 1 MHz.
7. Perform sufficient multiple scans on the spectrum analyzer in maximum hold with a sweep time suitable for displaying the variation in the signal level over the frequency span.
8. Record the maximum signal level. This is the peak value of the LPR signal.

9. Calculate the average factor

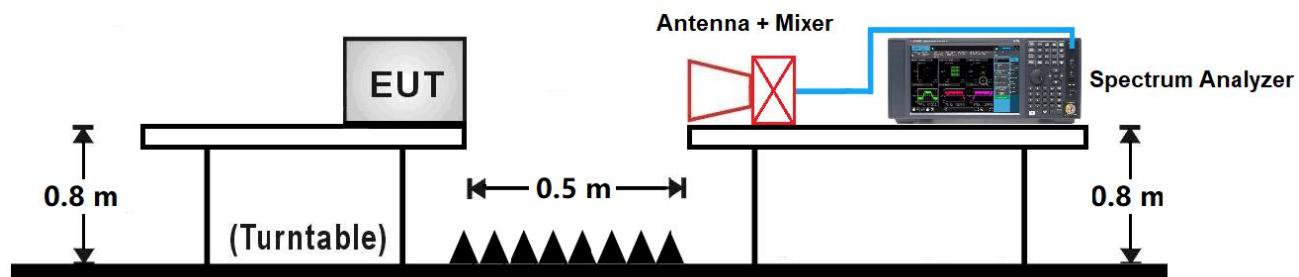
$$\text{Average factor} = (T_D) / \text{cycle time}$$

Where:

Cycle time is the total time for a complete cycle of the signal including retrace and any other latency times.

10. Determine the average by multiplying the maximum signal level obtained in Step 8 by the average factor.

According to the manufacturer's declaration, the parameter of the FMCW modulation as below:

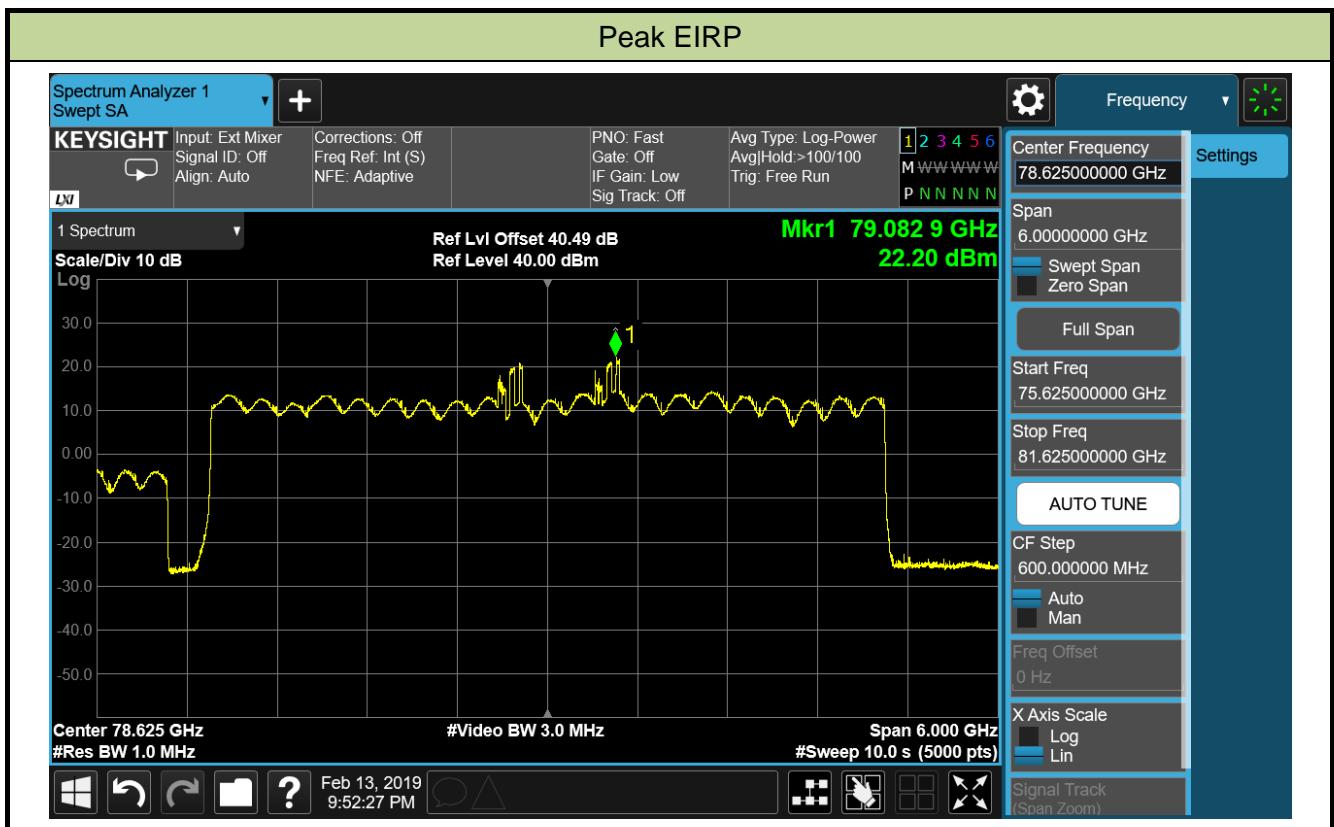

Chirp Bandwidth (ΔF)	Frequency sweep time (T_s)	Cycle time
4GHz	165us	185us

Therefore:

$$T_D = T_s / \Delta F = 0.04125\text{us/MHz}$$

$$\text{Average factor} = 10 * \log[(T_D) / \text{cycle time}] = 10 * \log(0.04125/185) = -36.52 \text{ (dB)}$$

7.3.4. Test Setup



7.3.5. Test Results

Product	80G Radar Level Meter	Temperature	23°C
Test Engineer	Vincent Yu	Relative Humidity	54%
Test Site	AC1	Test Date	2019/02/13

Frequency (GHz)	Average Factor (dB)	EIRP (dBm)		Limit (dBm)		Result
		Peak	Average	Peak	Average	
80	-36.52	22.20	-14.32	34	-3	Pass

Note: Average EIRP (dBm) = Peak EIRP (dBm) + Average Factor (dB)

7.4. Unwanted Emissions

7.4.1. Test Limit

Unwanted emissions from LPR devices shall not exceed the general emission limit in §15.209.

FCC Part 15.209 Limit		
Frequency (MHz)	Field Strength (uV/m)	Measurement Distance (m)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 80	100**	3
80 ~ 216	150**	3
216 ~ 960	200**	3
Above 960	500	3

Note 1: The lower limit shall apply at the transition frequency.

Note 2: Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

Note 3: E field strength (dBuV/m) = 20 log E field strength (uV/m).

Note 4: The provisions in §15.35(b) and (c) of this part that require emissions to be averaged over a 100 millisecond period and that limits the peak power to 20 dB above the average limit do not apply to devices operating under paragraphs (a) through (l) of §15.256.

7.4.2. Test Procedure used

KDB890966 D01 Meas level Probing Radars v01r01 Section D.

ANSI C63.10 Section 6.3 to 6.6

7.4.3. Test Procedure

Measurement of harmonic and spurious emissions below 40 GHz

1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
2. RBW = as specified in Table 1
3. VBW \geq 3 x RBW
4. Detector: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
5. Sweep time = auto couple
6. Trace mode = max hold, trace was allowed to stabilize

Measurement of harmonic and spurious emissions above 40 GHz

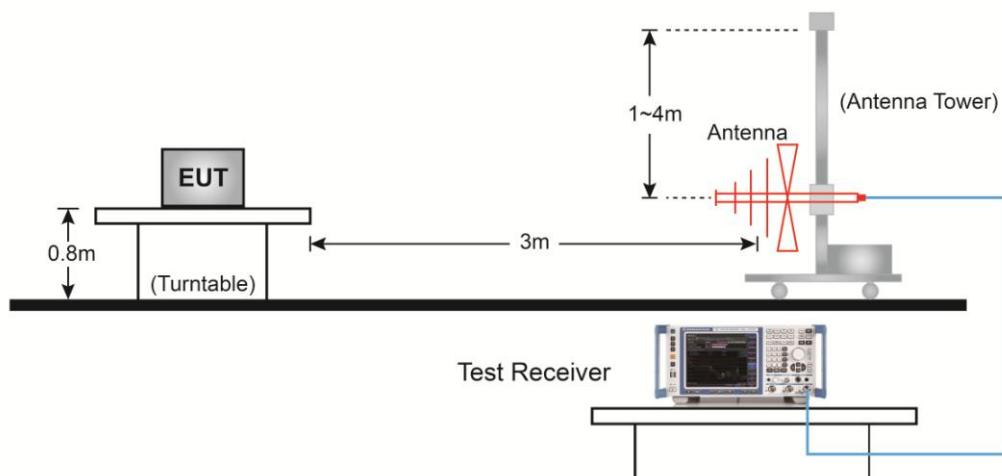
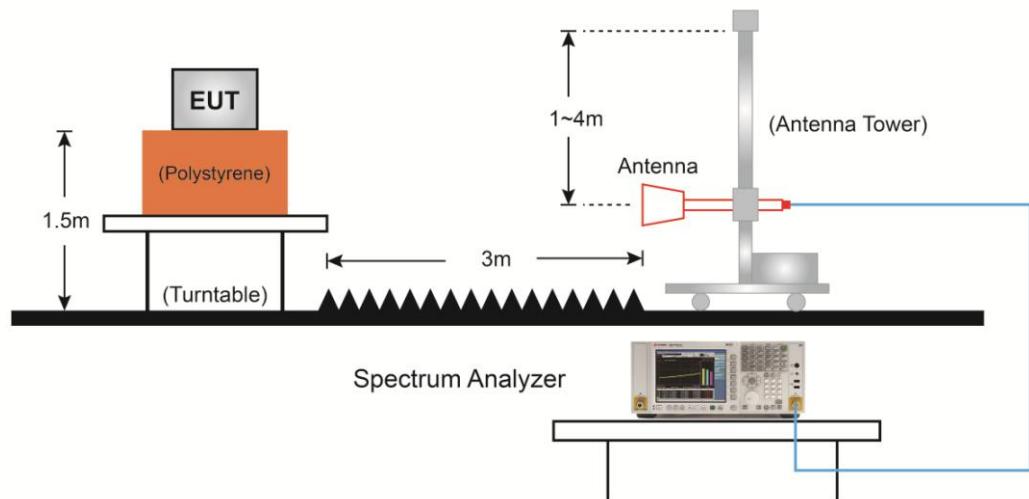
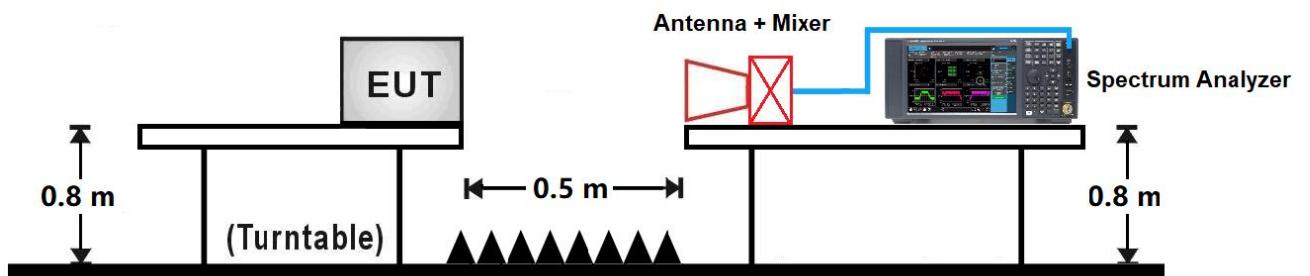

1. Connect the test antenna covering the appropriate frequency range to a spectrum analyzer via an external mixer.
2. Set spectrum analyzer RBW = 1MHz, VBW = 3MHz, average detector.
3. Maximize all observed emissions. Note the maximum power indicated on the spectrum analyzer. Adjust this reading, if necessary, by the conversion loss of the external mixer used at the frequency under investigation and the external mixer IF cable loss.
4. Calculate the maximum field strength of the emission at the measurement distance
5. Repeat the preceding sequence for every emission observed in the frequency band under investigation.

Table 1 - RBW as a function of frequency


Frequency	RBW
9 ~ 150 kHz	200 ~ 300 Hz
0.15 ~ 30 MHz	9 ~ 10 kHz
30 ~ 1000 MHz	100 ~ 120 kHz
> 1000 MHz	1 MHz

7.4.4. Test Setup


30MHz ~ 1GHz Test Setup:

1GHz ~ 40GHz Test Setup:

Above 40GHz Test Setup:

7.4.5. Test Result

Product	80G Radar Level Meter	Temperature	23°C
Test Engineer	Vincent Yu	Relative Humidity	54%
Test Site	AC1	Test Date	2019/01/29
Test Range	Below 40GHz		

Frequency (MHz)	Reading Level (dB μ V)	Factor (dB)	Measure Level (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Polarization
720.2	12.7	22.4	35.1	46.0	-10.9	QP	Horizontal
760.4	19.0	22.9	41.9	46.0	-4.1	QP	Horizontal
840.4	15.6	23.7	39.3	46.0	-6.7	QP	Horizontal
920.5	13.4	24.7	38.1	46.0	-7.9	QP	Horizontal
560.1	6.9	19.7	26.6	46.0	-19.4	QP	Vertical
760.4	11.6	22.9	34.5	46.0	-11.5	QP	Vertical
840.4	10.0	23.7	33.7	46.0	-12.3	QP	Vertical
890.4	12.5	24.3	36.8	46.0	-9.2	QP	Vertical
1119.0	36.8	-5.4	31.4	54.0	-22.6	AV	Horizontal
2215.5	30.7	-0.6	30.1	54.0	-23.9	AV	Horizontal
5207.5	26.8	6.4	33.2	54.0	-20.8	AV	Horizontal
8012.5	26.2	13.7	39.9	54.0	-14.1	AV	Horizontal
1365.5	40.7	-3.9	36.8	54.0	-17.2	AV	Vertical
2283.5	38.5	-0.5	38.0	54.0	-16.0	AV	Vertical
4706.0	34.8	5.5	40.3	54.0	-13.7	AV	Vertical
8786.0	33.4	13.3	46.7	54.0	-7.3	AV	Vertical
18055.0	25.9	8.4	34.3	54.0	-19.7	AV	Horizontal
26668.0	23.9	12.3	36.2	54.0	-17.8	AV	Horizontal
30573.0	25.8	12.1	37.9	54.0	-16.1	AV	Horizontal
34456.0	24.2	14.6	38.8	54.0	-15.2	AV	Horizontal
18077.0	24.9	8.5	33.4	54.0	-20.6	AV	Vertical
19936.0	25.9	7.9	33.8	54.0	-20.2	AV	Vertical
26690.0	23.1	11.7	34.8	54.0	-19.2	AV	Vertical
34005.0	23.2	14.1	37.3	54.0	-16.7	AV	Vertical

Note: Measure Level (dB μ V/m) = Reading Level (dB μ V) + Factor (dB)

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) - Pre_Amplifier Gain (dB)

Product	80G Radar Level Meter	Temperature	23°C
Test Engineer	Vincent Yu	Relative Humidity	54%
Test Site	AC1	Test Date	2019/03/01
Test Range	Above 40GHz		

Frequency (GHz)	Reading Level @ 0.5m (dB μ V)	Factor (dB)	Measure Level @ 0.5m (dB μ V/m)	Measure Level @ 3m (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)	Detector	Result
40.2	9.5	44.6	54.1	38.5	54.0	-15.5	AV	Pass
41.6	11.0	44.9	55.9	40.3	54.0	-13.7	AV	Pass
45.7	12.1	45.2	57.3	41.7	54.0	-12.3	AV	Pass
49.1	14.0	45.8	59.8	44.2	54.0	-9.8	AV	Pass
50.4	24.0	41.1	65.1	49.5	54.0	-4.5	AV	Pass
134.5	4.9	57.4	62.3	46.7	54.0	-7.3	AV	Pass
164.9	4.3	60.0	64.3	48.7	54.0	-5.3	AV	Pass
194.3	3.9	61.4	65.3	49.7	54.0	-4.3	AV	Pass

Note:

1. Measure Level @ 0.5m = Reading Level @0.5m + Factor

Factor (dB) = Cable Loss (dB) + Antenna Factor (dB/m) + Mixer Conversion Loss (dB)

2. Measure Level @ 3m = Measure Level @ 0.5m + 20 * log(0.5m / 3m)

7.5. Antenna Requirements

7.5.1. Test Limit

1. Antenna beamwidth: LPR devices operating under the provisions of this section within the 75-85 GHz band must use an antenna with a -3 dB beamwidth no greater than 8 degrees.
2. Antenna side lobe gain: LPR devices operating under the provisions of this section must limit the side lobe antenna gain relative to the main beam gain for off-axis angles from the main beam of greater than 60 degrees to the levels provided in below table.

Antenna Side Lobe Gain Limit	
Frequency range (GHz)	Antenna sidelobe gain limit relative to main beam gain (dB)
75 ~ 85	-38

7.5.2. Test Procedure used

The antenna parameters of the LPR are declared by the manufacturer. No test needs to be conducted.

7.5.3. Test Setting

N/A

7.5.4. Test Setup

N/A

7.5.5. Test Result

According to the declaration of manufacturer, the parameter of the antennas is shown as below table:

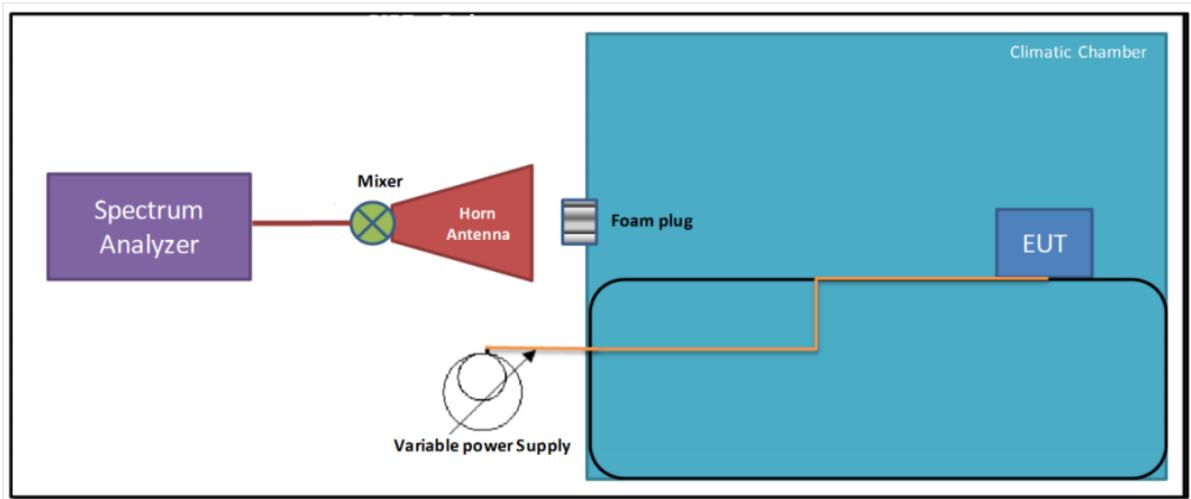
Model No.	Max. Side lobe gain (dB)	Max. Beamwidth (°)	Antenna Side Lobe Gain Limit (dB)	Max. Beamwidth Limit (°)
GDRD81	-45.2	6	-38	8
GDRD82	-45.8	6	-38	8
GDRD83	-39.1	8	-38	8
GDRD84	-53.1	3	-38	8
GDRD85	-45.6	6	-38	8
GDRD87	-55.2	3	-38	8
GDRD88	-46.1	6	-38	8
GDRD89	-52.9	3	-38	8

Therefore, it complies with the antenna requirement.

7.6. Frequency Stability

7.6.1. Test Limit

1. As specified in Section 15.256(f)(2), LPR devices operating under this section must confine their fundamental emission bandwidth within the 75-85 GHz bands under all conditions of operation.
2. As specified in Section 15.215(c), the bandwidth of the fundamental emission must be contained within the frequency band over the temperature range -20 to +50 degrees Celsius with an input voltage variation of 85% to 115% of rated input voltage. Frequency stability is to be measured according to Section 2.1055 at the highest and lowest frequency of operation and with the modulation that produces the widest emission bandwidth.


7.6.2. Test Procedure used

ANSI C63.10 Section 6.8

7.6.3. Test Procedure

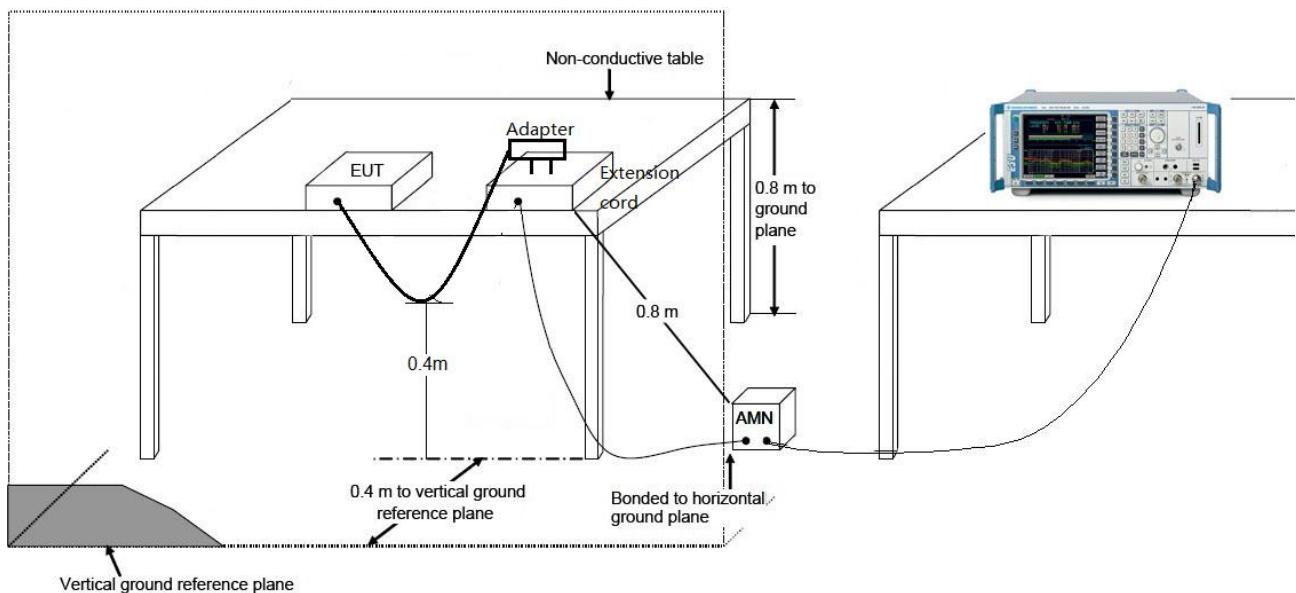
1. Arrange EUT and test equipment according Section 7.6.4.
2. With the EUT at ambient temperature (20 °C) and voltage source set to the EUT nominal operating voltage (24VDC, 100%)
3. RBW = 1MHz, VBW = 3MHz
4. Detector = Peak
5. Trace Mode = Max Hold
6. Record the Low and high frequencies (f_L and f_H) of the fundamental frequency emission which is defined as the width of the signal between two points, one below and one above the center frequency, outside of which all emissions are attenuated by at least 10 dB relative to the maximum transmitter output power.
7. Vary EUT power supply between 85% and 115% of nominal, and record the frequency excursion of the EUT emission mask.
8. Set the power supply to 100% nominal setting, and raise EUT operating temperature to 50 °C.
9. Record the f_L and f_H of the fundamental frequency emission.
10. Repeat step 9 at each 10°C increment down to -20 °C.

7.6.4. Test Setup

7.6.5. Test Result

Test Engineer	Vincent Yu	Temperature	-20 ~ 50°C
Test Time	2019/02/18 ~ 2019/02/20	Relative Humidity	52%RH
Test Mode	Mode 1	Test Site	TR3

Voltage (%)	Power (VDC)	Temp (°C)	f _L (GHz)	f _H (GHz)	Limit (GHz)	Result
100%	24.0	- 20	76.3842	80.8683	75 ~ 85	Pass
		- 10	76.3844	80.8681	75 ~ 85	Pass
		0	76.3845	80.8682	75 ~ 85	Pass
		+ 10	76.3847	80.8679	75 ~ 85	Pass
		+ 20 (Ref)	76.3851	80.8676	75 ~ 85	Pass
		+ 30	76.3851	80.8673	75 ~ 85	Pass
		+ 40	76.3852	80.8675	75 ~ 85	Pass
		+ 50	76.3855	80.8676	75 ~ 85	Pass
115%	27.6	+ 20	76.3852	80.8677	75 ~ 85	Pass
85%	20.4	+ 20	76.3851	80.8678	75 ~ 85	Pass


7.7. AC Conducted Emissions Measurement

7.7.1. Test Limit

FCC 15.207 Limits		
Frequency (MHz)	QP (dBuV)	AV (dBuV)
0.15 ~ 0.50	66 ~ 56	56 ~ 46
0.50 ~ 5.0	56	46
5.0 ~ 30	60	50

Note 1: The lower limit shall apply at the transition frequencies.
Note 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.5MHz.

7.7.2. Test Setup

7.7.3. Test Result

The EUT is powered by DC source, so this requirement doesn't apply.

8. CONCLUSION

The data collected relate only the item(s) tested and show that the **80G Radar Level Meter** is in compliance with Part 15C of the FCC Rules.

The End

Appendix A - Test Setup Photograph

Refer to "1901RSU029-UT" file.

Appendix B - EUT Photograph

Refer to "1901RSU029-UE" file.