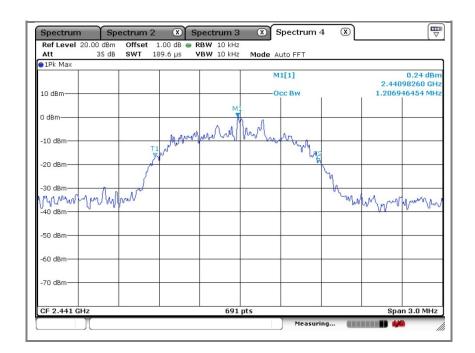
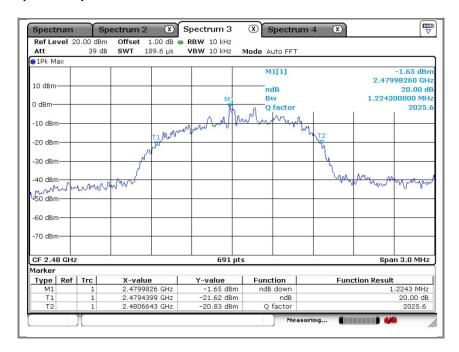
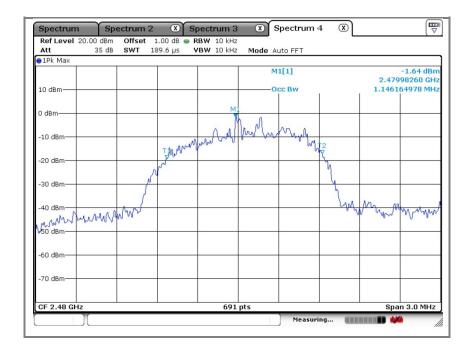

Operation mode: EDR


A. Low channel (2 402 Mb)- 20 dB bandwidth & 99 % bandwidth




B. Middle channel (2 441 脈)- 20 dB bandwidth & 99 % bandwidth

C. High channel (2 480 胍)- 20 dB bandwidth & 99 % bandwidth

8. Maximum peak output power measurement

8.1. Test setup.

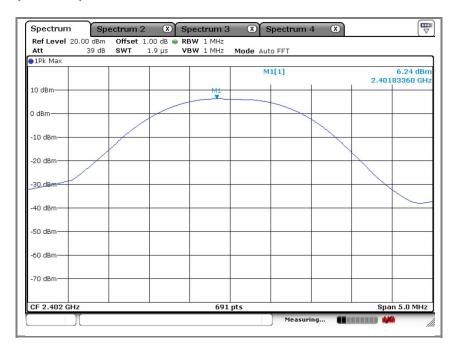
8.2. Limit

The maximum peak output power of the intentional radiator shall not exceed the following:

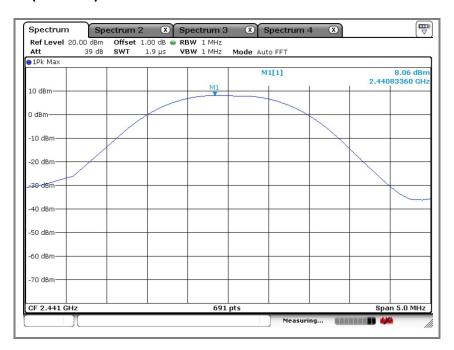
- 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 klb or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW
- 2. §15.247(b)(1), For frequency hopping systems operating in the 2 400 − 2 483.5 Mb employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 − 5 805 Mb band: 1 Watt.

8.3. Test procedure

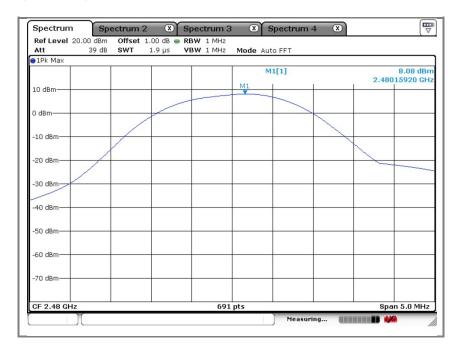
- 1. The RF power output was measured with a Spectrum analyzer connected to the RF Antenna connector(conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency, A spectrum analyzer was used to record the shape of the transmit signal.
- 2. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using; Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW ≥ 20 dB BW, VBW ≥ RBW, Sweep = auto, Detector function = peak, Trace = max hold


8.4. Test results

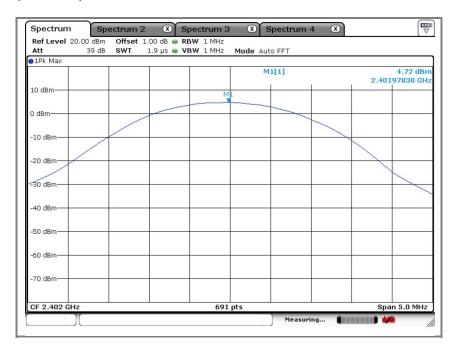
Ambient temperature: $\underline{22~ \mathbb{C}}$ Relative humidity: $\underline{45~\%~R.H.}$


Operation mode	Frequency(쌘)	Peak output power(dBm)	Limit(dBm)	
	2 402	6.24	30	
BASIC	2 441 8.06		30	
	2 480	8.08	30	
EDR	2 402	4.72	30	
	2 441	7.07	30	
	2 480	6.23	30	

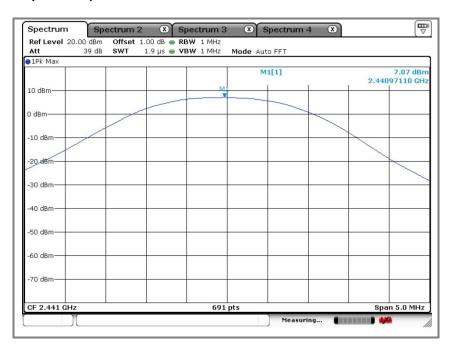
Operation mode: Basic mode


A. Low channel (2 402 11位)

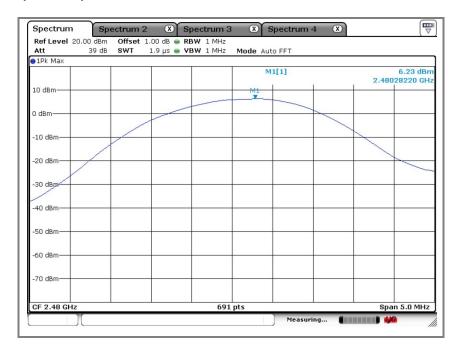
B. Middle channel (2 441 1版)



C. High channel (2 480 账)



Operation mode: EDR


A. Low channel (2 402 Mb)

B. Middle channel (2 441 1 bl)

C. High channel (2 480 眦)

9. Hopping channel separation

9.1. Test setup

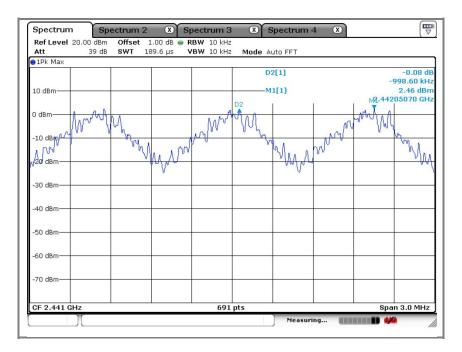
9.2. Limit

§15.247(a)(1) Frequency hopping system operating in 2 400 – 2 483.5 Mb. Band may have hopping channel carrier frequencies that are separated by 25 kb or two-third of 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

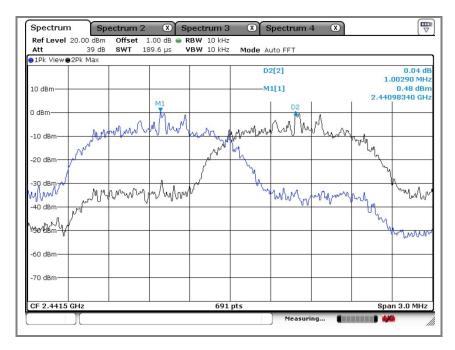
9.3. Test procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- 3. By using the max hold function record the separation of adjacent channels.
- 4. Measure the frequency difference of these two adjacent channels by spectrum analyzer mark function. And then plot the result on spectrum analyzer screen.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. Set center frequency of spectrum analyzer = middle of hopping channel.
- 7. Set the spectrum analyzer as RBW = 10 kHz, VBW = 10 kHz, Span = 3 MHz and Sweep = auto.

9.4. Test results

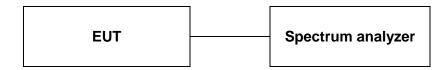

Ambient temperature: 22 °C Relative humidity: 45 % R.H.

Operation mode	Frequency (Mb)	Adjacent hopping Channel separation (紀)	Two-third of 20 dB bandwidth (kHz)	Minimum bandwidth (朏z)
BASIC	2 441	998.6	506.5	25
EDR	2 441	1 002.9	833.6	25


*** Remark:**

20 ${
m dB}$ bandwidth measurement, the measured channel separation should be greater than two-third of 20 ${
m dB}$ bandwidth or Minimum bandwidth.

Operation mode: Basic mode



Operation mode: EDR

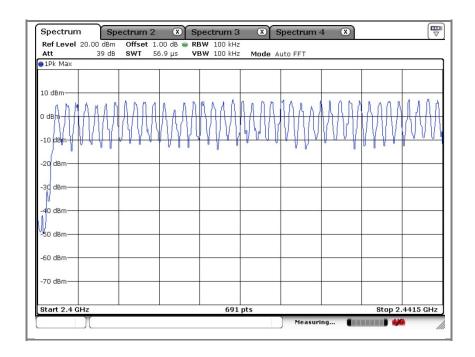
10. Number of hopping frequency

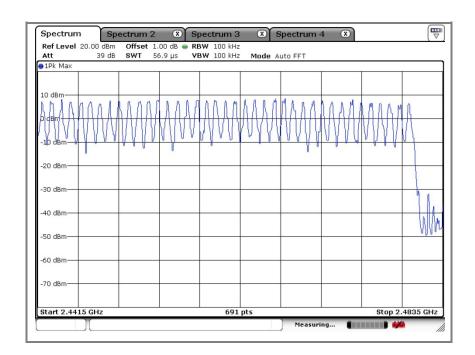
10.1. Test setup

10.2. Limit

§15.247(a)(1)(iii) For frequency hopping system operating in the 2 400 - 2 483.5 Mb bands shall use at least 15 hopping frequencies.

10.3. Test procedure


- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna the port to the Spectrum analyzer
- 3. Set spectrum analyzer Start = 2 400 N地, Stop = 2 441.5 N地, Sweep = auto and Start = 2 441.5 N地, Stop = 2 483.5 N地, Sweep = auto.
- 4. Set the spectrum analyzer as RBW, VBW = 100 klb.
- 5. Max hold, view and count how many channel in the band.


10.4. Test results

Ambient temperature: $22 \degree$ Relative humidity: 45 % R.H.

Number of Hopping Frequency	Limit		
79	≥ 15		

Operation mode: Basic mode

11. Time of occupancy (Dwell time)

11.1. Test setup

11.2. Limit

§15.247(a)(1)(iii) For frequency hopping system operating in the 2 400 - 2 483.5 Mb band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period.

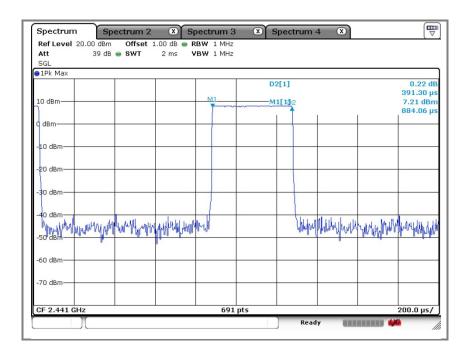
A period time = 0.4(s) * 79 = 31.6(s)

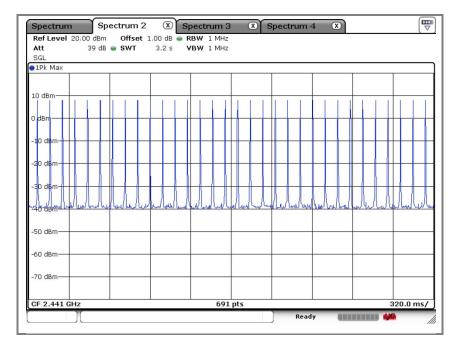
11.3. Test procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable.
- 3. Adjust the center frequency of spectrum analyzer on any frequency be measured and set spectrum analyzer to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- 4. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- 5. Repeat above procedures until all frequencies measured were complete.
- 6. The hopping rate is 1 600 per second.

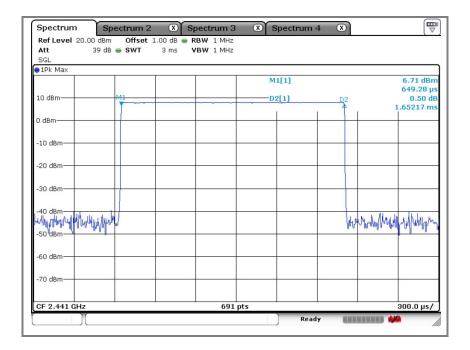
11.4. Test results

Ambient temperature: 22 °C Relative humidity: 45 % R.H.

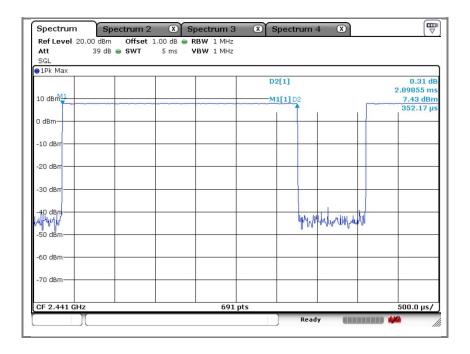

0.4 seconds within a 30 second period per any frequency

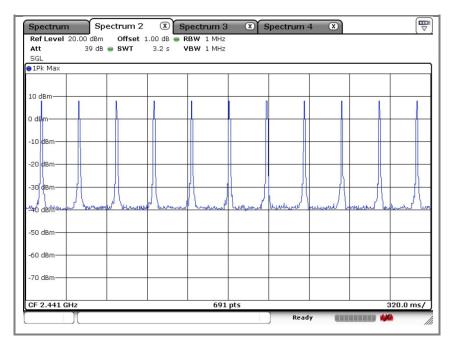

Mode	Number of transmission ina 31.6s (79Hopping*0.4)	Length of Transmission Time (msec)	Result (msec)	Limit (msec)
DH1	32(Times / 3.16sec) *10 = 320	0.391	125.12	400
DH3	16(Times / 3.16sec) *10= 160	1.652	264.32	400
DH5	11(Times / 3.16sec) *10= 110	2.899	318.89	400
2-DH5	11(Times / 3.16sec) *10= 110	2.924	321.64	400
3-DH5	11(Times / 3.16sec) *10= 110	2.906	319.66	400

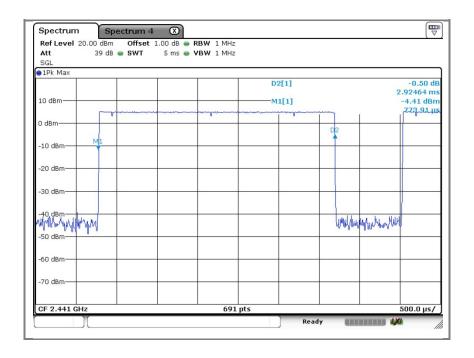
*** Remark:**


dwell time = {(number of hopping per second / number of slot) x duration time per channel} x 0.4 ms

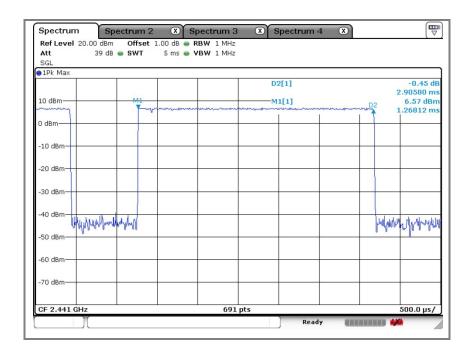
A. DH1

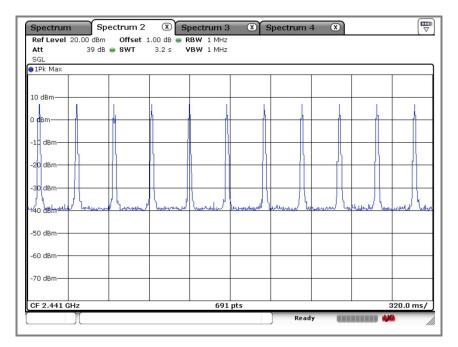



B. DH3



C. DH5




D. 2- DH5

D. 3- DH5

12. Antenna requirement

12.1. Standard Applicable

For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dBi are used.

12.2. Antenna Connected Construction

Antenna used in this product is Integral type antenna (Chip antenna), Antenna gain is 3.40 dB i.

13. RF exposure evaluation

13.1. Environmental evaluation and exposure limit according to FCC CFR 47 part 1, 1.1307(b), 1.1310

According to §15.247(e)(i) and §1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. According to KDB 447498 (2)(a)(i)

Limits for maximum permissible exposure (MPE)

Frequency range (脈)	Electric field strength(V/m)	Magnetic field strength (A/m)	Power density (mW/cm²)	Average time			
	(A) Limits for Occupational / Control exposures						
300 – 1 500			F/300	6			
1 500 – 100 000			5	6			
(B) Limits for General Population / Uncontrol Exposures							
300 – 1 500			F/1 500	6			
<u>1 500 – 100 000</u>			1	<u>30</u>			

RF exposure evaluation is required if the separation distance between the user and the device's radiating element is greater than 20 cm, except when the device operates as follows:

below 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 2.5 W;

at or above 1.5 GHz and the maximum e.i.r.p. of the device is equal to or less than 5 W.

In these cases, the information contained in the RF exposure technical brief may be limited to information that demonstrates how the e.i.r.p. was derived.

13.2. Friis transmission formula : Pd=(Pout*G)\(4*pi*R2)

Where

Pd= Power density in mW/cm2

Pout=output power to antenna in mW

G= Numeric gain of the antenna relative to isotropic antenna

Pi=3.1416

R= distance between observation point and center of the radiator in cm

Pd the limit of MPE, 1 mW/cm². If we know the maximum gain of the antenna and total power input to the antenna, through the calculation, we will know the distance where the MPE limit is reached.

13.3. Test result of RF exposure evaluation

Test Item : RF Exposure evaluation data

Test Mode : Normal operation

13.4. Output power into antenna & RF exposure evaluation distance

Antenna gain: 3.40 dB i

Basic mode

Frequency (船)	Output Peak power to antenna (dBm)	Antenna gain (dBi)	Antenna Gain (dBi) Numeric	Power density at 20 cm (nW/cm²)	e.i.r.p. (W)	e.i.r.p. Limits (W)	Power density Limits (ﷺ)
2 402	6.24	3.40	2.19	0.001 83	0.009 2		
2 441	8.06	3.40	2.19	0.002 78	0.014 0	5	1
2 480	8.08	3.40	2.19	0.002 79	0.014 0		

EDR mode

Frequency (脈)	Output Peak power to antenna (dBm)	Antenna gain (dBi)	Antenna Gain (dBi) Numeric	Power density at 20 cm (nW/cm)	e.i.r.p. (W)	e.i.r.p. Limits (W)	Power density Limits (\pi\sum\cur\cur\cur\cur\cur\cur\cur\cur\cur\cur
2 402	4.72	3.40	2.19	0.001 29	0.006 5		
2 441	7.07	3.40	2.19	0.002 22	0.011 1	5	1
2 480	6.23	3.40	2.19	0.001 83	0.009 2		

***** Remark

The power density Pd (5th column) at a distance of 20 $_{\text{CIII}}$ calculated from the friis transmission formula is far below the limit of 1 $_{\text{mW/cIII}}$.

14. Test setup photo of EUT

Photo of radiated spurious emission at below 30 脈

Photo of radiated spurious emission at 30 № ~ 1 000 №

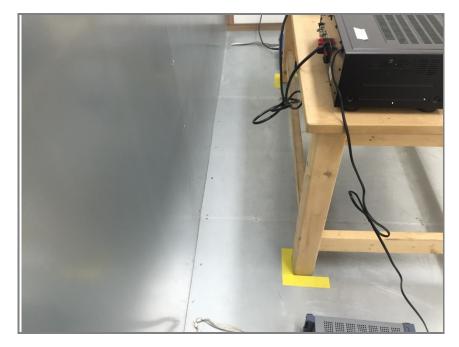


Photo of radiated spurious emission at above 1 000 №

Photo of Conducted emission at below 30 №

