

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: **SCS 0108**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

References

[1] ANSI-C63.19-2019 (ANSI-C63.19-2011)
American National Standard, Methods of Measurement of Compatibility between Wireless Communications
Devices and Hearing Aids.

Methods Applied and Interpretation of Parameters:

- Coordinate System:** y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with the standards [1], the measurement planes (probe sensor center) are selected to be at a distance of 15 mm above the top metal edge of the dipole arms.
- Measurement Conditions:** Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level.
- Antenna Positioning:** The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY5 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy.
- Feed Point Impedance and Return Loss:** These parameters are measured using a Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminated by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles.
- E-field distribution:** E field is measured in the x-y-plane with an isotropic E-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 15 mm (in z) above the metal top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, in the plane above the dipole surface.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.4
Phantom	HAC Test Arch	
Distance Dipole Top - Probe Center	15 mm	
Scan resolution	dx, dy = 5 mm	
Frequency	3500 MHz \pm 1 MHz 3900 MHz \pm 1 MHz	
Input power drift	< 0.05 dB	

Maximum Field values at 3500 MHz

E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	85.7 V/m = 38.65 dBV/m
Maximum measured above low end	100 mW input power	84.3 V/m = 38.51 dBV/m
Averaged maximum above arm	100 mW input power	85.0 V/m \pm 12.8 % (k=2)

Maximum Field values at 3900 MHz

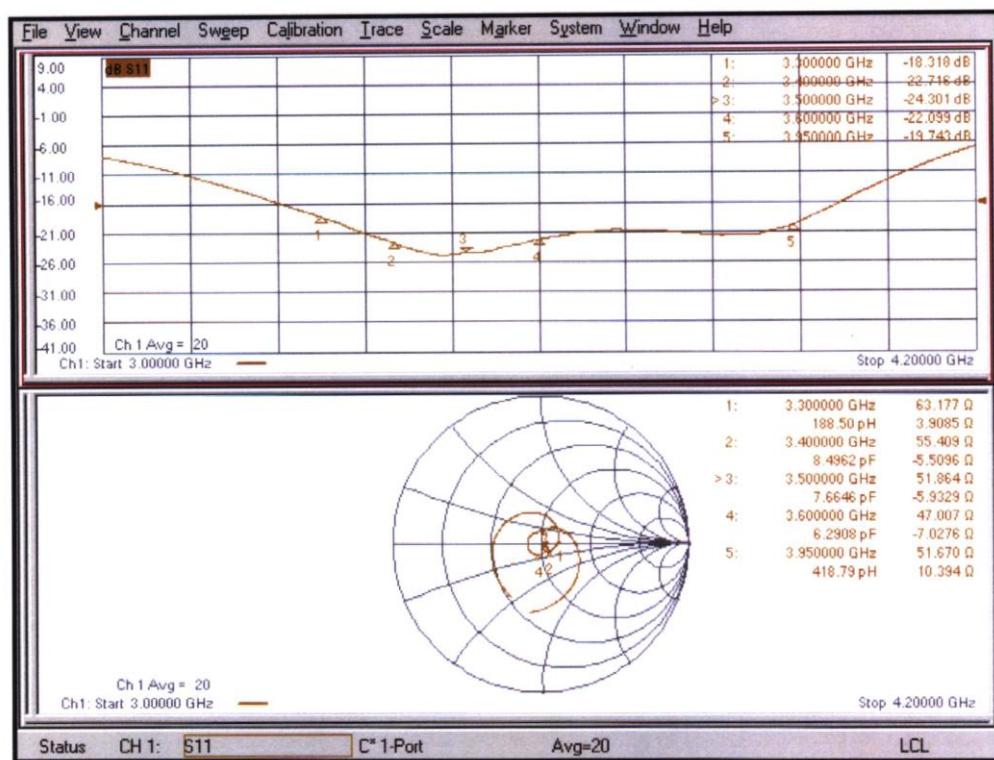
E-field 15 mm above dipole surface	condition	Interpolated maximum
Maximum measured above high end	100 mW input power	81.8 V/m = 38.26 dBV/m
Maximum measured above low end	100 mW input power	80.7 V/m = 38.14 dBV/m
Averaged maximum above arm	100 mW input power	81.3 V/m \pm 12.8 % (k=2)

Appendix (Additional assessments outside the scope of SCS 0108)**Antenna Parameters****Nominal Frequencies**

Frequency	Return Loss	Impedance
3300 MHz	18.3 dB	$63.2 \Omega + 3.9 j\Omega$
3400 MHz	22.7 dB	$55.4 \Omega - 5.5 j\Omega$
3500 MHz	24.3 dB	$51.9 \Omega - 5.9 j\Omega$
3600 MHz	22.1 dB	$47.0 \Omega - 7.0 j\Omega$
3700 MHz	20.5 dB	$41.6 \Omega - 2.1 j\Omega$

Additional Frequencies

Frequency	Return Loss	Impedance
3900 MHz	21.4 dB	$48.7 \Omega + 8.3 j\Omega$


3.2 Antenna Design and Handling

The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth.

The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals.

Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected.

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

Impedance Measurement Plot

DASY5 E-field Result

Date: 16.08.2024

Test Laboratory: SPEAG Lab2

DUT: HAC Dipole 3500 MHz; Type: CD3500V3; Serial: CD3500V3 - SN: 1008Communication System: UID 0 - CW ; Frequency: 3500 MHz, Frequency: 3900 MHz
Medium parameters used: $\sigma = 0 \text{ S/m}$, $\epsilon_r = 1$; $\rho = 0 \text{ kg/m}^3$

Phantom section: RF Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EF3DV3 - SN4013; ConvF(1, 1, 1) @ 3500 MHz, ConvF(1, 1, 1) @ 3900 MHz; Calibrated: 28.12.2023
- Sensor-Surface: (Fix Surface)
- Electronics: DAE4 Sn781; Calibrated: 16.02.2024
- Phantom: HAC Test Arch with AMCC; Type: SD HAC P01 BA; Serial: 1070
- DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501)

Dipole E-Field measurement @ 3500MHz/E-Scan - 3500MHz d=15mm/Hearing Aid Compatibility Test (41x121x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm

Reference Value = 150.7 V/m; Power Drift = 0.00 dB

Applied MIF = 0.00 dB

RF audio interference level = 38.65 dBV/m

Emission category: M2

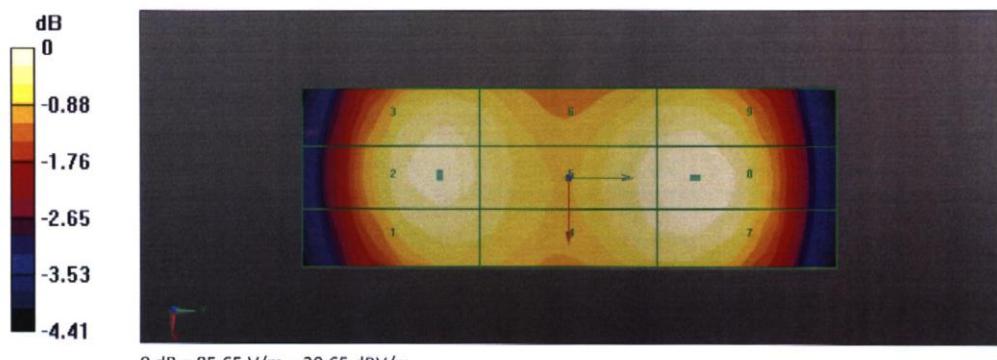
MIF scaled E-field

Grid 1 M2 38.32 dBV/m	Grid 2 M2 38.51 dBV/m	Grid 3 M2 38.43 dBV/m
Grid 4 M2 38.28 dBV/m	Grid 5 M2 38.37 dBV/m	Grid 6 M2 38.23 dBV/m
Grid 7 M2 38.5 dBV/m	Grid 8 M2 38.65 dBV/m	Grid 9 M2 38.47 dBV/m

Dipole E-Field measurement @ 3500MHz/E-Scan - 3900MHz, d=15mm/Hearing Aid Compatibility Test (41x121x1):

Interpolated grid: dx=0.5000 mm, dy=0.5000 mm

Device Reference Point: 0, 0, -6.3 mm


Reference Value = 135.3 V/m; Power Drift = 0.01 dB

Applied MIF = 0.00 dB

RF audio interference level = 38.26 dBV/m

Emission category: M2
MIF scaled E-field

Grid 1 M2	Grid 2 M2	Grid 3 M2
37.97 dBV/m	38.14 dBV/m	38.08 dBV/m
Grid 4 M2	Grid 5 M2	Grid 6 M2
38.07 dBV/m	38.12 dBV/m	38.01 dBV/m
Grid 7 M2	Grid 8 M2	Grid 9 M2
38.15 dBV/m	38.26 dBV/m	38.09 dBV/m

ANNEX F THE EVALUATION OF SPOTCHECK

F.1 The results for spot check

Bands	Frequency (MHz)	Channel	RFail (dBV/m)	Compliance
GSM 850	836.6	190	37.92	PASS (see Fig F.3.1)
GSM 1900	1850.2	512	35.22	PASS (see Fig F.3.2)
NR n77 ANT2	3540.000	636000	32.09	PASS (see Fig F.3.3)
NR n77 ANT6	3750.000	650000	31.19	PASS (see Fig F.3.4)

F.2 Validation Result

E-Field Scan						
Mode	Frequency (MHz)	Input Power (mW)	Measured ¹ Value(V/m)	Target ² Value(V/m)	Deviation ³ (%)	Limit ⁴ (%)
CW	835	100	117.00	112.60	3.91	±18
CW	1880	100	88.90	88.20	0.79	±18
CW	3500	100	80.20	85.70	-6.42	±18
CW	3900	100	77.50	81.80	-5.26	±18

F.3 Test plots of spot check

Device Under Test

Manufacturer	Model	Dimensions[mm]	Speaker Position [mm]
1	1	146.2 x 71.8 x 7.5	144.3

Hardware Setup

Probe Name	Probe Calibration Date	DAE Name	DAE Calibration Date
EF3DV3 - SN4060	May 23, 2024	DAE4 Sn1524	October 18, 2024

Communication Systems

Band Name	Communication Systems Name	Channel	Frequency [MHz]
GSM 850	GSM-FDD (TDMA, GMSK)	190	836.6

Grid Settings

Extent X [mm]	Extent Y [mm]	Step X [mm]	Step Y [mm]	Distance [mm]
50.0	50.0	10.0	10.0	15.0

Results

Emax [dB(V/m)]	Eavg50x50 max [dB(V/m)]	MIF [dB]	RFail [dB(V/m)]
37.39	34.29	3.63	37.92

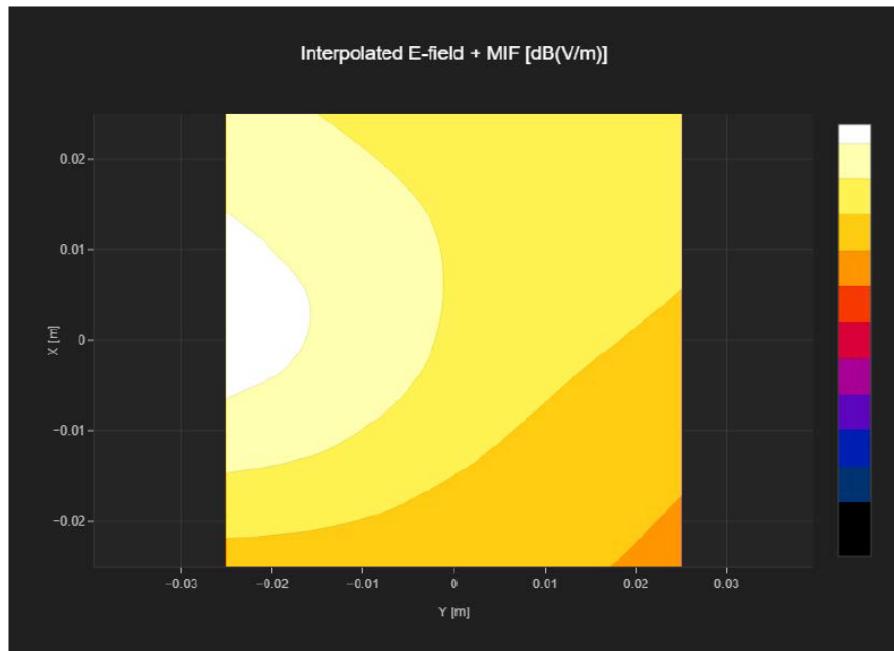


Fig F.3.1 GSM 850

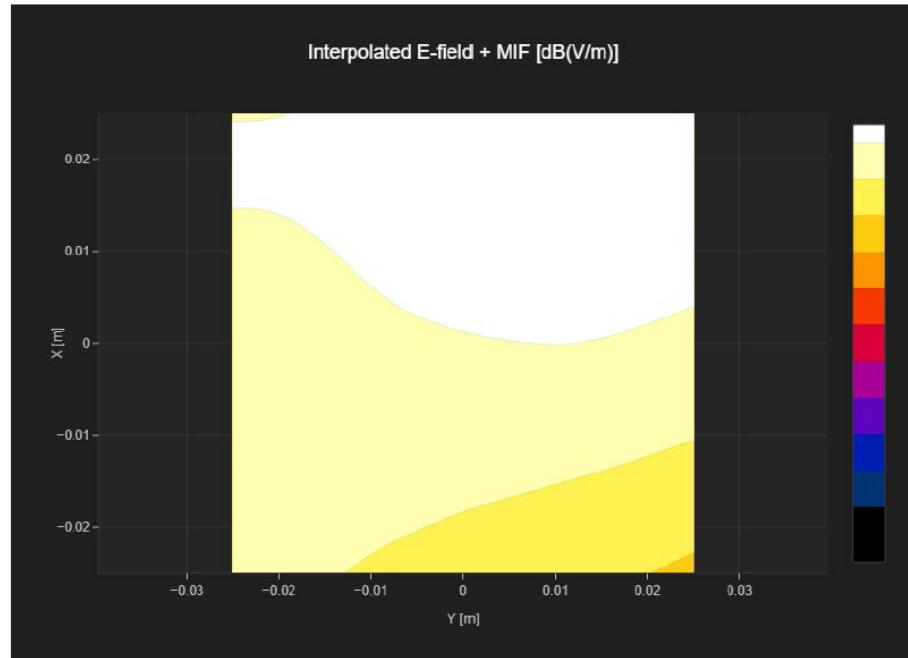
Device Under Test

Manufacturer	Model	Dimensions[mm]	Speaker Position [mm]
1	1	146.2 x 71.8 x 7.5	144.3

Hardware Setup

Probe Name	Probe Calibration Date	DAE Name	DAE Calibration Date
EF3DV3 - SN4060	May 23, 2024	DAE4 Sn1524	October 18, 2024

Communication Systems


Band Name	Communication Systems Name	Channel	Frequency [MHz]
PCS 1900	GSM-FDD (TDMA, GMSK)	661	1880.0

Grid Settings

Extent X [mm]	Extent Y [mm]	Step X [mm]	Step Y [mm]	Distance [mm]
50.0	50.0	10.0	10.0	15.0

Results

E _{max} [dB(V/m)]	E _{avg} 50x50 max [dB(V/m)]	MIF [dB]	RFail [dB(V/m)]
32.79	31.59	3.63	35.22

Fig F.3.2 GSM 1900

Measurement performed on November 29, 2024 at 09:03

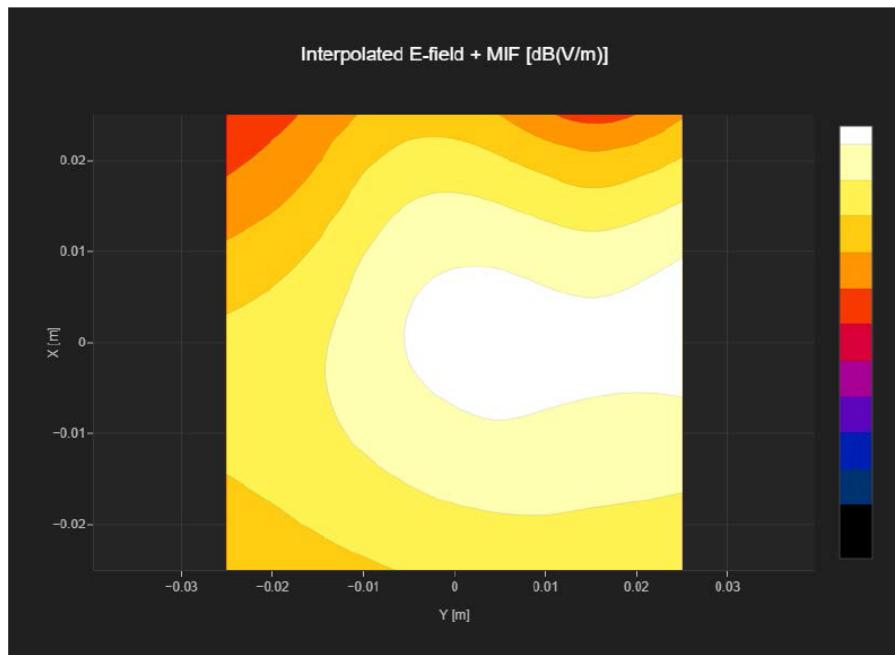
Device Under Test

Manufacturer	Model	Dimensions[mm]	Speaker Position [mm]
1	1	146.2 x 71.8 x 7.5	144.3

Hardware Setup

Probe Name	Probe Calibration Date	DAE Name	DAE Calibration Date
EF3DV3 - SN4060	May 23, 2024	DAE4 Sn1524	October 18, 2024

Communication Systems


Band Name	Communication Systems Name	Channel	Frequency [MHz]
Band n77	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	636000	3540.0

Grid Settings

Extent X [mm]	Extent Y [mm]	Step X [mm]	Step Y [mm]	Distance [mm]
50.0	50.0	10.0	10.0	15.0

Results

Emax [dB(V/m)]	Eavg50x50 max [dB(V/m)]	MIF [dB]	RFail [dB(V/m)]
36.18	33.73	-1.64	32.09

Fig F.3.3 NR n77 ANT2

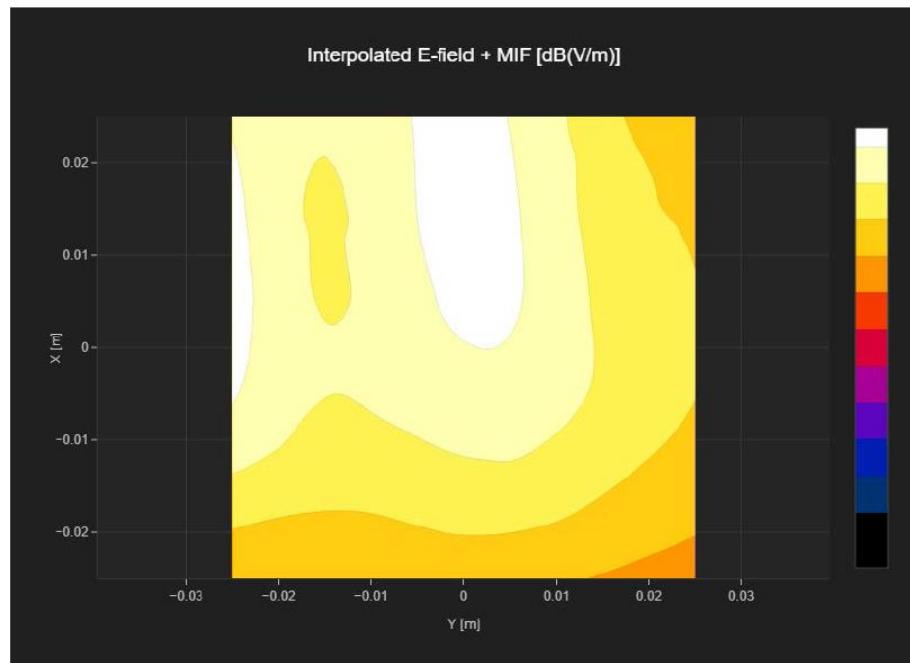
Device Under Test

Manufacturer	Model	Dimensions[mm]	Speaker Position [mm]
1	1	146.2 x 71.8 x 7.5	144.3

Hardware Setup

Probe Name	Probe Calibration Date	DAE Name	DAE Calibration Date
EF3DV3 - SN4060	May 23, 2024	DAE4 Sn1524	October 18, 2024

Communication Systems


Band Name	Communication Systems Name	Channel	Frequency [MHz]
Band n77	5G NR (DFT-s-OFDM, 1 RB, 100 MHz, QPSK, 30 kHz)	650000	3750.0

Grid Settings

Extent X [mm]	Extent Y [mm]	Step X [mm]	Step Y [mm]	Distance [mm]
50.0	50.0	10.0	10.0	15.0

Results

E _{max} [dB(V/m)]	E _{avg} 50x50 max [dB(V/m)]	MIF [dB]	RFail [dB(V/m)]
35.08	32.83	-1.64	31.19

Fig F.3.4 NR n77 ANT6

F.4 System validation

E SCAN of Dipole 835 MHz

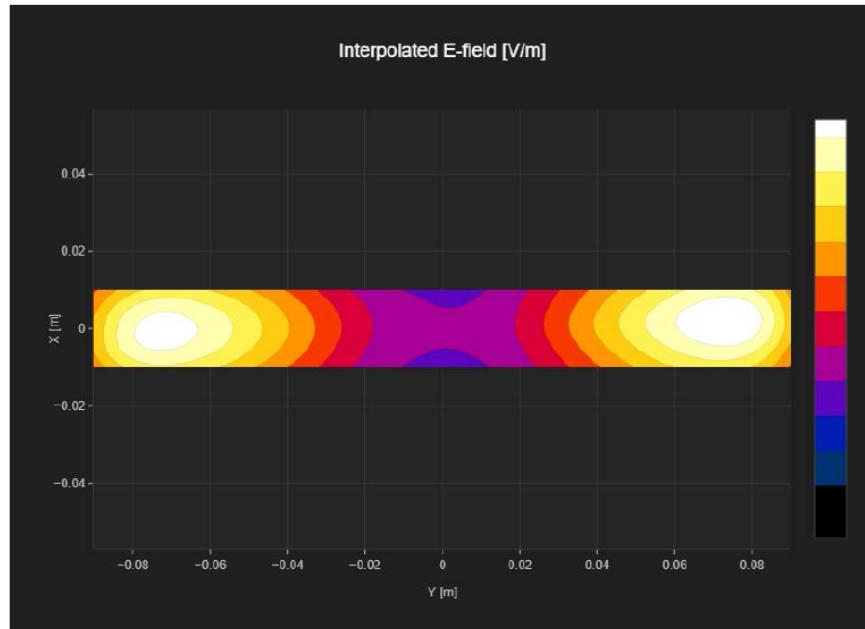
Device Under Test

Manufacturer	Model	Dimensions [mm]	Speaker Position [mm]
		146.2 x 71.8 x 7.5	144.3

Hardware Setup

Probe Name	Probe Calibration Date	DAE Name	DAE Calibration Date
EF3DV3 - SN4060	May 23, 2024	DAE4 Sn1524	October 18, 2024

Communication Systems


Band Name	Communication Systems Name	Channel	Frequency [MHz]
CD835	CW	50	835.0

Grid Settings

Extent X [mm]	Extent Y [mm]	Step X [mm]	Step Y [mm]	Distance [mm]
20.0	180.0	5.0	5.0	15.0

Results

Dipole Type	Dipole Serial Number	E _{max} [V/m]	Drift [dB]
CD835	XXXX	117	0.24

E SCAN of Dipole 1880 MHz

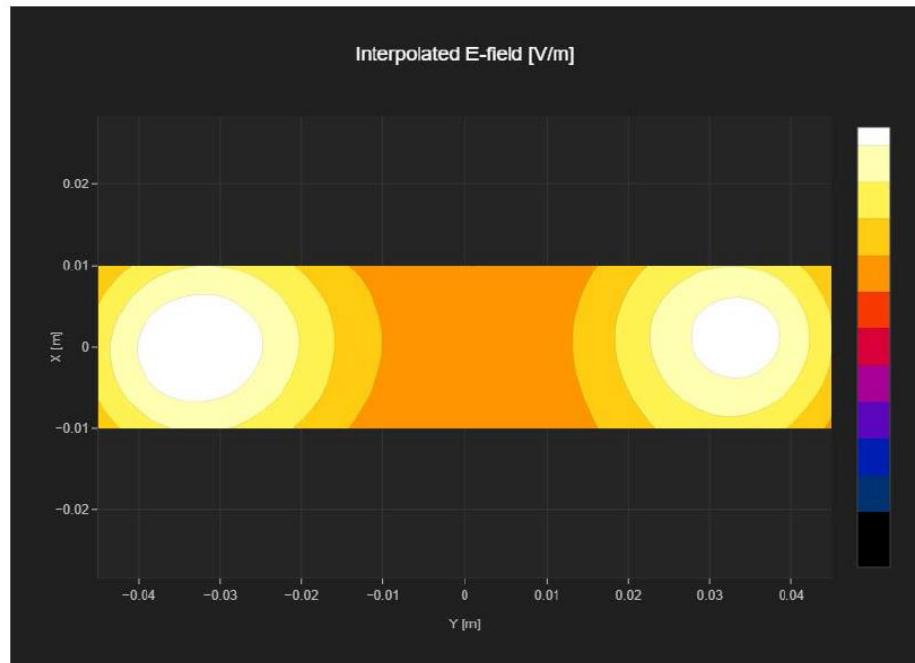
Device Under Test

Manufacturer	Model	Dimensions [mm]	Speaker Position [mm]
		146.2 x 71.8 x 7.5	144.3

Hardware Setup

Probe Name	Probe Calibration Date	DAE Name	DAE Calibration Date
EF3DV3 - SN4060	May 23, 2024	DAE4 Sn1524	October 18, 2024

Communication Systems


Band Name	Communication Systems Name	Channel	Frequency [MHz]
CD1880	CW	0	1730.0

Grid Settings

Extent X [mm]	Extent Y [mm]	Step X [mm]	Step Y [mm]	Distance [mm]
20.0	90.0	5.0	5.0	15.0

Results

Dipole Type	Dipole Serial Number	Emax [V/m]	Drift [dB]
CD1880	XXXX	88.9	-0.0

E SCAN of Dipole 3500MHz

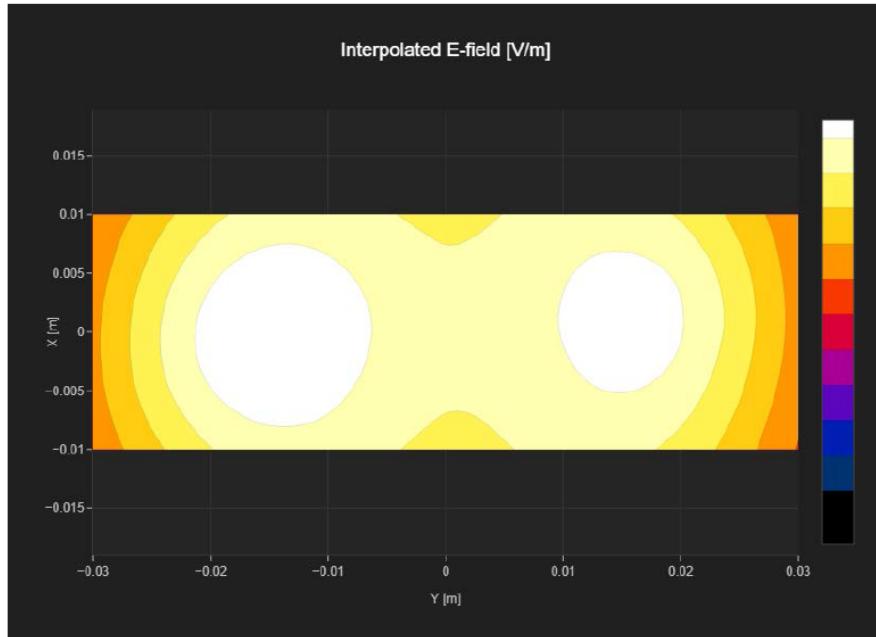
Device Under Test

Manufacturer	Model	Dimensions [mm]	Speaker Position [mm]
		146.2 x 71.8 x 7.5	144.3

Hardware Setup

Probe Name	Probe Calibration Date	DAE Name	DAE Calibration Date
EF3DV3 - SN4060	May 23, 2024	DAE4 Sn1524	October 18, 2024

Communication Systems


Band Name	Communication Systems Name	Channel	Frequency [MHz]
CD3500V3	CW	50	3500.0

Grid Settings

Extent X [mm]	Extent Y [mm]	Step X [mm]	Step Y [mm]	Distance [mm]
20.0	60.0	5.0	5.0	15.0

Results

Dipole Type	Dipole Serial Number	Emax [V/m]	Drift [dB]
CD3500	XXXX	80.2	0.0

E SCAN of Dipole 3900 MHz

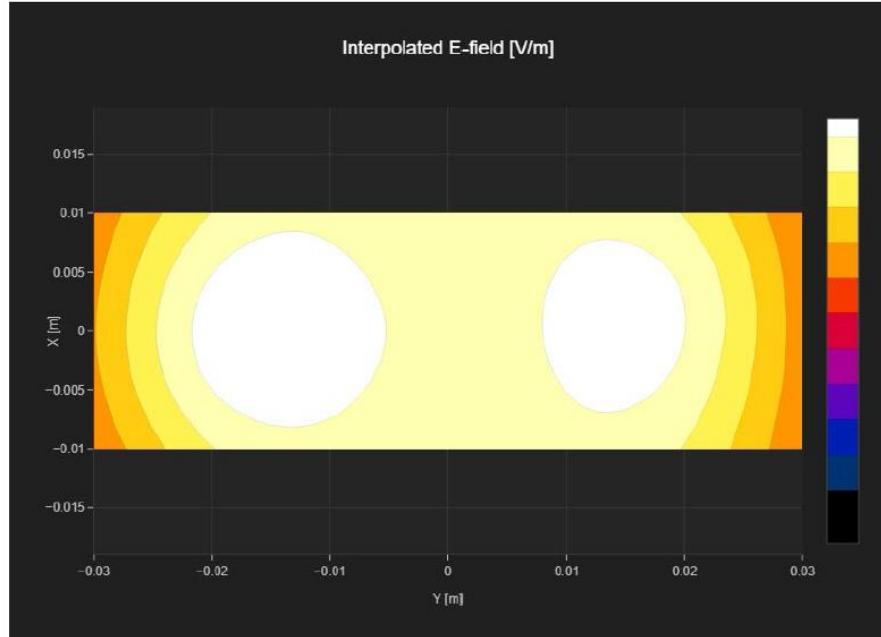
Device Under Test

Manufacturer	Model	Dimensions [mm]	Speaker Position [mm]
		146.2 x 71.8 x 7.5	144.3

Hardware Setup

Probe Name	Probe Calibration Date	DAE Name	DAE Calibration Date
EF3DV3 - SN4060	May 23, 2024	DAE4 Sn1524	October 18, 2024

Communication Systems


Band Name	Communication Systems Name	Channel	Frequency [MHz]
CD3500V3	CW	XX	3900.0

Grid Settings

Extent X [mm]	Extent Y [mm]	Step X [mm]	Step Y [mm]	Distance [mm]
20.0	60.0	5.0	5.0	15.0

Results

Dipole Type	Dipole Serial Number	Emax [V/m]	Drift [dB]
CD3500	XXXX	77.5	-0.01

