

Plot 2 System Performance Check at 835 MHz TSL
DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2

Date: 2024/1/22

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

 Medium parameters used: $f = 835$ MHz; $\sigma = 0.88$ S/m; $\epsilon_r = 41.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

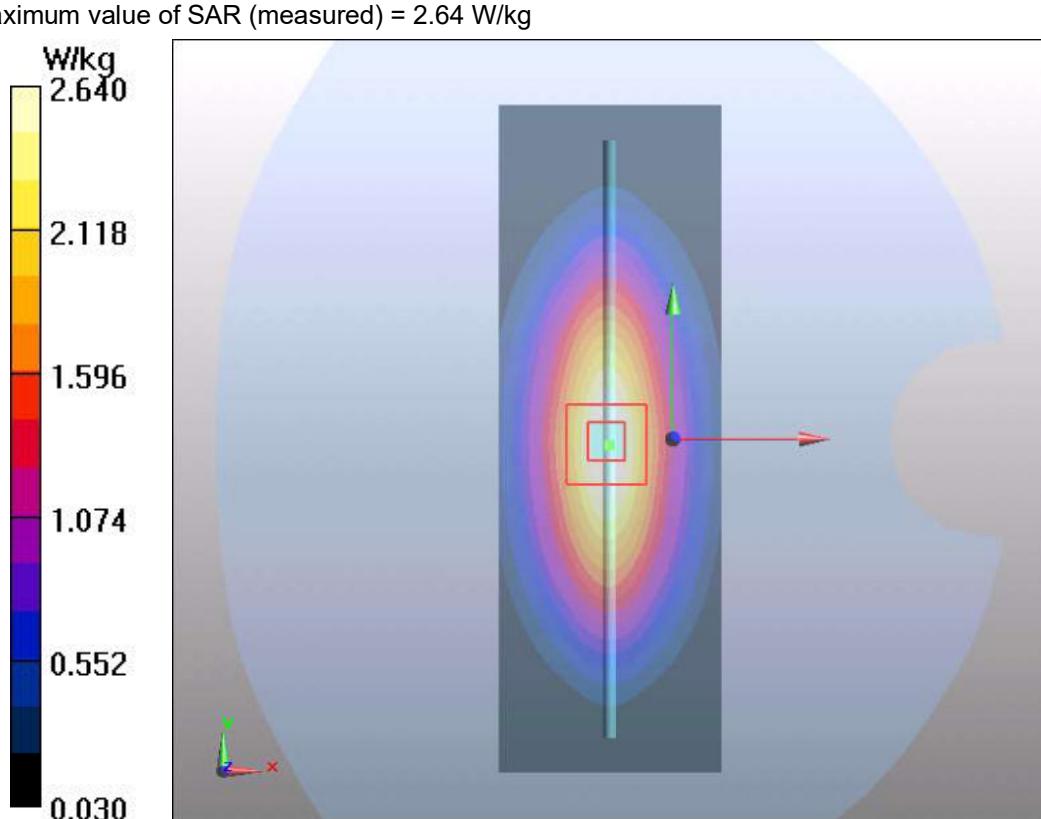
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=15mm, Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.58 W/kg

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 53.241 V/m; Power Drift = -0.076 dB


Peak SAR (extrapolated) = 3.67 W/kg

SAR(1 g) = 2.44 W/kg; SAR(10 g) = 1.6 W/kg

Smallest distance from peaks to all points 3 dB below = 16.6 mm

Ratio of SAR at M2 to SAR at M1 = 68.1%

Maximum value of SAR (measured) = 2.64 W/kg

Plot 3 System Performance Check at 835 MHz TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2

Date: 2024/1/23

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

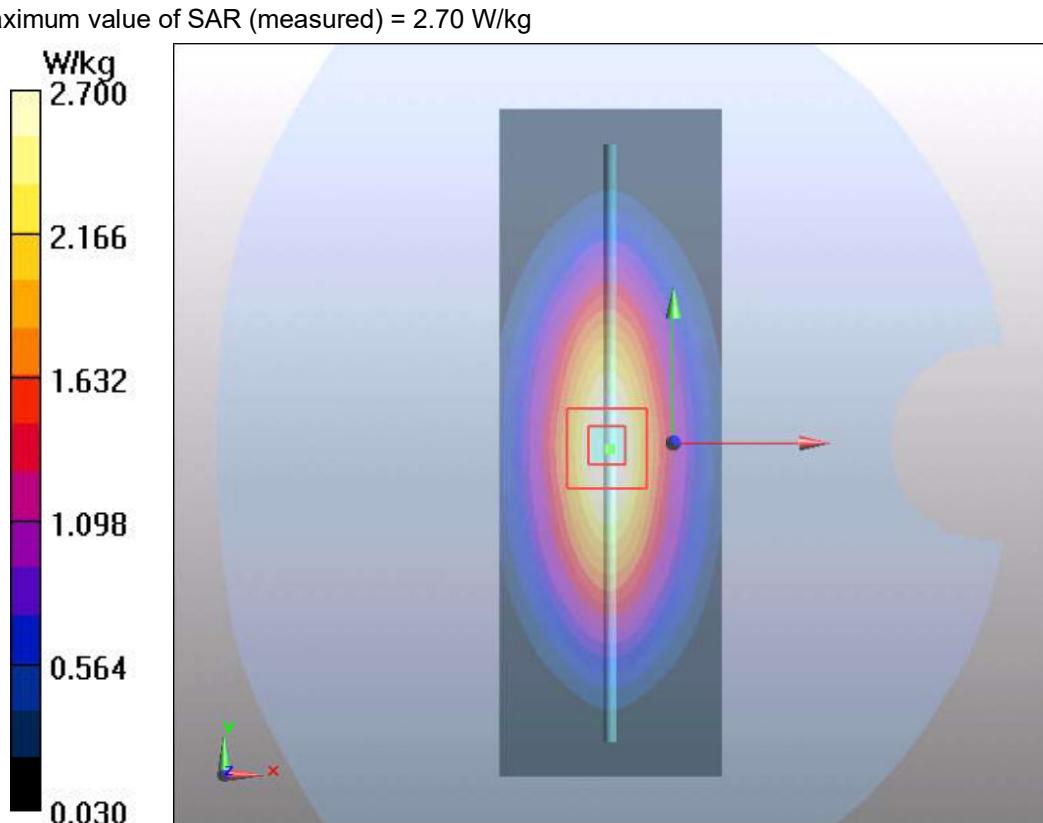
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=15mm, Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.59 W/kg

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.023 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 3.25 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.65 W/kg

Smallest distance from peaks to all points 3 dB below = 15.7 mm

Ratio of SAR at M2 to SAR at M1 = 65.4%

Maximum value of SAR (measured) = 2.70 W/kg

Plot 4 System Performance Check at 835 MHz TSL

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2

Date: 2024/2/18

Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 835$ MHz; $\sigma = 0.87$ S/m; $\epsilon_r = 41.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

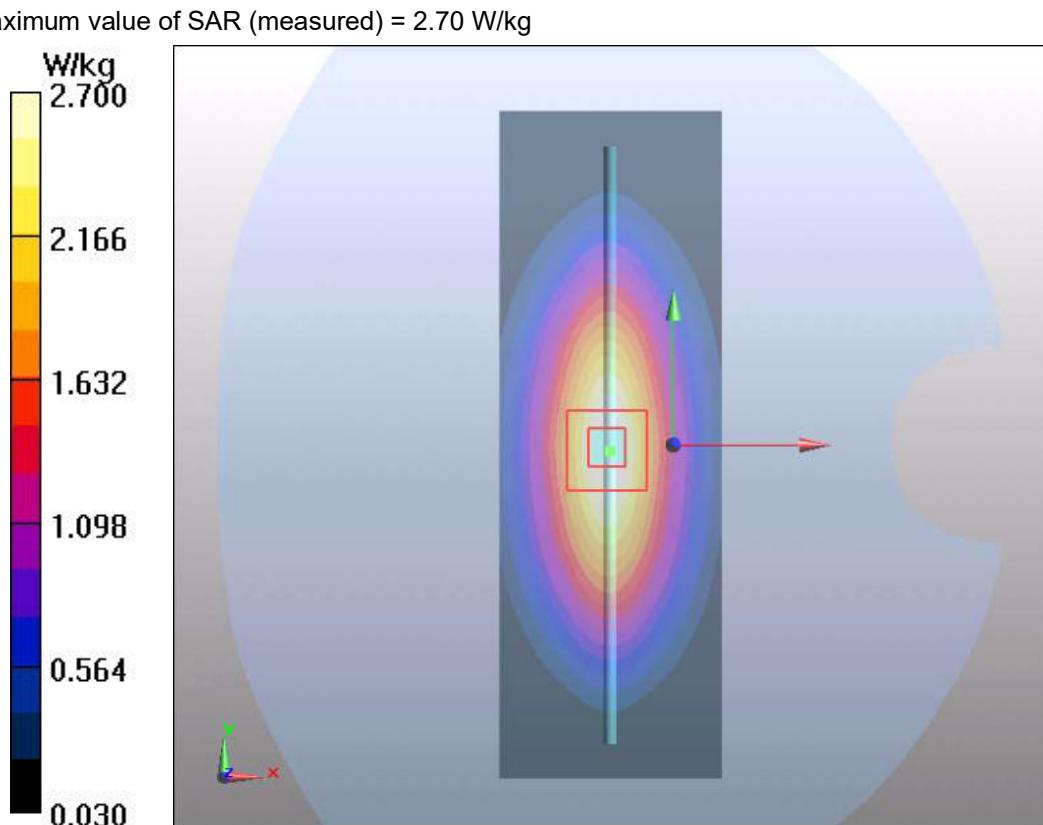
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=15mm, Pin=250mW/Area Scan (4x12x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 2.59 W/kg

d=15mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.023 V/m; Power Drift = -0.06 dB


Peak SAR (extrapolated) = 3.25 W/kg

SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.65 W/kg

Smallest distance from peaks to all points 3 dB below = 15.7 mm

Ratio of SAR at M2 to SAR at M1 = 65.4%

Maximum value of SAR (measured) = 2.70 W/kg

Plot 5 System Performance Check at 1750 MHz TSL**DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2**

Date: 2024/1/19

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.34$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

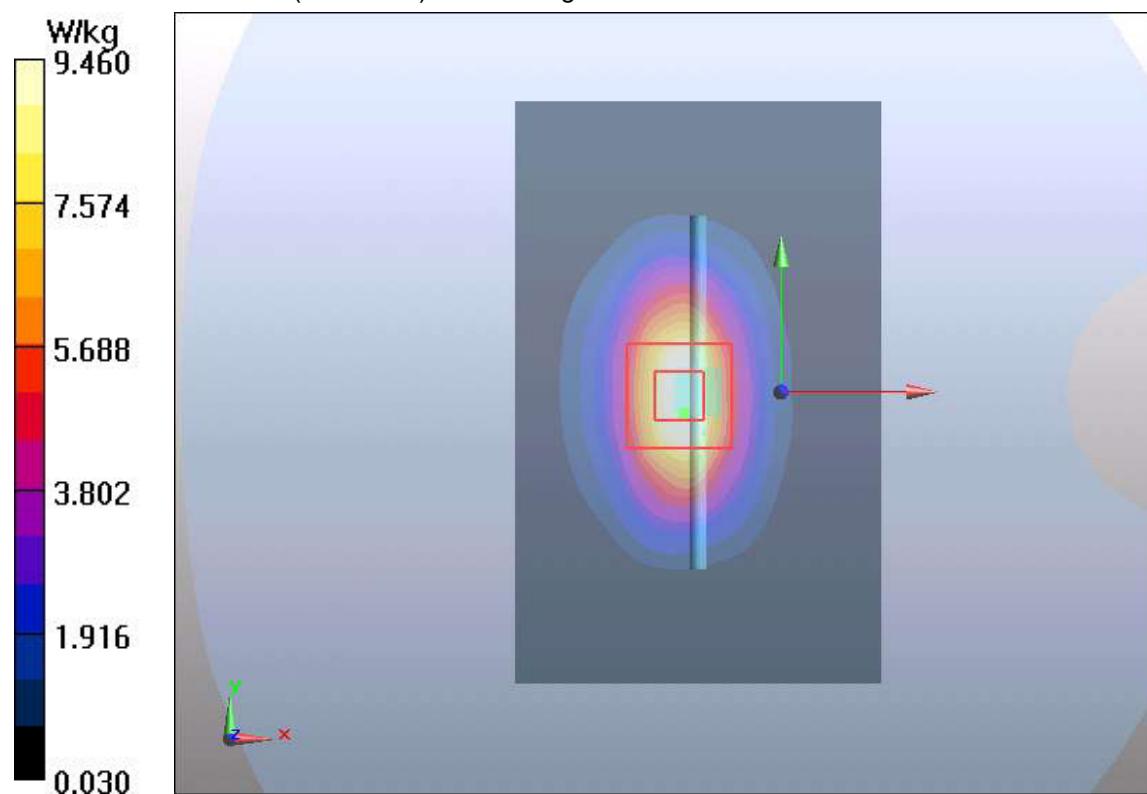
d=10mm, Pin=250mW/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.18 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 80.385 V/m; Power Drift = 0.075 dB


Peak SAR (extrapolated) = 15.5 W/kg

SAR(1 g) = 8.95 W/kg; SAR(10 g) = 4.8 W/kg

Smallest distance from peaks to all points 3 dB below = 10mm

Ratio of SAR at M2 to SAR at M1 = 53.5%

Maximum value of SAR (measured) = 9.46 W/kg

Plot 6 System Performance Check at 1750 MHz TSL**DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2**

Date: 2024/1/21

Communication System: CW; Frequency: 1750 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1750$ MHz; $\sigma = 1.34$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

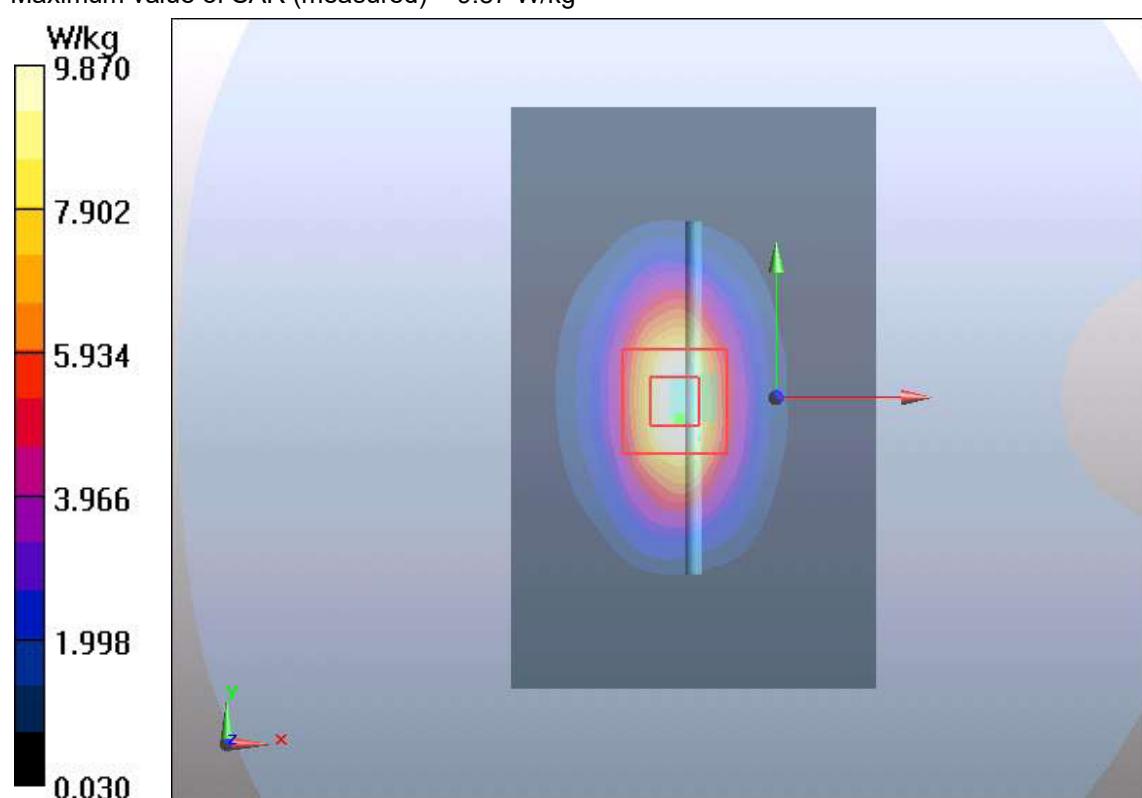
d=10mm, Pin=250mW/Area Scan (5x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.77 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 80.134 V/m; Power Drift = 0.055 dB


Peak SAR (extrapolated) = 15.81 W/kg

SAR(1 g) = 9.11 W/kg; SAR(10 g) = 4.77 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6mm

Ratio of SAR at M2 to SAR at M1 = 54.6%

Maximum value of SAR (measured) = 9.87 W/kg

Plot 7 System Performance Check at 1900 MHz TSL**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2**

Date: 2024/2/2

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.41$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

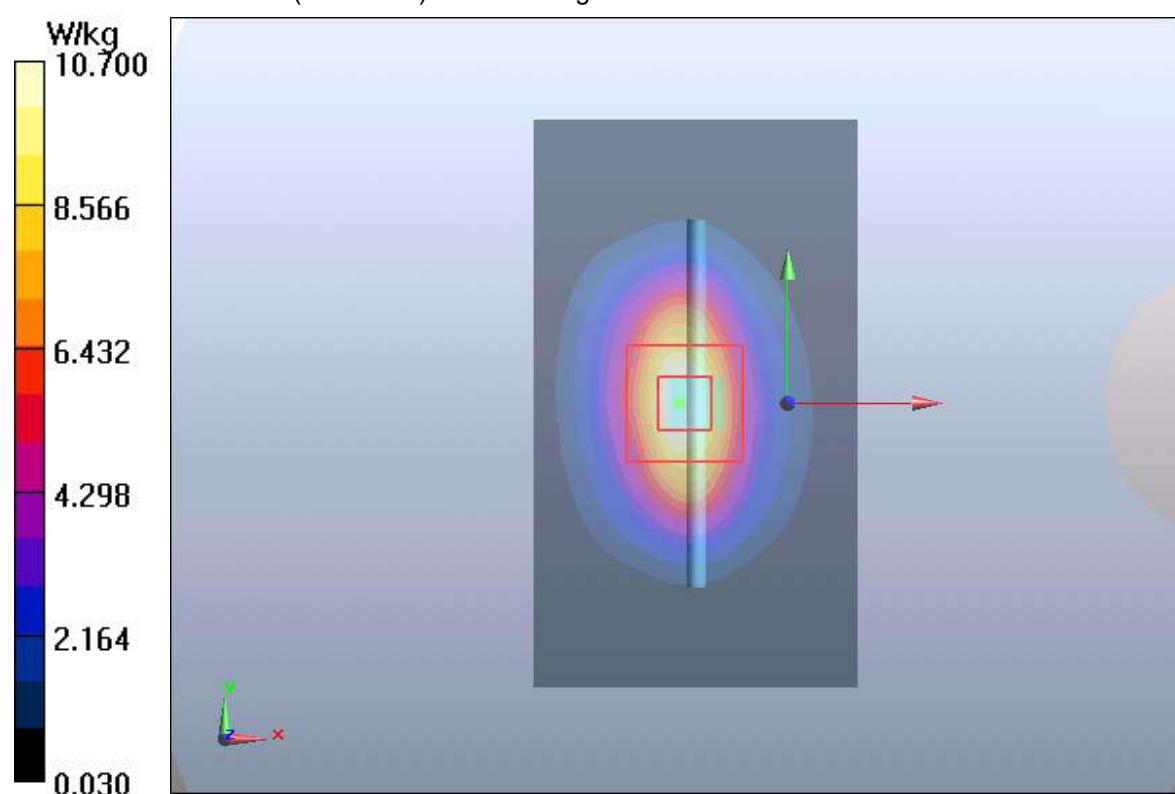
d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 10.23 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 85.857V/m; Power Drift = 0.026 dB


Peak SAR (extrapolated) = 17.84 W/kg

SAR(1 g) = 9.88 W/kg; SAR(10 g) = 4.9 W/kg

Smallest distance from peaks to all points 3 dB below = 11.4 mm

Ratio of SAR at M2 to SAR at M1 = 52.7%

Maximum value of SAR (measured) = 10.70 W/kg

Plot 8 System Performance Check at 1900 MHz TSL**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2**

Date: 2024/2/3

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.43$ S/m; $\epsilon_r = 40.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

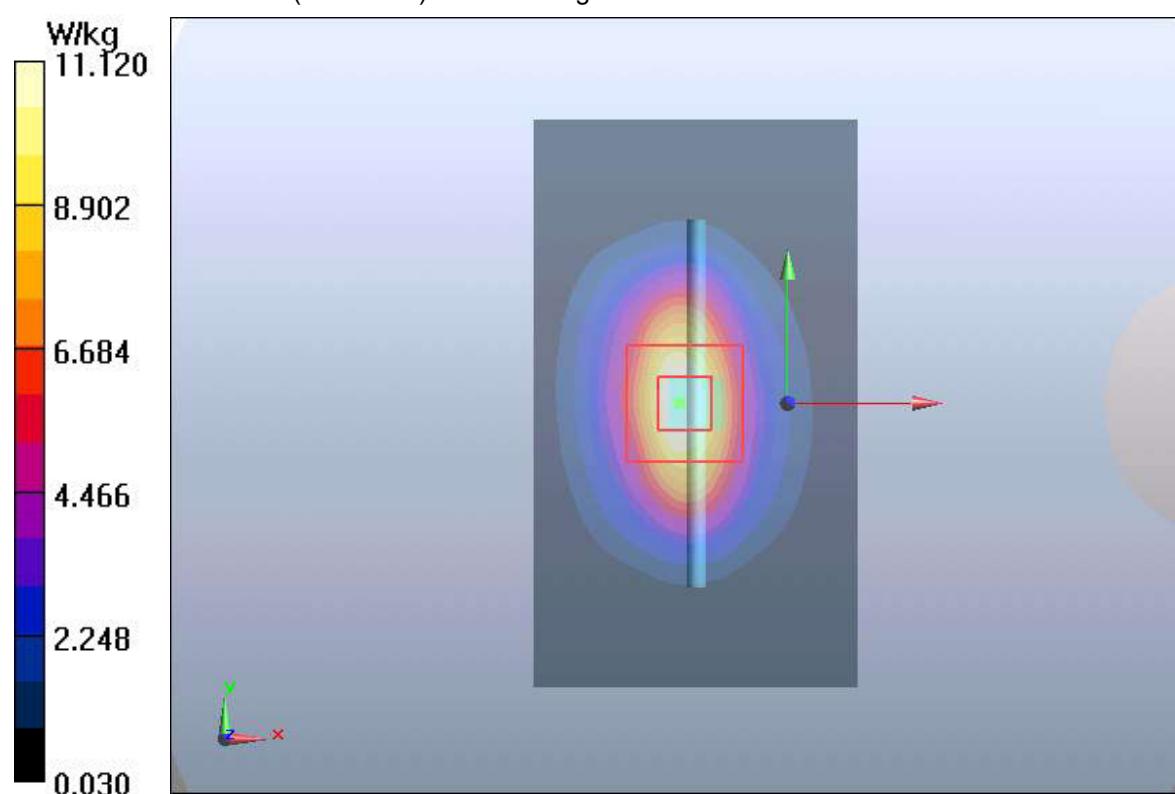
d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 10.43 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 87.324 V/m; Power Drift = 0.013 dB


Peak SAR (extrapolated) = 19.2 W/kg

SAR(1 g) = 9.85 W/kg; SAR(10 g) = 4.93 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2mm

Ratio of SAR at M2 to SAR at M1 = 56.3%

Maximum value of SAR (measured) = 11.12 W/kg

Plot 9 System Performance Check at 1900 MHz**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2**

Date: 2024/2/4

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.40$ S/m; $\epsilon_r = 40.0$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

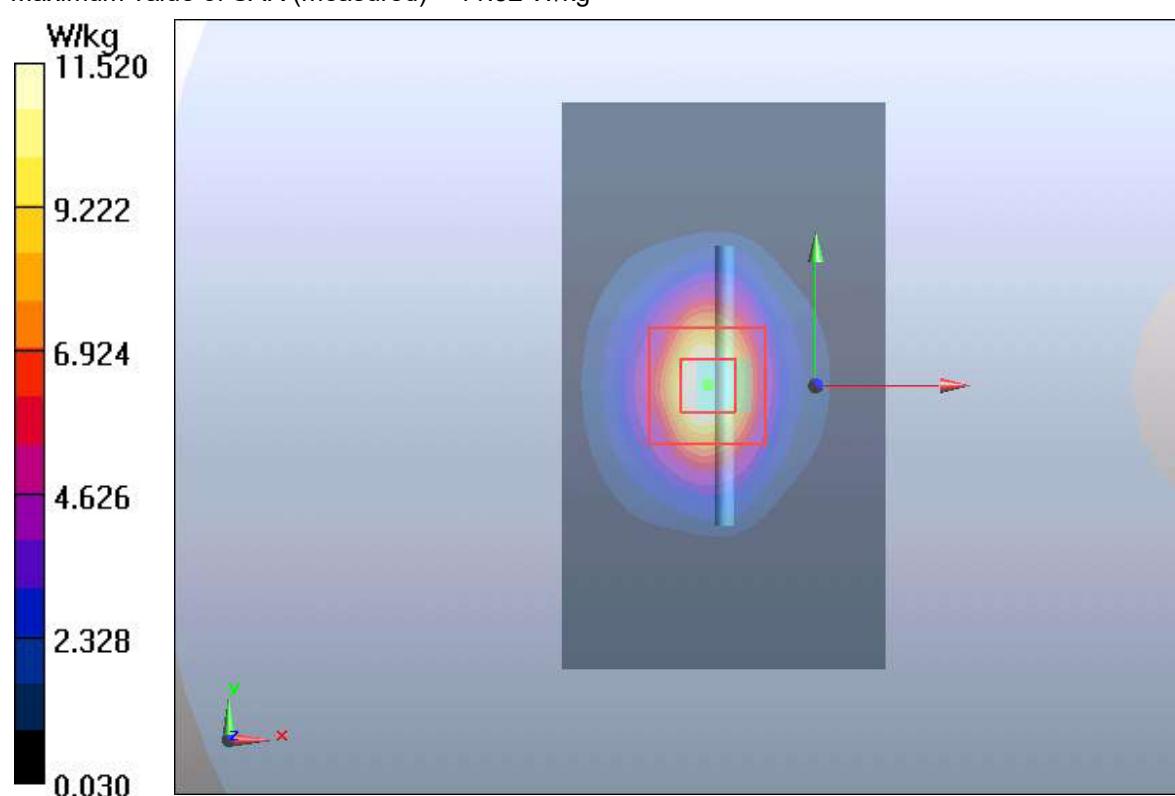
d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 9.86 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 88.368 V/m; Power Drift = 0.013 dB


Peak SAR (extrapolated) = 20.12 W/kg

SAR(1 g) = 9.55 W/kg; SAR(10 g) = 4.99 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 52.5%

Maximum value of SAR (measured) = 11.52 W/kg

Plot 10 System Performance Check at 2450 MHz TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2

Date: 2024/2/1

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.81$ S/m; $\epsilon_r = 38.6$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.18, 7.67, 7.29); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 14.26 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 88.834 V/m; Power Drift = 0.015 dB


Peak SAR (extrapolated) = 30.10 W/kg

SAR(1 g) = 13.7 W/kg; SAR(10 g) = 6.22 W/kg

Smallest distance from peaks to all points 3 dB below = 8.9 mm

Ratio of SAR at M2 to SAR at M1 = 47%

Maximum value of SAR (measured) = 15.90 W/kg

Plot 11 System Performance Check at 2600 MHz TSL**DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2**

Date: 2024/1/24

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2600$ MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 38.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

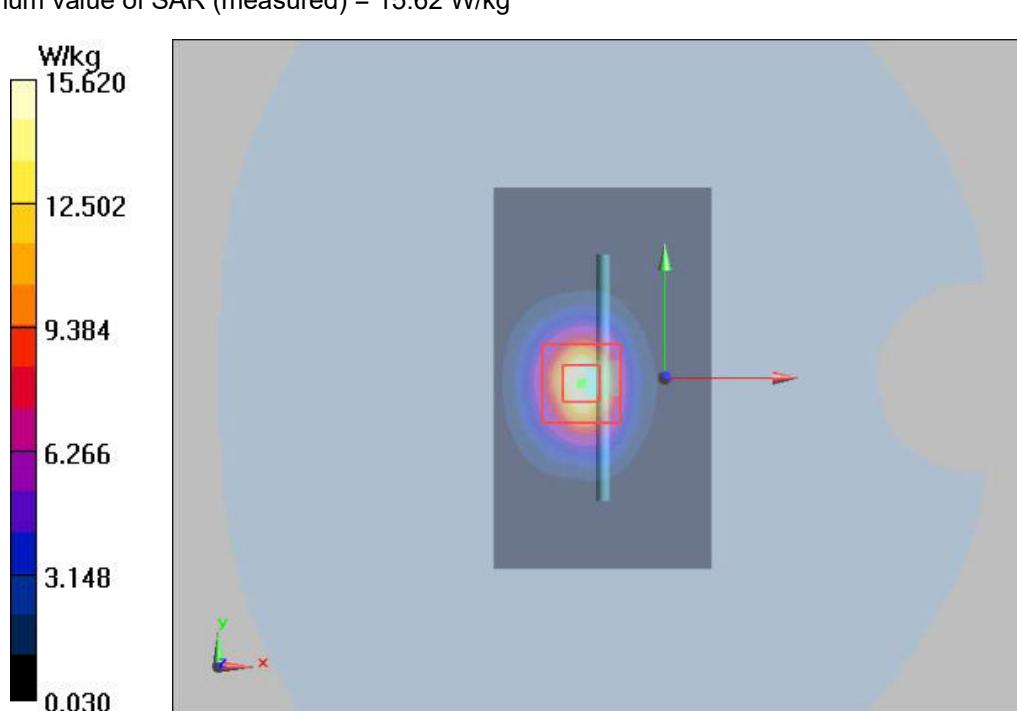
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 14.43 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.998 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 31.85W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.07 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 44.2%

Maximum value of SAR (measured) = 15.62 W/kg

Plot 12 System Performance Check at 2600 MHz TSL**DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2**

Date: 2024/1/26

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2600$ MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 38.4$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

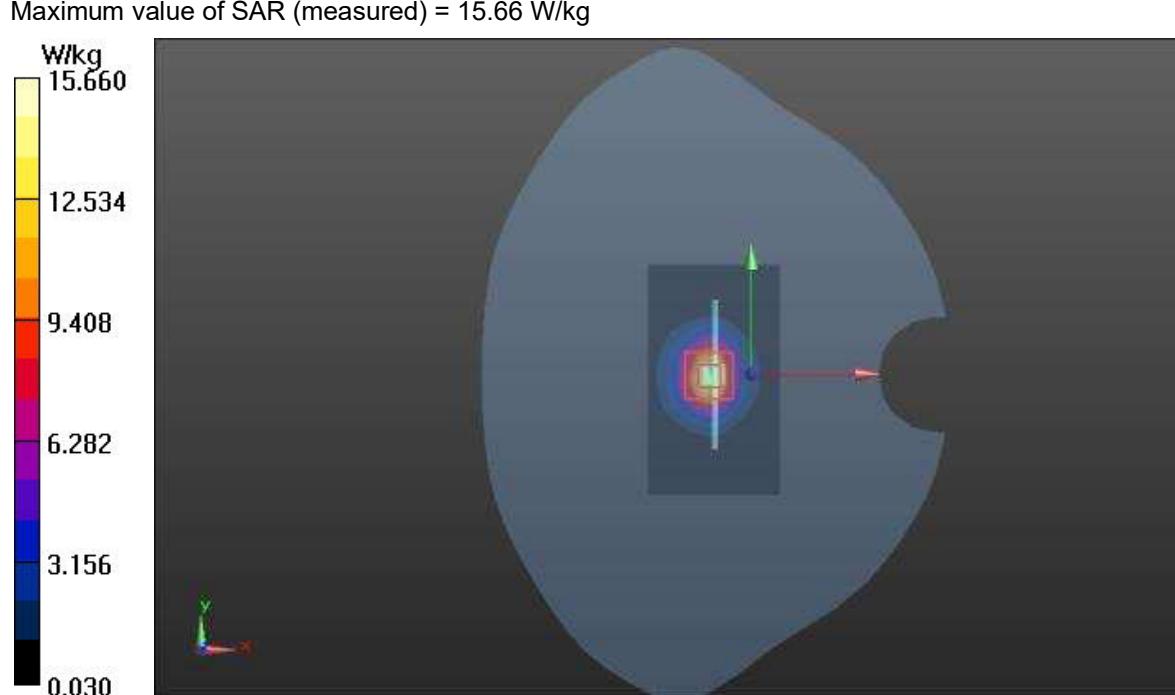
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 15.02 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 84.359 V/m; Power Drift = -0.015 dB


Peak SAR (extrapolated) = 30.62 W/kg

SAR(1 g) = 13.88 W/kg; SAR(10 g) = 6.09 W/kg

Smallest distance from peaks to all points 3 dB below = 10.3 mm

Ratio of SAR at M2 to SAR at M1 = 48.6%

Maximum value of SAR (measured) = 15.66 W/kg

Plot 13 System Performance Check at 2600 MHz TSL**DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2**

Date: 2024/1/27

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2600$ MHz; $\sigma = 1.99$ S/m; $\epsilon_r = 38.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

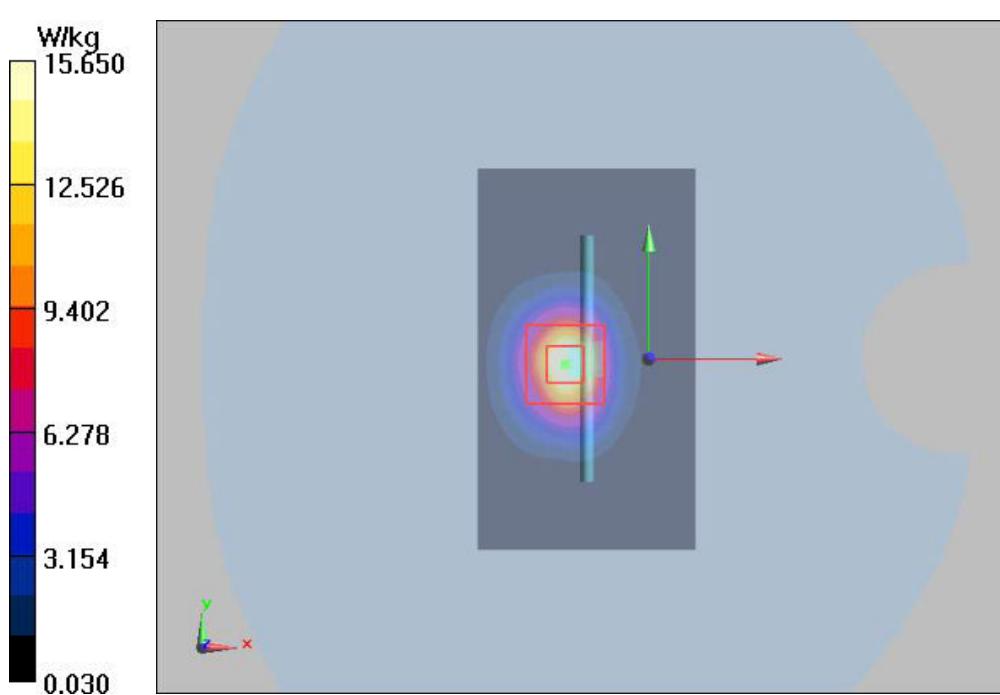
d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 14.20 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 87.465 V/m; Power Drift = 0.146 dB


Peak SAR (extrapolated) = 31.85 W/kg

SAR(1 g) = 13.94 W/kg; SAR(10 g) = 6.11 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 47.1%

Maximum value of SAR (measured) = 15.650 W/kg

Plot 14 System Performance Check at 2600 MHz TSL**DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2**

Date: 2024/1/28

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2600$ MHz; $\sigma = 1.95$ S/m; $\epsilon_r = 38.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

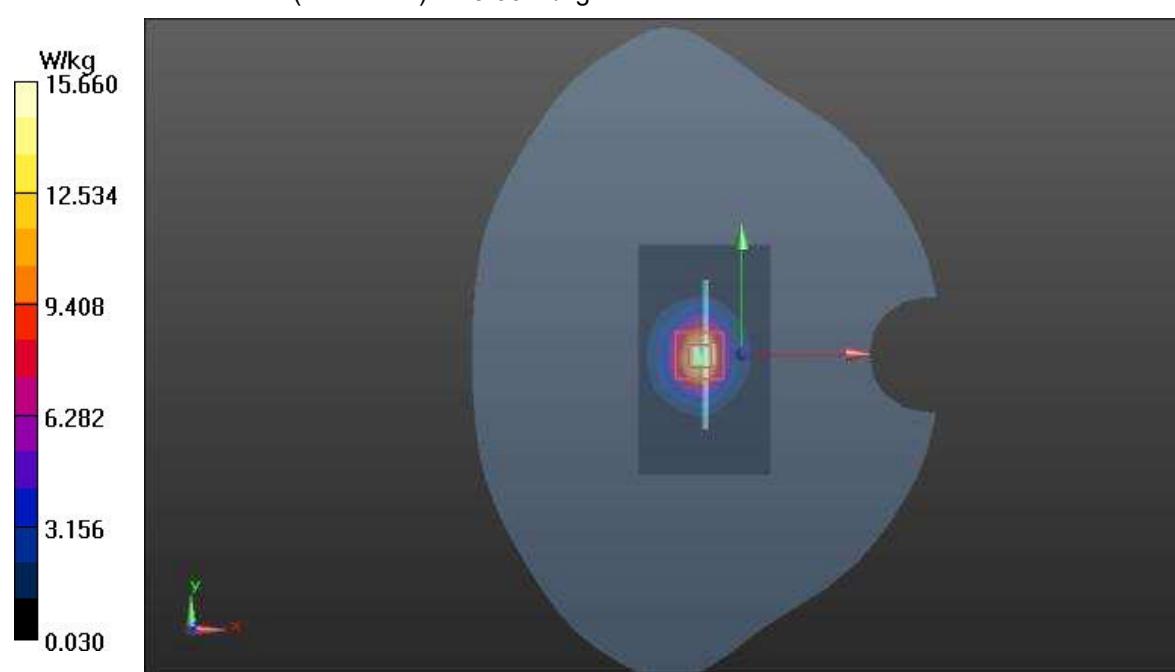
d=10mm, Pin=250mW/Area Scan (6x10x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 15.19 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 82.192 V/m; Power Drift = -0.012 dB


Peak SAR (extrapolated) = 29.65 W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.09 W/kg

Smallest distance from peaks to all points 3 dB below = 8.6 mm

Ratio of SAR at M2 to SAR at M1 = 43.5%

Maximum value of SAR (measured) = 15.66 W/kg

Plot 15 System Performance Check at 2600 MHz TSL
DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2

Date: 2024/2/19

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

 Medium parameters used: $f = 2600$ MHz; $\sigma = 1.99$ S/m; $\epsilon_r = 38.3$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

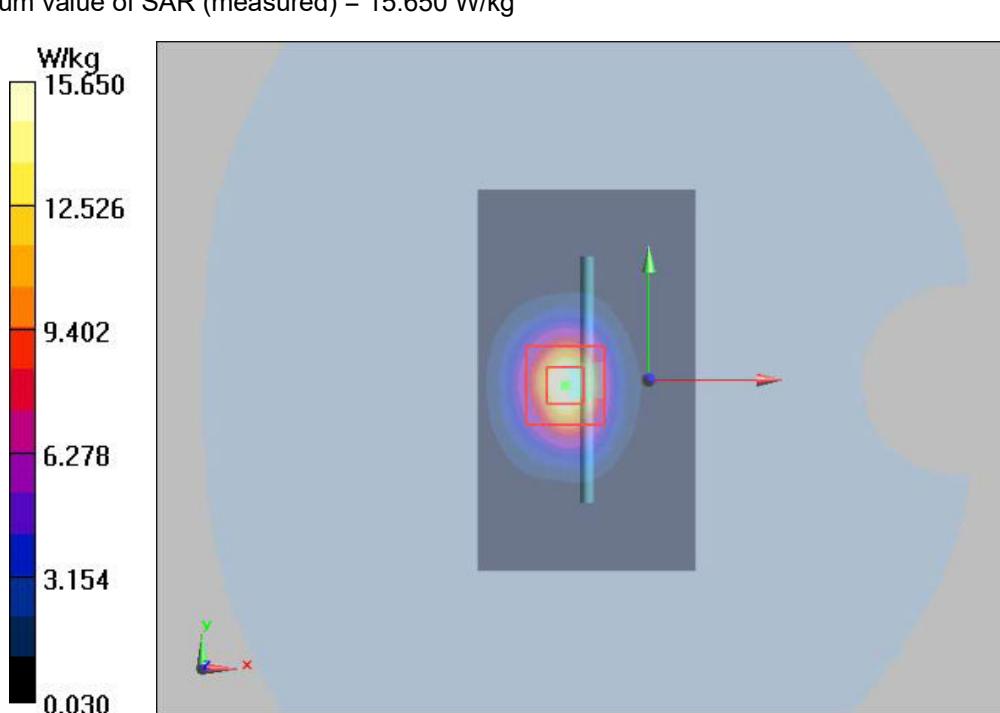
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 14.20 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.465 V/m; Power Drift = 0.146 dB


Peak SAR (extrapolated) = 31.85 W/kg

SAR(1 g) = 13.94 W/kg; SAR(10 g) = 6.11 W/kg

Smallest distance from peaks to all points 3 dB below = 10 mm

Ratio of SAR at M2 to SAR at M1 = 47.1%

Maximum value of SAR (measured) = 15.650 W/kg

Plot 16 System Performance Check at 3500 MHz TSL**DUT: Dipole 3500 MHz; Type: D3500V2; Serial: D3500V2**

Date: 2024/1/25

Communication System: UID 0, CW (0); Frequency: 3500 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3500$ MHz; $\sigma = 2.83$ S/m; $\epsilon_r = 37.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.87, 7.33, 6.99); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

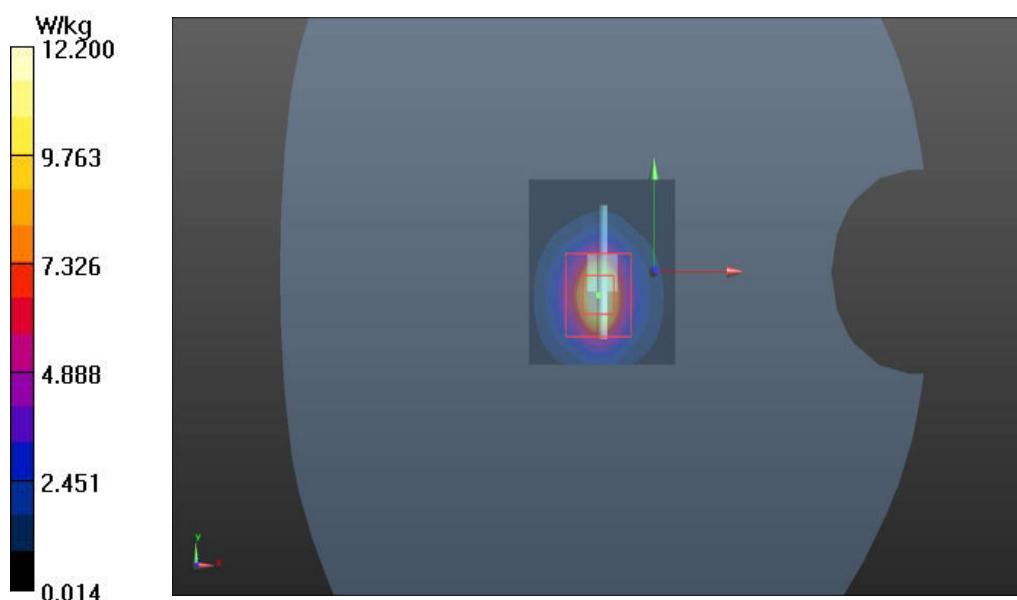
d=10mm, Pin=100mW/ Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.72 W/kg

d=10mm, Pin=100mW/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 48.623 V/m; Power Drift = -0.10 dB


Peak SAR (extrapolated) = 17.50 W/kg

SAR(1 g) = 6.57W/kg; SAR(10 g) = 2.52 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1= 50.4%

Maximum value of SAR (measured) = 12.200 W/kg

Plot 17 System Performance Check at 3700 MHz TSL**DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2**

Date: 2024/1/29

Communication System: UID 0, CW (0); Frequency: 3700 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3700$ MHz; $\sigma = 3.01$ S/m; $\epsilon_r = 38.0$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

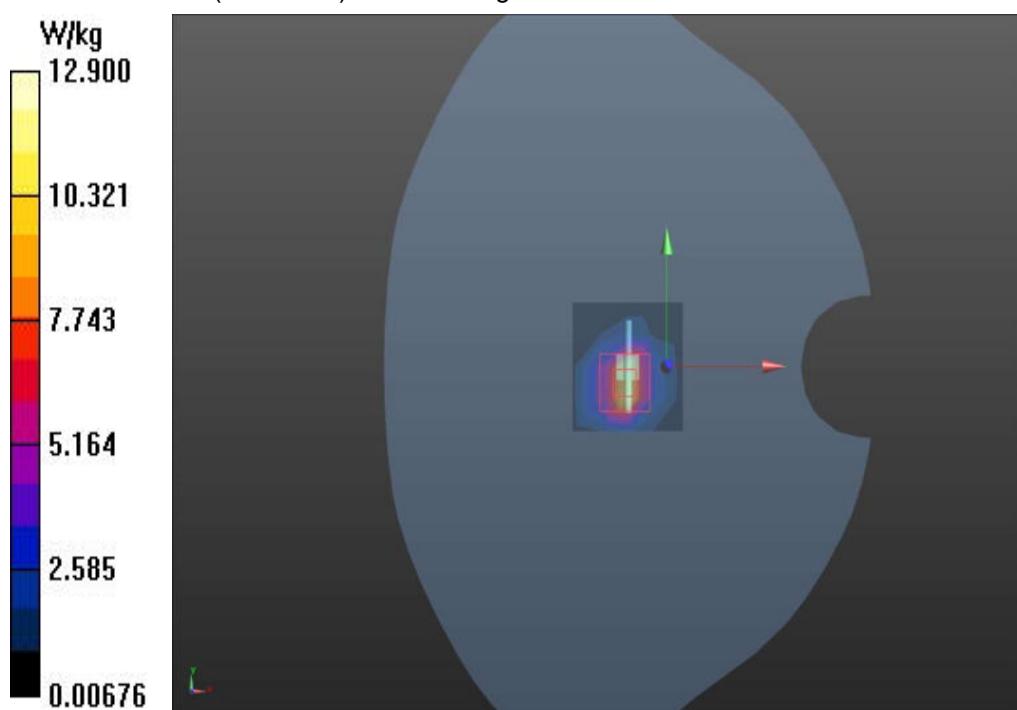
d=10mm, Pin=100mW /Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.03 W/kg

d=10mm, Pin=100mW/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 49.517 V/m; Power Drift = 0.010 dB


Peak SAR (extrapolated) = 17.68 W/kg

SAR(1 g) = 6.83 W/kg; SAR(10 g) = 2.54 W/kg

Smallest distance from peaks to all points 3 dB below = 8.7 mm

Ratio of SAR at M2 to SAR at M1= 53.2%

Maximum value of SAR (measured) = 12.90 W/kg

Plot 18 System Performance Check at 3700 MHz TSL**DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2**

Date: 2024/1/30

Communication System: UID 0, CW (0); Frequency: 3700 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3700$ MHz; $\sigma = 3.03$ S/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

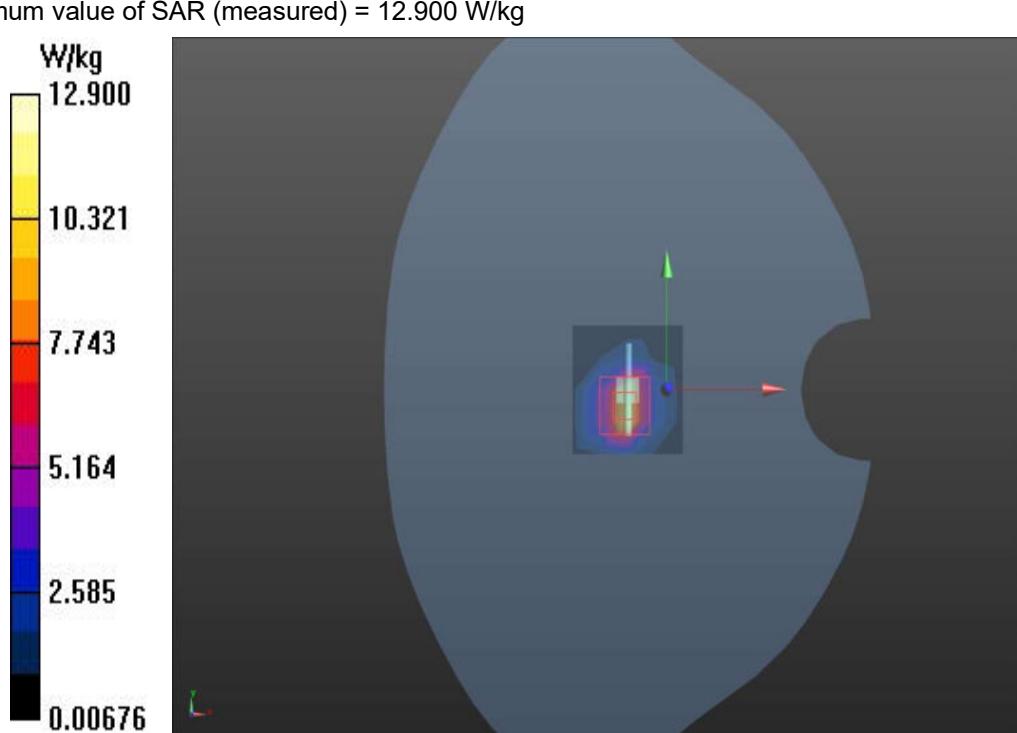
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=100mW /Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.82 W/kg

d=10mm, Pin=100mW /Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 44.368 V/m; Power Drift = 0.036 dB


Peak SAR (extrapolated) = 17.15 W/kg

SAR(1 g) = 6.61 W/kg; SAR(10 g) = 2.54 W/kg

Smallest distance from peaks to all points 3 dB below = 10.7 mm

Ratio of SAR at M2 to SAR at M1 = 56.3%

Maximum value of SAR (measured) = 12.900 W/kg

Plot 19 System Performance Check at 3700 MHz TSL**DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2**

Date: 2024/1/31

Communication System: UID 0, CW (0); Frequency: 3700 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3700$ MHz; $\sigma = 3.01$ S/m; $\epsilon_r = 38.0$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

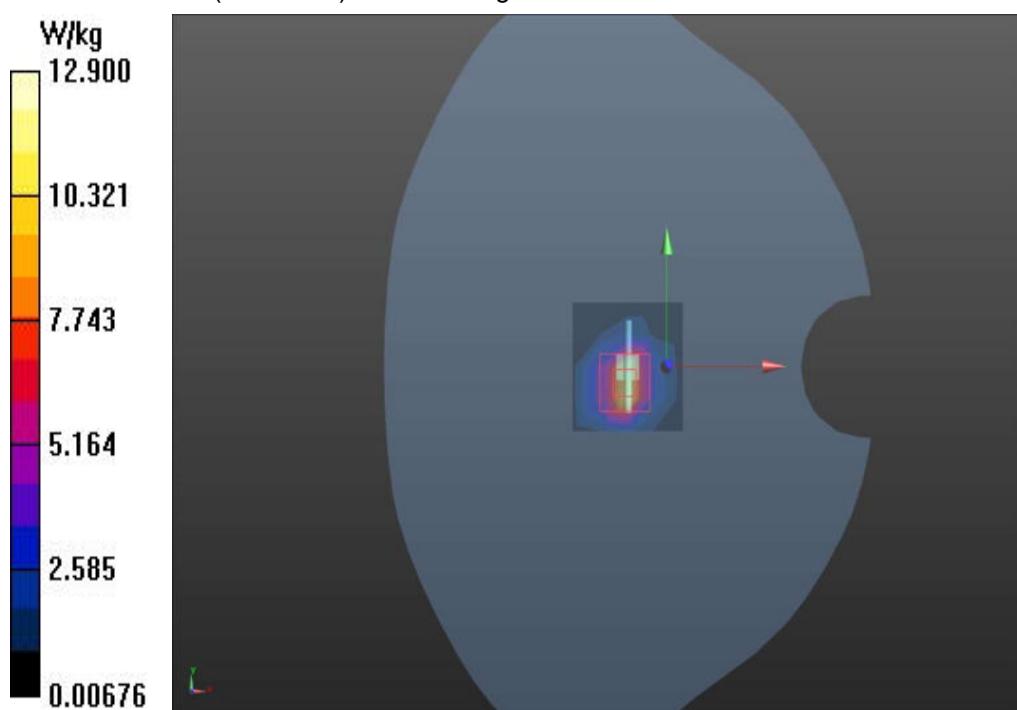
d=10mm, Pin=100mW /Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.03 W/kg

d=10mm, Pin=100mW/Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 49.517 V/m; Power Drift = 0.010 dB


Peak SAR (extrapolated) = 17.68 W/kg

SAR(1 g) = 6.83 W/kg; SAR(10 g) = 2.54 W/kg

Smallest distance from peaks to all points 3 dB below = 8.7 mm

Ratio of SAR at M2 to SAR at M1= 53.2%

Maximum value of SAR (measured) = 12.90 W/kg

Plot 20 System Performance Check at 3700 MHz TSL**DUT: Dipole 3700 MHz; Type: D3700V2; Serial: D3700V2**

Date: 2024/2/5

Communication System: UID 0, CW (0); Frequency: 3700 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3700$ MHz; $\sigma = 3.03$ S/m; $\epsilon_r = 38.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

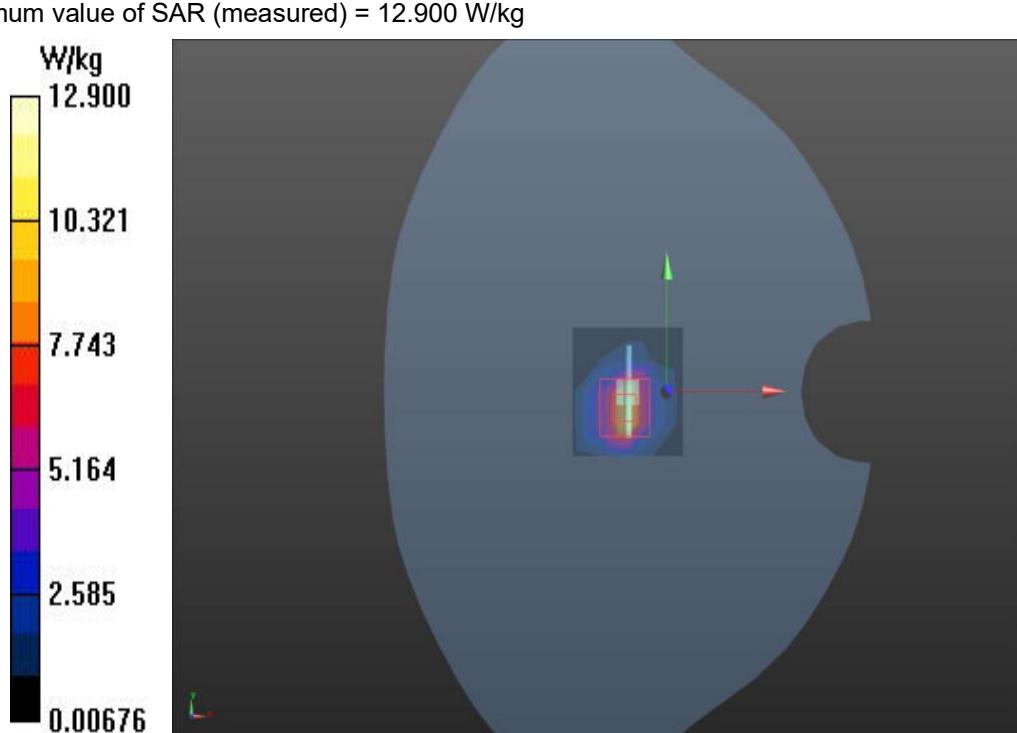
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=100mW /Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 10.82 W/kg

d=10mm, Pin=100mW /Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 44.368 V/m; Power Drift = 0.036 dB


Peak SAR (extrapolated) = 17.15 W/kg

SAR(1 g) = 6.61 W/kg; SAR(10 g) = 2.54 W/kg

Smallest distance from peaks to all points 3 dB below = 10.7 mm

Ratio of SAR at M2 to SAR at M1 = 56.3%

Maximum value of SAR (measured) = 12.900 W/kg

Plot 21 System Performance Check at 3900 MHz TSL**DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2**

Date: 2024/2/6

Communication System: UID 0, CW (0); Frequency: 3900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3900$ MHz; $\sigma = 3.42$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.85, 7.30, 6.98); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

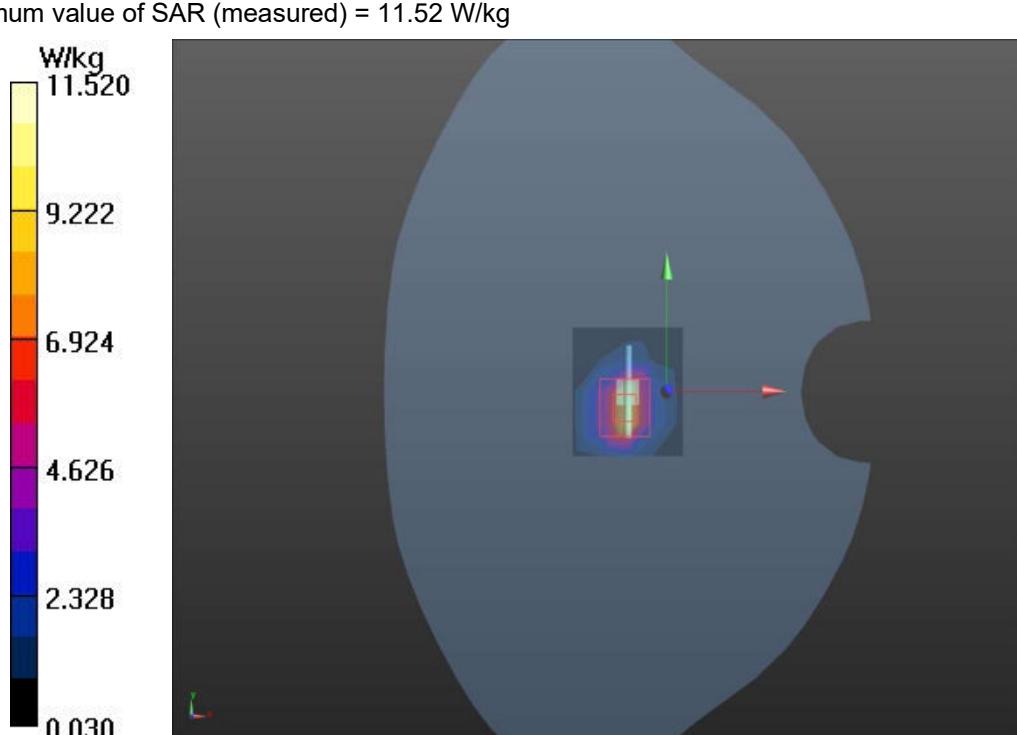
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=100mW /Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 8.94 W/kg

d=10mm, Pin=100mW /Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 47.545 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 18.22 W/kg

SAR(1 g) = 6.83 W/kg; SAR(10 g) = 2.47 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1= 57.1%

Maximum value of SAR (measured) = 11.52 W/kg

Plot 22 System Performance Check at 5250 MHz TSL**DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: D5GHzV2**

Date: 2024/1/25

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5250$ MHz; $\sigma = 4.80$ S/m; $\epsilon_r = 35.5$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.65, 5.99, 5.81); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

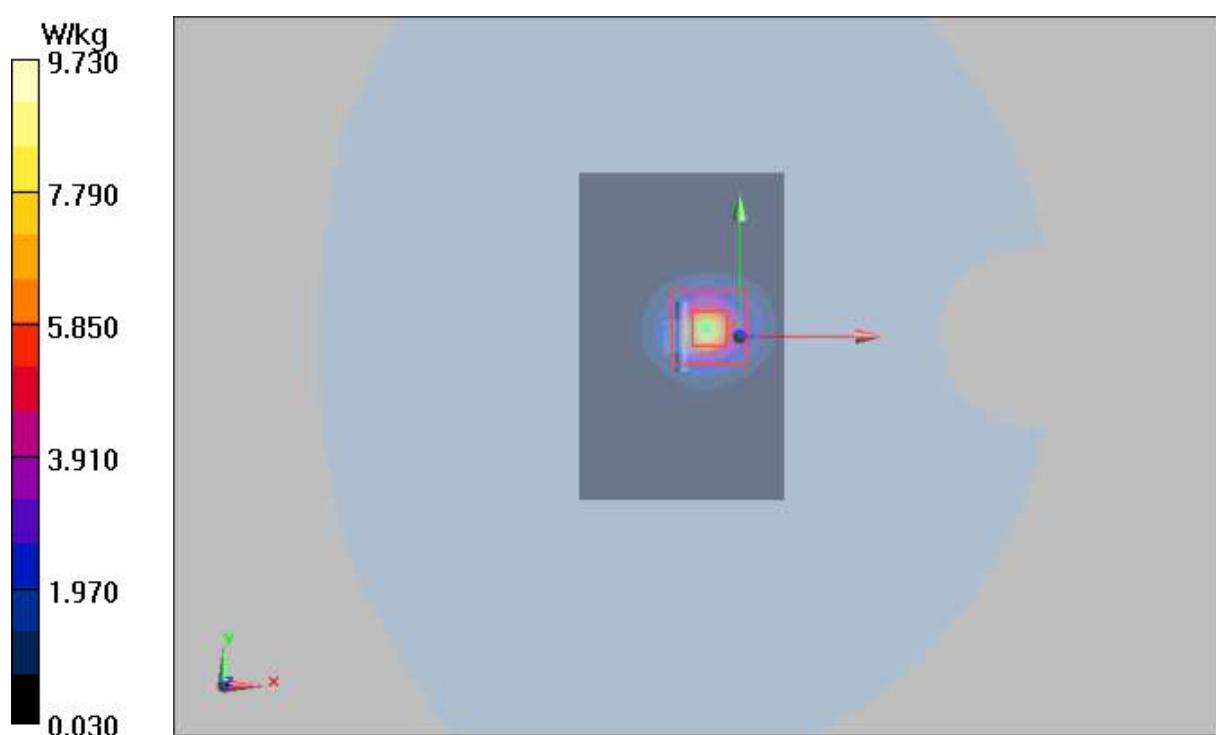
d=10mm, Pin=100mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 9.14 W/kg

d=10mm, Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 33.654 V/m; Power Drift = -0.095 dB


Peak SAR (extrapolated) = 52.20 W/kg

SAR(1 g) = 7.87 W/kg; SAR(10 g) = 2.25 W/kg

Smallest distance from peaks to all points 3 dB below = 7.2 mm

Ratio of SAR at M2 to SAR at M1 = 63%

Maximum value of SAR (measured) = 9.73 W/kg

Plot 23 System Performance Check at 5250 MHz TSL**DUT: Dipole 5250 MHz; Type: D5GHzV2; Serial: D5GHzV2**

Date: 2024/2/7

Communication System: CW; Frequency: 5250 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5200$ MHz; $\sigma = 4.74$ S/m; $\epsilon_r = 35.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.65, 5.99, 5.81); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=100mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (interpolated) = 9.14 W/kg

d=10mm, Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 36.428 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 50.15 W/kg

SAR(1 g) = 7.54 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 7 mm

Ratio of SAR at M2 to SAR at M1 = 65.3%

Maximum value of SAR (measured) = 9.64 W/kg

Plot 24 System Performance Check at 5600 MHz TSL**DUT: Dipole 5600 MHz; Type: D5GHzV2; Serial: D5GHzV2**

Date: 2024/1/23

Communication System: CW; Frequency: 5600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5600$ MHz; $\sigma = 5.21$ S/m; $\epsilon_r = 34.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(4.92, 5.23, 5.04); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

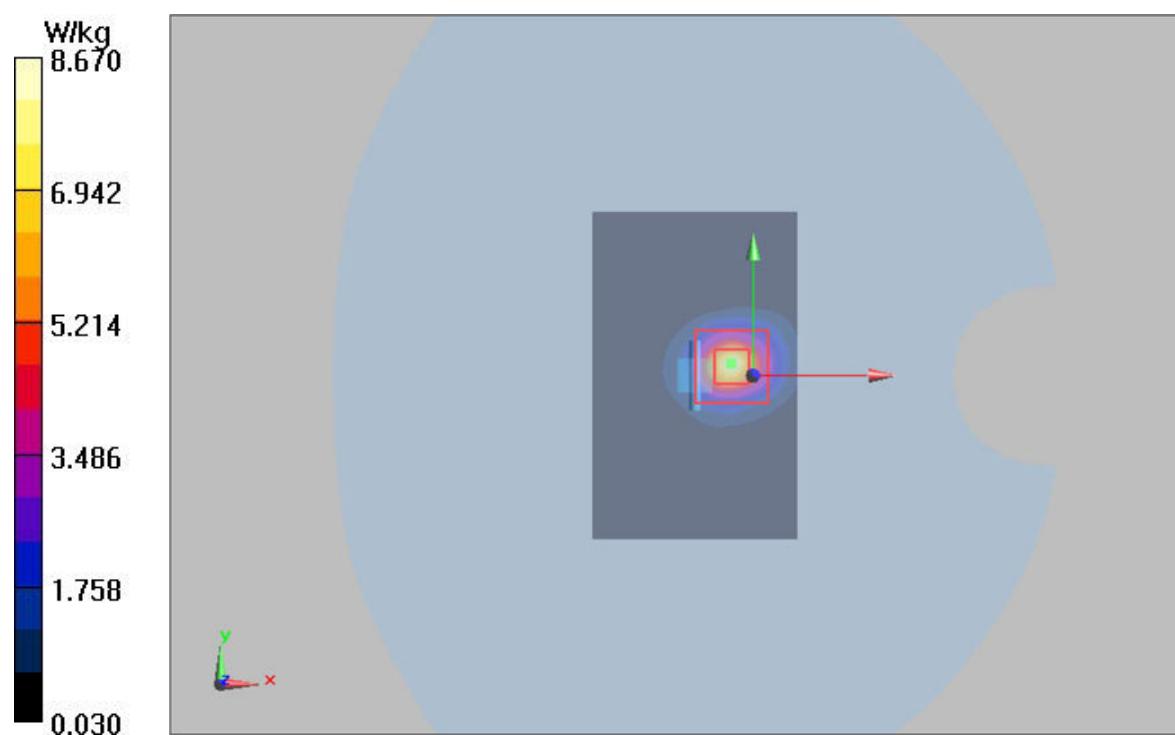
d=10mm, Pin=100mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 8.25 W/kg

d=10mm, Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 23.142 V/m; Power Drift = -0.028 dB


Peak SAR (extrapolated) = 22.9 W/kg

SAR(1 g) = 7.67 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 8 mm

Ratio of SAR at M2 to SAR at M1 = 61.9%

Maximum value of SAR (measured) = 8.67 W/kg

Plot 25 System Performance Check at 5750 MHz TSL**DUT: Dipole 5750 MHz; Type: D5GHzV2; Serial: D5GHzV2**

Date: 2024/2/1

Communication System: CW; Frequency: 5750 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5750$ MHz; $\sigma = 5.21$ S/m; $\epsilon_r = 34.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.14, 5.41, 5.20); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

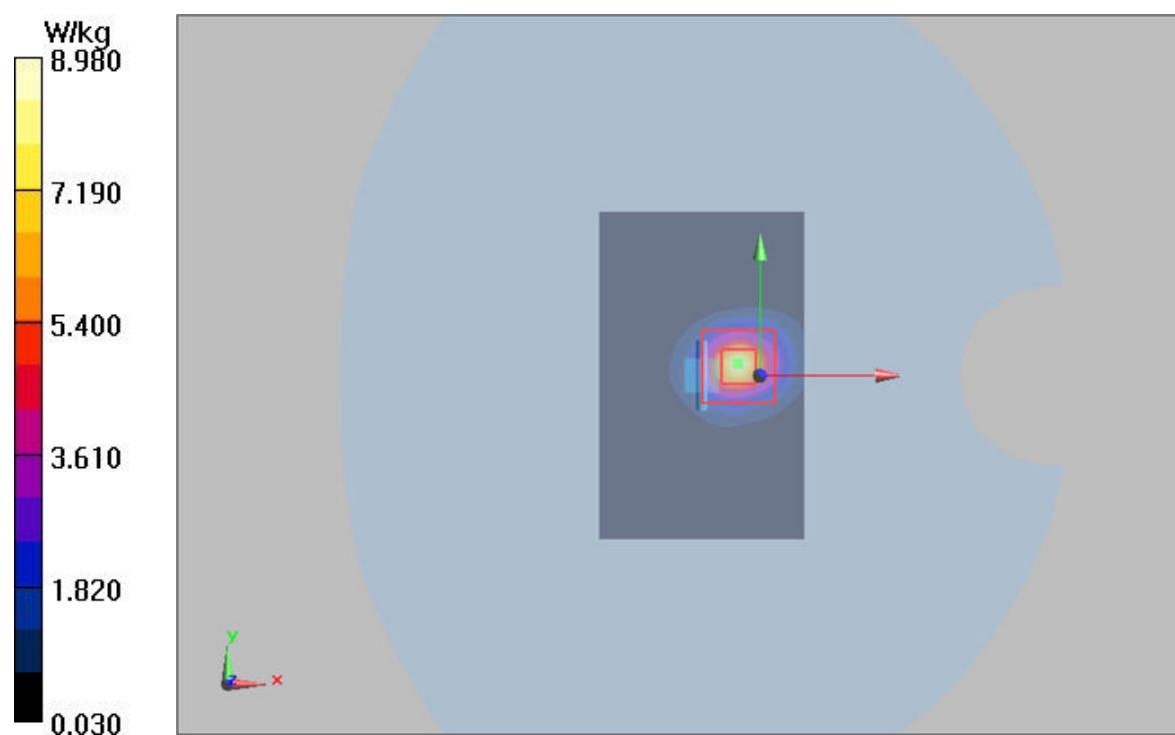
d=10mm, Pin=100mW/Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 8.31 W/kg

d=10mm, Pin=100mW/Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm,

dz=1.4mm

Reference Value = 25.26 V/m; Power Drift = 0.044 dB


Peak SAR (extrapolated) = 23.4 W/kg

SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.27 W/kg

Smallest distance from peaks to all points 3 dB below = 7.8 mm

Ratio of SAR at M2 to SAR at M1 = 59.4%

Maximum value of SAR (measured) = 8.98 W/kg

(Variant)

Plot 26 System Performance Check at 1900 MHz TSL**DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2**

Date: 2024/6/26

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.41$ S/m; $\epsilon_r = 40.1$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM1; Type: SAM; Serial: TP-1534

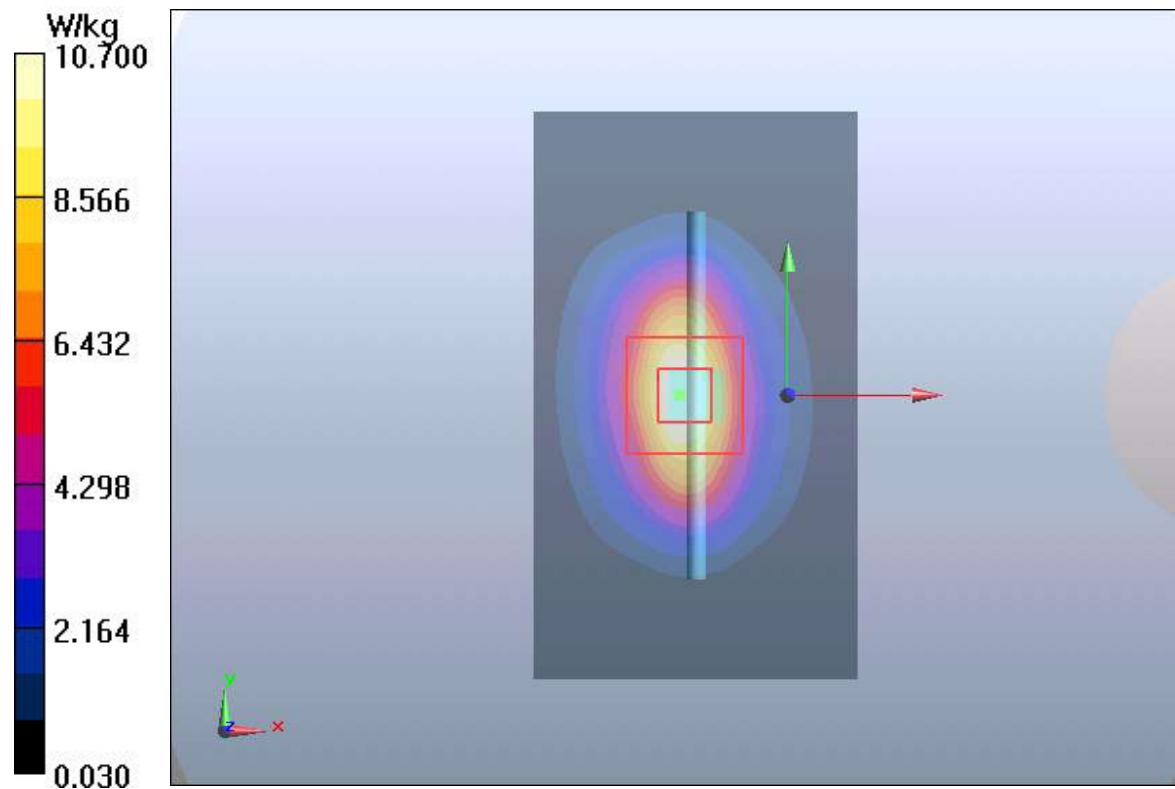
Measurement SW: DASY52, Version 52.10 (1); SEMCAD X Version 14.6.11 (7439)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 10.23 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 85.857V/m; Power Drift = 0.026 dB


Peak SAR (extrapolated) = 17.84 W/kg

SAR(1 g) = 9.88 W/kg; SAR(10 g) = 4.9 W/kg

Smallest distance from peaks to all points 3 dB below = 11.4 mm

Ratio of SAR at M2 to SAR at M1 = 52.7%

Maximum value of SAR (measured) = 10.70 W/kg

Plot 27 System Performance Check at 2600 MHz TSL**DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2**

Date: 2024/6/26

Communication System: CW; Frequency: 2600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2600$ MHz; $\sigma = 2.01$ S/m; $\epsilon_r = 38.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

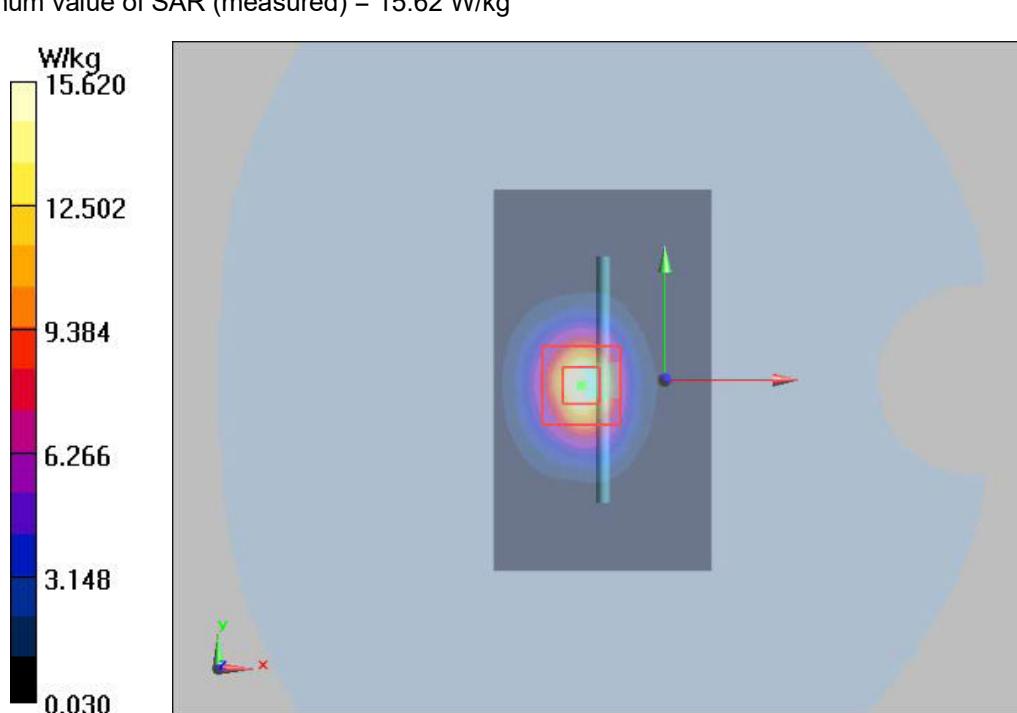
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=250mW/Area Scan (4x7x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 14.43 W/kg

d=10mm, Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 87.998 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 31.85W/kg

SAR(1 g) = 13.9 W/kg; SAR(10 g) = 6.07 W/kg

Smallest distance from peaks to all points 3 dB below = 9 mm

Ratio of SAR at M2 to SAR at M1 = 44.2%

Maximum value of SAR (measured) = 15.62 W/kg

Plot 28 System Performance Check at 3900 MHz TSL**DUT: Dipole 3900 MHz; Type: D3900V2; Serial: D3900V2**

Date: 2024/6/26

Communication System: UID 0, CW (0); Frequency: 3900 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3900$ MHz; $\sigma = 3.42$ S/m; $\epsilon_r = 37.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.85, 7.30, 6.98); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

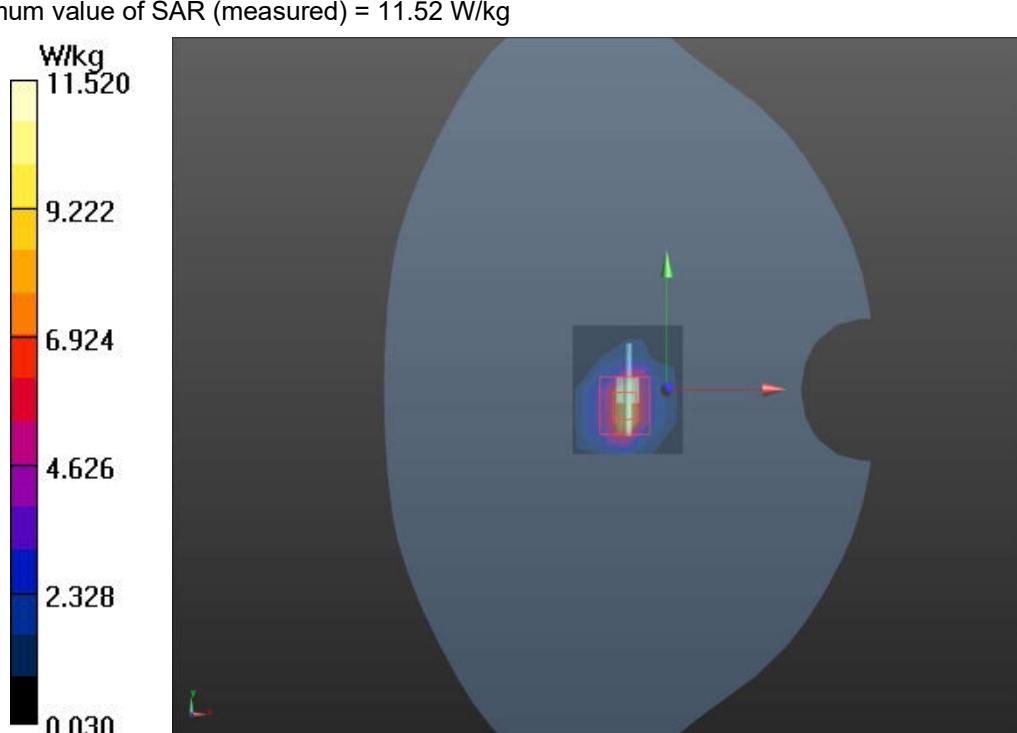
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

d=10mm, Pin=100mW /Area Scan (6x10x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 8.94 W/kg

d=10mm, Pin=100mW /Zoom Scan (8x8x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 47.545 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 18.22 W/kg

SAR(1 g) = 6.83 W/kg; SAR(10 g) = 2.47 W/kg

Smallest distance from peaks to all points 3 dB below = 9.3 mm

Ratio of SAR at M2 to SAR at M1= 57.1%

Maximum value of SAR (measured) = 11.52 W/kg

ANNEX C: Highest Graph Results

Plot 29 GSM 850 Right Tilt Low

Date: 2024/1/22

Communication System: UID 0, GSM (0); Frequency: 824.2 MHz; Duty Cycle: 1:8.30

Medium parameters used (interpolated): $f = 824.2$ MHz; $\sigma = 0.934$ S/m; $\epsilon_r = 41.897$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

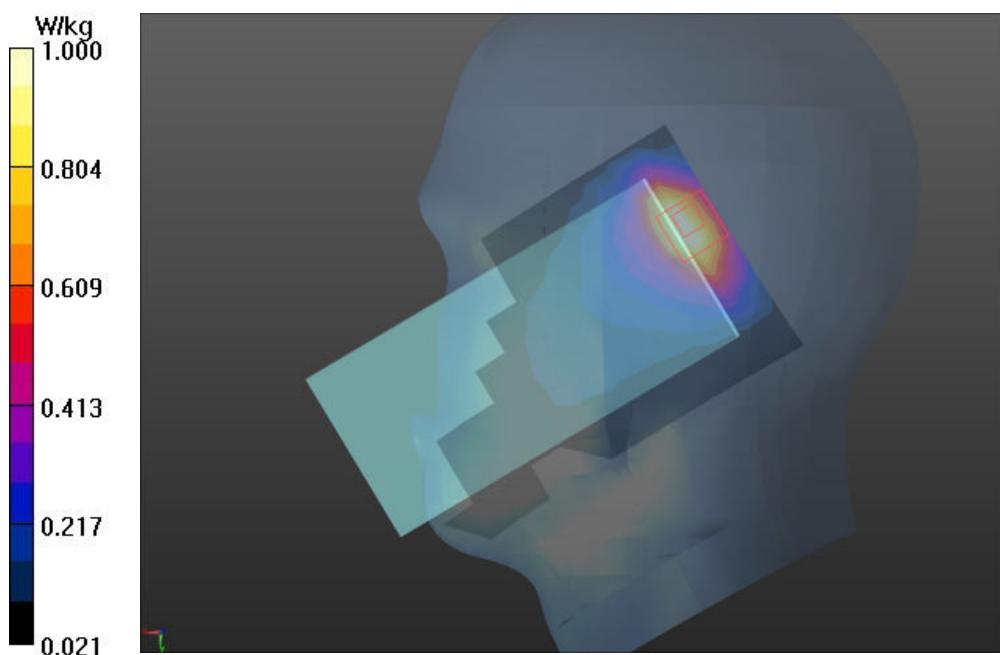
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Tilt Low/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.895 W/kg

Right/Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.00 V/m; Power Drift = 0.020 dB


Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 0.737 W/kg; SAR(10 g) = 0.374 W/kg

Smallest distance from peaks to all points 3 dB below = 10.2 mm

Ratio of SAR at M2 to SAR at M1 = 37.5%

Maximum value of SAR (measured) = 1 W/kg

Plot 30 GSM 1900 Right Cheek Middle

Date: 2024/2/2

Communication System: UID 0, GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.437$ S/m; $\epsilon_r = 37.208$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

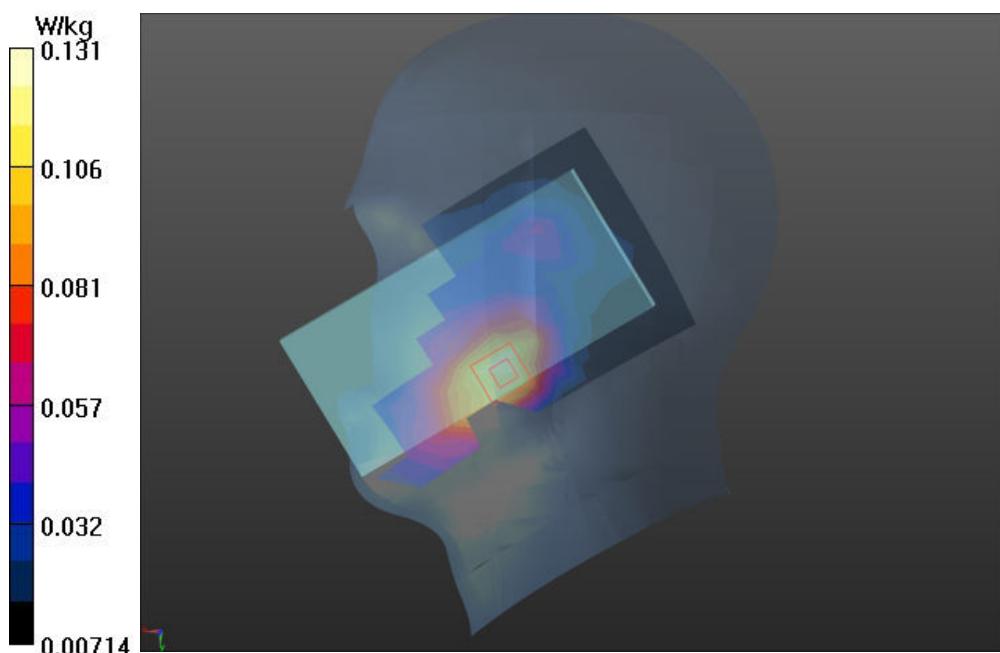
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Cheek Middle/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.122 W/kg

Right/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.917 V/m; Power Drift = 0.046 dB


Peak SAR (extrapolated) = 0.151 W/kg

SAR(1 g) = 0.098 W/kg; SAR(10 g) = 0.064 W/kg

Smallest distance from peaks to all points 3 dB below = 15.5 mm

Ratio of SAR at M2 to SAR at M1 = 65.3%

Maximum value of SAR (measured) = 0.131 W/kg

Plot 31 WCDMA Band 2 Left Cheek Middle

Date: 2024/2/2

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.437$ S/m; $\epsilon_r = 37.208$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

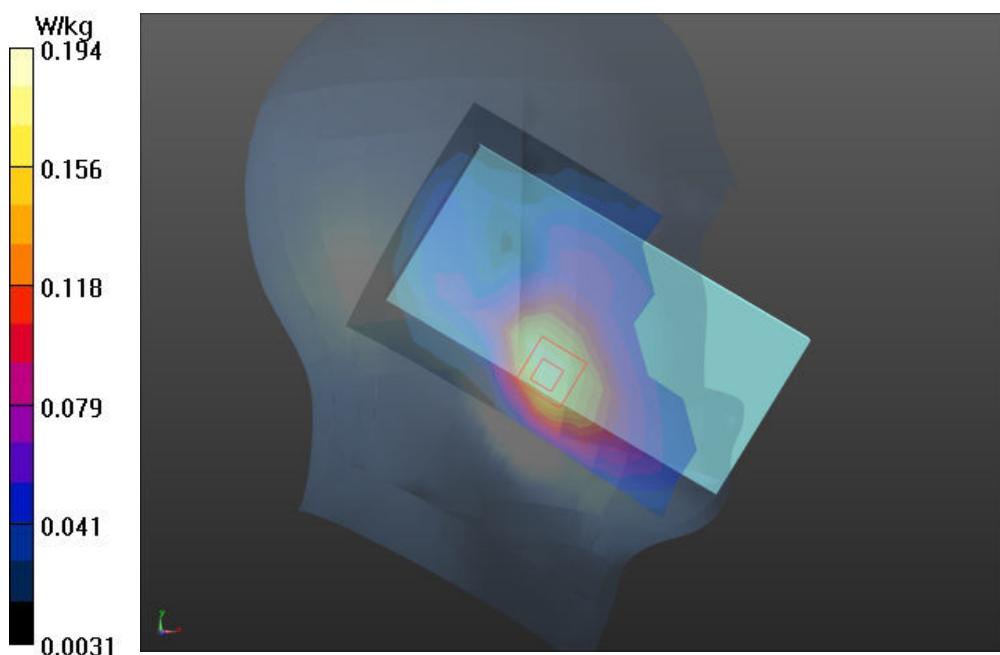
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Middle/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.174 W/kg

Left/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.613 V/m; Power Drift = -0.190 dB


Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.147 W/kg; SAR(10 g) = 0.093 W/kg

Smallest distance from peaks to all points 3 dB below = 12 mm

Ratio of SAR at M2 to SAR at M1 = 63.7%

Maximum value of SAR (measured) = 0.194 W/kg

Plot 32 WCDMA Band 4 Left Cheek Middle

Date: 2024/1/19

Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1732.6$ MHz; $\sigma = 1.329$ S/m; $\epsilon_r = 37.759$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

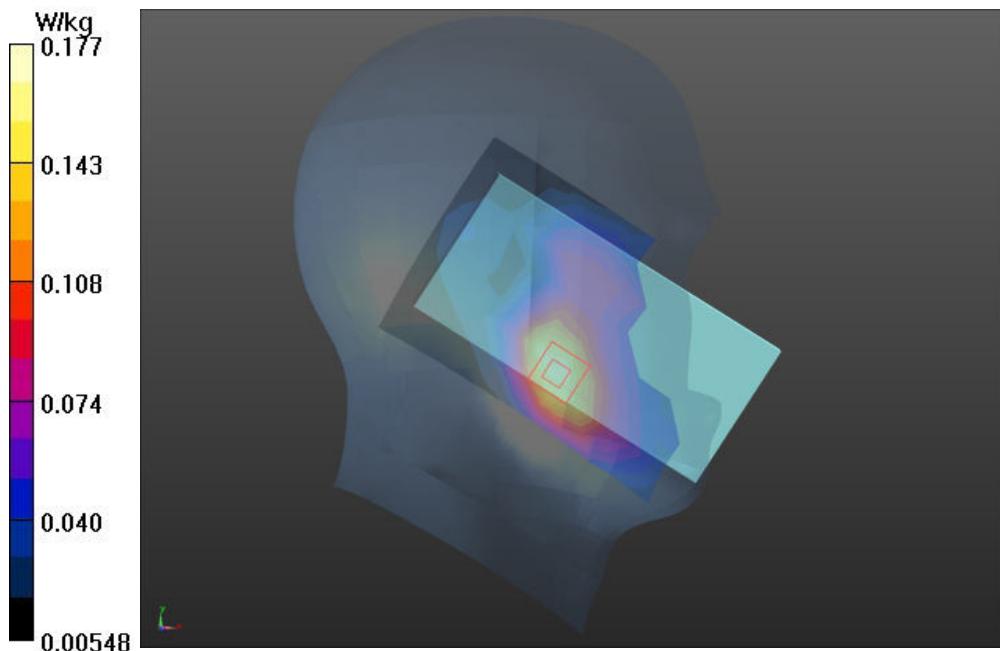
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Middle/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.162 W/kg

Left/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 3.423 V/m; Power Drift = 0.022 dB


Peak SAR (extrapolated) = 0.200 W/kg

SAR(1 g) = 0.135 W/kg; SAR(10 g) = 0.089 W/kg

Smallest distance from peaks to all points 3 dB below = 15 mm

Ratio of SAR at M2 to SAR at M1 = 68.4%

Maximum value of SAR (measured) = 0.177 W/kg

Plot 33 WCDMA Band 5 Right Cheek Middle

Date: 2024/1/23

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.939$ S/m; $\epsilon_r = 41.856$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

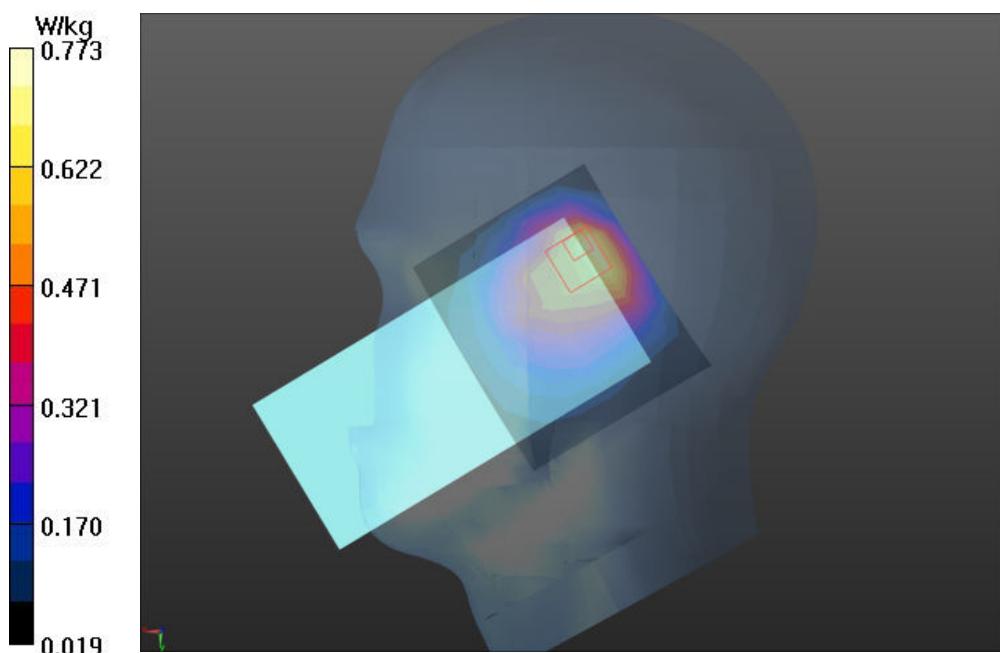
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Cheek Middle/Area Scan (8x7x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.712 W/kg

Right/Cheek Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.03 V/m; Power Drift = -0.034 dB


Peak SAR (extrapolated) = 0.955 W/kg

SAR(1 g) = 0.476 W/kg; SAR(10 g) = 0.312 W/kg

Smallest distance from peaks to all points 3 dB below = 9.1 mm

Ratio of SAR at M2 to SAR at M1 = 47.3%

Maximum value of SAR (measured) = 0.773 W/kg

Plot 34 LTE Band 7 50%RB Right Cheek Low

Date: 2024/1/24

Communication System: UID 0, LTE (0); Frequency: 2510 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2510$ MHz; $\sigma = 1.91$ S/m; $\epsilon_r = 37.398$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

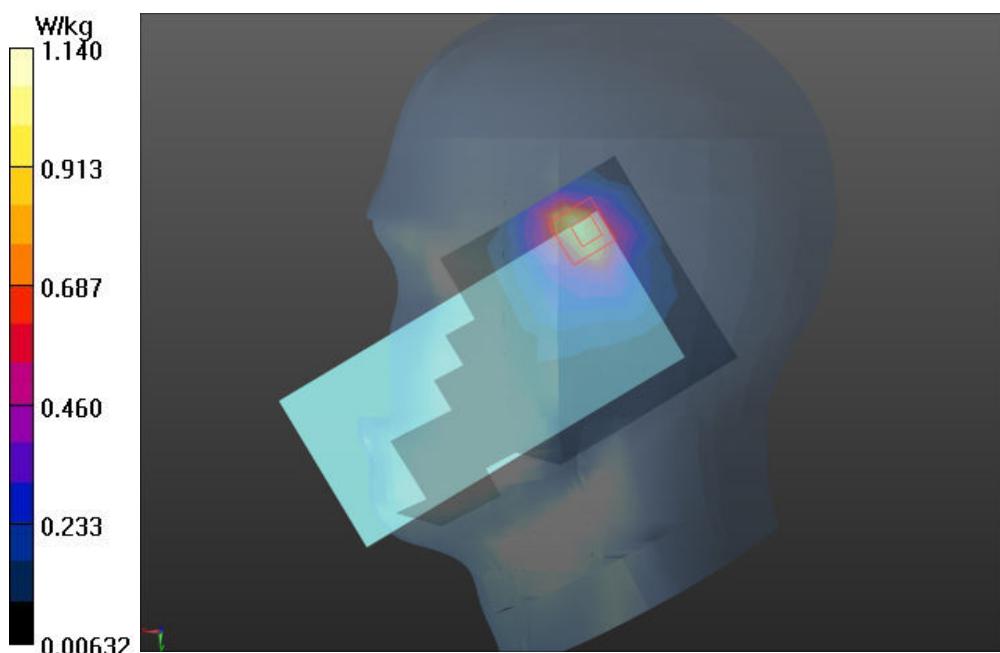
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Cheek Low/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.030 W/kg

Right/Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 11.53 V/m; Power Drift = 0.010 dB


Peak SAR (extrapolated) = 2.020 W/kg

SAR(1 g) = 0.995 W/kg; SAR(10 g) = 0.482 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 48.7%

Maximum value of SAR (measured) = 1.140 W/kg

Plot 35 LTE Band 12 1RB Right Tilt Low

Date: 2024/1/20

Communication System: UID 0, LTE (0); Frequency: 704 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 704$ MHz; $\sigma = 0.894$ S/m; $\epsilon_r = 42.223$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.03, 9.80, 9.03); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

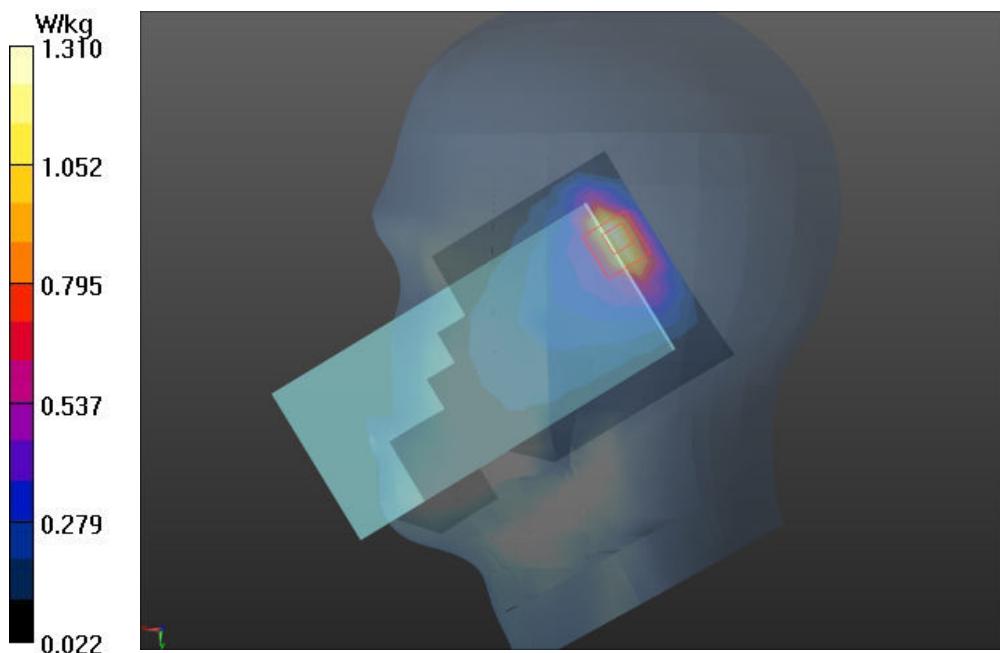
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Tilt Low/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.150 W/kg

Right/Tilt Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.22 V/m; Power Drift = 0.090 dB


Peak SAR (extrapolated) = 1.780 W/kg

SAR(1 g) = 0.712 W/kg; SAR(10 g) = 0.367 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 38%

Maximum value of SAR (measured) = 1.310 W/kg

Plot 36 LTE Band 13 1RB Right Tilt Middle

Date: 2024/1/20

Communication System: UID 0, LTE (0); Frequency: 782 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 782$ MHz; $\sigma = 0.921$ S/m; $\epsilon_r = 41.805$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.03, 9.80, 9.03); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

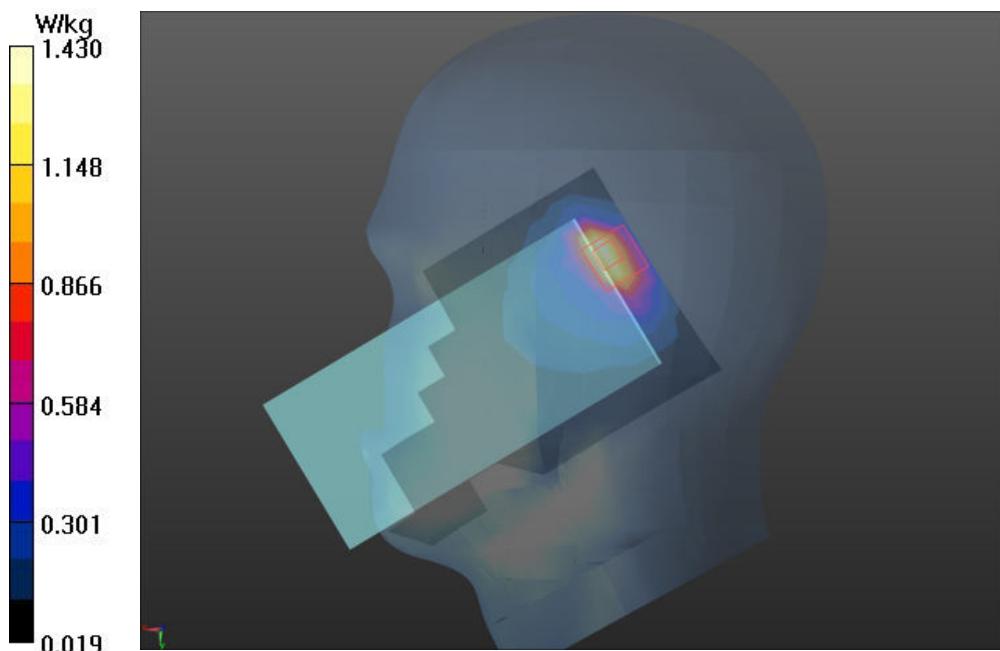
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Tilt Middle/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.210 W/kg

Right/Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.68 V/m; Power Drift = 0.040 dB


Peak SAR (extrapolated) = 2.000 W/kg

SAR(1 g) = 0.741 W/kg; SAR(10 g) = 0.365 W/kg

Smallest distance from peaks to all points 3 dB below = 9.8 mm

Ratio of SAR at M2 to SAR at M1 = 38.5%

Maximum value of SAR (measured) = 1.430 W/kg

Plot 37 LTE Band 25 1RB Left Cheek Low

Date: 2024/2/3

Communication System: UID 0, LTE (0); Frequency: 1860 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1860$ MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 39.098$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

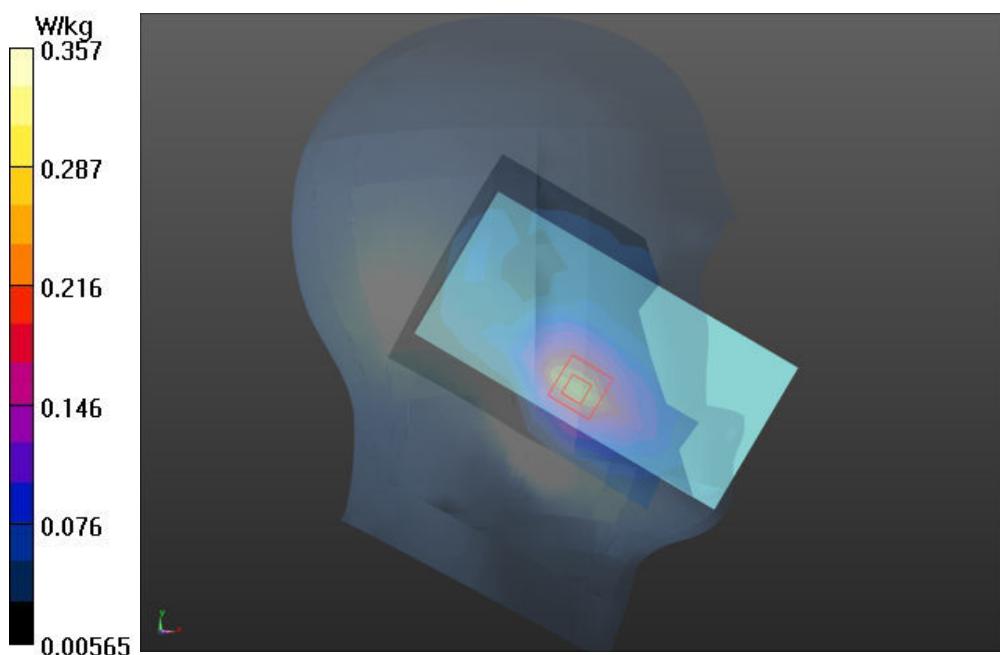
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Low/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.281 W/kg

Left/Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.640 V/m; Power Drift = 0.160 dB


Peak SAR (extrapolated) = 0.403 W/kg

SAR(1 g) = 0.204 W/kg; SAR(10 g) = 0.128 W/kg

Smallest distance from peaks to all points 3 dB below = 12.4 mm

Ratio of SAR at M2 to SAR at M1 = 71.8%

Maximum value of SAR (measured) = 0.357 W/kg

Plot 38 LTE Band 26 1RB Left Cheek Low

Date: 2024/1/22

Communication System: UID 0, LTE (0); Frequency: 821.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 821.5$ MHz; $\sigma = 0.933$ S/m; $\epsilon_r = 41.904$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

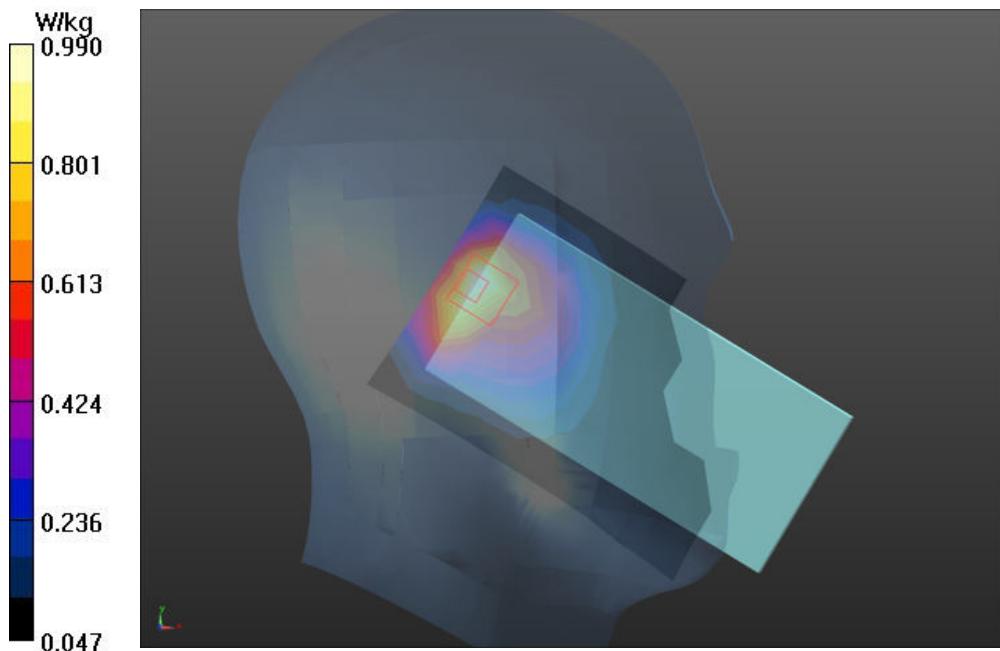
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Low/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.898 W/kg

Left/Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.11 V/m; Power Drift = 0.040 dB


Peak SAR (extrapolated) = 1.200 W/kg

SAR(1 g) = 0.738 W/kg; SAR(10 g) = 0.466 W/kg

Smallest distance from peaks to all points 3 dB below = 12.3 mm

Ratio of SAR at M2 to SAR at M1 = 65.4%

Maximum value of SAR (measured) = 0.990 W/kg

Plot 39 LTE Band 41 50%RB Right Cheek Middle

Date: 2024/1/26

Communication System: UID 0, LTE (0); Frequency: 2680 MHz; Duty Cycle: 1:1.58

Medium parameters used: $f = 2680$ MHz; $\sigma = 2.106$ S/m; $\epsilon_r = 36.793$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

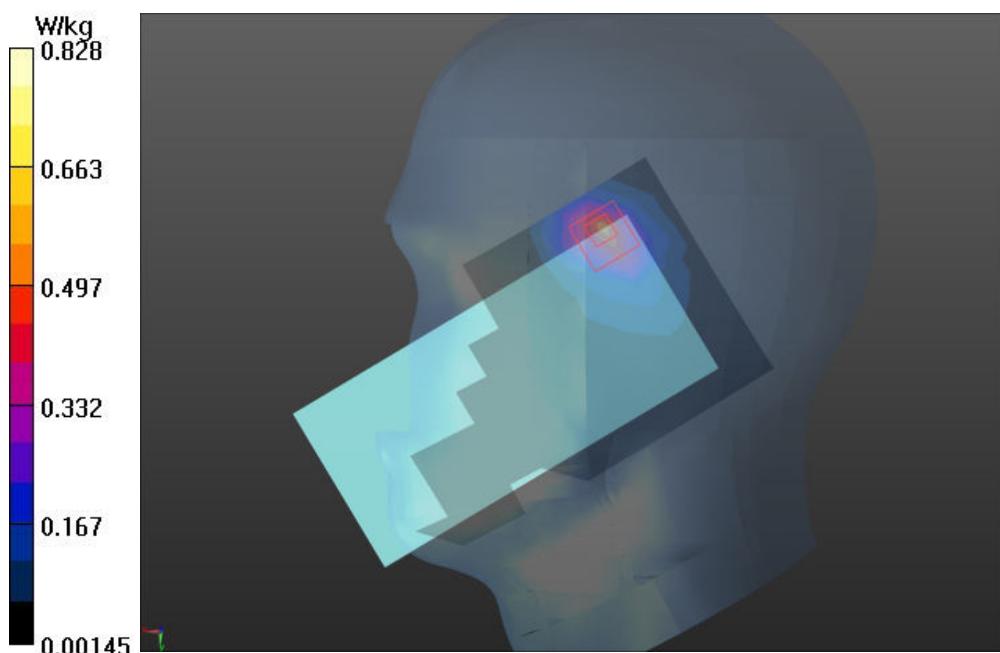
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Cheek High/Area Scan (10x118x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.546 W/kg

Right/Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.268 V/m; Power Drift = 0.080 dB


Peak SAR (extrapolated) = 1.130 W/kg

SAR(1 g) = 0.485 W/kg; SAR(10 g) = 0.226 W/kg

Smallest distance from peaks to all points 3 dB below = 9.1 mm

Ratio of SAR at M2 to SAR at M1 = 44.4%

Maximum value of SAR (measured) = 0.828 W/kg

Plot 40 LTE Band 48 100%RB Left Cheek Low

Date: 2024/1/29

Communication System: UID 0, LTE (0); Frequency: 3660 MHz; Duty Cycle: 1:1.58

Medium parameters used: $f = 3660$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

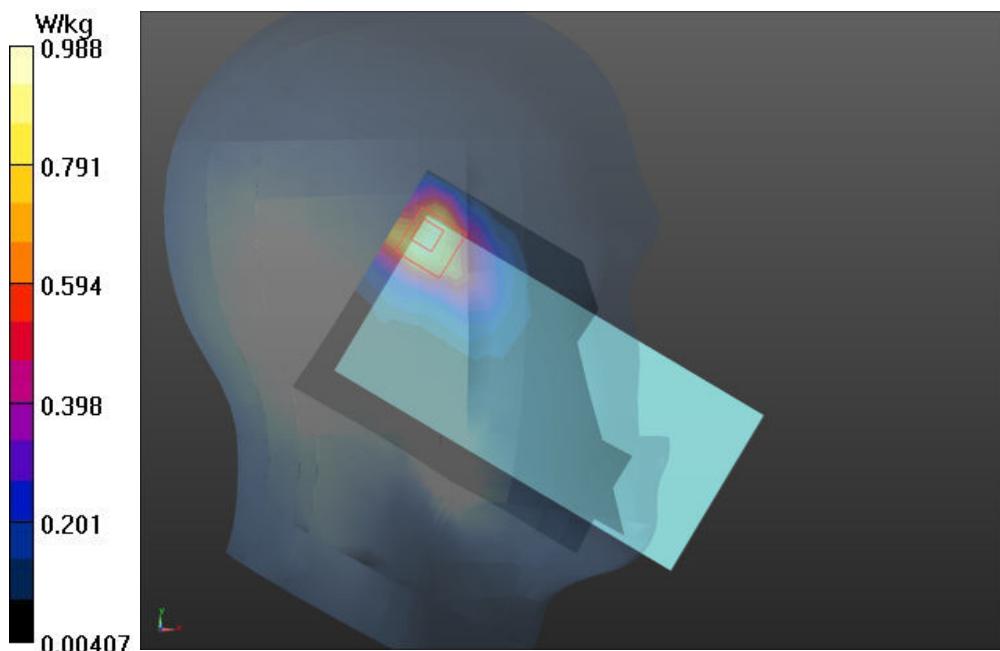
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Low/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.813 W/kg

Left/Cheek Low/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 10.260 V/m; Power Drift = -0.027 dB


Peak SAR (extrapolated) = 1.850 W/kg

SAR(1 g) = 0.708 W/kg; SAR(10 g) = 0.298 W/kg

Smallest distance from peaks to all points 3 dB below = 10.2 mm

Ratio of SAR at M2 to SAR at M1 = 51.5%

Maximum value of SAR (measured) = 0.988 W/kg

Plot 41 LTE Band 66 1RB Left Cheek Low

Date: 2024/1/19

Communication System: UID 0, LTE (0); Frequency: 1720 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1720$ MHz; $\sigma = 1.294$ S/m; $\epsilon_r = 39.556$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

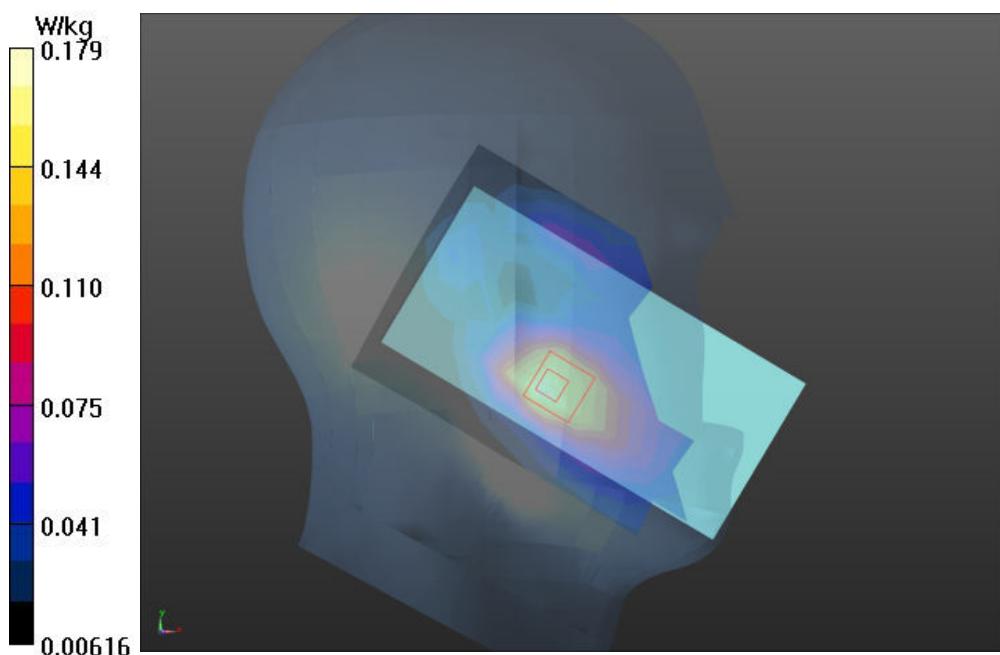
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Low/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.152 W/kg

Left/Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.063 V/m; Power Drift = 0.080 dB


Peak SAR (extrapolated) = 0.204 W/kg

SAR(1 g) = 0.137 W/kg; SAR(10 g) = 0.087 W/kg

Smallest distance from peaks to all points 3 dB below = 13 mm

Ratio of SAR at M2 to SAR at M1 = 69.6%

Maximum value of SAR (measured) = 0.179 W/kg

Plot 42 NR n2 1RB Left Cheek High

Date: 2024/2/4

Communication System: UID 0, 5G NR (0); Frequency: 1890 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.422$ S/m; $\epsilon_r = 38.97$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

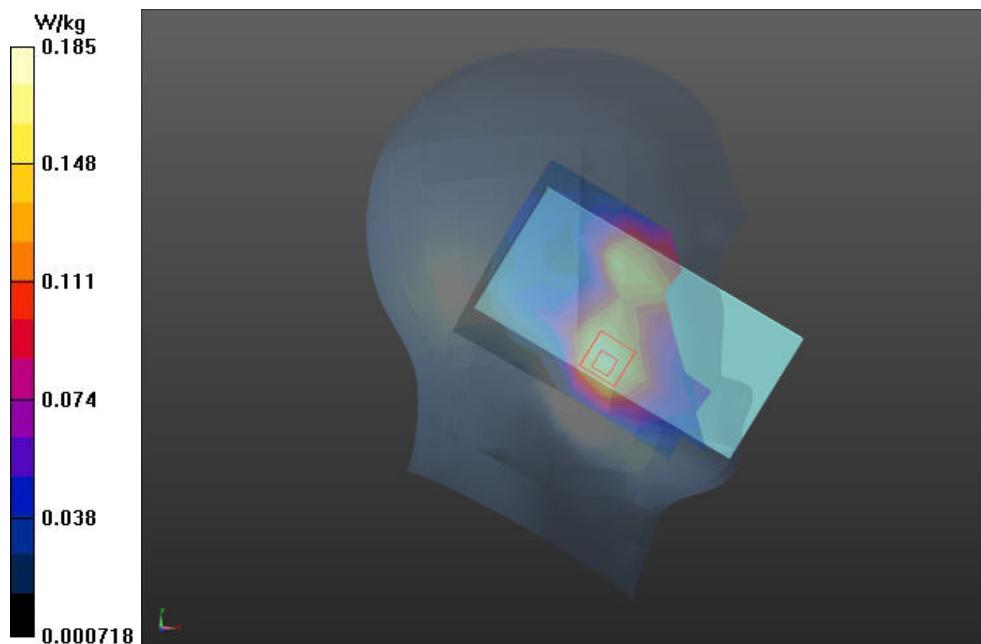
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek High/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.135 W/kg

Left/Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.676 V/m; Power Drift = -0.17 dB


Peak SAR (extrapolated) = 0.397 W/kg

SAR(1 g) = 0.121 W/kg; SAR(10 g) = 0.072 W/kg

Smallest distance from peaks to all points 3 dB below = 8.7 mm

Ratio of SAR at M2 to SAR at M1 = 68.1%

Maximum value of SAR (measured) = 0.185 W/kg

Plot 43 NR n7 100%RB Right Cheek High

Date: 2024/1/27

Communication System: UID 0, 5G NR (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2560$ MHz; $\sigma = 1.953$ S/m; $\epsilon_r = 38.015$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

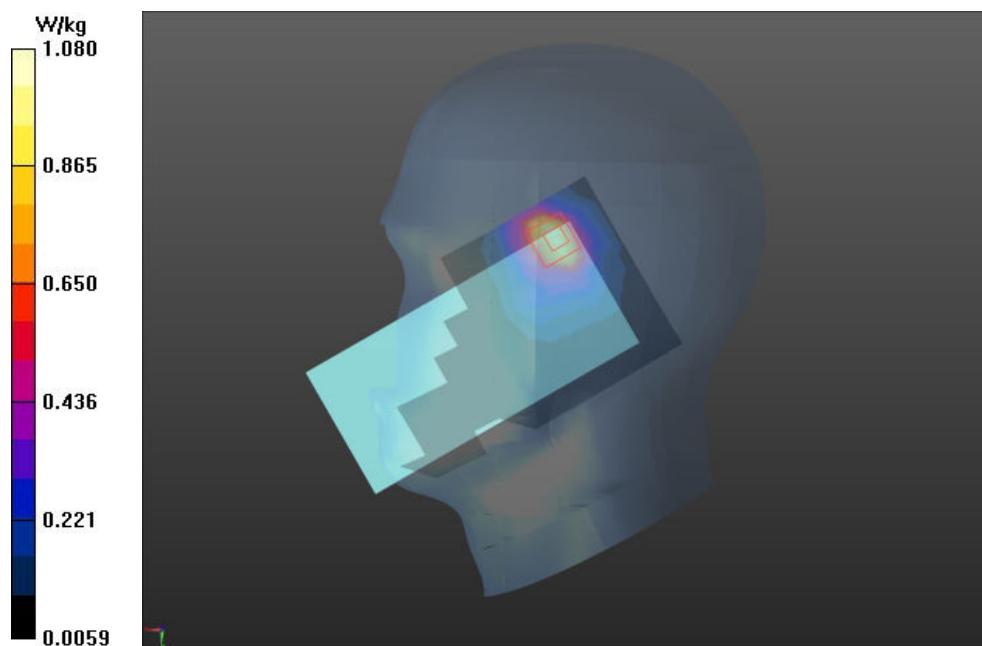
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Cheek High/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.05 W/kg

Right/Cheek High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.516 V/m; Power Drift = 0.08 dB


Peak SAR (extrapolated) = 2.13 W/kg

SAR(1 g) = 1 W/kg; SAR(10 g) = 0.490 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 47.9%

Maximum value of SAR (measured) = 1.08 W/kg

Plot 44 NR n26 50%RB Left Cheek Low

Date: 2024/1/23

Communication System: UID 0, 5G NR (0); Frequency: 824 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 824$ MHz; $\sigma = 0.934$ S/m; $\epsilon_r = 41.897$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

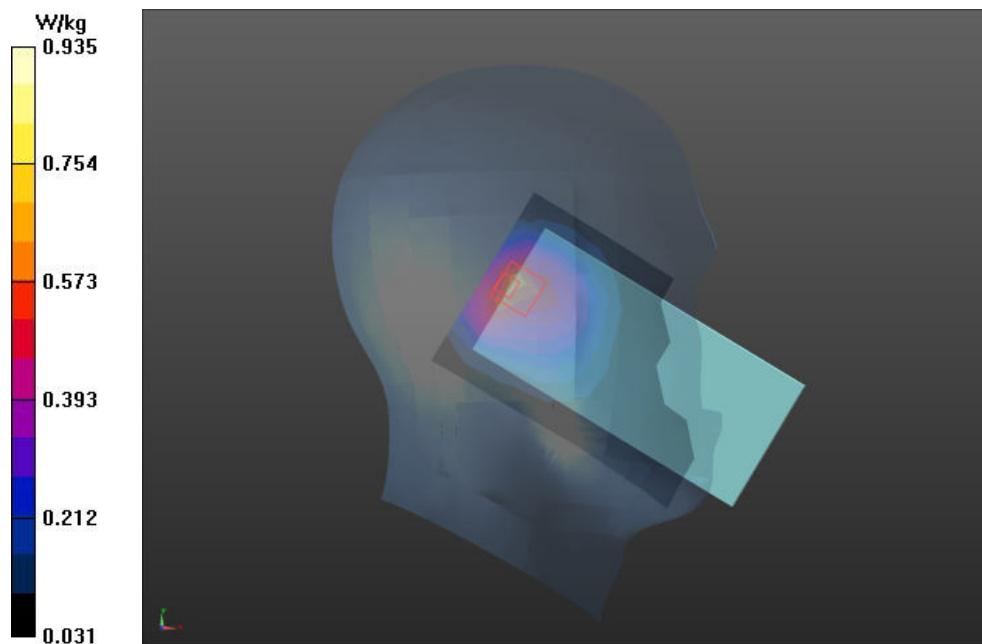
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Low/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.924 W/kg

Left/Cheek Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.64 V/m; Power Drift = -0.023 dB


Peak SAR (extrapolated) = 0.997 W/kg

SAR(1 g) = 0.789 W/kg; SAR(10 g) = 0.529 W/kg

Smallest distance from peaks to all points 3 dB below = 18.9 mm

Ratio of SAR at M2 to SAR at M1 = 58.4%

Maximum value of SAR (measured) = 0.935 W/kg

Plot 45 NR n41 50%RB Right Cheek Low

Date: 2024/1/28

Communication System: UID 0, 5G NR (0); Frequency: 2546.01 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2546.01$ MHz; $\sigma = 1.938$ S/m; $\epsilon_r = 38.012$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

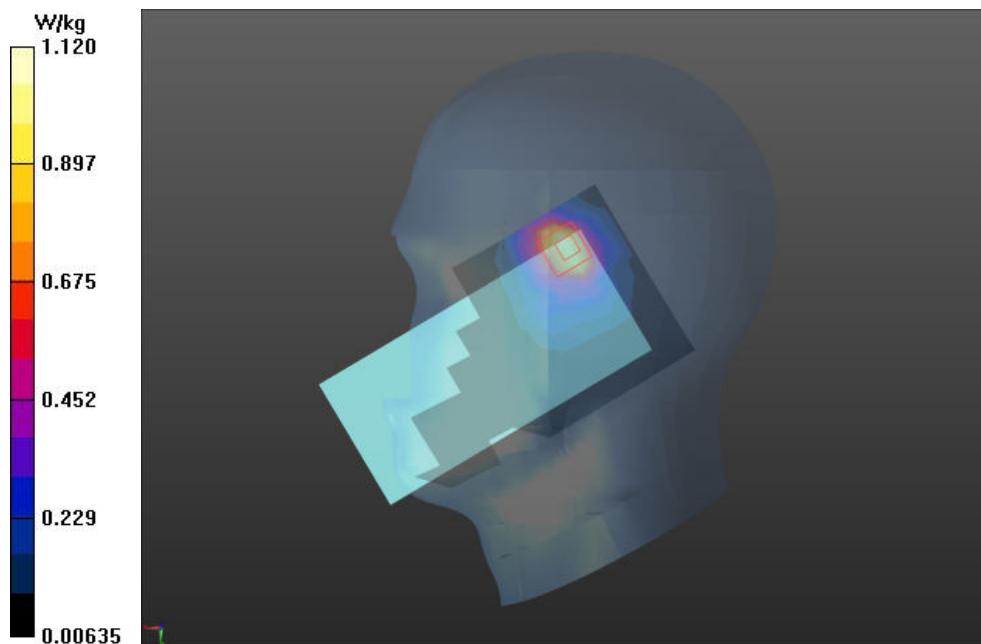
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Cheek Low/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.06 W/kg

Right/Cheek Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.499 V/m; Power Drift = 0.18 dB


Peak SAR (extrapolated) = 2.24 W/kg

SAR(1 g) = 1.05 W/kg; SAR(10 g) = 0.509 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 48.7%

Maximum value of SAR (measured) = 1.12 W/kg

Plot 46 NR n48 100%RB Left Cheek Low

Date: 2024/1/30

Communication System: UID 0, 5G NR (0); Frequency: 3600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3600$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

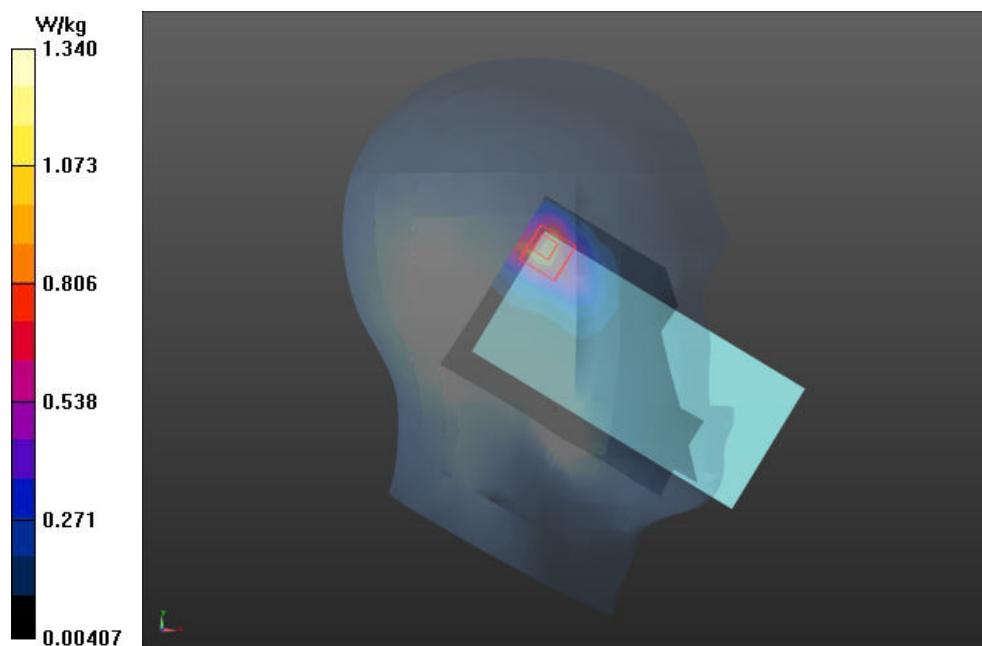
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Low/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.913 W/kg

Left/Cheek Low/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 10.26 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 0.957 W/kg; SAR(10 g) = 0.416 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2 mm

Ratio of SAR at M2 to SAR at M1 = 51.5%

Maximum value of SAR (measured) = 1.34 W/kg

Plot 47 NR n66 1RB Right Cheek High

Date: 2024/1/21

Communication System: UID 0, 5G NR (0); Frequency: 1760 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1760$ MHz; $\sigma = 1.322$ S/m; $\epsilon_r = 39.351$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

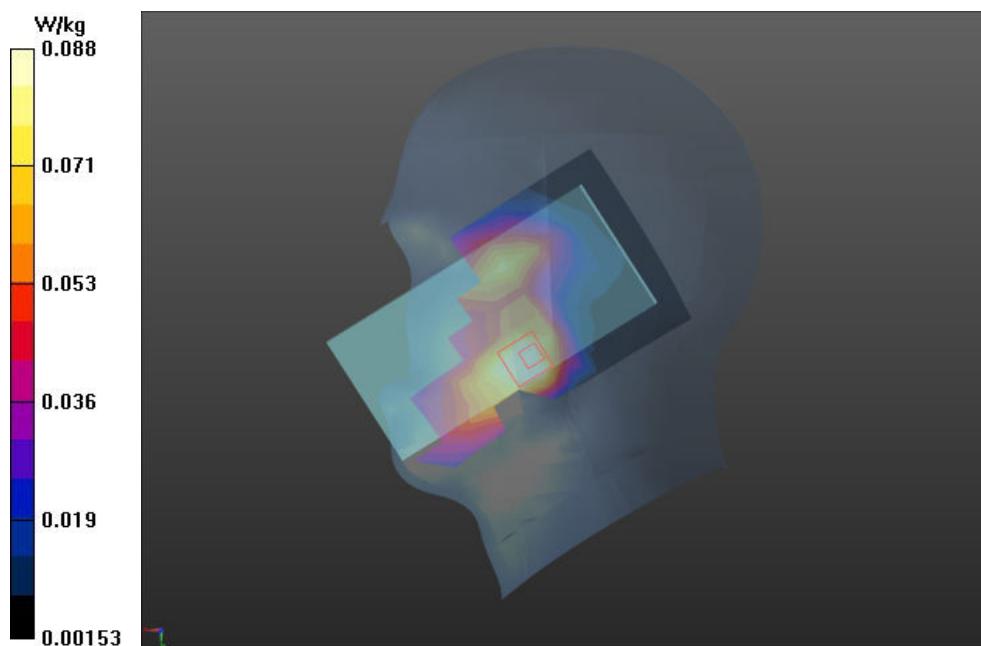
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Cheek High/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.0742 W/kg

Right/Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 1.993 V/m; Power Drift = 0.028 dB


Peak SAR (extrapolated) = 0.0860 W/kg

SAR(1 g) = 0.075 W/kg; SAR(10 g) = 0.043 W/kg

Smallest distance from peaks to all points 3 dB below = 9.9 mm

Ratio of SAR at M2 to SAR at M1 = 70.8%

Maximum value of SAR (measured) = 0.088 W/kg

Plot 48 NR n71 50%RB Right Tilt Middle

Date: 2024/1/20

Communication System: UID 0, 5G NR (0); Frequency: 680.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 680.5 \text{ MHz}$; $\sigma = 0.886 \text{ S/m}$; $\epsilon_r = 42.316$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Right Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.03, 9.80, 9.03); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

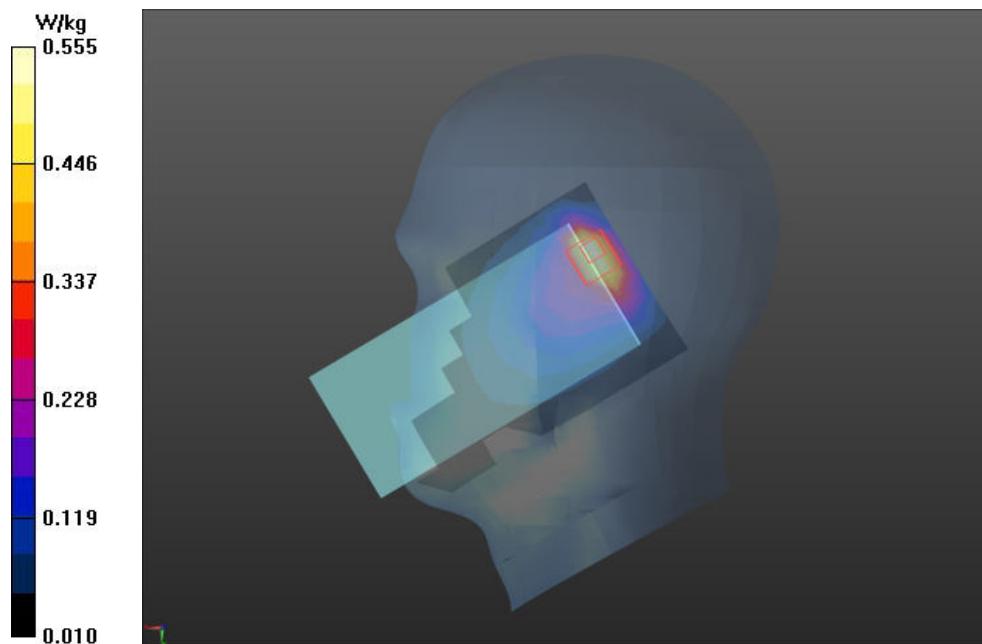
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right/Tilt Middle/Area Scan (8x14x1): Measurement grid: $dx=15\text{mm}$, $dy=15\text{mm}$

Maximum value of SAR (measured) = 0.462 W/kg

Right/Tilt Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: $dx=8\text{mm}$, $dy=8\text{mm}$, $dz=5\text{mm}$

Reference Value = 18.08 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 0.989 W/kg

SAR(1 g) = 0.495 W/kg; SAR(10 g) = 0.312 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 49.4%

Maximum value of SAR (measured) = 0.555 W/kg

Plot 49 NR n77 1RB Left Cheek Middle

Date: 2024/2/6

Communication System: UID 0, 5G NR (0); Frequency: 3930 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3930$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.85, 7.30, 6.98); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

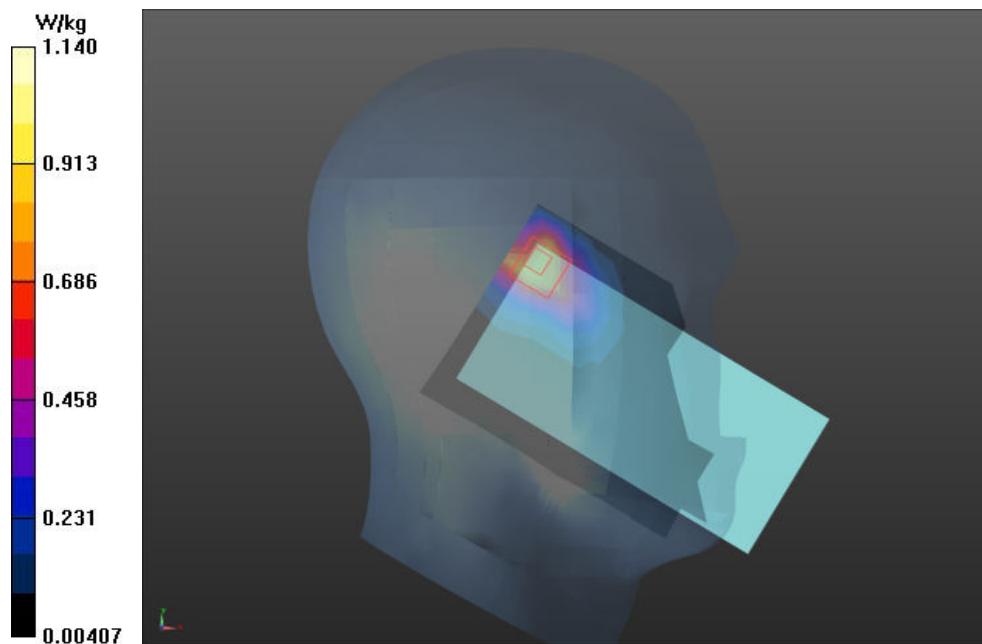
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Middle/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.993 W/kg

Left/Cheek Middle/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 10.26 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 0.992 W/kg; SAR(10 g) = 0.376 W/kg

Smallest distance from peaks to all points 3 dB below = 10.2 mm

Ratio of SAR at M2 to SAR at M1 = 51.5%

Maximum value of SAR (measured) = 1.14 W/kg

Plot 50 802.11b Left cheek Middle

Date: 2024/2/1

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.18, 7.67, 7.29); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

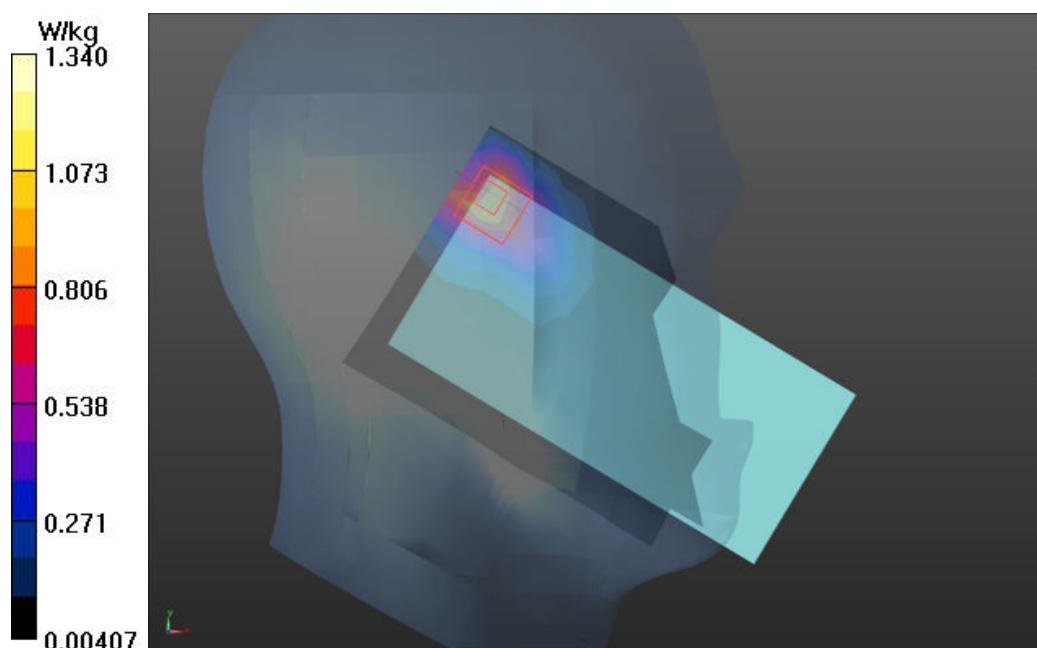
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Middle/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.913 W/kg

Left/Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.26 V/m; Power Drift = 0.100 dB


Peak SAR (extrapolated) = 1.85 W/kg

SAR(1 g) = 0.487 W/kg; SAR(10 g) = 0.239 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2 mm

Ratio of SAR at M2 to SAR at M1 = 51.5%

Maximum value of SAR (measured) = 1.34 W/kg

Plot 51 802.11a Left cheek Middle

Date: 2024/1/25

Communication System: UID 0, 802.11a (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5180$ MHz; $\sigma = 4.75$ S/m; $\epsilon_r = 36.766$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.65, 5.99, 5.81); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

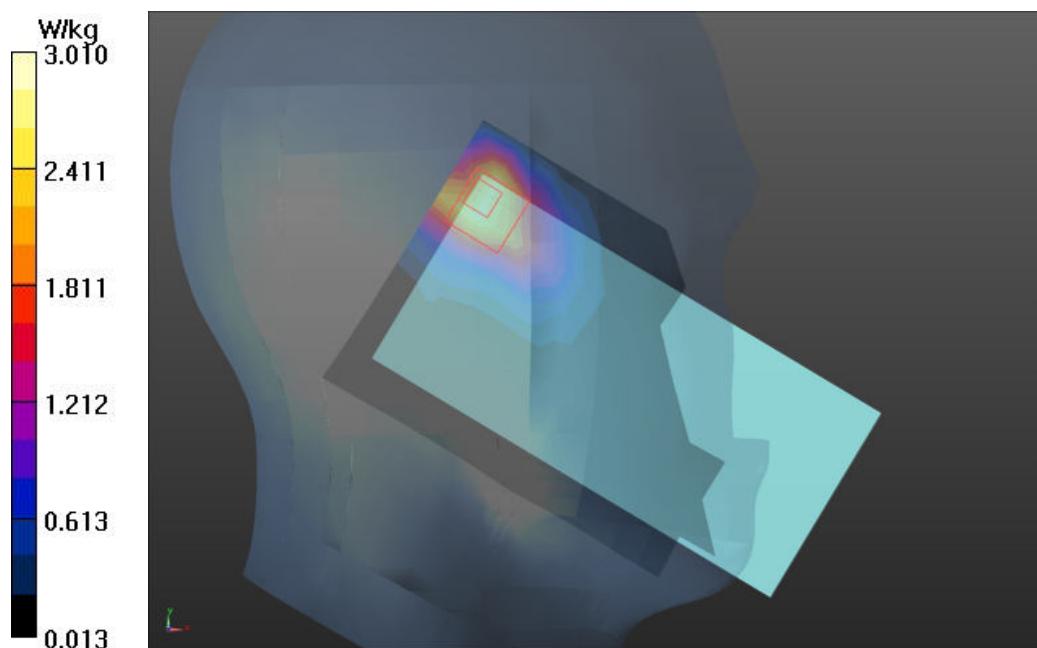
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Middle/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 2.74 W/kg

Left/Cheek Middle/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 11.44 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 5.30 W/kg

SAR(1 g) = 0.536 W/kg; SAR(10 g) = 0.142 W/kg

Smallest distance from peaks to all points 3 dB below = 10.2 mm

Ratio of SAR at M2 to SAR at M1 = 55.5%

Maximum value of SAR (measured) = 3.01 W/kg

Plot 52 Bluetooth DH5 Left cheek Middle

Date: 2024/2/1

Communication System: UID 0, BT (0); Frequency: 2441 MHz; Duty Cycle: 1:1.32

Medium parameters used: $f = 2441$ MHz; $\sigma = 1.834$ S/m; $\epsilon_r = 37.585$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.18, 7.67, 7.29); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

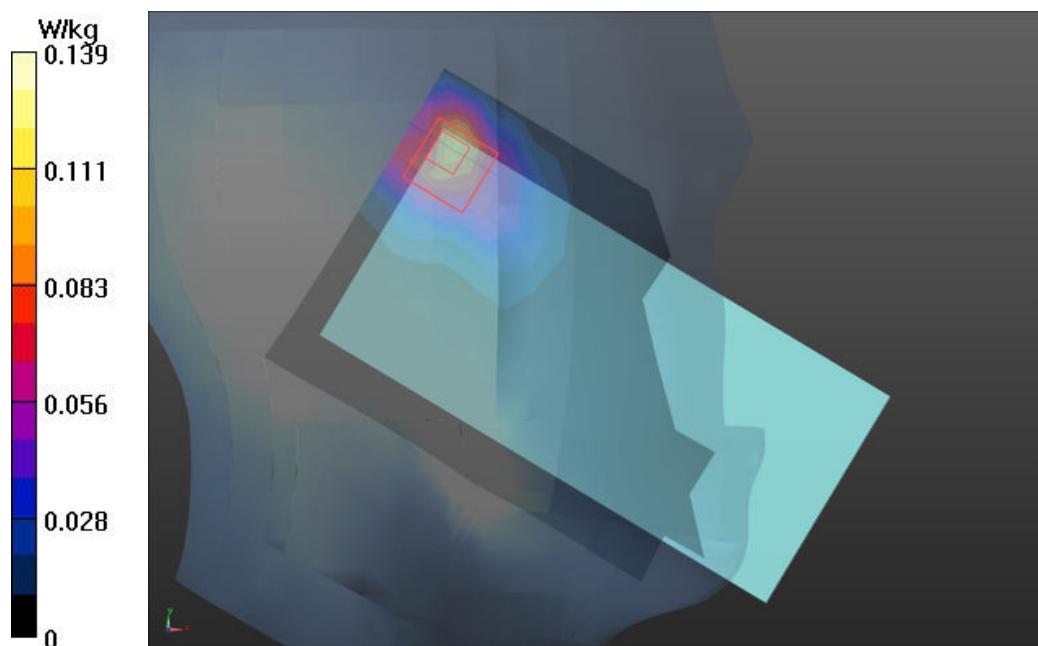
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Middle/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.109 W/kg

Left/Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.001 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 0.196 W/kg

SAR(1 g) = 0.090 W/kg; SAR(10 g) = 0.044 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2 mm

Ratio of SAR at M2 to SAR at M1 = 51.6%

Maximum value of SAR (measured) = 0.139 W/kg

Plot 53 LTE Band7 1RB Left Cheek High (EN-DC)

Date: 2024/2/19

Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2560$ MHz; $\sigma = 1.953$ S/m; $\epsilon_r = 38.015$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

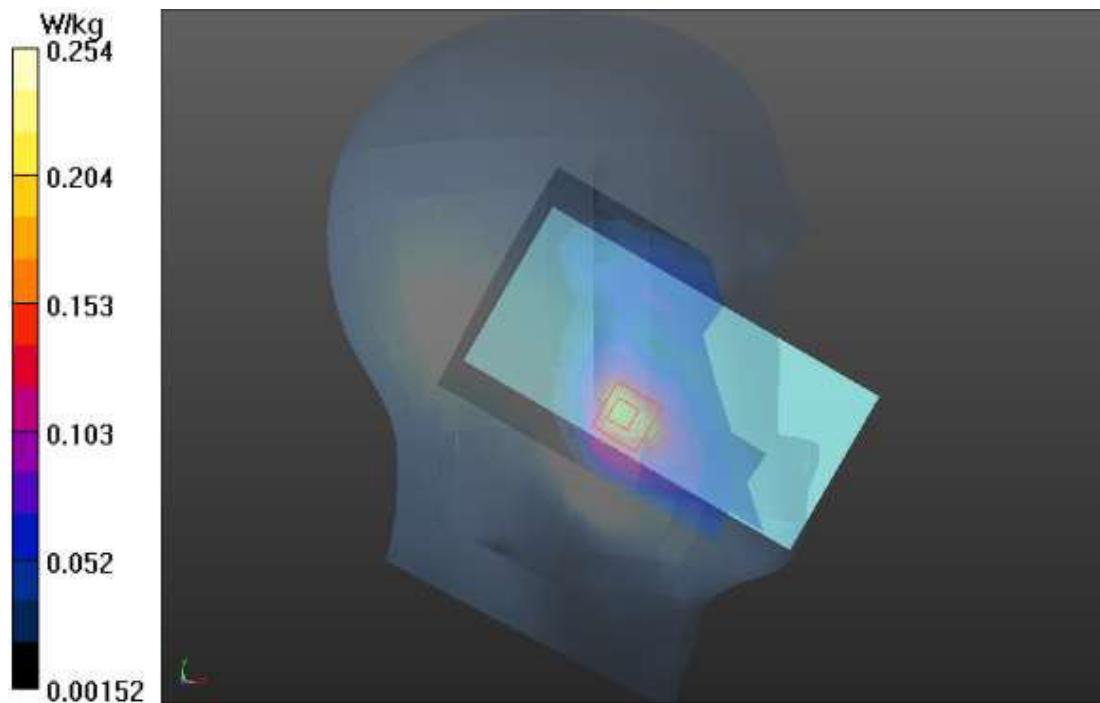
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek High/Area Scan (9x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.216 W/kg

Left/Cheek High /Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 1.721 V/m; Power Drift = 0.050 dB


Peak SAR (extrapolated) = 0.359 W/kg

SAR(1 g) = 0.196 W/kg; SAR(10 g) = 0.104 W/kg

Smallest distance from peaks to all points 3 dB below = 15.4 mm

Ratio of SAR at M2 to SAR at M1 = 54.7%

Maximum value of SAR (measured) = 0.254 W/kg

Plot 54 LTE Band26 1RB Left High(EN-DC)

Date: 2024/2/18

Communication System: UID 0, LTE (0); Frequency: 841.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 841.5$ MHz; $\sigma = 0.941$ S/m; $\epsilon_r = 41.844$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

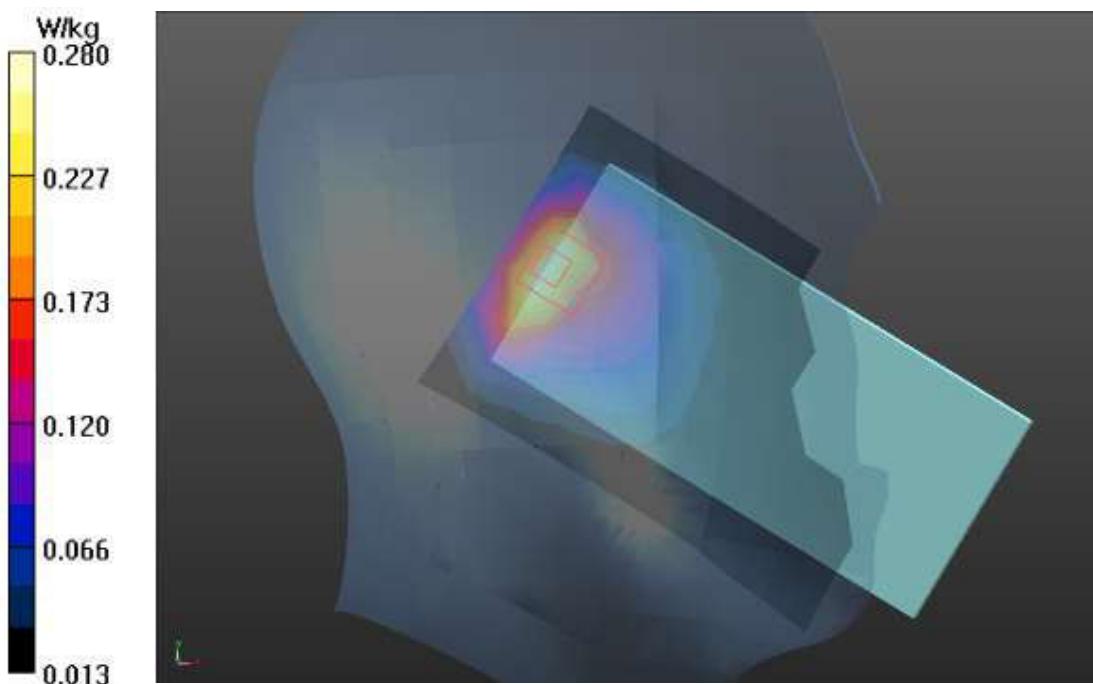
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek High/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.278 W/kg

Left/Cheek High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.01 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 0.324 W/kg

SAR(1 g) = 0.194 W/kg; SAR(10 g) = 0.120 W/kg

Smallest distance from peaks to all points 3 dB below = 14.4 mm

Ratio of SAR at M2 to SAR at M1 = 60.1%

Maximum value of SAR (measured) = 0.280 W/kg

Plot 55 LTE Band41 1RB Left Cheek Middle(EN-DC)

Date: 2024/2/19

Communication System: UID 0, LTE (0); Frequency: 2549.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2549.5$ MHz; $\sigma = 1.942$ S/m; $\epsilon_r = 38.069$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Left Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

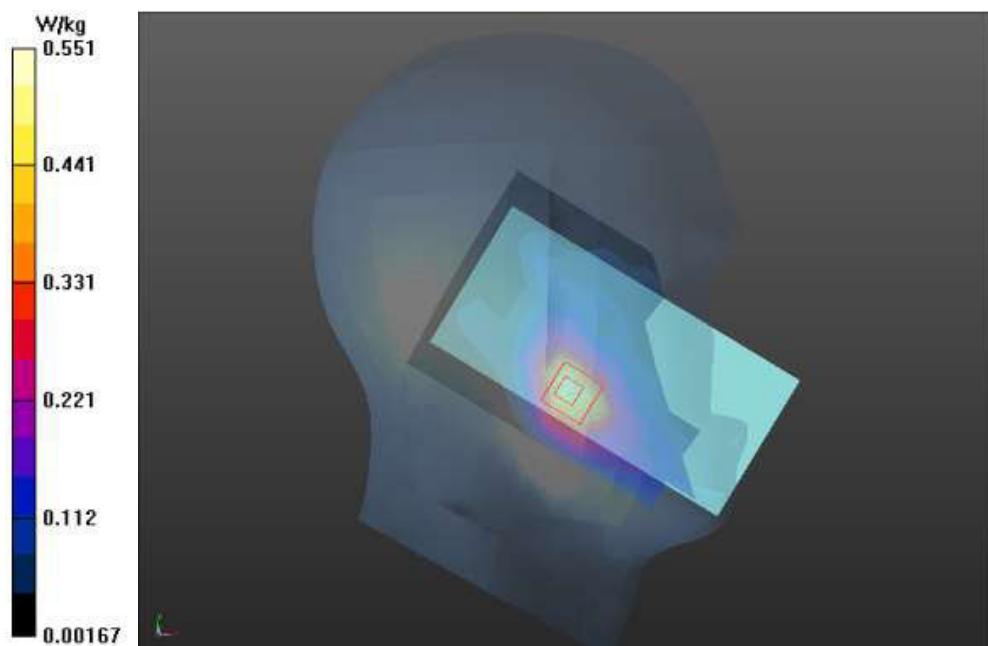
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Left/Cheek Middle/Area Scan (9x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.553 W/kg

Left/Cheek Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.475 V/m; Power Drift = 0.06 dB


Peak SAR (extrapolated) = 0.926 W/kg

SAR(1 g) = 0.407 W/kg; SAR(10 g) = 0.217 W/kg

Smallest distance from peaks to all points 3 dB below = 14.6 mm

Ratio of SAR at M2 to SAR at M1 = 55.5%

Maximum value of SAR (measured) = 0.551 W/kg

Plot 56 GSM1900 Back Side 15mm Middle

Date: 2024/2/2

Communication System: UID 0, GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:8.30

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.406$ S/m; $\epsilon_r = 39.087$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

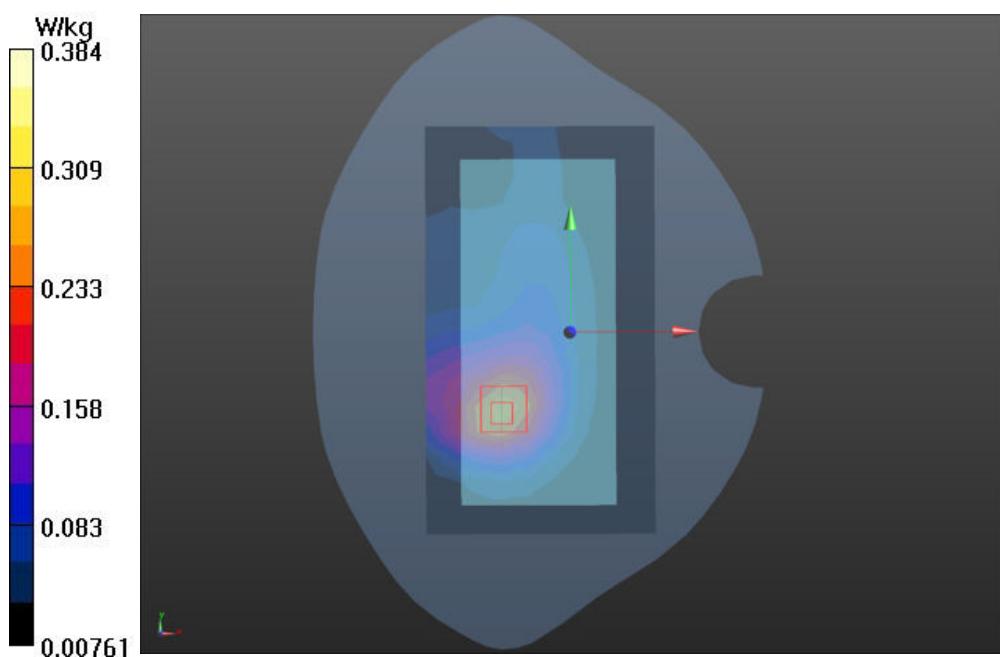
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.333 W/kg

Back Side 15mm/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.407 V/m; Power Drift = -0.023 dB


Peak SAR (extrapolated) = 0.416 W/kg

SAR(1 g) = 0.264 W/kg; SAR(10 g) = 0.163 W/kg

Smallest distance from peaks to all points 3 dB below = 20.2 mm

Ratio of SAR at M2 to SAR at M1 = 62%

Maximum value of SAR (measured) = 0.384 W/kg

Plot 57 WCDMA Band 2 Back Side 15mm Middle

Date: 2024/2/2

Communication System: UID 0, WCDMA (0); Frequency: 1880 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1880$ MHz; $\sigma = 1.406$ S/m; $\epsilon_r = 39.087$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

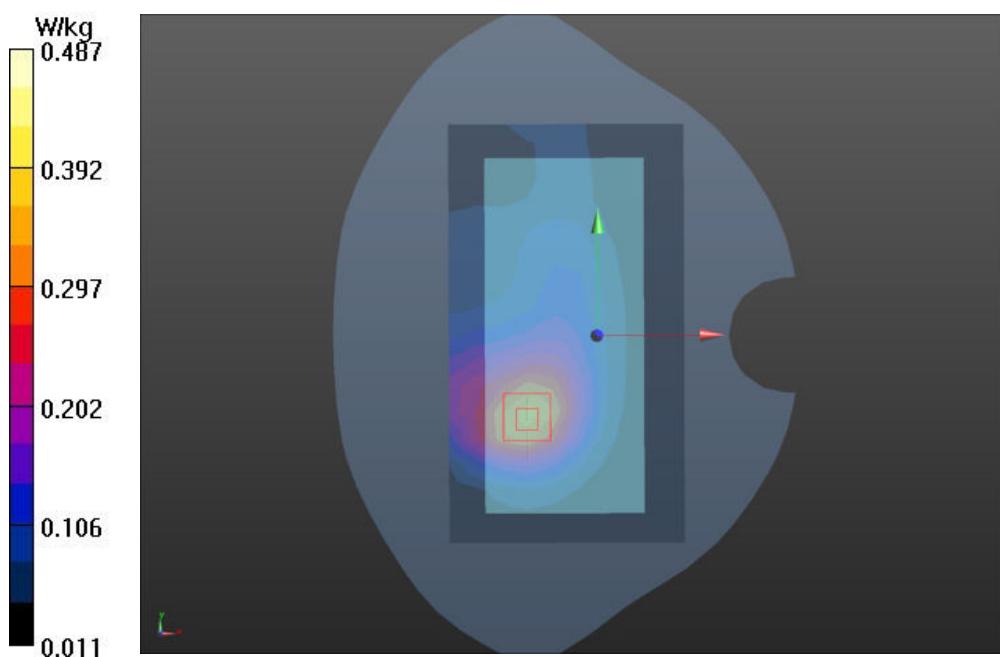
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.392 W/kg

Back Side 15mm/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.750 V/m; Power Drift = 0.080 dB


Peak SAR (extrapolated) = 0.561 W/kg

SAR(1 g) = 0.359 W/kg; SAR(10 g) = 0.223 W/kg

Smallest distance from peaks to all points 3 dB below = 18.8 mm

Ratio of SAR at M2 to SAR at M1 = 63.5%

Maximum value of SAR (measured) = 0.487 W/kg

Plot 58 WCDMA Band 4 Back Side 15mm Middle

Date: 2024/1/19

Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1732.6$ MHz; $\sigma = 1.301$ S/m; $\epsilon_r = 39.491$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

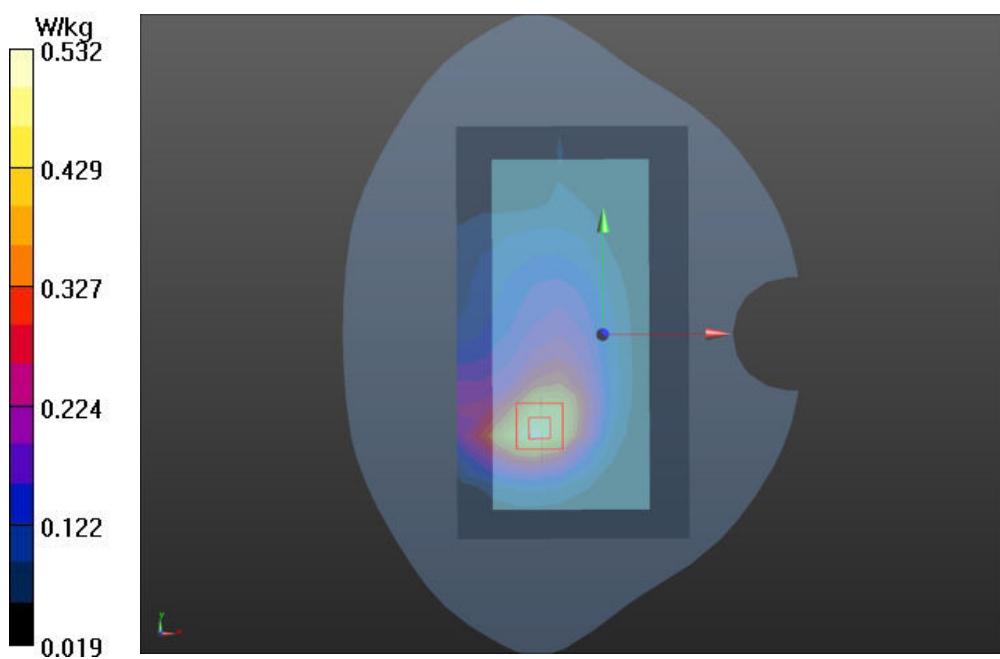
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.517 W/kg

Back Side 15mm/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.980 V/m; Power Drift = 0.180 dB


Peak SAR (extrapolated) = 0.746 W/kg

SAR(1 g) = 0.490 W/kg; SAR(10 g) = 0.302 W/kg

Smallest distance from peaks to all points 3 dB below = 17.1 mm

Ratio of SAR at M2 to SAR at M1 = 65%

Maximum value of SAR (measured) = 0.532 W/kg

Plot 59 LTE Band 7 50%RB Back Side 15mm Low

Date: 2024/1/24

Communication System: UID 0, LTE (0); Frequency: 2510 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2510$ MHz; $\sigma = 1.91$ S/m; $\epsilon_r = 37.398$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

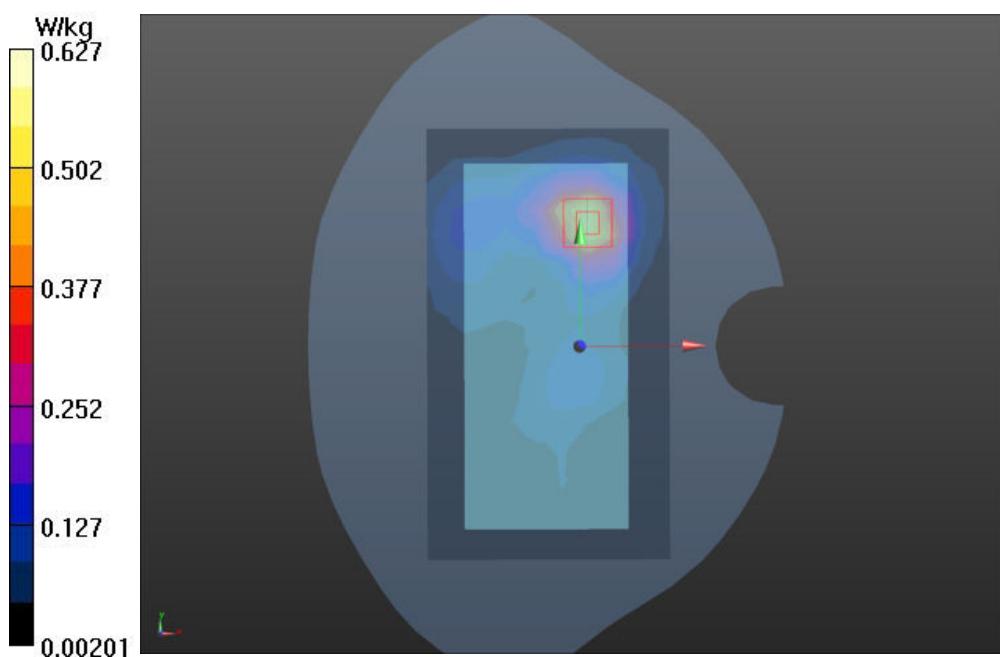
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Low/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.592 W/kg

Back Side 15mm/Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.626 V/m; Power Drift = -0.030 dB


Peak SAR (extrapolated) = 1.090 W/kg

SAR(1 g) = 0.563 W/kg; SAR(10 g) = 0.285 W/kg

Smallest distance from peaks to all points 3 dB below = 13 mm

Ratio of SAR at M2 to SAR at M1 = 51.2%

Maximum value of SAR (measured) = 0.627 W/kg

Plot 60 LTE Band 41 1RB Back Side 15mm High

Date: 2024/1/26

Communication System: UID 0, LTE (0); Frequency: 2680 MHz; Duty Cycle: 1:1.58

Medium parameters used: $f = 2680$ MHz; $\sigma = 2.106$ S/m; $\epsilon_r = 36.793$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

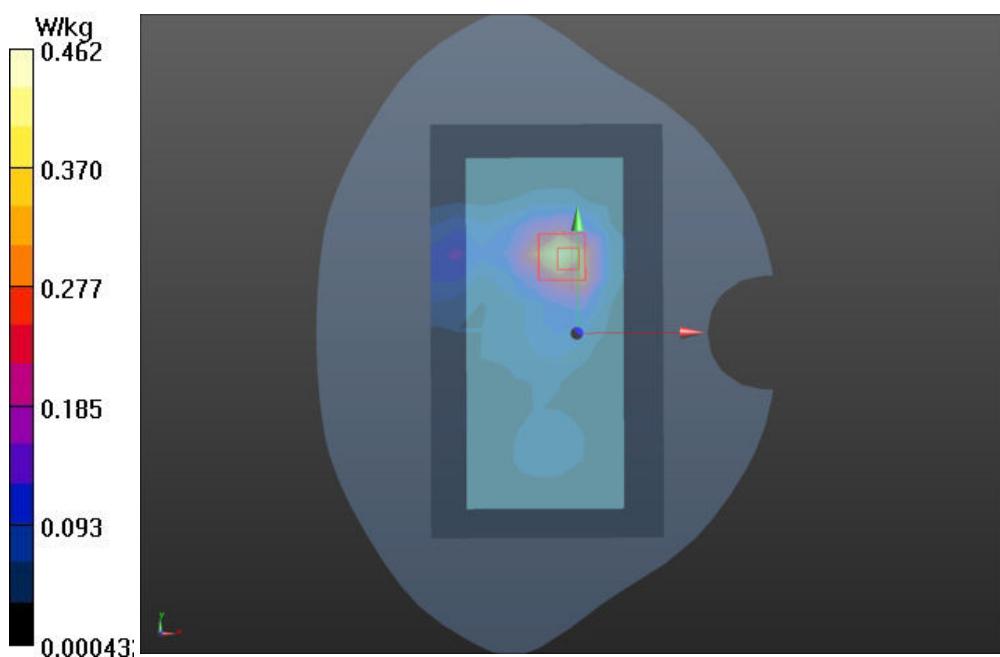
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/High/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.443 W/kg

Back Side 15mm/High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.172 V/m; Power Drift = 0.080 dB


Peak SAR (extrapolated) = 0.896 W/kg

SAR(1 g) = 0.412 W/kg; SAR(10 g) = 0.193 W/kg

Smallest distance from peaks to all points 3 dB below = 10.2 mm

Ratio of SAR at M2 to SAR at M1 = 45.9%

Maximum value of SAR (measured) = 0.462 W/kg

Plot 61 LTE Band 48 1RB Back Side 15mm High

Date: 2024/1/29

Communication System: UID 0, LTE (0); Frequency: 3690 MHz; Duty Cycle: 1:1.58

Medium parameters used: $f = 3690$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

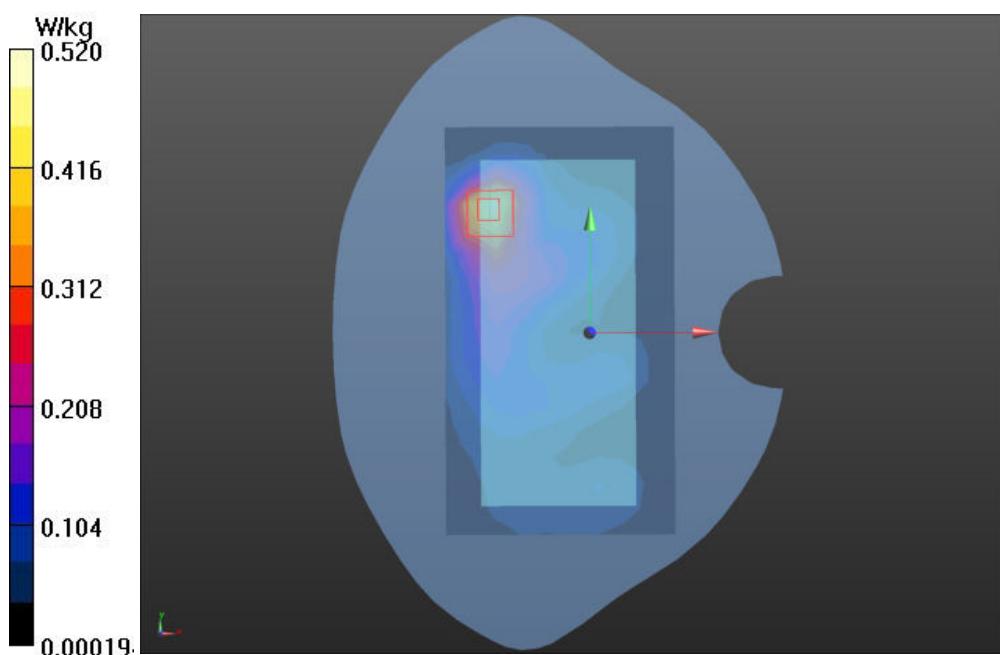
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/High/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.472 W/kg

Back Side 15mm/High/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.107 V/m; Power Drift = 0.030 dB


Peak SAR (extrapolated) = 0.332 W/kg

SAR(1 g) = 0.325 W/kg; SAR(10 g) = 0.146 W/kg

Smallest distance from peaks to all points 3 dB below = 12.5 mm

Ratio of SAR at M2 to SAR at M1 = 47.6%

Maximum value of SAR (measured) = 0.520 W/kg

Plot 62 LTE Band 66 50%RB Back Side 15mm Low

Date: 2024/1/19

Communication System: UID 0, LTE (0); Frequency: 1720 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1720$ MHz; $\sigma = 1.294$ S/m; $\epsilon_r = 39.556$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

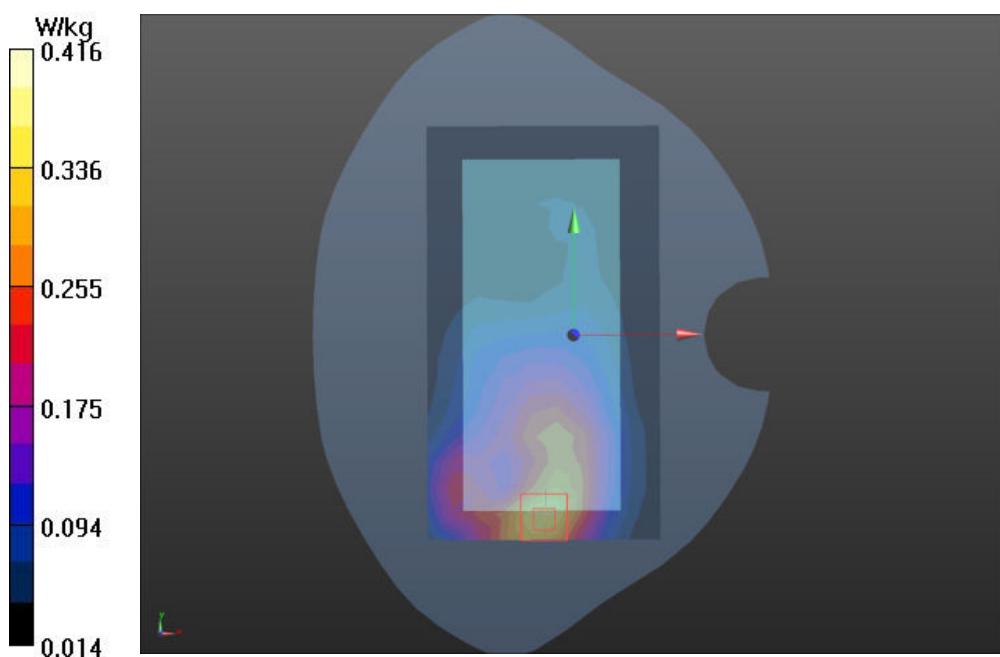
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Low/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.385 W/kg

Back Side 15mm/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=5mm

Reference Value = 8.761 V/m; Power Drift = 0.160 dB


Peak SAR (extrapolated) = 0.556 W/kg

SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.226 W/kg

Smallest distance from peaks to all points 3 dB below = 18.9 mm

Ratio of SAR at M2 to SAR at M1 = 64.6%

Maximum value of SAR (measured) = 0.416 W/kg

Plot 63 NR n2 50%RB Back Side 15mm High

Date: 2024/2/4

Communication System: UID 0, 5G NR (0); Frequency: 1890 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.422$ S/m; $\epsilon_r = 38.97$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

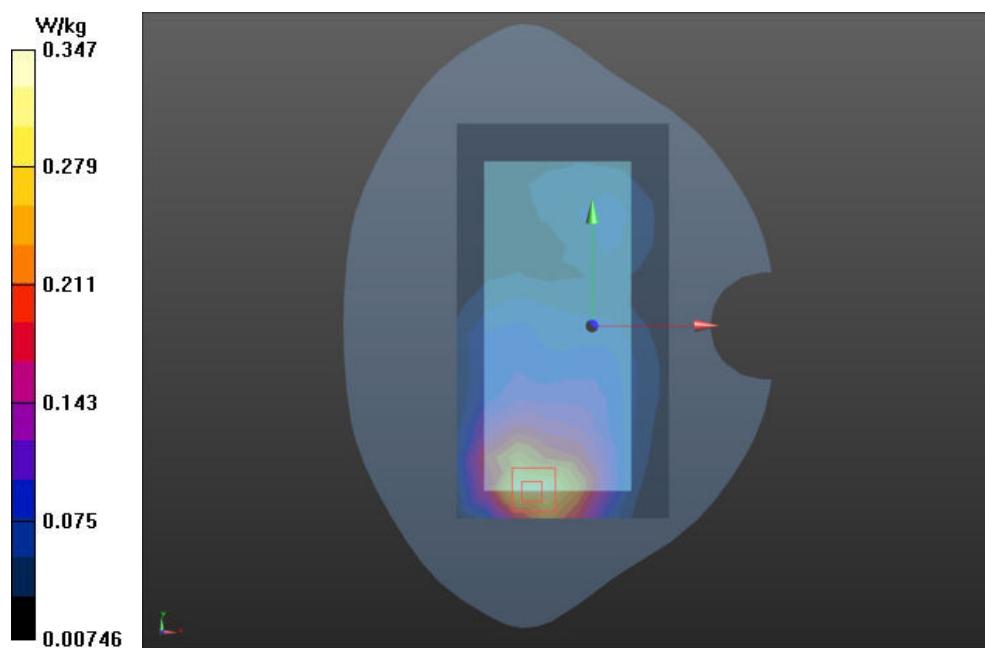
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/High/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.330 W/kg

Back Side 15mm/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.151 V/m; Power Drift = -0.14 dB


Peak SAR (extrapolated) = 0.538 W/kg

SAR(1 g) = 0.321 W/kg; SAR(10 g) = 0.190 W/kg

Smallest distance from peaks to all points 3 dB below = 15.8 mm

Ratio of SAR at M2 to SAR at M1 = 59.3%

Maximum value of SAR (measured) = 0.347 W/kg

Plot 64 NR n7 50%RB Back Side 15mm Low

Date: 2024/1/27

Communication System: UID 0, 5G NR (0); Frequency: 2510 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2510$ MHz; $\sigma = 1.91$ S/m; $\epsilon_r = 37.398$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

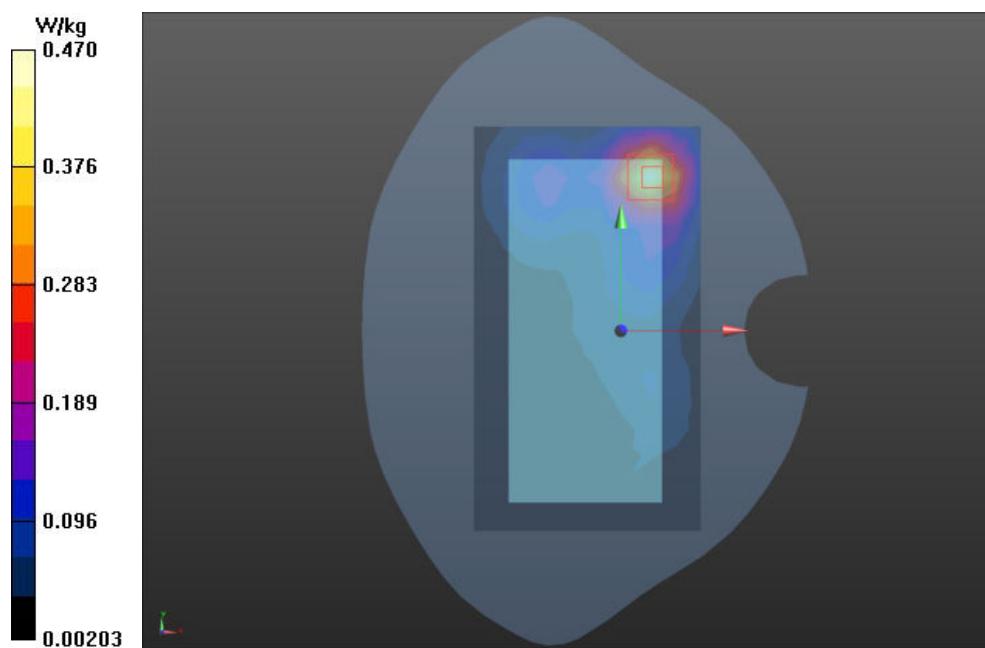
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Low/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.468 W/kg

Back Side 15mm/Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.681 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 0.832 W/kg

SAR(1 g) = 0.427 W/kg; SAR(10 g) = 0.218 W/kg

Smallest distance from peaks to all points 3 dB below = 14.8 mm

Ratio of SAR at M2 to SAR at M1 = 51.2%

Maximum value of SAR (measured) = 0.470 W/kg

Plot 65 NR n41 50%RB Back Side 15mm Low

Date: 2024/1/28

Communication System: UID 0, 5G NR (0); Frequency: 2546.01 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2546.01$ MHz; $\sigma = 1.953$ S/m; $\epsilon_r = 37.275$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

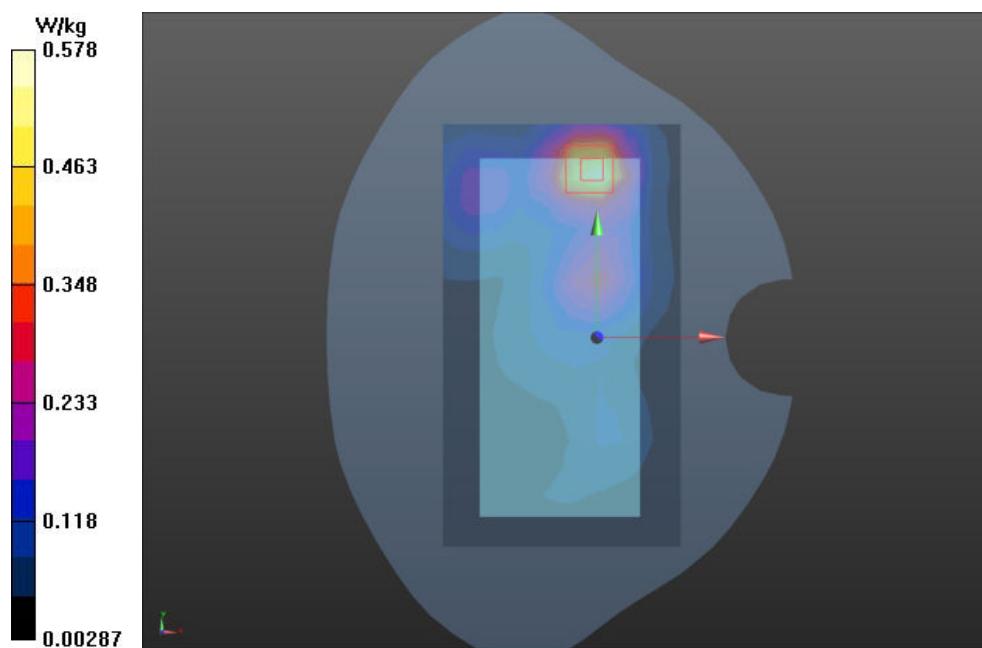
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Low/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.563 W/kg

Back Side 15mm/Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.857 V/m; Power Drift = 0.09 dB


Peak SAR (extrapolated) = 1.06 W/kg

SAR(1 g) = 0.525 W/kg; SAR(10 g) = 0.265 W/kg

Smallest distance from peaks to all points 3 dB below = 14.8 mm

Ratio of SAR at M2 to SAR at M1 = 49.4%

Maximum value of SAR (measured) = 0.578 W/kg

Plot 66 NR n48 50%RB Back Side 15mm Low

Date: 2024/1/30

Communication System: UID 0, 5G NR (0); Frequency: 3600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3600$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

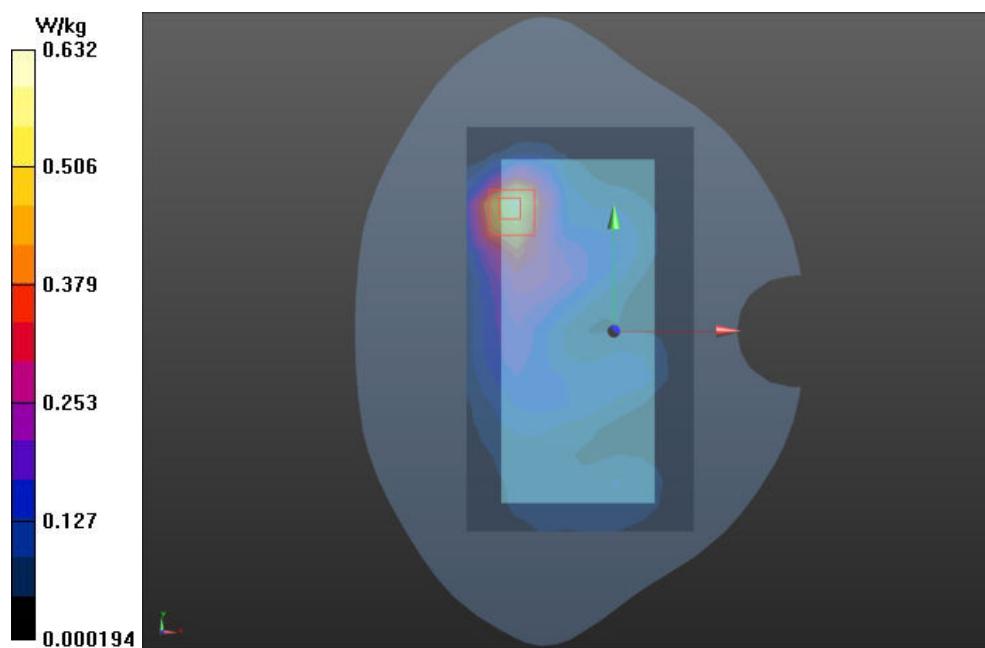
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Low/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.572 W/kg

Back Side 15mm/Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.107 V/m; Power Drift = -0.19 dB


Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.507 W/kg; SAR(10 g) = 0.224 W/kg

Smallest distance from peaks to all points 3 dB below = 12.5 mm

Ratio of SAR at M2 to SAR at M1 = 47.6%

Maximum value of SAR (measured) = 0.632 W/kg

Plot 67 NR n66 1RB Back Side 15mm High

Date: 2024/1/21

Communication System: UID 0, 5G NR (0); Frequency: 1760 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1760$ MHz; $\sigma = 1.322$ S/m; $\epsilon_r = 39.351$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

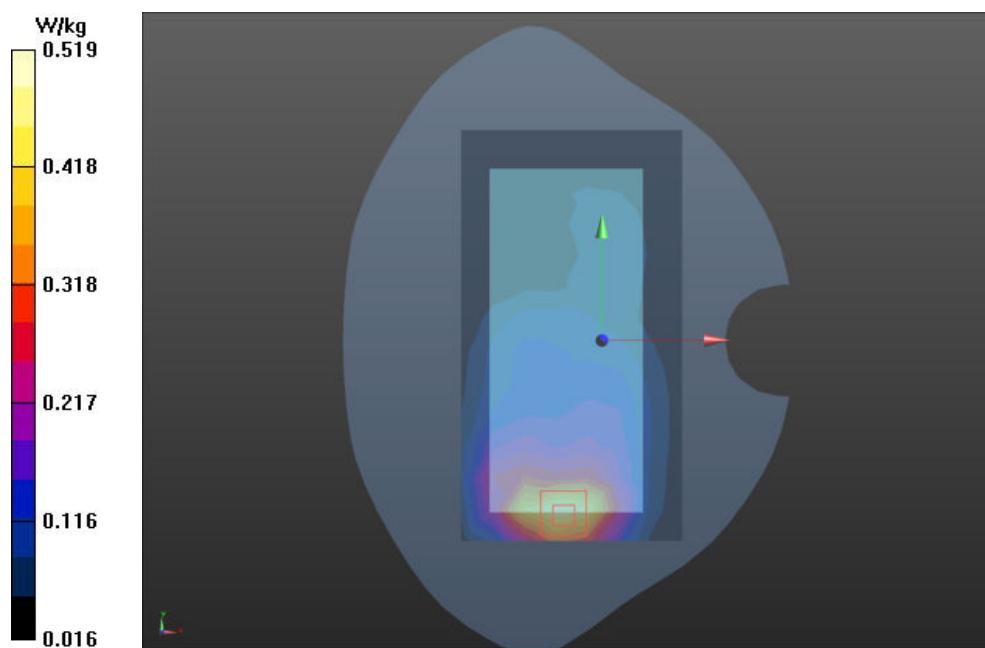
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/High/Area Scan (8x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.492 W/kg

Back Side 15mm/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.954 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 0.756 W/kg

SAR(1 g) = 0.480 W/kg; SAR(10 g) = 0.293 W/kg

Smallest distance from peaks to all points 3 dB below = 16.7 mm

Ratio of SAR at M2 to SAR at M1 = 63.5%

Maximum value of SAR (measured) = 0.519 W/kg

Plot 68 NR n77 50%RB Back Side 15mm High

Date: 2024/2/6

Communication System: UID 0, 5G NR (0); Frequency: 3930 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3930$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.85, 7.30, 6.98); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

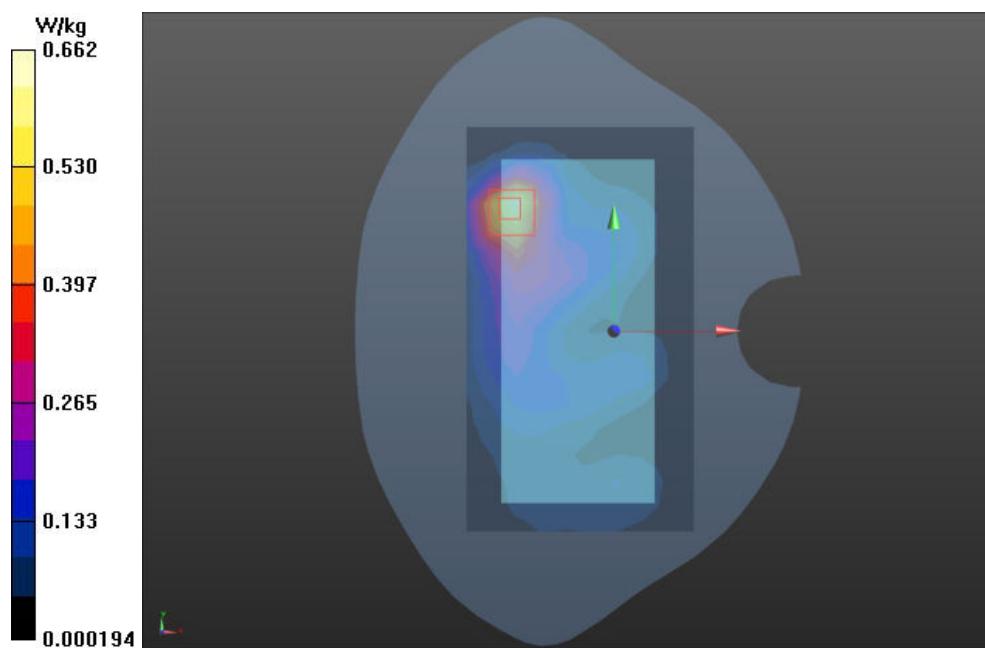
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/High/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.572 W/kg

Back Side 15mm/High/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 3.107 V/m; Power Drift = -0.16 dB


Peak SAR (extrapolated) = 1.132 W/kg

SAR(1 g) = 0.519 W/kg; SAR(10 g) = 0.249 W/kg

Smallest distance from peaks to all points 3 dB below = 12.5 mm

Ratio of SAR at M2 to SAR at M1 = 47.6%

Maximum value of SAR (measured) = 0.662 W/kg

Plot 69 802.11b Back Side 15mm Middle

Date: 2024/2/1

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.18, 7.67, 7.29); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

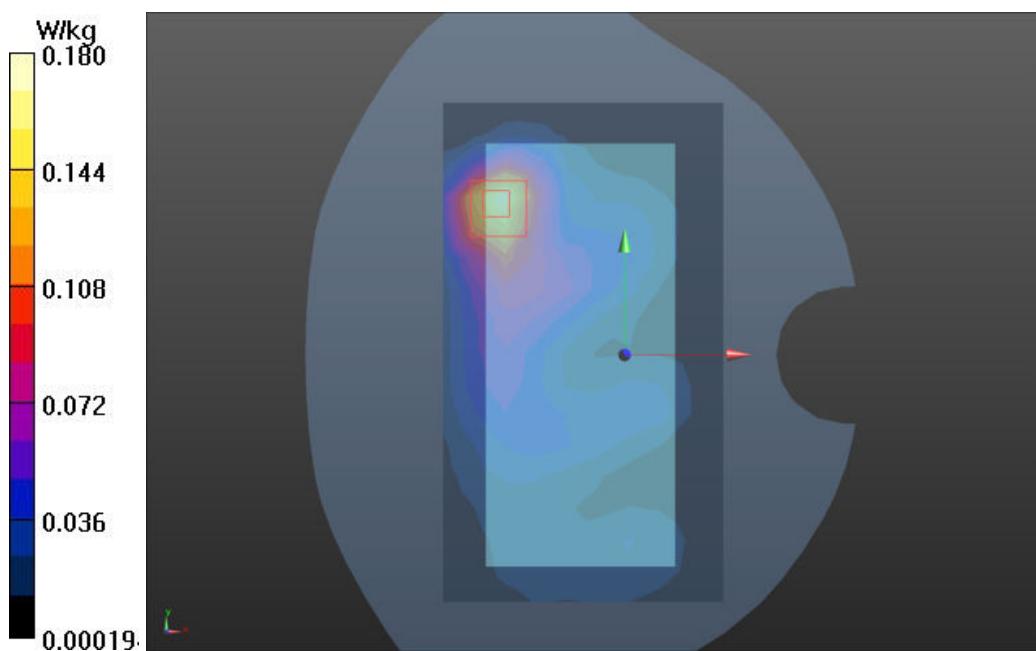
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Middle/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.172 W/kg

Back Side 15mm/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.107 V/m; Power Drift = 0.053 dB


Peak SAR (extrapolated) = 0.332 W/kg

SAR(1 g) = 0.165 W/kg; SAR(10 g) = 0.083 W/kg

Smallest distance from peaks to all points 3 dB below = 12.5 mm

Ratio of SAR at M2 to SAR at M1 = 47.6%

Maximum value of SAR (measured) = 0.180 W/kg

Plot 70 802.11a Back Side 15mm High

Date: 2024/2/1

Communication System: UID 0, 802.11a (0); Frequency: 5700 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5700$ MHz; $\sigma = 5.38$ S/m; $\epsilon_r = 35.438$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.14, 5.41, 5.20); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

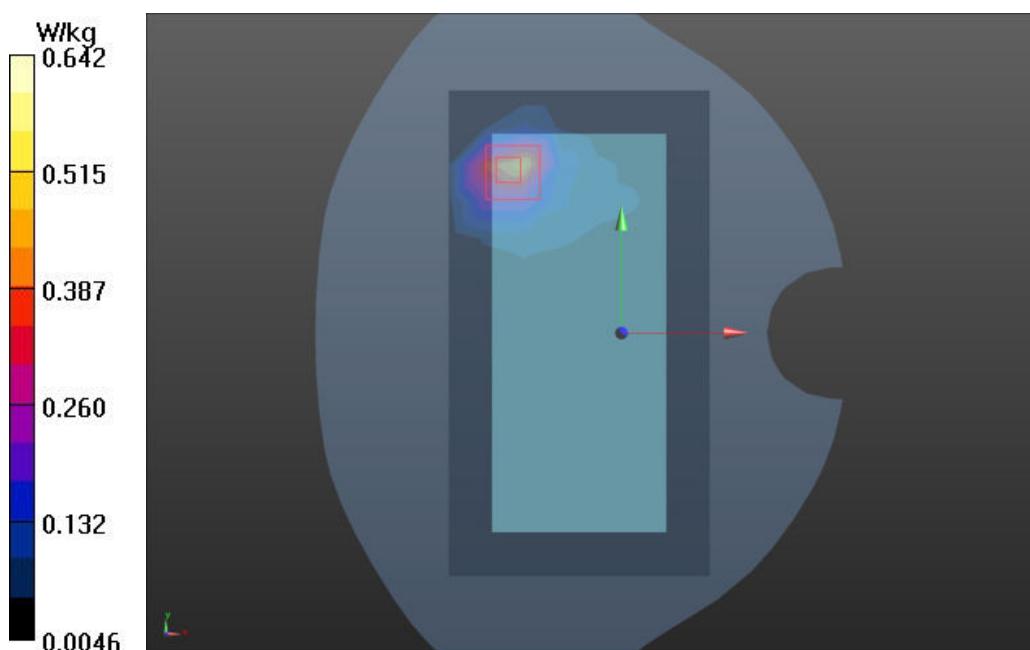
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/High/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.505 W/kg

Back Side 15mm/High/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=5mm

Reference Value = 0.8260 V/m; Power Drift = 0.035 dB


Peak SAR (extrapolated) = 1.13 W/kg

SAR(1 g) = 0.256 W/kg; SAR(10 g) = 0.108 W/kg

Smallest distance from peaks to all points 3 dB below = 12.9 mm

Ratio of SAR at M2 to SAR at M1 = 40.2%

Maximum value of SAR (measured) = 0.642 W/kg

Plot 71 LTE Band7 1RB Back Side 15mm High(EN-DC)

Date: 2024/2/19

Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2560$ MHz; $\sigma = 1.953$ S/m; $\epsilon_r = 38.015$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

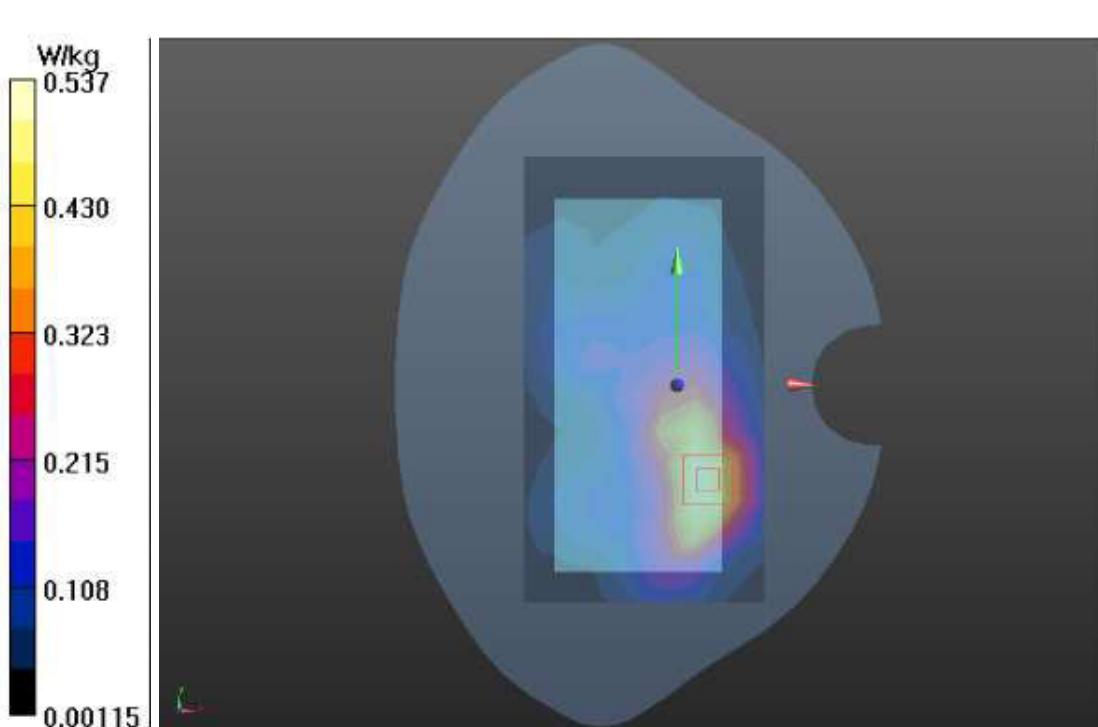
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/High/Area Scan (10x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.514 W/kg

Back Side 15mm/High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.891 V/m; Power Drift = -0.042 dB


Peak SAR (extrapolated) = 1.05 W/kg

SAR(1 g) = 0.497 W/kg; SAR(10 g) = 0.249 W/kg

Smallest distance from peaks to all points 3 dB below = 13 mm

Ratio of SAR at M2 to SAR at M1 = 46.6%

Maximum value of SAR (measured) = 0.537 W/kg

Plot 72 LTE Band41 1RB Back Side 15mm Middle(EN-DC)

Date: 2024/2/19

Communication System: UID 0, LTE (0); Frequency: 2549.5 MHz; Duty Cycle: 1:1.58

Medium parameters used (interpolated): $f = 2549.5$ MHz; $\sigma = 1.942$ S/m; $\epsilon_r = 38.069$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 15mm/Middle/Area Scan (9x18x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.519 W/kg

Back Side 15mm/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.43 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.958 W/kg

SAR(1 g) = 0.345 W/kg; SAR(10 g) = 0.186 W/kg

Smallest distance from peaks to all points 3 dB below = 17.9 mm

Ratio of SAR at M2 to SAR at M1 = 51.3%

Maximum value of SAR (measured) = 0.543 W/kg

Plot 73 GSM850 GPRS(4TX) Top Edge 10mm Middle

Date: 2024/1/22

Communication System: UID 0, GPRS 4TX (0); Frequency: 836.6 MHz; Duty Cycle: 1:2.07

Medium parameters used: $f = 837$ MHz; $\sigma = 0.939$ S/m; $\epsilon_r = 41.856$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

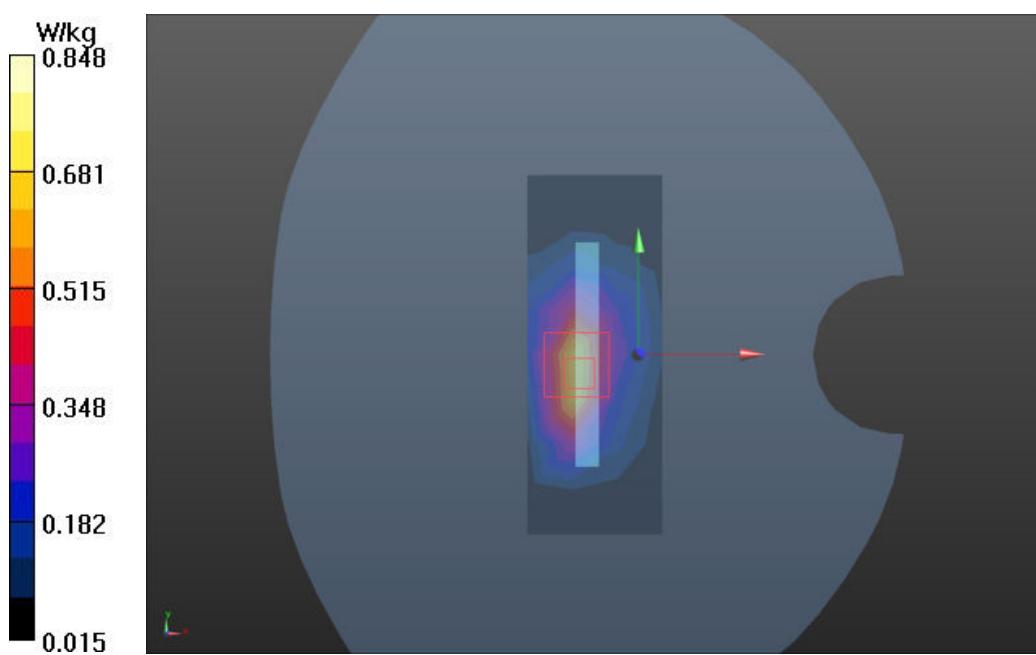
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Top Edge 10mm/Middle/Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.666 W/kg

Top Edge 10mm/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 29.51 V/m; Power Drift = -0.12 dB


Peak SAR (extrapolated) = 1.03 W/kg

SAR(1 g) = 0.521 W/kg; SAR(10 g) = 0.277 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 49.8%

Maximum value of SAR (measured) = 0.848 W/kg

Plot 74 GSM1900 GPRS (4TX) Bottom Edge 10mm Low

Date: 2024/2/2

Communication System: UID 0, GPRS 4TX (0); Frequency: 1850.2 MHz; Duty Cycle: 1:2.07

Medium parameters used (interpolated): $f = 1850.2$ MHz; $\sigma = 1.383$ S/m; $\epsilon_r = 39.121$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

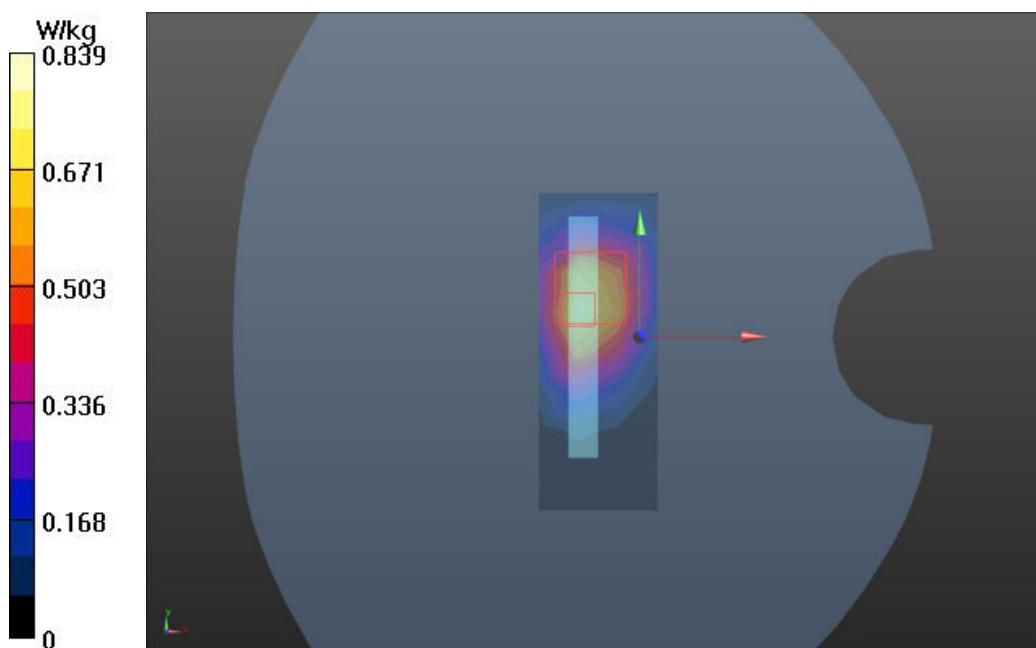
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 10mm/Low 2/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.768 W/kg

Bottom Edge 10mm/Low 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.89 V/m; Power Drift = -0.024 dB


Peak SAR (extrapolated) = 1.99 W/kg

SAR(1 g) = 0.680 W/kg; SAR(10 g) = 0.368 W/kg

Smallest distance from peaks to all points 3 dB below = 10.3 mm

Ratio of SAR at M2 to SAR at M1 = 58.9%

Maximum value of SAR (measured) = 0.839 W/kg

Plot 75 WCDMA Band 2 Bottom Edge 10mm Low

Date: 2024/2/2

Communication System: UID 0, WCDMA (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 1852.4$ MHz; $\sigma = 1.384$ S/m; $\epsilon_r = 39.118$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

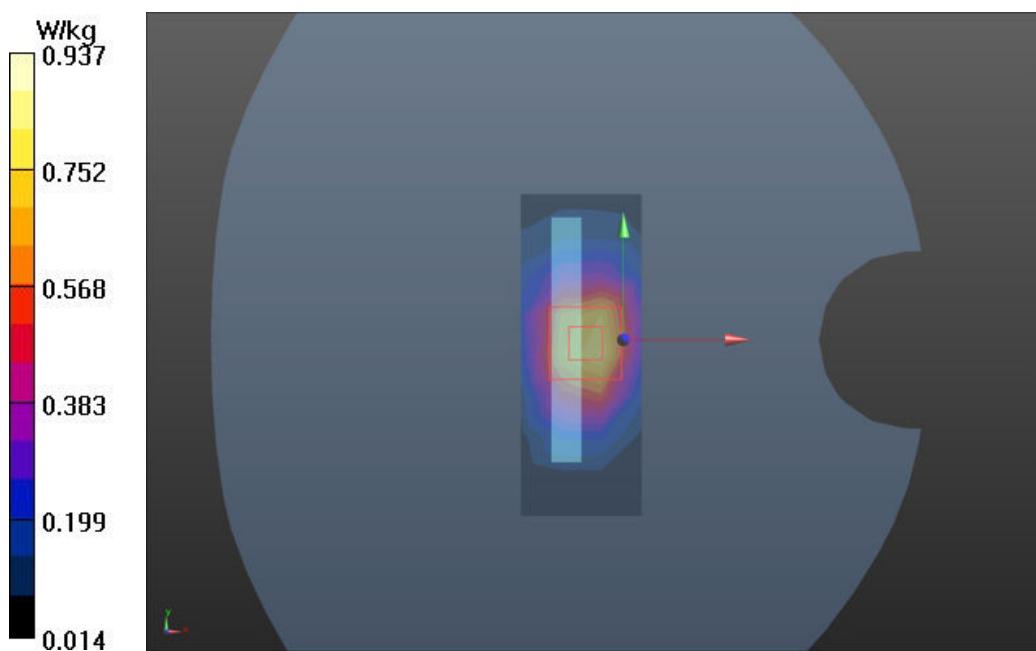
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 10mm/Low 2/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.877 W/kg

Bottom Edge 10mm/Low 2/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.00 V/m; Power Drift = -0.025 dB


Peak SAR (extrapolated) = 1.46 W/kg

SAR(1 g) = 0.840 W/kg; SAR(10 g) = 0.455 W/kg

Smallest distance from peaks to all points 3 dB below = 12.6 mm

Ratio of SAR at M2 to SAR at M1 = 58.5%

Maximum value of SAR (measured) = 0.937 W/kg

Plot 76 WCDMA Band 4 Bottom Edge 10mm Middle

Date: 2024/1/19

Communication System: UID 0, WCDMA (0); Frequency: 1732.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1733$ MHz; $\sigma = 1.301$ S/m; $\epsilon_r = 39.491$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

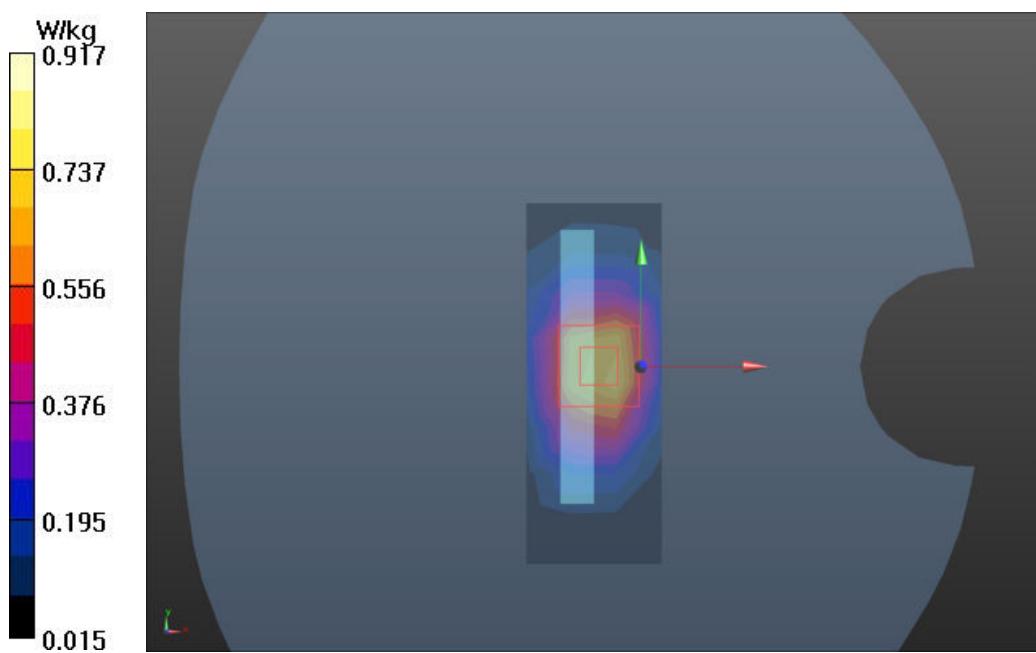
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 10mm/Middle/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.869 W/kg

Bottom Edge 10mm/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=5mm

Reference Value = 24.47 V/m; Power Drift = 0.100 dB


Peak SAR (extrapolated) = 1.41 W/kg

SAR(1 g) = 0.824 W/kg; SAR(10 g) = 0.438 W/kg

Smallest distance from peaks to all points 3 dB below = 12 mm

Ratio of SAR at M2 to SAR at M1 = 59.5%

Maximum value of SAR (measured) = 0.917 W/kg

Plot 77 WCDMA Band 5 Top Edge 10mm Middle

Date: 2024/1/23

Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 837$ MHz; $\sigma = 0.939$ S/m; $\epsilon_r = 41.856$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

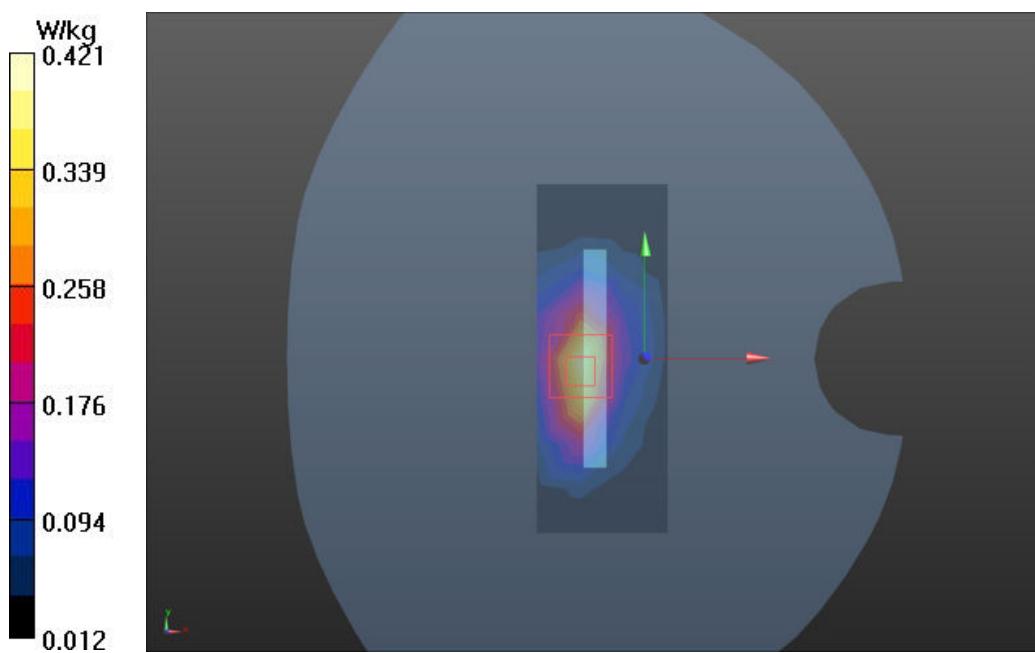
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Top Edge 10mm/Middle/Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.394 W/kg

Top Edge 10mm/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 19.63 V/m; Power Drift = 0.031 dB


Peak SAR (extrapolated) = 0.711 W/kg

SAR(1 g) = 0.364 W/kg; SAR(10 g) = 0.193 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 53.4%

Maximum value of SAR (measured) = 0.421 W/kg

Plot 78 LTE Band 7 1RB Back Side 10mm Middle

Date: 2024/1/24

Communication System: UID 0, LTE (0); Frequency: 2535 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2535$ MHz; $\sigma = 1.94$ S/m; $\epsilon_r = 37.31$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

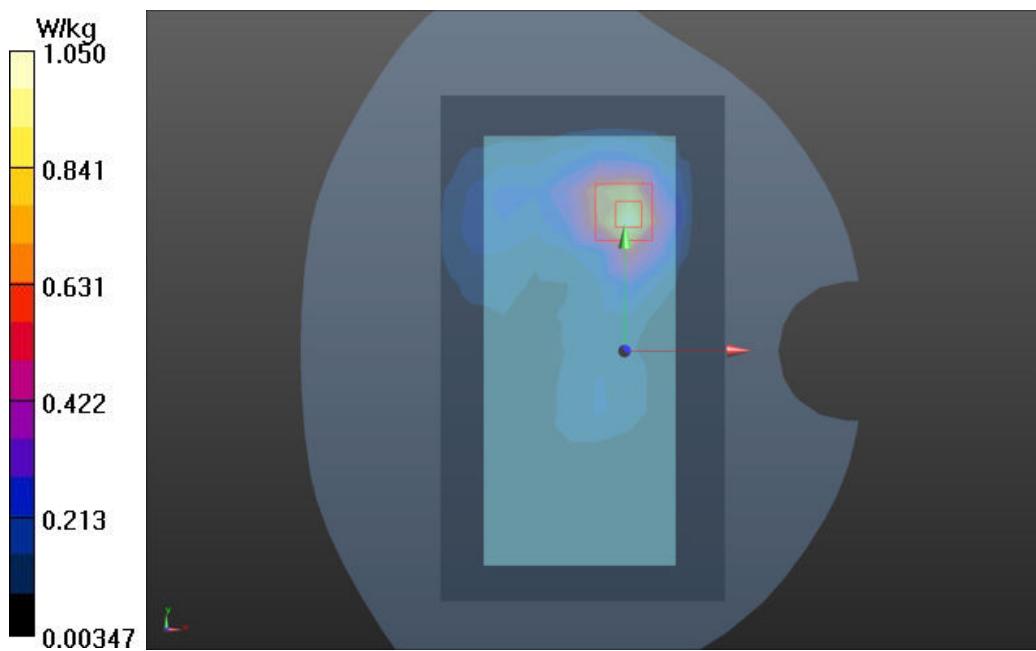
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/Middle/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 1.00 W/kg

Back Side 10mm/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.495 V/m; Power Drift = 0.07 dB


Peak SAR (extrapolated) = 1.91 W/kg

SAR(1 g) = 0.931 W/kg; SAR(10 g) = 0.448 W/kg

Smallest distance from peaks to all points 3 dB below = 10.8 mm

Ratio of SAR at M2 to SAR at M1 = 49.4%

Maximum value of SAR (measured) = 1.05 W/kg

Plot 79 LTE Band 12 1RB Back Side 10mm High

Date: 2024/1/20

Communication System: UID 0, LTE (0); Frequency: 711 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 711$ MHz; $\sigma = 0.896$ S/m; $\epsilon_r = 42.2$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.03, 9.80, 9.03); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

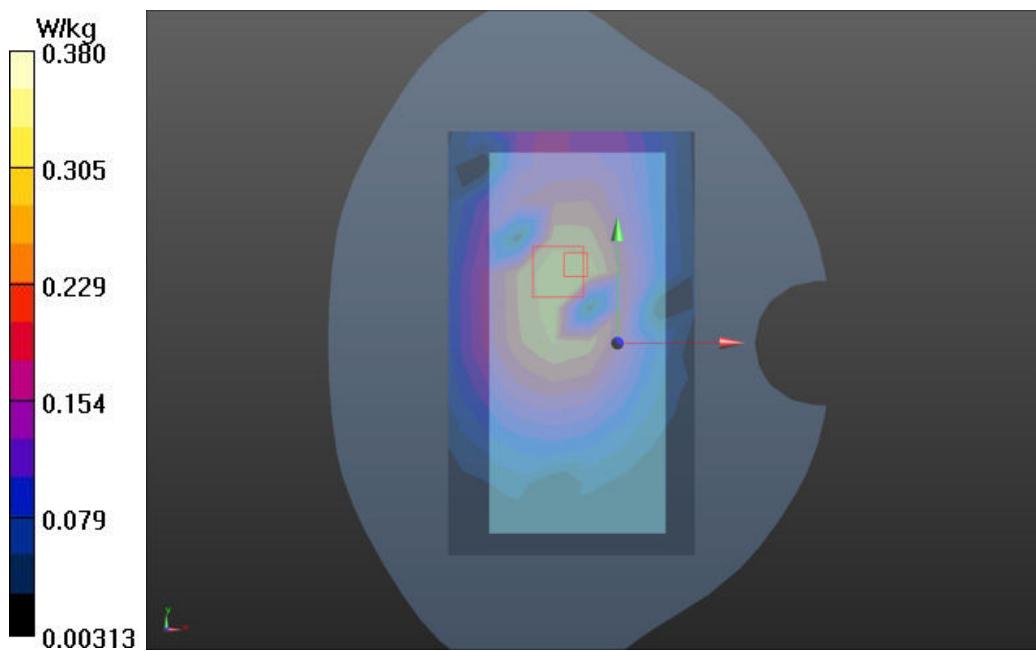
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/High/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.307 W/kg

Back Side 10mm/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.70 V/m; Power Drift = -0.032 dB


Peak SAR (extrapolated) = 0.499 W/kg

SAR(1 g) = 0.297 W/kg; SAR(10 g) = 0.206 W/kg

Smallest distance from peaks to all points 3 dB below = 9.8 mm

Ratio of SAR at M2 to SAR at M1 = 58.9%

Maximum value of SAR (measured) = 0.380 W/kg

Plot 80 LTE Band 13 1RB Top Edge 10mm Middle

Date: 2024/1/20

Communication System: UID 0, LTE (0); Frequency: 782 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 782$ MHz; $\sigma = 0.921$ S/m; $\epsilon_r = 41.805$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.03, 9.80, 9.03); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

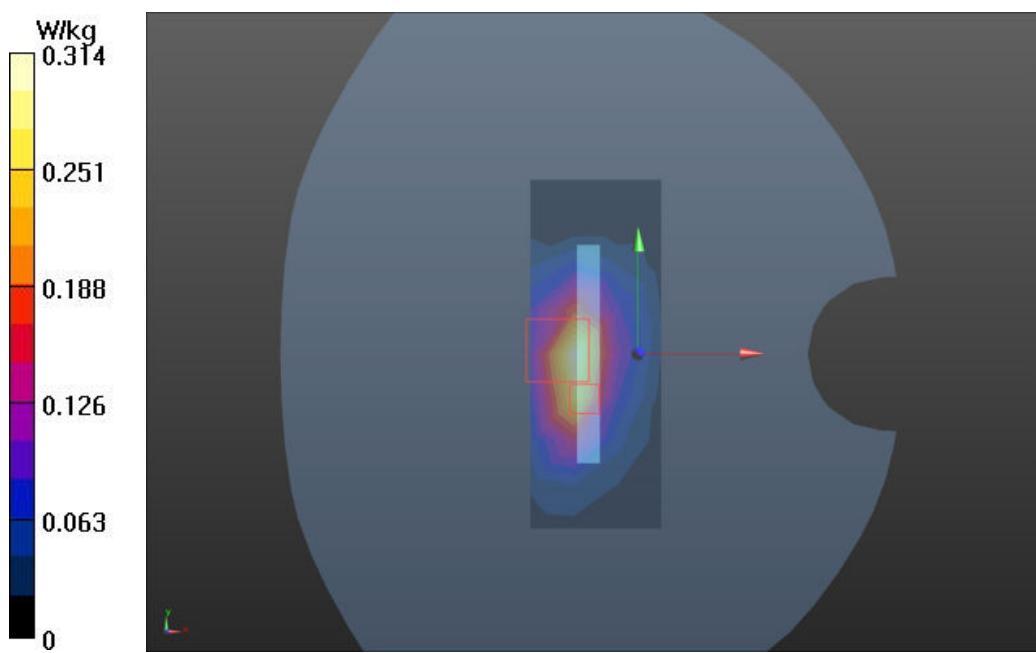
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Top Edge 10mm/Middle/Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.309 W/kg

Top Edge 10mm/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.73 V/m; Power Drift = 0.023 dB


Peak SAR (extrapolated) = 0.578 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.136 W/kg

Smallest distance from peaks to all points 3 dB below = 9.5 mm

Ratio of SAR at M2 to SAR at M1 = 56.2%

Maximum value of SAR (measured) = 0.314 W/kg

Plot 81 LTE Band 25 1RB Bottom Edge 10mm Low

Date: 2024/2/3

Communication System: UID 0, LTE (0); Frequency: 1860 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1860$ MHz; $\sigma = 1.422$ S/m; $\epsilon_r = 37.402$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

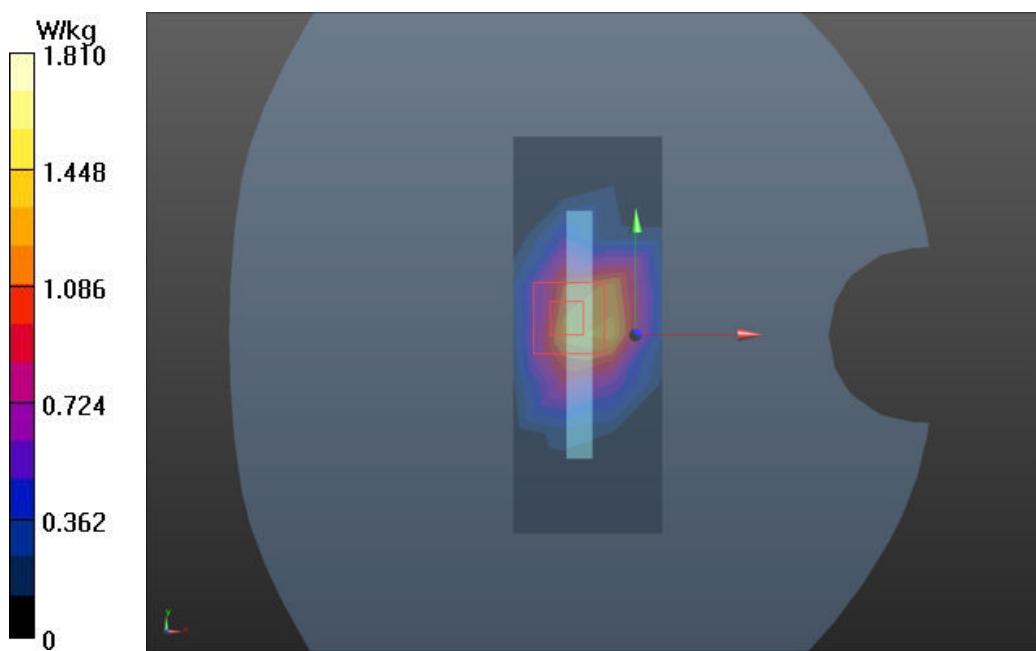
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 10mm/Low/Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.38 W/kg

Bottom Edge 10mm/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 35.06 V/m; Power Drift = 0.17 dB


Peak SAR (extrapolated) = 2.34 W/kg

SAR(1 g) = 1.07 W/kg; SAR(10 g) = 0.450 W/kg

Smallest distance from peaks to all points 3 dB below = 10.3 mm

Ratio of SAR at M2 to SAR at M1 = 59.4%

Maximum value of SAR (measured) = 1.81 W/kg

Plot 82 LTE Band 26 1RB Back Side 10mm High

Date: 2024/1/22

Communication System: UID 0, LTE (0); Frequency: 841.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 841.5$ MHz; $\sigma = 0.941$ S/m; $\epsilon_r = 41.844$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

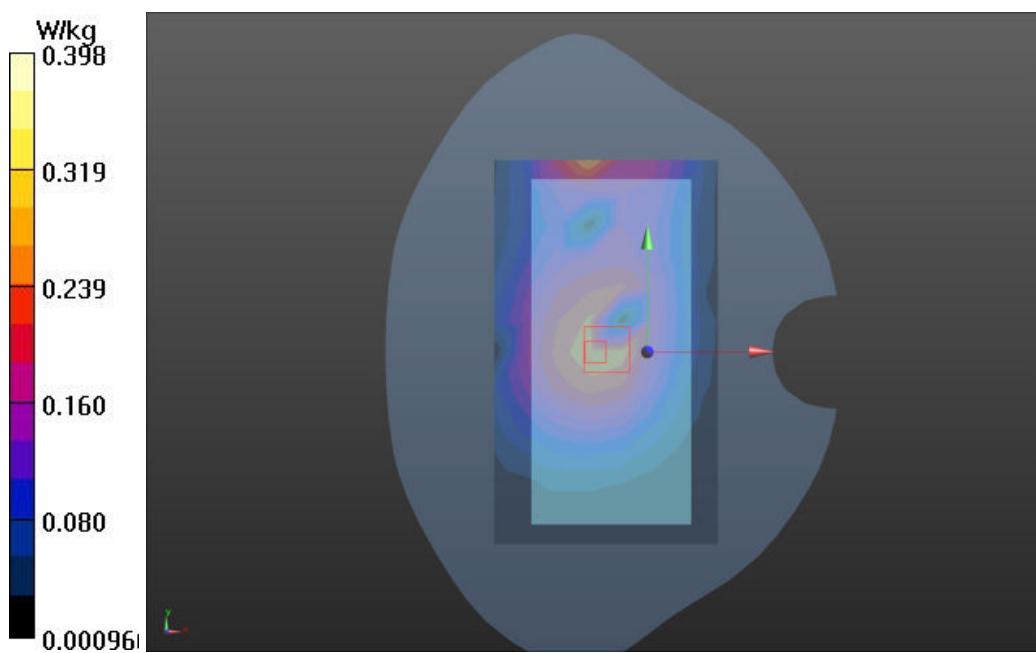
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/High/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.372 W/kg

Back Side 10mm/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.01 V/m; Power Drift = -0.01 dB


Peak SAR (extrapolated) = 0.871 W/kg

SAR(1 g) = 0.358 W/kg; SAR(10 g) = 0.209 W/kg

Smallest distance from peaks to all points 3 dB below = 12.1 mm

Ratio of SAR at M2 to SAR at M1 = 68%

Maximum value of SAR (measured) = 0.398 W/kg

Plot 83 LTE Band 41 1RB Back Side 10mm High

Date: 2024/1/26

Communication System: UID 0, LTE (0); Frequency: 2680 MHz; Duty Cycle: 1:1.58

Medium parameters used: $f = 2680$ MHz; $\sigma = 2.106$ S/m; $\epsilon_r = 36.793$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

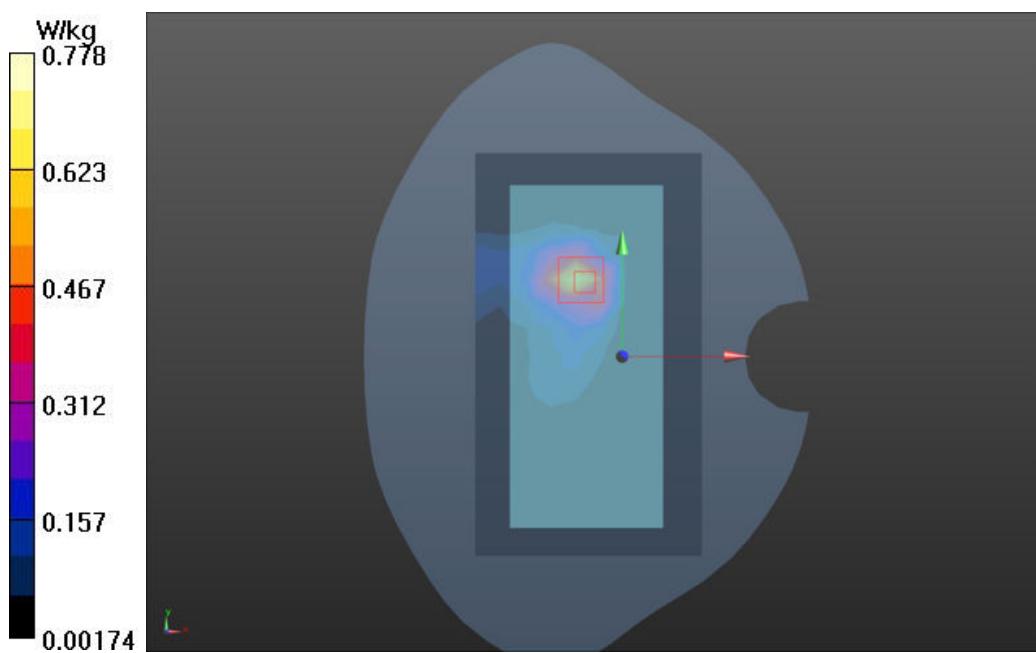
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/High/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.683 W/kg

Back Side 10mm/High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.501 V/m; Power Drift = 0.031 dB


Peak SAR (extrapolated) = 1.65 W/kg

SAR(1 g) = 0.679 W/kg; SAR(10 g) = 0.292 W/kg

Smallest distance from peaks to all points 3 dB below = 10.6 mm

Ratio of SAR at M2 to SAR at M1 = 43.1%

Maximum value of SAR (measured) = 0.778 W/kg

Plot 84 LTE Band 48 50%RB Back Side 10mm High

Date: 2024/1/29

Communication System: UID 0, LTE (0); Frequency: 3690 MHz; Duty Cycle: 1:1.58

Medium parameters used (interpolated): $f = 3690$ MHz; $\sigma = 3.03$ S/m; $\epsilon_r = 37.963$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

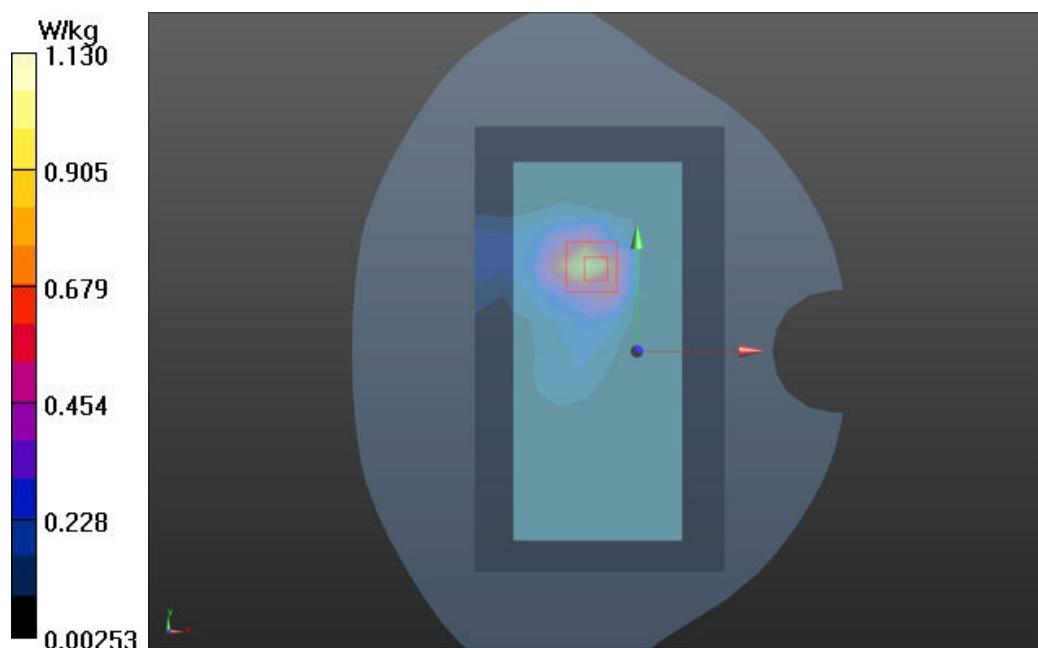
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/High/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.993 W/kg

Back Side 10mm/High/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 7.546 V/m; Power Drift = 0.032 dB


Peak SAR (extrapolated) = 2.39 W/kg

SAR(1 g) = 0.536 W/kg; SAR(10 g) = 0.231 W/kg

Smallest distance from peaks to all points 3 dB below = 9.6 mm

Ratio of SAR at M2 to SAR at M1 = 53.2%

Maximum value of SAR (measured) = 1.13 W/kg

Plot 85 LTE Band 66 50%RB Bottom Edge 10mm High

Date: 2024/1/19

Communication System: UID 0, LTE (0); Frequency: 1770 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1770$ MHz; $\sigma = 1.358$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

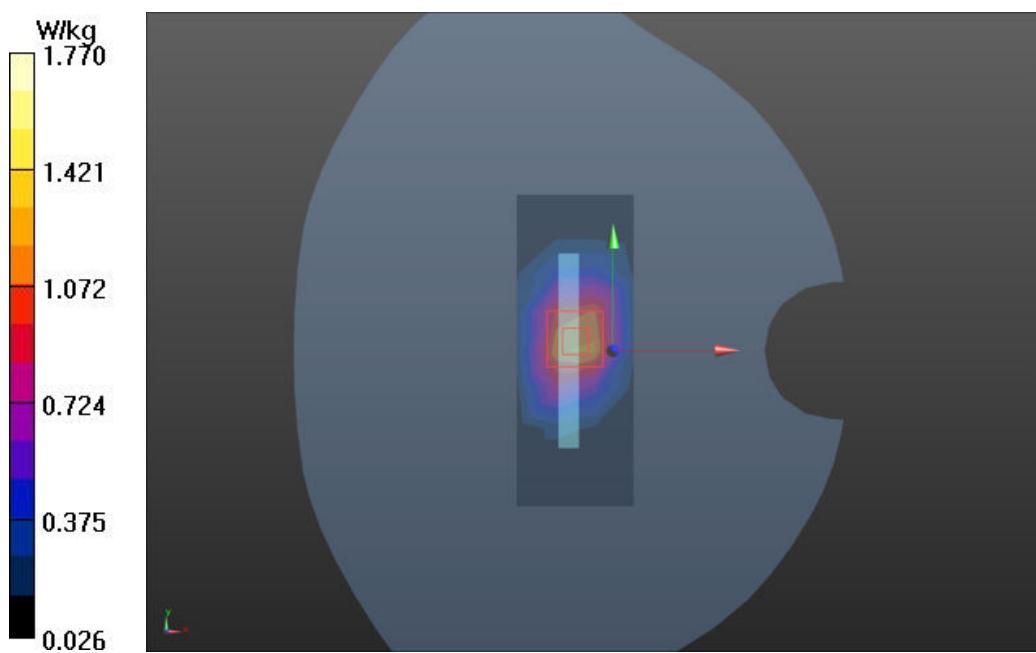
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 10mm/High/Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 1.22 W/kg

Bottom Edge 10mm/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 36.50 V/m; Power Drift = -0.025 dB


Peak SAR (extrapolated) = 2.05 W/kg

SAR(1 g) = 1.12 W/kg; SAR(10 g) = 0.647 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 59.2%

Maximum value of SAR (measured) = 1.77 W/kg

Plot 86 NR n2 1RB Bottom Edge 10mm High

Date: 2024/2/4

Communication System: UID 0, 5G NR (0); Frequency: 1890 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.422$ S/m; $\epsilon_r = 38.97$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

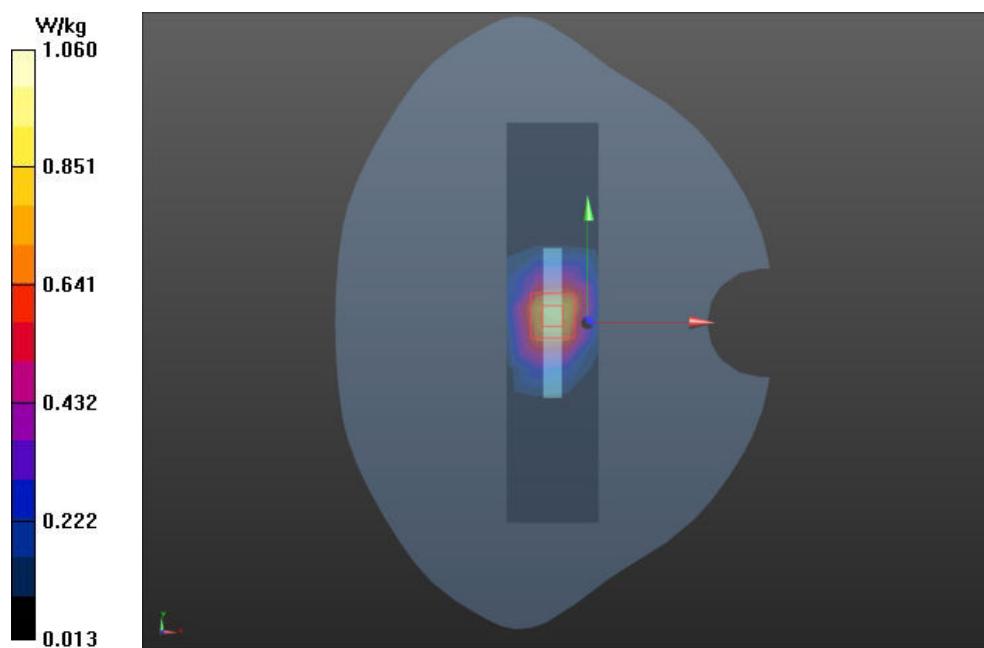
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 10mm/High/Area Scan (4x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.853 W/kg

Bottom Edge 10mm/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.43 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 1.67 W/kg

SAR(1 g) = 0.962 W/kg; SAR(10 g) = 0.518 W/kg

Smallest distance from peaks to all points 3 dB below = 12.9 mm

Ratio of SAR at M2 to SAR at M1 = 58.4%

Maximum value of SAR (measured) = 1.06 W/kg

Plot 87 NR n7 100%RB Back Side 10mm High

Date: 2024/1/27

Communication System: UID 0, 5G NR (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2560$ MHz; $\sigma = 1.971$ S/m; $\epsilon_r = 37.231$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

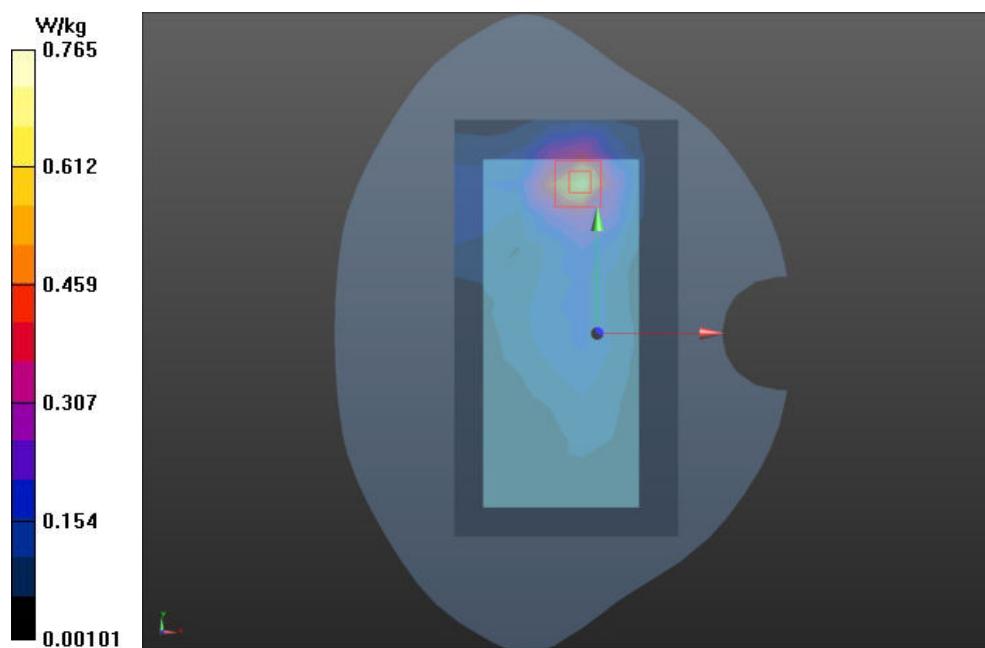
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/High/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.707 W/kg

Back Side 10mm/High/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.500 V/m; Power Drift = -0.03 dB


Peak SAR (extrapolated) = 1.24 W/kg

SAR(1 g) = 0.705 W/kg; SAR(10 g) = 0.368 W/kg

Smallest distance from peaks to all points 3 dB below = 12.5 mm

Ratio of SAR at M2 to SAR at M1 = 49.3%

Maximum value of SAR (measured) = 0.765 W/kg

Plot 88 NR n26 1RB Back Side 10mm Low

Date: 2024/1/23

Communication System: UID 0, 5G NR (0); Frequency: 824 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 824$ MHz; $\sigma = 0.934$ S/m; $\epsilon_r = 41.897$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(8.66, 9.52, 8.51); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

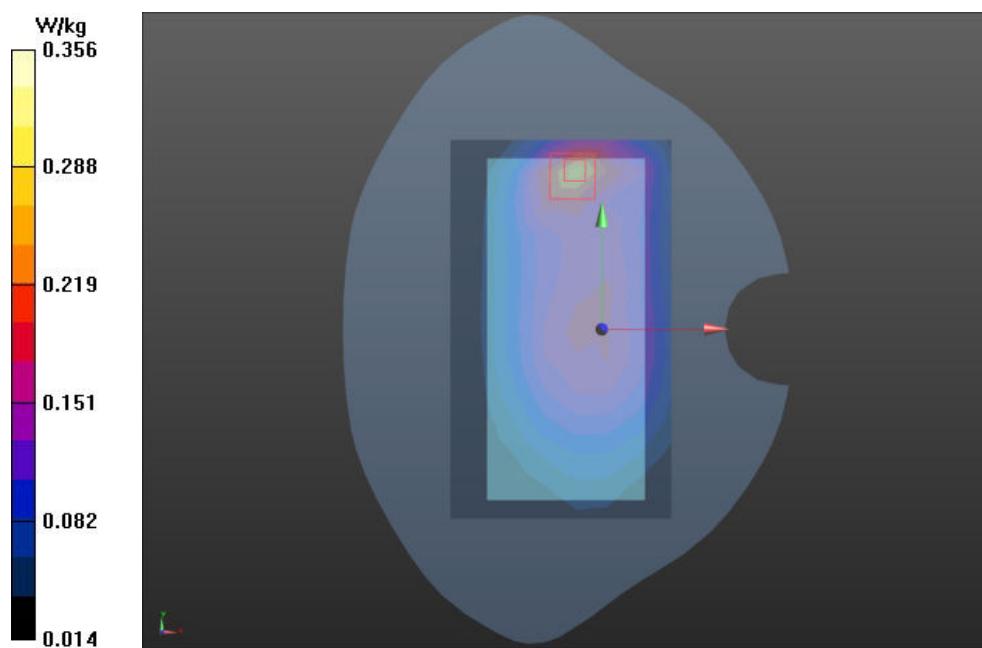
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/Low/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.259 W/kg

Back Side 10mm/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.98 V/m; Power Drift = -0.07 dB


Peak SAR (extrapolated) = 0.402 W/kg

SAR(1 g) = 0.263 W/kg; SAR(10 g) = 0.156 W/kg

Smallest distance from peaks to all points 3 dB below = 15.2 mm

Ratio of SAR at M2 to SAR at M1 = 59.8%

Maximum value of SAR (measured) = 0.356 W/kg

Plot 89 NR n41 50%RB Back Side 10mm Low

Date: 2024/1/28

Communication System: UID 0, 5G NR (0); Frequency: 2546.01 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2546.01$ MHz; $\sigma = 1.953$ S/m; $\epsilon_r = 37.275$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

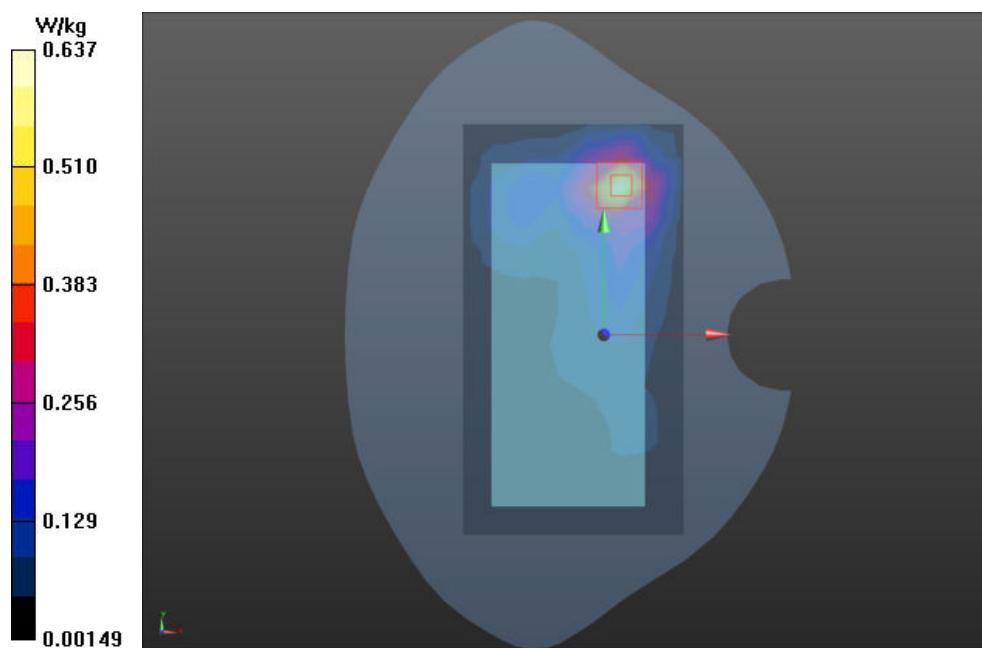
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/Low/Area Scan (10x18x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.637 W/kg

Back Side 10mm/Low/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.489 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.585 W/kg; SAR(10 g) = 0.280 W/kg

Smallest distance from peaks to all points 3 dB below = 11.3 mm

Ratio of SAR at M2 to SAR at M1 = 47.8%

Maximum value of SAR (measured) = 0.637 W/kg

Plot 90 NR n48 50%RB Back Side 10mm Low

Date: 2024/1/30

Communication System: UID 0, 5G NR (0); Frequency: 3600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3600$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

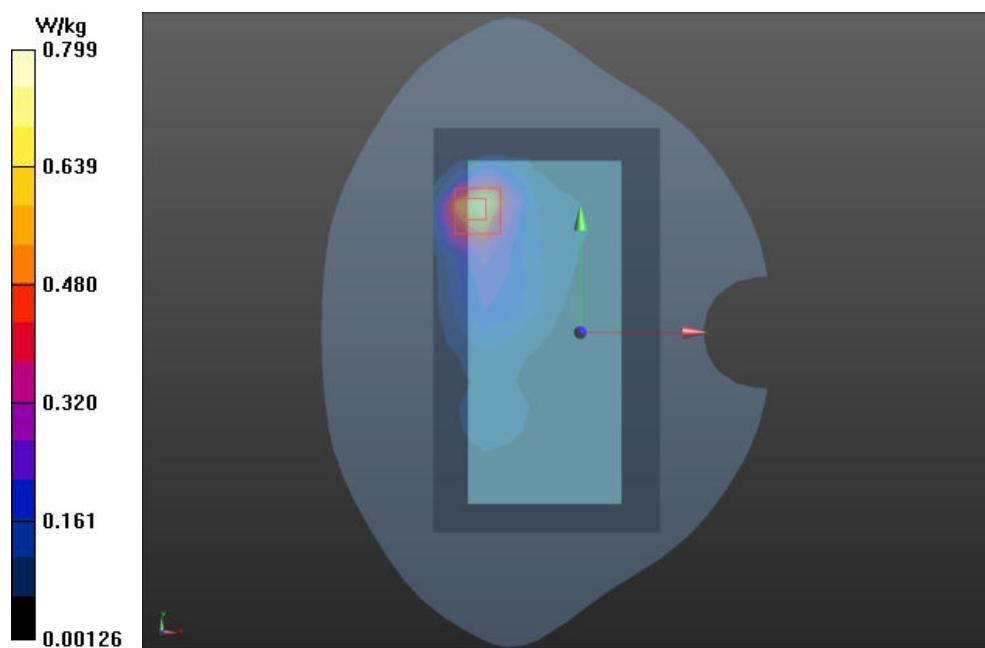
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/Low/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.699 W/kg

Back Side 10mm/Low/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.985 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.698 W/kg; SAR(10 g) = 0.296 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 48.9%

Maximum value of SAR (measured) = 0.799 W/kg

Plot 91 NR n66 1RB Bottom Edge 10mm High

Date: 2024/1/21

Communication System: UID 0, 5G NR (0); Frequency: 1760 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1760$ MHz; $\sigma = 1.322$ S/m; $\epsilon_r = 39.351$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

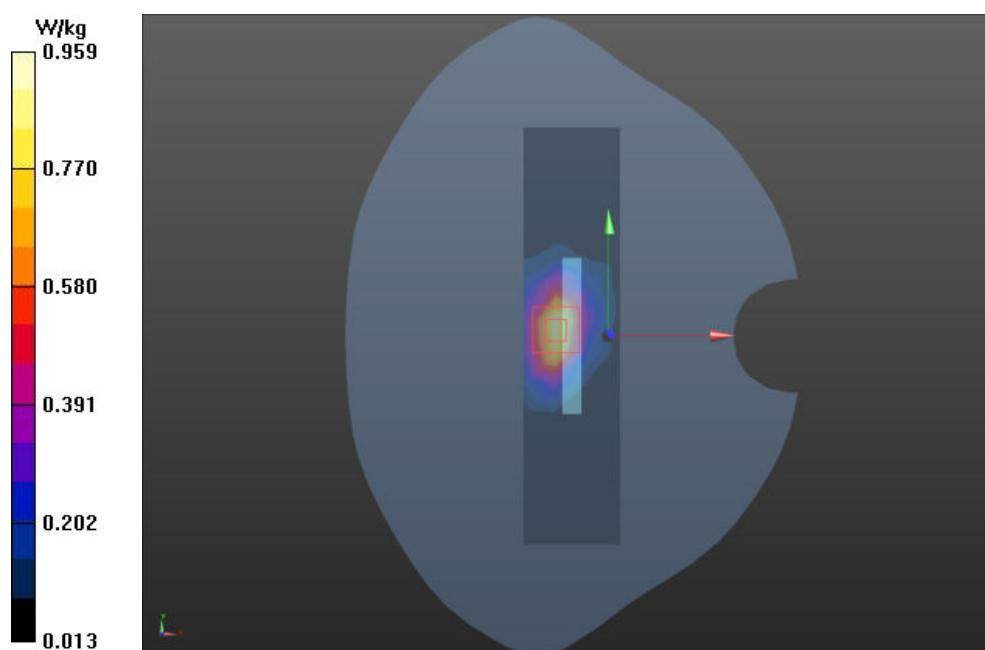
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 10mm/High/Area Scan (4x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.917 W/kg

Bottom Edge 10mm/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.02 V/m; Power Drift = 0.040 dB


Peak SAR (extrapolated) = 1.50 W/kg

SAR(1 g) = 0.914 W/kg; SAR(10 g) = 0.451 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 58.9%

Maximum value of SAR (measured) = 0.959 W/kg

Plot 92 NR n71 50%RB Back Side 10mm Middle

Date: 2024/1/20

Communication System: UID 0, 5G NR (0); Frequency: 680.5 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 680.5$ MHz; $\sigma = 0.886$ S/m; $\epsilon_r = 42.316$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(9.03, 9.80, 9.03); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

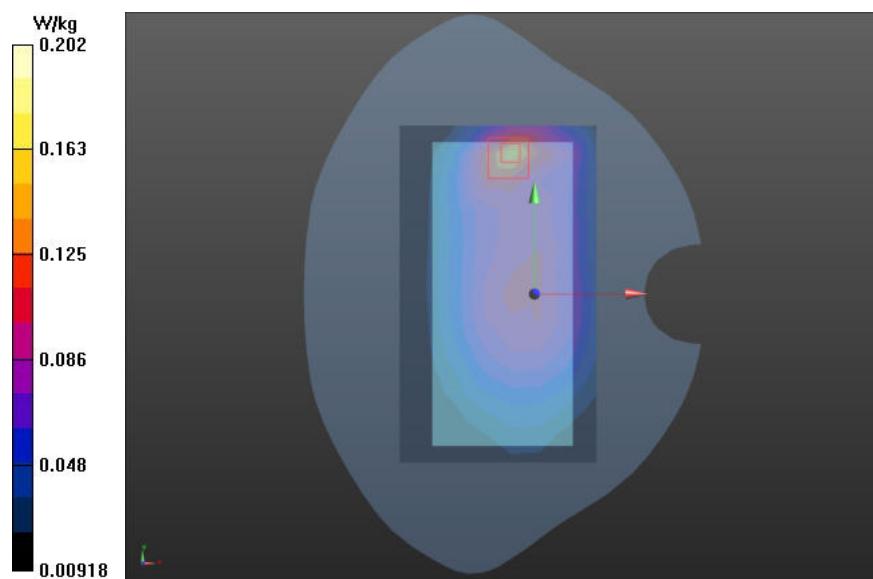
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/Middle/Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 0.162 W/kg

Back Side 10mm/Middle/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.99 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 0.249 W/kg

SAR(1 g) = 0.190 W/kg; SAR(10 g) = 0.116 W/kg

Smallest distance from peaks to all points 3 dB below = 15.8 mm

Ratio of SAR at M2 to SAR at M1 = 60.2%

Maximum value of SAR (measured) = 0.202 W/kg

Plot 93 NR n77 50%RB Back Side 10mm High

Date: 2024/2/6

Communication System: UID 0, 5G NR (0); Frequency: 3930 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3930$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.85, 7.30, 6.98); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

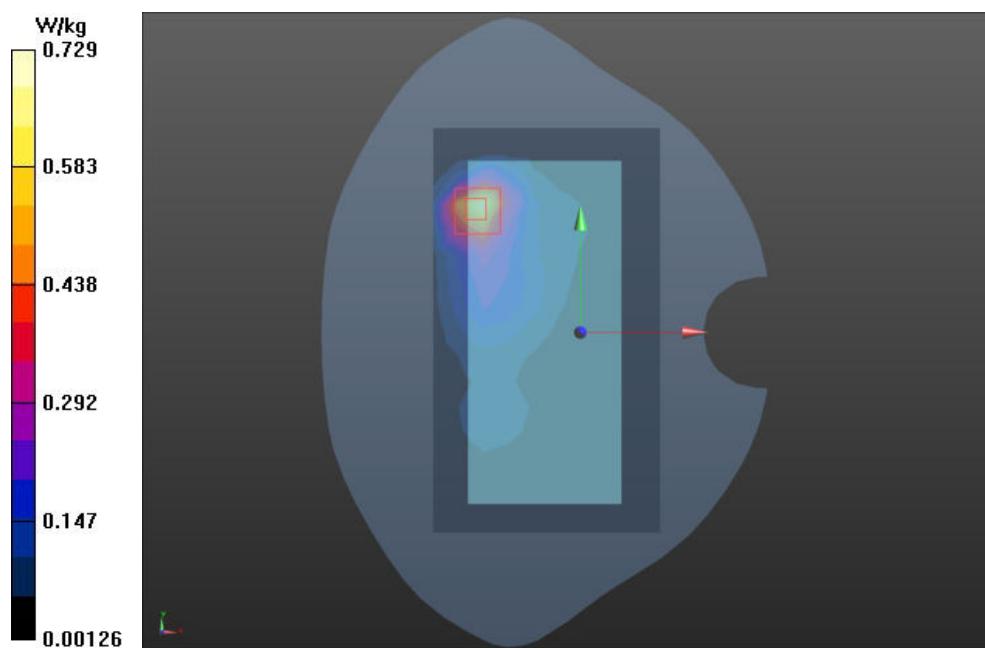
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/High/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 0.699 W/kg

Back Side 10mm/High/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.985 V/m; Power Drift = -0.022 dB


Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.622 W/kg; SAR(10 g) = 0.252 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 48.9%

Maximum value of SAR (measured) = 0.729 W/kg

Plot 94 802.11b Back Side 10mm Middle

Date: 2024/2/1

Communication System: UID 0, 802.11b (0); Frequency: 2437 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2437$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.18, 7.67, 7.29); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/Middle/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.499 W/kg

Back Side 10mm/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.985 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 1.01 W/kg

SAR(1 g) = 0.472 W/kg; SAR(10 g) = 0.221 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 48.9%

Maximum value of SAR (measured) = 0.529 W/kg

Plot 95 802.11a Right Edge 10mm Low

Date: 2024/1/25

Communication System: UID 0, 802.11a (0); Frequency: 5180 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 5180$ MHz; $\sigma = 4.75$ S/m; $\epsilon_r = 36.766$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(5.65, 5.99, 5.81); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

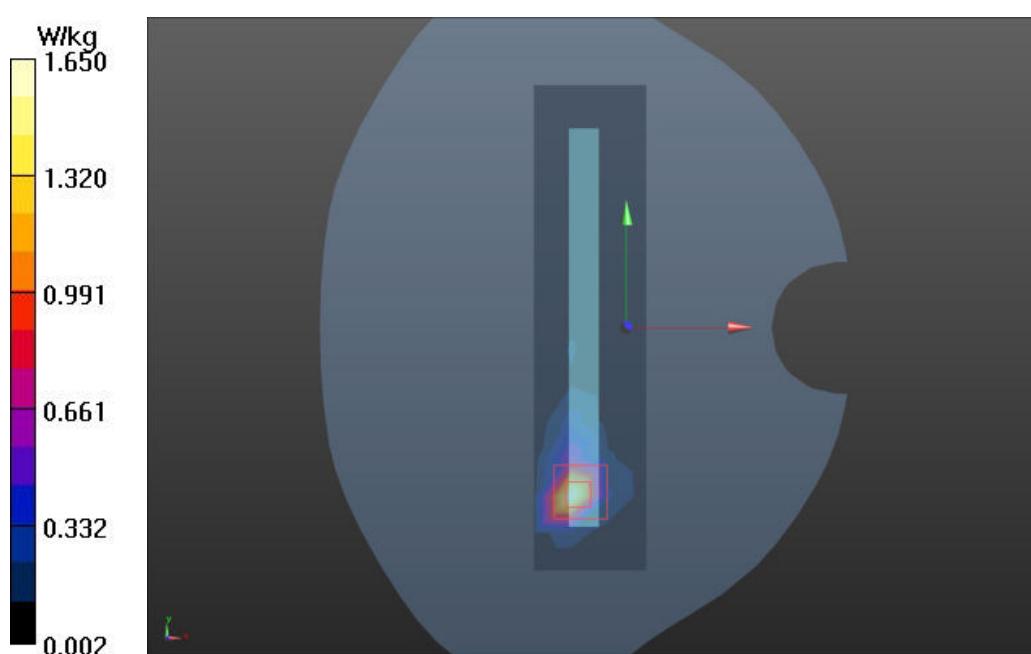
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Right Edge 10mm/Low/Area Scan (6x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 1.47 W/kg

Right Edge 10mm/Low/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 1.757 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 2.89 W/kg

SAR(1 g) = 0.733 W/kg; SAR(10 g) = 0.236 W/kg

Smallest distance from peaks to all points 3 dB below = 9.8 mm

Ratio of SAR at M2 to SAR at M1 = 44.6%

Maximum value of SAR (measured) = 1.65 W/kg

Plot 96 Bluetooth DH5 Back Side 10mm Middle

Date: 2024/2/1

Communication System: UID 0, BT (0); Frequency: 2441 MHz; Duty Cycle: 1:1.32

Medium parameters used: $f = 2441$ MHz; $\sigma = 1.834$ S/m; $\epsilon_r = 37.585$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.18, 7.67, 7.29); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

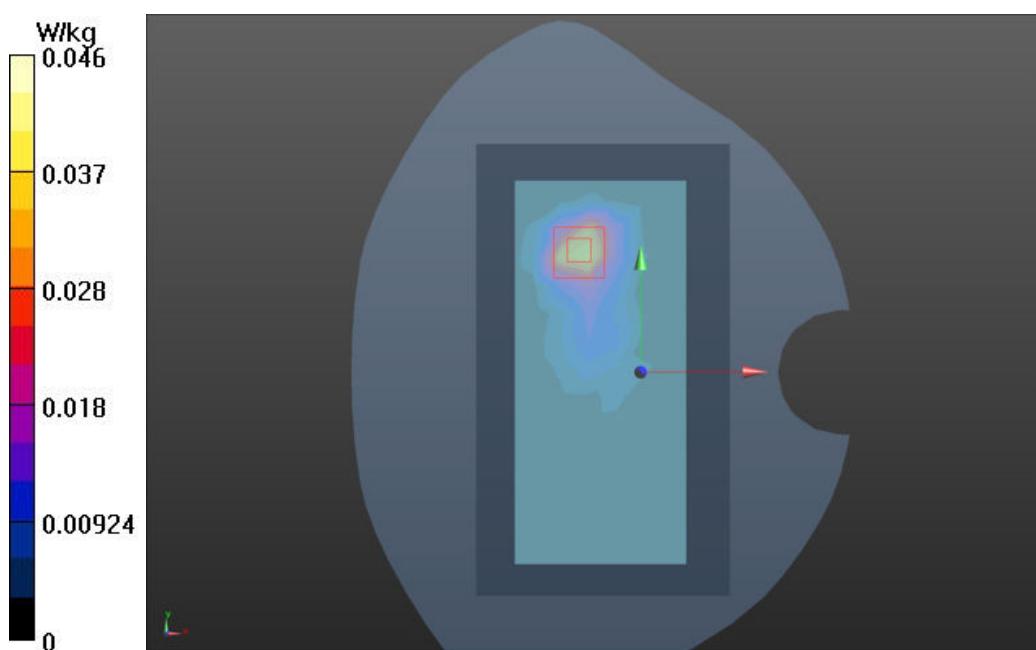
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/Middle/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.041 W/kg

Back Side 10mm/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.198 V/m; Power Drift = 0.100 dB


Peak SAR (extrapolated) = 0.093 W/kg

SAR(1 g) = 0.040 W/kg; SAR(10 g) = 0.017 W/kg

Smallest distance from peaks to all points 3 dB below=9.8mm

Ratio of SAR at M2 to SAR at M1 = 46.6%

Maximum value of SAR (measured) = 0.046 W/kg

Plot 97 WCDMA Band 2 Bottom Edge 0mm Low

Date: 2024/2/2

Communication System: UID 0, WCDMA (0); Frequency: 1852.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 1852.4$ MHz; $\sigma = 1.384$ S/m; $\epsilon_r = 39.118$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

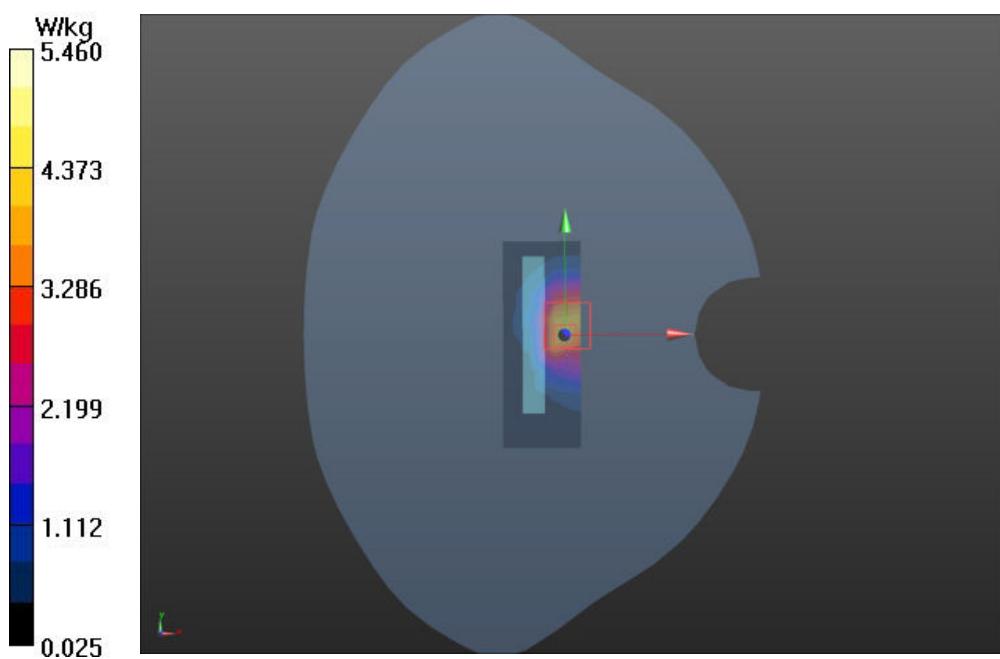
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 0mm/Low/Area Scan (4x8x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 4.920 W/kg

Bottom Edge 0mm/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.760 V/m; Power Drift = -0.070 dB


Peak SAR (extrapolated) = 12.4 W/kg

SAR(1 g) = 4.740 W/kg; SAR(10 g) = 2.380 W/kg

Smallest distance from peaks to all points 3 dB below = 10.7 mm

Ratio of SAR at M2 to SAR at M1 = 39.7%

Maximum value of SAR (measured) = 5.460 W/kg

Plot 98 WCDMA Band 4 Bottom Edge 0mm Low

Date: 2024/1/19

Communication System: UID 0, WCDMA (0); Frequency: 1712.4 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 1712.4$ MHz; $\sigma = 1.312$ S/m; $\epsilon_r = 37.834$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

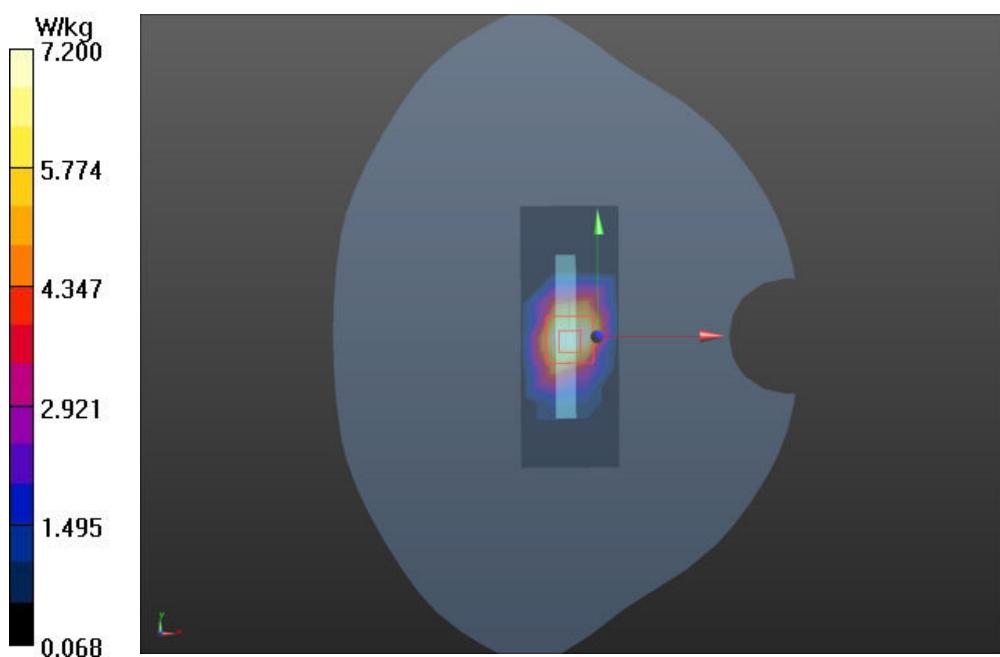
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 0mm/Low/Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.450 W/kg

Bottom Edge 0mm/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 80.040 V/m; Power Drift = -0.063 dB


Peak SAR (extrapolated) = 16.3 W/kg

SAR(1 g) = 5.060 W/kg; SAR(10 g) = 2.410 W/kg

Smallest distance from peaks to all points 3 dB below = 14.8 mm

Ratio of SAR at M2 to SAR at M1 = 28.3%

Maximum value of SAR (measured) = 7.200 W/kg

Plot 99 LTE Band 66 50%RB Bottom Edge 0mm High

Date: 2024/1/21

Communication System: UID 0, LTE (0); Frequency: 1770 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1770$ MHz; $\sigma = 1.358$ S/m; $\epsilon_r = 37.7$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

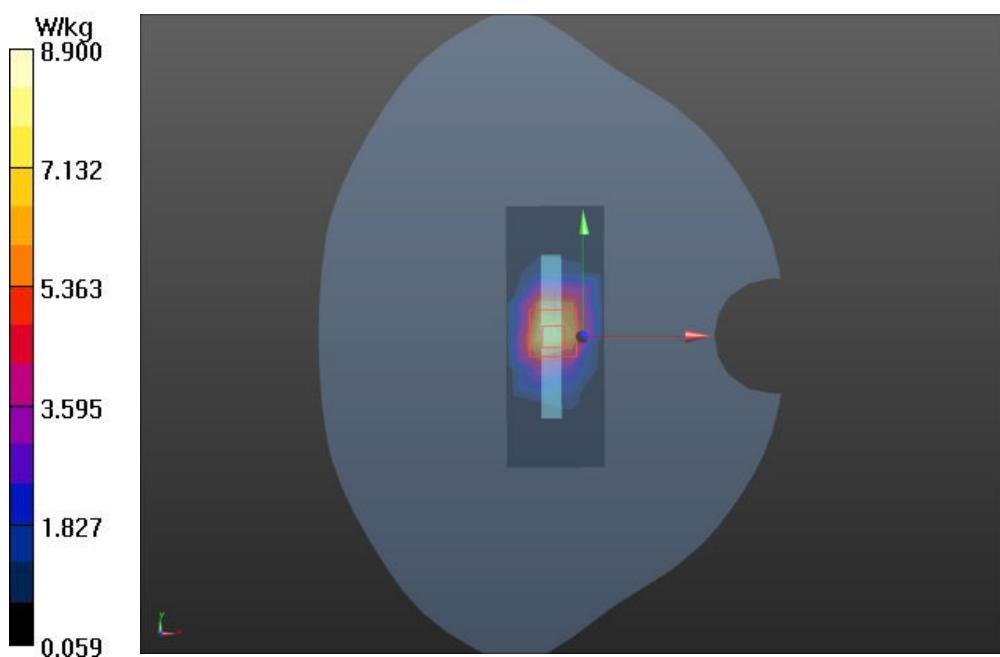
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 10mm/High/Area Scan (4x9x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 6.430 W/kg

Bottom Edge 10mm/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 79.020 V/m; Power Drift = -0.053 dB


Peak SAR (extrapolated) = 15.9 W/kg

SAR(1 g) = 4.950 W/kg; SAR(10 g) = 2.330 W/kg

Smallest distance from peaks to all points 3 dB below = 9.8 mm

Ratio of SAR at M2 to SAR at M1 = 58%

Maximum value of SAR (measured) = 8.900 W/kg

Plot 100 NR n2 50%RB Bottom Edge 0mm Low

Date: 2024/2/4

Communication System: UID 0, 5G NR (0); Frequency: 1870 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1860$ MHz; $\sigma = 1.39$ S/m; $\epsilon_r = 39.098$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.70, 8.25, 7.79); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

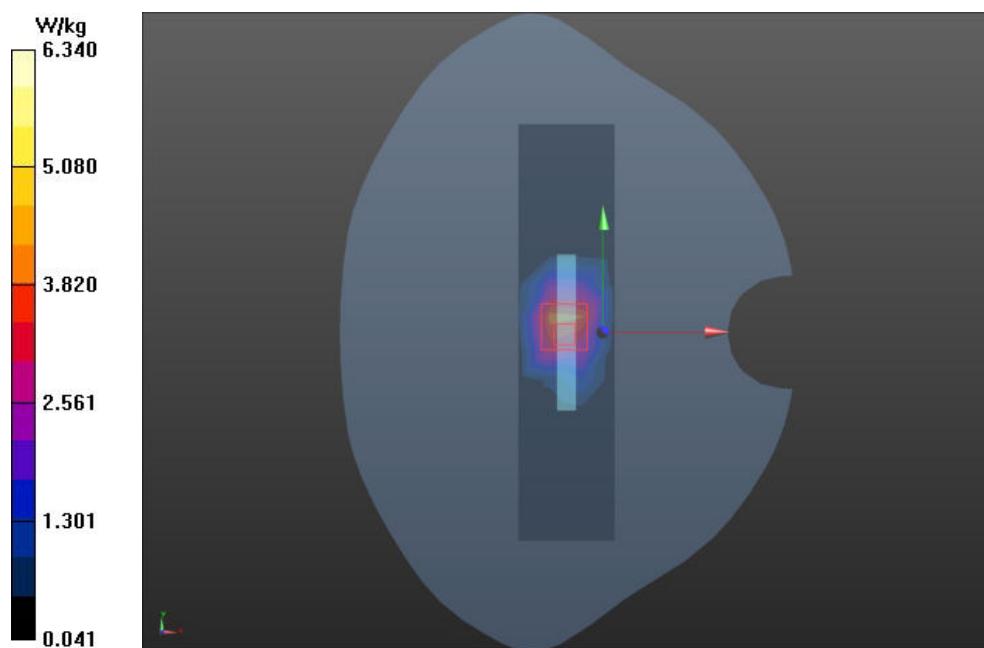
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 0mm/Low/Area Scan (4x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 4.04 W/kg

Bottom Edge 0mm/Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 64.17 V/m; Power Drift = 0.19 dB


Peak SAR (extrapolated) = 13.2 W/kg

SAR(1 g) = 5.27 W/kg; SAR(10 g) = 2.57 W/kg

Smallest distance from peaks to all points 3 dB below = 6.4 mm

Ratio of SAR at M2 to SAR at M1 = 45.7%

Maximum value of SAR (measured) = 6.34 W/kg

Plot 101 NR n48 50%RB Back Side 0mm Low

Date: 2024/1/30

Communication System: UID 0, 5G NR (0); Frequency: 3600 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3600$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.80, 7.27, 6.93); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

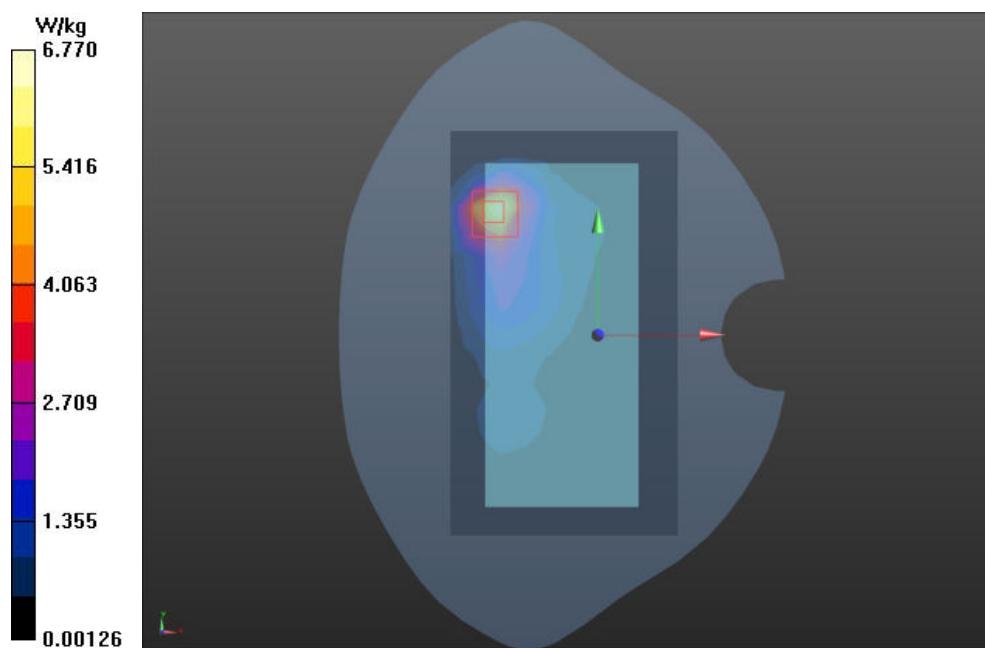
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 0mm/Middle/Area Scan (10x17x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 6.499 W/kg

Back Side 0mm/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.985 V/m; Power Drift = -0.033 dB


Peak SAR (extrapolated) = 12.01 W/kg

SAR(1 g) = 5.72 W/kg; SAR(10 g) = 2.14 W/kg

Smallest distance from peaks to all points 3 dB below = 12.2 mm

Ratio of SAR at M2 to SAR at M1 = 48.9%

Maximum value of SAR (measured) = 6.77 W/kg

Plot 102 NR n66 50%RB Bottom Edge 0mm High

Date: 2024/1/21

Communication System: UID 0, 5G NR (0); Frequency: 1760 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 1760$ MHz; $\sigma = 1.322$ S/m; $\epsilon_r = 39.351$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.80, 8.35, 7.88); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

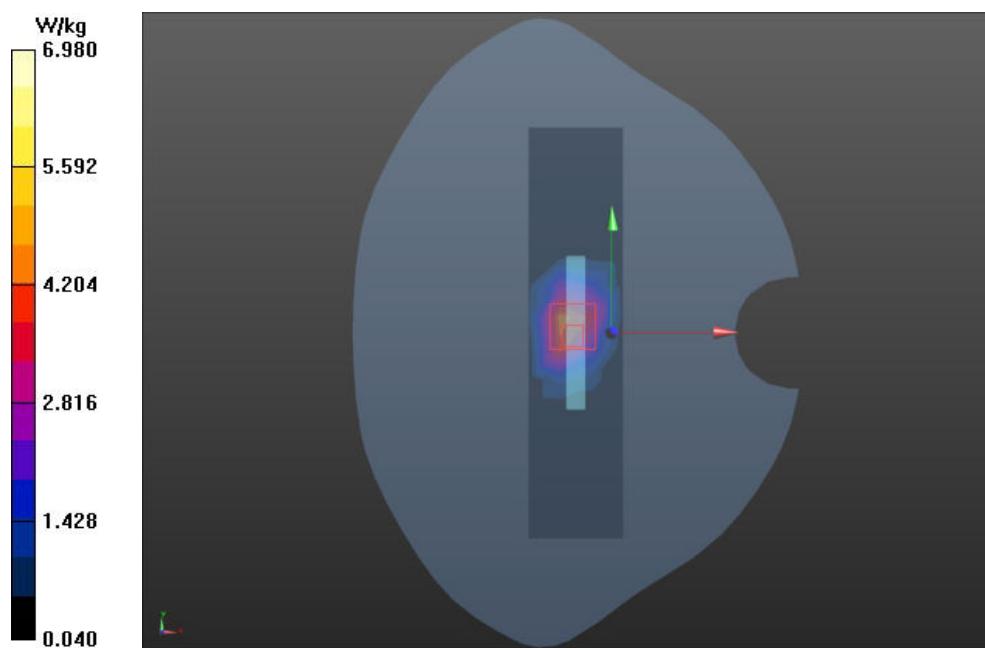
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Bottom Edge 0mm/High/Area Scan (4x14x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (measured) = 4.48 W/kg

Bottom Edge 0mm/High/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 71.50 V/m; Power Drift = -0.04 dB


Peak SAR (extrapolated) = 13.4 W/kg

SAR(1 g) = 4.83 W/kg; SAR(10 g) = 2.28 W/kg

Smallest distance from peaks to all points 3 dB below = 9.2 mm

Ratio of SAR at M2 to SAR at M1 = 44.4%

Maximum value of SAR (measured) = 6.98 W/kg

Plot 103 NR n77 50%RB Back Side 0mm High

Date: 2024/2/6

Communication System: UID 0, 5G NR (0); Frequency: 3930 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 3930$ MHz; $\sigma = 1.831$ S/m; $\epsilon_r = 37.663$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(6.85, 7.30, 6.98); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

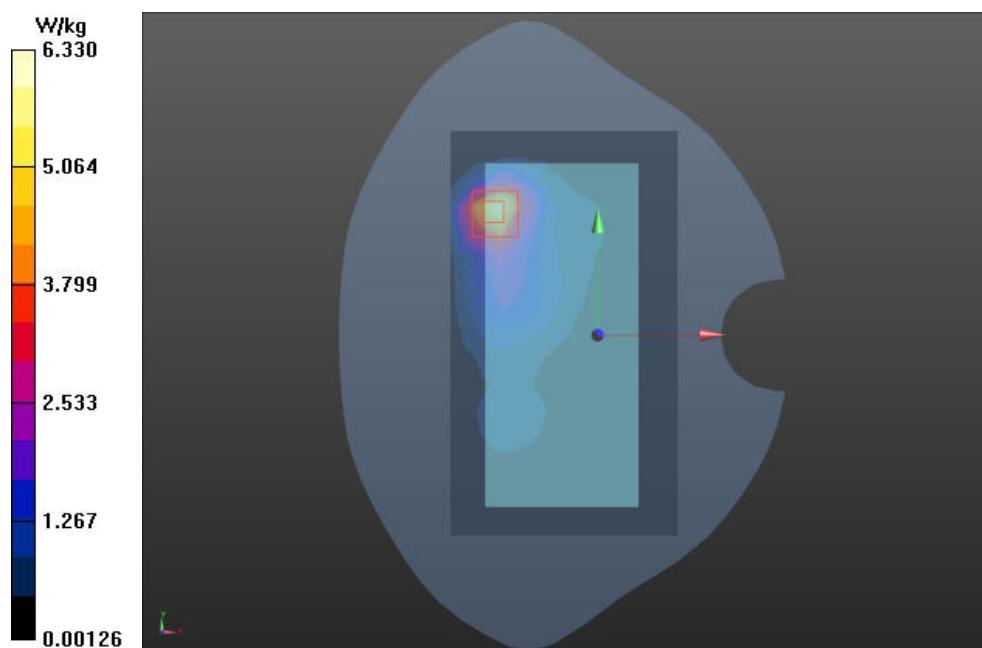
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 0mm/High/Area Scan (12x20x1): Measurement grid: dx=10mm, dy=10mm

Maximum value of SAR (measured) = 5.49 W/kg

Back Side 0mm/High/Zoom Scan (7x7x12)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=2mm

Reference Value = 4.985 V/m; Power Drift = 0.037 dB


Peak SAR (extrapolated) = 11.01 W/kg

SAR(1 g) = 4.97 W/kg; SAR(10 g) = 1.94 W/kg

Smallest distance from peaks to all points 3 dB below = 11.2 mm

Ratio of SAR at M2 to SAR at M1 = 48.9%

Maximum value of SAR (measured) = 6.33 W/kg

Plot 104 LTE Band7 1RB Back Side 10mm High(EN-DC)

Date: 2024/2/19

Communication System: UID 0, LTE (0); Frequency: 2560 MHz; Duty Cycle: 1:1

Medium parameters used: $f = 2560$ MHz; $\sigma = 1.953$ S/m; $\epsilon_r = 38.015$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

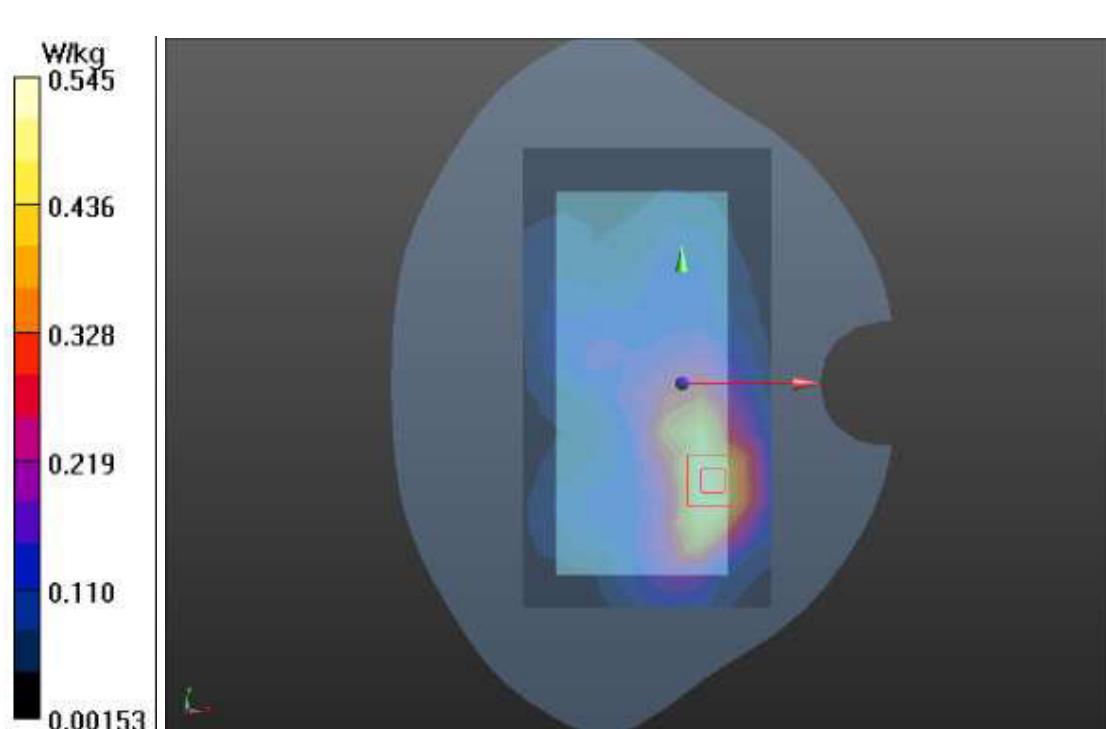
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/High 2/Area Scan (10x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.520 W/kg

Back Side 10mm/High 2/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.576 V/m; Power Drift = 0.040 dB


Peak SAR (extrapolated) = 1.010 W/kg

SAR(1 g) = 0.502 W/kg; SAR(10 g) = 0.258 W/kg

Smallest distance from peaks to all points 3 dB below = 14.2 mm

Ratio of SAR at M2 to SAR at M1 = 48.6%

Maximum value of SAR (measured) = 0.545 W/kg

Plot 105 LTE Band41 1RB Back Side 10mm Middle(EN-DC)

Date: 2024/2/19

Communication System: UID 0, LTE (0); Frequency: 2549.5 MHz; Duty Cycle: 1:1.58

Medium parameters used (interpolated): $f = 2549.5$ MHz; $\sigma = 1.942$ S/m; $\epsilon_r = 38.069$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.3 °C Liquid Temperature: 21.5 °C

Phantom section: Flat Section

DASY5 Configuration:

Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Probe: EX3DV4 - SN3677; ConvF(7.10, 7.59, 7.21); Calibrated: 2023/7/20

Electronics: DAE4 SN1317; Calibrated: 2023/9/13

Phantom: SAM 2; Type: QD000P40CD; Serial: TP:1666

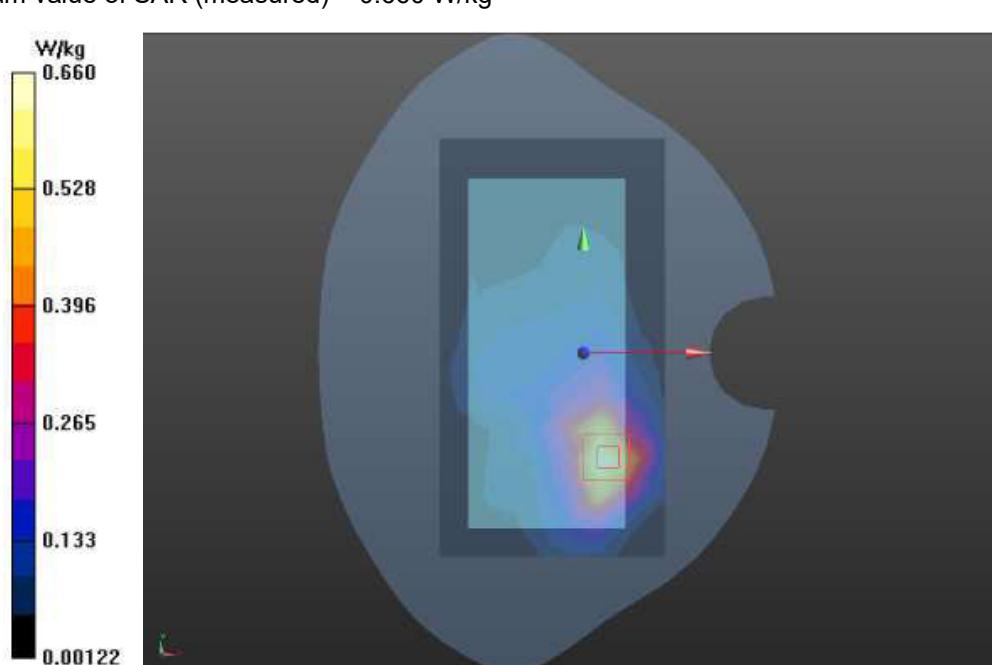
Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483)

Back Side 10mm/Middle/Area Scan (9x18x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 0.651 W/kg

Back Side 10mm/Middle/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 7.448 V/m; Power Drift = 0.044 dB


Peak SAR (extrapolated) = 1.25 W/kg

SAR(1 g) = 0.619 W/kg; SAR(10 g) = 0.317 W/kg

Smallest distance from peaks to all points 3 dB below = 15.1 mm

Ratio of SAR at M2 to SAR at M1 = 49.5%

Maximum value of SAR (measured) = 0.660 W/kg

ANNEX D: Probe Calibration Certificate (SN: 3677)

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Client **TA**
Shanghai City

Certificate No. **EX-3677_Jul23**

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3677**

Calibration procedure(s) **QA CAL-01.v10, QA CAL-12.v10, QA CAL-14.v7, QA CAL-23.v6,
QA CAL-25.v8
Calibration procedure for dosimetric E-field probes**

Calibration date **July 20, 2023**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP2	SN: 104778	30-Mar-23 (No. 217-03804/03805)	Mar-24
Power sensor NRP-Z91	SN: 103244	30-Mar-23 (No. 217-03804)	Mar-24
OCP DAK-3.5 (weighted)	SN: 1249	20-Oct-22 (OCP-DAK3.5-1249_Oct22)	Oct-23
OCP DAK-12	SN: 1016	20-Oct-22 (OCP-DAK12-1016_Oct22)	Oct-23
Reference 20 dB Attenuator	SN: CC2552 (20x)	30-Mar-23 (No. 217-03809)	Mar-24
DAE4	SN: 660	16-Mar-23 (No. DAE4-660_Mar23)	Mar-24
Reference Probe ES3DV2	SN: 3013	06-Jan-23 (No. ES3-3013_Jan23)	Jan-24

Secondary Standards	ID	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB41293874	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-22)	In house check: Jun-24
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-22)	In house check: Jun-24
Network Analyzer E8358A	SN: US41080477	31-Mar-14 (in house check Oct-22)	In house check: Oct-24

Calibrated by	Name	Function	Signature
Calibrated by	Joanna Lleshaj	Laboratory Technician	
Approved by	Sven Kühn	Technical Manager	

Issued: July 20, 2023
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices – Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020.
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- $NORM_{x,y,z}$: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). $NORM_{x,y,z}$ are only intermediate values, i.e., the uncertainties of $NORM_{x,y,z}$ does not affect the E²-field uncertainty inside TSL (see below ConvF).
- $NORM(f)_{x,y,z} = NORM_{x,y,z} * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- $DCPx,y,z$: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal. DCP does not depend on frequency nor media.
- PAR : PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- $Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z$; VRx,y,z : A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters*: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical Isotropy (3D deviation from isotropy)*: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset*: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle*: The angle is assessed using the information gained by determining the $NORM_x$ (no uncertainty required).

EX3DV4 - SN:3677

July 20, 2023

Parameters of Probe: EX3DV4 - SN:3677
Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k = 2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.40	0.45	0.39	$\pm 10.1\%$
DCP (mV) ^B	101.0	102.0	102.5	$\pm 4.7\%$

Calibration Results for Modulation Response

UID	Communication System Name	A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Max dev.	Max Unc^E k = 2
0	CW	X 0.00	0.00	1.00	0.00	125.6	$\pm 1.9\%$	$\pm 4.7\%$
		Y 0.00	0.00	1.00		121.0		
		Z 0.00	0.00	1.00		122.5		
10352	Pulse Waveform (200Hz, 10%)	X 20.00	89.56	19.55	10.00	60.0	$\pm 2.7\%$	$\pm 9.6\%$
		Y 20.00	88.90	19.41		60.0		
		Z 20.00	87.18	18.16		60.0		
10353	Pulse Waveform (200Hz, 20%)	X 20.00	91.43	19.38	6.99	80.0	$\pm 1.5\%$	$\pm 9.6\%$
		Y 20.00	89.58	18.35		80.0		
		Z 20.00	88.39	17.59		80.0		
10354	Pulse Waveform (200Hz, 40%)	X 20.00	95.46	19.97	3.98	95.0	$\pm 1.3\%$	$\pm 9.6\%$
		Y 20.00	89.26	16.58		95.0		
		Z 20.00	91.18	17.61		95.0		
10355	Pulse Waveform (200Hz, 60%)	X 20.00	99.05	20.33	2.22	120.0	$\pm 1.2\%$	$\pm 9.6\%$
		Y 20.00	83.90	12.80		120.0		
		Z 20.00	93.78	17.60		120.0		
10387	QPSK Waveform, 1 MHz	X 1.51	66.00	14.40	1.00	150.0	$\pm 3.5\%$	$\pm 9.6\%$
		Y 1.29	64.03	13.00		150.0		
		Z 1.42	66.25	14.23		150.0		
10388	QPSK Waveform, 10 MHz	X 2.03	67.08	15.21	0.00	150.0	$\pm 1.0\%$	$\pm 9.6\%$
		Y 1.77	65.25	14.04		150.0		
		Z 1.91	66.70	15.02		150.0		
10396	64-QAM Waveform, 100 kHz	X 2.54	69.26	18.29	3.01	150.0	$\pm 1.1\%$	$\pm 9.6\%$
		Y 2.33	66.49	16.64		150.0		
		Z 2.02	65.39	16.32		150.0		
10399	64-QAM Waveform, 40 MHz	X 3.37	66.69	15.51	0.00	150.0	$\pm 2.6\%$	$\pm 9.6\%$
		Y 3.33	66.54	15.28		150.0		
		Z 3.28	66.50	15.39		150.0		
10414	WLAN CCDF, 64-QAM, 40 MHz	X 4.70	65.49	15.43	0.00	150.0	$\pm 4.5\%$	$\pm 9.6\%$
		Y 4.69	65.54	15.36		150.0		
		Z 4.55	65.38	15.33		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of Norm X,Y,Z do not affect the E^2 -field uncertainty inside TSL (see Pages 5 and 6).

^B Linearization parameter uncertainty for maximum specified field strength.

^E Uncertainty is determined using the max. dev. from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4 - SN:3677

July 20, 2023

Parameters of Probe: EX3DV4 - SN:3677**Sensor Model Parameters**

	C1 fF	C2 fF	α V ⁻¹	T1 ms V ⁻²	T2 ms V ⁻¹	T3 ms	T4 V ⁻²	T5 V ⁻¹	T6
x	36.2	270.59	35.62	12.53	0.00	5.08	0.93	0.23	1.01
y	35.7	269.30	35.97	8.51	0.37	5.07	0.00	0.44	1.01
z	30.7	227.00	34.93	10.81	0.00	5.06	0.00	0.25	1.00

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle	-66.7°
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3–4 mm for an *Area Scan* job.

EX3DV4 - SN:3677

July 20, 2023

Parameters of Probe: EX3DV4 - SN:3677
Calibration Parameter Determined in Head Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
13	55.0	0.75	15.21	15.21	15.21	0.00	1.25	±13.3%
750	41.9	0.89	9.03	9.80	9.03	0.45	1.27	±12.0%
835	41.5	0.90	8.66	9.52	8.51	0.43	1.27	±12.0%
1750	40.1	1.37	7.80	8.35	7.88	0.29	1.27	±12.0%
1900	40.0	1.40	7.70	8.25	7.79	0.31	1.27	±12.0%
2000	40.0	1.40	7.55	8.11	7.69	0.32	1.27	±12.0%
2300	39.5	1.67	7.45	8.00	7.60	0.33	1.27	±12.0%
2450	39.2	1.80	7.18	7.67	7.29	0.32	1.27	±12.0%
2600	39.0	1.96	7.10	7.59	7.21	0.32	1.27	±12.0%
3300	38.2	2.71	6.95	7.41	7.04	0.35	1.27	±14.0%
3500	37.9	2.91	6.87	7.33	6.99	0.34	1.27	±14.0%
3700	37.7	3.12	6.80	7.27	6.93	0.33	1.27	±14.0%
3900	37.5	3.32	6.85	7.30	6.98	0.33	1.27	±14.0%
4100	37.2	3.53	6.65	7.07	6.82	0.34	1.27	±14.0%
4400	36.9	3.84	6.55	6.97	6.67	0.34	1.27	±14.0%
4600	36.7	4.04	6.50	6.92	6.63	0.35	1.27	±14.0%
4800	36.4	4.25	6.40	6.81	6.55	0.39	1.27	±14.0%
4950	36.3	4.40	6.00	6.39	6.14	0.44	1.36	±14.0%
5250	35.9	4.71	5.65	5.99	5.81	0.43	1.53	±14.0%
5600	35.5	5.07	4.92	5.23	5.04	0.41	1.75	±14.0%
5750	35.4	5.22	5.14	5.41	5.20	0.39	1.84	±14.0%

^C Frequency validity above 300 MHz of ±100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ±50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ±10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4–9 MHz, and ConvF assessed at 13 MHz is 9–19 MHz. Above 5 GHz frequency validity can be extended to ±110 MHz.

^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for c and σ by less than ±5% from the target values (typically better than ±3%) and are valid for TSL with deviations of up to ±10%. If TSL with deviations from the target of less than ±5% are used, the calibration uncertainties are 11.1% for 0.7 - 3 GHz and 13.1% for 3 - 6 GHz.

^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz and below ±2% for frequencies between 3–6 GHz at any distance larger than half the probe tip diameter from the boundary.

EX3DV4 - SN:3677

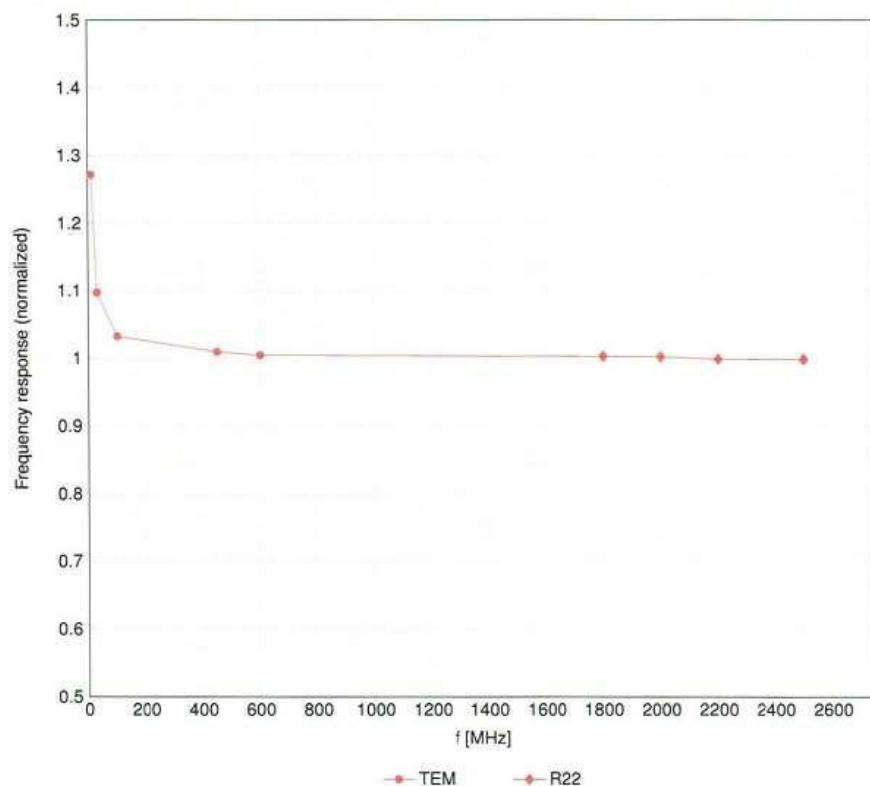
July 20, 2023

Parameters of Probe: EX3DV4 - SN:3677**Calibration Parameter Determined in Head Tissue Simulating Media**

f (MHz) ^C	Relative Permittivity ^F	Conductivity ^F (S/m)	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k = 2)
6500	34.5	6.07	5.51	5.85	5.61	0.20	2.00	±18.6%

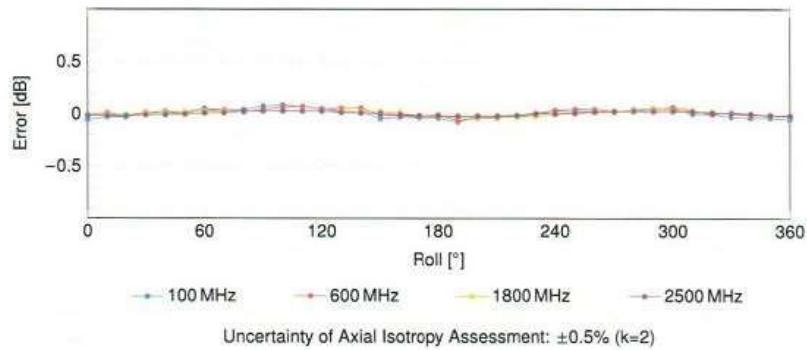
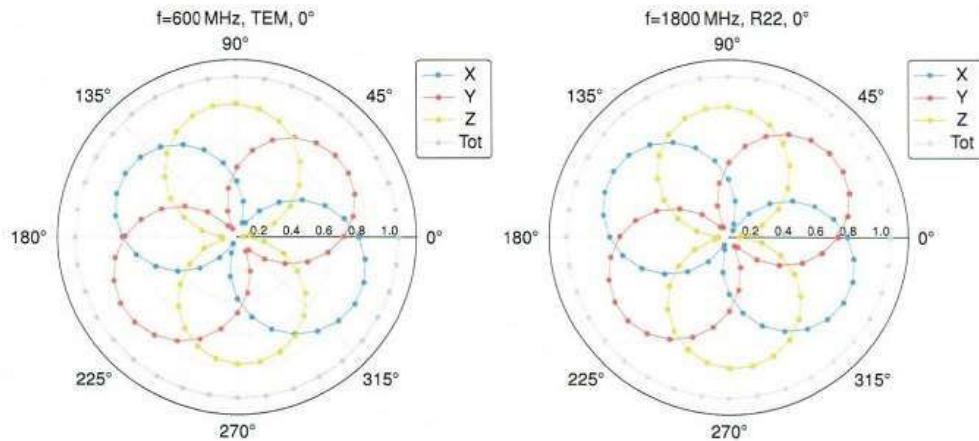
^C Frequency validity at 6.5 GHz is –600/+700 MHz, and ±700 MHz at or above 7 GHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F The probes are calibrated using tissue simulating liquids (TSL) that deviate for ϵ and σ by less than ±10% from the target values (typically better than ±6%) and are valid for TSL with deviations of up to ±10%.


^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ±1% for frequencies below 3 GHz; below ±2% for frequencies between 3–6 GHz; and below ±4% for frequencies between 6–10 GHz at any distance larger than half the probe tip diameter from the boundary.

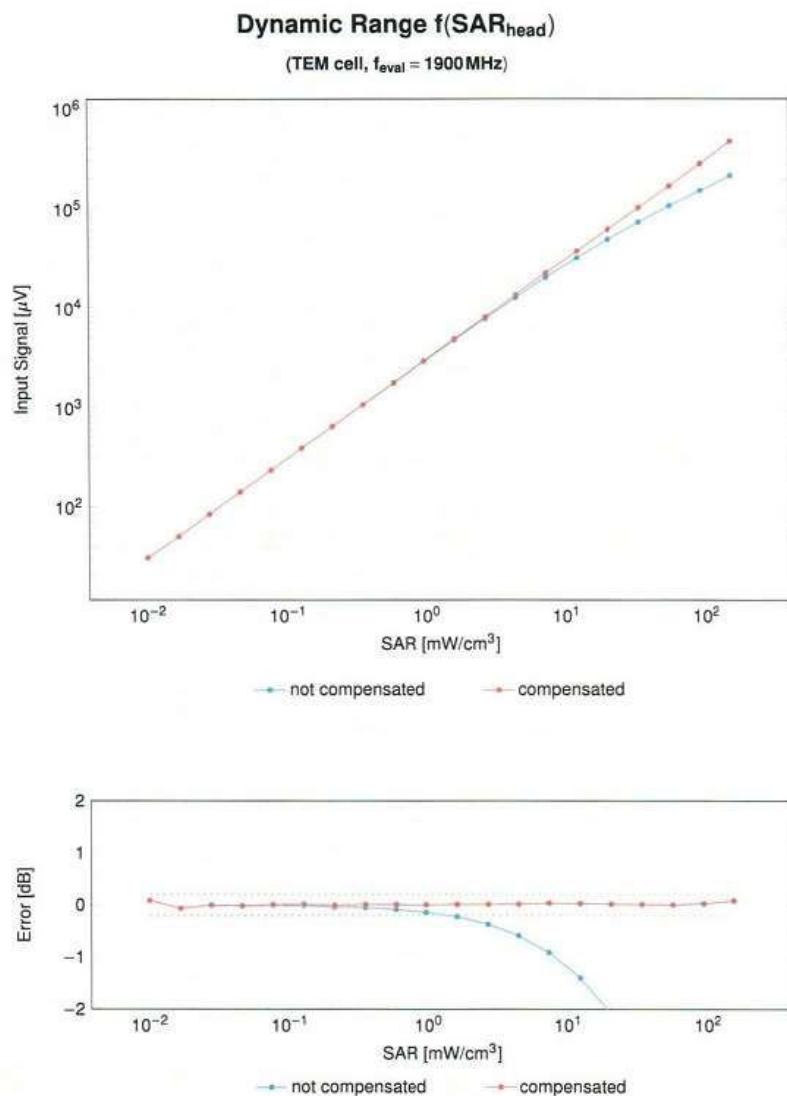
EX3DV4 - SN:3677

July 20, 2023



Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide:R22)

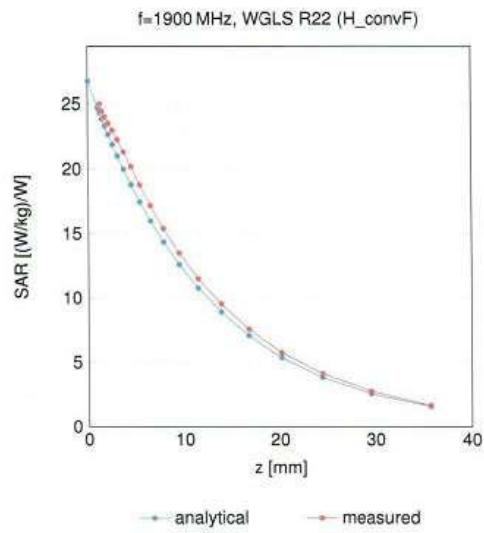
Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)


EX3DV4 - SN:3677

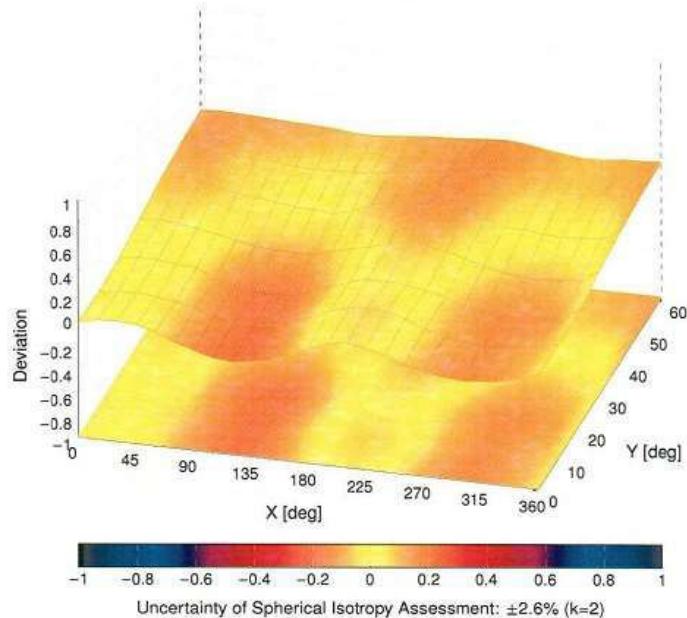
July 20, 2023

Receiving Pattern (ϕ), $\theta = 0^\circ$

EX3DV4 - SN:3677


July 20, 2023

Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)


EX3DV4 - SN:3677

July 20, 2023

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), f = 900 MHz

EX3DV4 - SN:3677

July 20, 2023

Appendix: Modulation Calibration Parameters

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
0		CW	CW	0.00	±9.6
10010	CAB	SAR Validation (Square, 100 ms, 10 ms)	Test	10.00	±9.6
10011	CAC	UMTS-FDD (WCDMA)	WCDMA	2.91	±9.6
10012	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps)	WLAN	1.87	±9.6
10013	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps)	WLAN	9.46	±9.6
10021	DAC	GSM-FDD (TDMA, GMSK)	GSM	9.39	±9.6
10023	DAC	GPRS-FDD (TDMA, GMSK, TN 0)	GSM	9.57	±9.6
10024	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1)	GSM	6.56	±9.6
10025	DAC	EDGE-FDD (TDMA, 8PSK, TN 0)	GSM	12.62	±9.6
10026	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1)	GSM	9.55	±9.6
10027	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2)	GSM	4.80	±9.6
10028	DAC	GPRS-FDD (TDMA, GMSK, TN 0-1-2-3)	GSM	3.55	±9.6
10029	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2)	GSM	7.78	±9.6
10030	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH1)	Bluetooth	5.30	±9.6
10031	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH3)	Bluetooth	1.87	±9.6
10032	CAA	IEEE 802.15.1 Bluetooth (GFSK, DH5)	Bluetooth	1.16	±9.6
10033	CAA	IEEE 802.15.1 Bluetooth (Pi/4-DQPSK, DH1)	Bluetooth	7.74	±9.6
10034	CAA	IEEE 802.15.1 Bluetooth (Pi/4-DQPSK, DH3)	Bluetooth	4.53	±9.6
10035	CAA	IEEE 802.15.1 Bluetooth (Pi/4-DQPSK, DH5)	Bluetooth	3.83	±9.6
10036	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH1)	Bluetooth	8.01	±9.6
10037	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH3)	Bluetooth	4.77	±9.6
10038	CAA	IEEE 802.15.1 Bluetooth (8-DPSK, DH5)	Bluetooth	4.10	±9.6
10039	CAB	CDMA2000 (1xRTT, RC1)	CDMA2000	4.57	±9.6
10042	CAB	IS-54 / IS-136 FDD (TDMA/FDM, Pi/4-DQPSK, Halfrate)	AMPS	7.78	±9.6
10044	CAA	IS-91/EIA/TIA-553 FDD (FDMA, FM)	AMPS	0.00	±9.6
10048	CAA	DECT (TDD, TDMA/FDM, GFSK, Full Slot, 24)	DECT	13.80	±9.6
10049	CAA	DECT (TDD, TDMA/FDM, GFSK, Double Slot, 12)	DECT	10.79	±9.6
10056	CAA	UMTS-TDD (TD-SCDMA, 1.28 Mcps)	TD-SCDMA	11.01	±9.6
10058	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-1-2-3)	GSM	6.52	±9.6
10059	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps)	WLAN	2.12	±9.6
10060	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps)	WLAN	2.83	±9.6
10061	CAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps)	WLAN	3.60	±9.6
10062	CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps)	WLAN	8.68	±9.6
10063	CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps)	WLAN	8.63	±9.6
10064	CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps)	WLAN	9.09	±9.6
10065	CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps)	WLAN	9.00	±9.6
10066	CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps)	WLAN	9.38	±9.6
10067	CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps)	WLAN	10.12	±9.6
10068	CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps)	WLAN	10.24	±9.6
10069	CAB	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps)	WLAN	10.56	±9.6
10071	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 9 Mbps)	WLAN	9.83	±9.6
10072	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 12 Mbps)	WLAN	9.62	±9.6
10073	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 18 Mbps)	WLAN	9.94	±9.6
10074	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 24 Mbps)	WLAN	10.30	±9.6
10075	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 36 Mbps)	WLAN	10.77	±9.6
10076	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 48 Mbps)	WLAN	10.94	±9.6
10077	CAB	IEEE 802.11g WiFi 2.4 GHz (DSSS/OFDM, 54 Mbps)	WLAN	11.00	±9.6
10081	CAB	CDMA2000 (1xRTT, RC3)	CDMA2000	3.97	±9.6
10082	CAB	IS-54 / IS-136 FDD (TDMA/FDM, Pi/4-DQPSK, Fullrate)	AMPS	4.77	±9.6
10090	DAC	GPRS-FDD (TDMA, GMSK, TN 0-4)	GSM	6.56	±9.6
10097	CAC	UMTS-FDD (HSDPA)	WCDMA	3.98	±9.6
10098	CAC	UMTS-FDD (HSUPA, Subtest 2)	WCDMA	3.98	±9.6
10099	DAC	EDGE-FDD (TDMA, 8PSK, TN 0-4)	GSM	9.55	±9.6
10100	CAF	LTE-FDD (SC-FDMA, 100% RB, 20MHz, QPSK)	LTE-FDD	5.67	±9.6
10101	CAF	LTE-FDD (SC-FDMA, 100% RB, 20MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10102	CAF	LTE-FDD (SC-FDMA, 100% RB, 20MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10103	CAF	LTE-TDD (SC-FDMA, 100% RB, 20MHz, QPSK)	LTE-TDD	9.29	±9.6
10104	CAF	LTE-TDD (SC-FDMA, 100% RB, 20MHz, 16-QAM)	LTE-TDD	9.97	±9.6
10105	CAF	LTE-TDD (SC-FDMA, 100% RB, 20MHz, 64-QAM)	LTE-TDD	10.01	±9.6
10108	CAF	LTE-FDD (SC-FDMA, 100% RB, 10MHz, QPSK)	LTE-FDD	5.80	±9.6
10109	CAF	LTE-FDD (SC-FDMA, 100% RB, 10MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10110	CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, QPSK)	LTE-FDD	5.75	±9.6
10111	CAF	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM)	LTE-FDD	6.44	±9.6

Certificate No: EX-3677_Jul23

Page 11 of 22

EX3DV4 - SN:3677

July 20, 2023

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10112	CAH	LTE-FDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM)	LTE-FDD	6.59	±9.6
10113	CAH	LTE-FDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10114	CAD	IEEE 802.11n (HT Greenfield, 13.5 Mbps, BPSK)	WLAN	8.10	±9.6
10115	CAD	IEEE 802.11n (HT Greenfield, 81 Mbps, 16-QAM)	WLAN	8.46	±9.6
10116	CAD	IEEE 802.11n (HT Greenfield, 135 Mbps, 64-QAM)	WLAN	8.15	±9.6
10117	CAD	IEEE 802.11n (HT Mixed, 13.5 Mbps, BPSK)	WLAN	8.07	±9.6
10118	CAD	IEEE 802.11n (HT Mixed, 81 Mbps, 16-QAM)	WLAN	8.59	±9.6
10119	CAD	IEEE 802.11n (HT Mixed, 135 Mbps, 64-QAM)	WLAN	8.13	±9.6
10140	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10141	CAF	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM)	LTE-FDD	6.53	±9.6
10142	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10143	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM)	LTE-FDD	6.35	±9.6
10144	CAF	LTE-FDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM)	LTE-FDD	6.65	±9.6
10145	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-FDD	5.76	±9.6
10146	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.41	±9.6
10147	CAG	LTE-FDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.72	±9.6
10149	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-FDD	6.42	±9.6
10150	CAF	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10151	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-TDD	9.28	±9.6
10152	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10153	CAH	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM)	LTE-TDD	10.05	±9.6
10154	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, QPSK)	LTE-FDD	5.75	±9.6
10155	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10156	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, QPSK)	LTE-FDD	5.79	±9.6
10157	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM)	LTE-FDD	6.49	±9.6
10158	CAH	LTE-FDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM)	LTE-FDD	6.62	±9.6
10159	CAH	LTE-FDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM)	LTE-FDD	6.56	±9.6
10160	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, QPSK)	LTE-FDD	5.82	±9.6
10161	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM)	LTE-FDD	6.43	±9.6
10162	CAF	LTE-FDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM)	LTE-FDD	6.58	±9.6
10166	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-FDD	5.46	±9.6
10167	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.21	±9.6
10168	CAG	LTE-FDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.79	±9.6
10169	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-FDD	5.73	±9.6
10170	CAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10171	AAF	LTE-FDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-FDD	6.49	±9.6
10172	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK)	LTE-TDD	9.21	±9.6
10173	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10174	CAH	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10175	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, QPSK)	LTE-FDD	5.72	±9.6
10176	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10177	CAJ	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, QPSK)	LTE-FDD	5.73	±9.6
10178	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10179	CAH	LTE-FDD (SC-FDMA, 1 RB, 10 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10180	CAH	LTE-FDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10181	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, QPSK)	LTE-FDD	5.72	±9.6
10182	CAF	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10183	AAE	LTE-FDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10184	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, QPSK)	LTE-FDD	5.73	±9.6
10185	CAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM)	LTE-FDD	6.51	±9.6
10186	AAF	LTE-FDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10187	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-FDD	5.73	±9.6
10188	CAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-FDD	6.52	±9.6
10189	AAG	LTE-FDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-FDD	6.50	±9.6
10193	CAD	IEEE 802.11n (HT Greenfield, 6.5 Mbps, BPSK)	WLAN	8.09	±9.6
10194	CAD	IEEE 802.11n (HT Greenfield, 39 Mbps, 16-QAM)	WLAN	8.12	±9.6
10195	CAD	IEEE 802.11n (HT Greenfield, 65 Mbps, 64-QAM)	WLAN	8.21	±9.6
10196	CAD	IEEE 802.11n (HT Mixed, 6.5 Mbps, BPSK)	WLAN	8.10	±9.6
10197	CAD	IEEE 802.11n (HT Mixed, 39 Mbps, 16-QAM)	WLAN	8.13	±9.6
10198	CAD	IEEE 802.11n (HT Mixed, 65 Mbps, 64-QAM)	WLAN	8.27	±9.6
10219	CAD	IEEE 802.11n (HT Mixed, 7.2 Mbps, BPSK)	WLAN	8.03	±9.6
10220	CAD	IEEE 802.11n (HT Mixed, 43.3 Mbps, 16-QAM)	WLAN	8.13	±9.6
10221	CAD	IEEE 802.11n (HT Mixed, 72.2 Mbps, 64-QAM)	WLAN	8.27	±9.6
10222	CAD	IEEE 802.11n (HT Mixed, 15 Mbps, BPSK)	WLAN	8.06	±9.6
10223	CAD	IEEE 802.11n (HT Mixed, 90 Mbps, 16-QAM)	WLAN	8.48	±9.6
10224	CAD	IEEE 802.11n (HT Mixed, 150 Mbps, 64-QAM)	WLAN	8.08	±9.6

Certificate No: EX-3677_Jul23

Page 12 of 22

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10225	CAC	UMTS-FDD (HSPA+)	WCDMA	5.97	±9.6
10226	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.49	±9.6
10227	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.26	±9.6
10228	CAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK)	LTE-TDD	9.22	±9.6
10229	CAE	LTE-TDD (SC-FDMA, 1 RB, 3MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10230	CAE	LTE-TDD (SC-FDMA, 1 RB, 3MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10231	CAE	LTE-TDD (SC-FDMA, 1 RB, 3MHz, QPSK)	LTE-TDD	9.19	±9.6
10232	CAH	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10233	CAH	LTE-TDD (SC-FDMA, 1 RB, 5MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10234	CAH	LTE-TDD (SC-FDMA, 1 RB, 5MHz, QPSK)	LTE-TDD	9.21	±9.6
10235	CAH	LTE-TDD (SC-FDMA, 1 RB, 10MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10236	CAH	LTE-TDD (SC-FDMA, 1 RB, 10MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10237	CAH	LTE-TDD (SC-FDMA, 1 RB, 10MHz, QPSK)	LTE-TDD	9.21	±9.6
10238	CAG	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 16-QAM)	LTE-TDD	9.48	±9.6
10239	CAG	LTE-TDD (SC-FDMA, 1 RB, 15MHz, 64-QAM)	LTE-TDD	10.25	±9.6
10240	CAG	LTE-TDD (SC-FDMA, 1 RB, 15MHz, QPSK)	LTE-TDD	9.21	±9.6
10241	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.82	±9.6
10242	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM)	LTE-TDD	9.86	±9.6
10243	CAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK)	LTE-TDD	9.46	±9.6
10244	CAE	LTE-TDD (SC-FDMA, 50% RB, 3MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10245	CAE	LTE-TDD (SC-FDMA, 50% RB, 3MHz, 64-QAM)	LTE-TDD	10.06	±9.6
10246	CAE	LTE-TDD (SC-FDMA, 50% RB, 3MHz, QPSK)	LTE-TDD	9.30	±9.6
10247	CAH	LTE-TDD (SC-FDMA, 50% RB, 5MHz, 16-QAM)	LTE-TDD	9.91	±9.6
10248	CAH	LTE-TDD (SC-FDMA, 50% RB, 5MHz, 64-QAM)	LTE-TDD	10.09	±9.6
10249	CAH	LTE-TDD (SC-FDMA, 50% RB, 5MHz, QPSK)	LTE-TDD	9.29	±9.6
10250	CAH	LTE-TDD (SC-FDMA, 50% RB, 10MHz, 16-QAM)	LTE-TDD	9.81	±9.6
10251	CAH	LTE-TDD (SC-FDMA, 50% RB, 10MHz, 64-QAM)	LTE-TDD	10.17	±9.6
10252	CAH	LTE-TDD (SC-FDMA, 50% RB, 10MHz, QPSK)	LTE-TDD	9.24	±9.6
10253	CAG	LTE-TDD (SC-FDMA, 50% RB, 15MHz, 16-QAM)	LTE-TDD	9.90	±9.6
10254	CAG	LTE-TDD (SC-FDMA, 50% RB, 15MHz, 64-QAM)	LTE-TDD	10.14	±9.6
10255	CAG	LTE-TDD (SC-FDMA, 50% RB, 15MHz, QPSK)	LTE-TDD	9.20	±9.6
10256	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM)	LTE-TDD	9.96	±9.6
10257	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM)	LTE-TDD	10.08	±9.6
10258	CAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK)	LTE-TDD	9.34	±9.6
10259	CAE	LTE-TDD (SC-FDMA, 100% RB, 3MHz, 16-QAM)	LTE-TDD	9.98	±9.6
10260	CAE	LTE-TDD (SC-FDMA, 100% RB, 3MHz, 64-QAM)	LTE-TDD	9.97	±9.6
10261	CAE	LTE-TDD (SC-FDMA, 100% RB, 3MHz, QPSK)	LTE-TDD	9.24	±9.6
10262	CAH	LTE-TDD (SC-FDMA, 100% RB, 5MHz, 16-QAM)	LTE-TDD	9.83	±9.6
10263	CAH	LTE-TDD (SC-FDMA, 100% RB, 5MHz, 64-QAM)	LTE-TDD	10.16	±9.6
10264	CAH	LTE-TDD (SC-FDMA, 100% RB, 5MHz, QPSK)	LTE-TDD	9.23	±9.6
10265	CAH	LTE-TDD (SC-FDMA, 100% RB, 10MHz, 16-QAM)	LTE-TDD	9.92	±9.6
10266	CAH	LTE-TDD (SC-FDMA, 100% RB, 10MHz, 64-QAM)	LTE-TDD	10.07	±9.6
10267	CAH	LTE-TDD (SC-FDMA, 100% RB, 10MHz, QPSK)	LTE-TDD	9.30	±9.6
10268	CAG	LTE-TDD (SC-FDMA, 100% RB, 15MHz, 16-QAM)	LTE-TDD	10.06	±9.6
10269	CAG	LTE-TDD (SC-FDMA, 100% RB, 15MHz, 64-QAM)	LTE-TDD	10.13	±9.6
10270	CAG	LTE-TDD (SC-FDMA, 100% RB, 15MHz, QPSK)	LTE-TDD	9.58	±9.6
10274	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.10)	WCDMA	4.87	±9.6
10275	CAC	UMTS-FDD (HSUPA, Subtest 5, 3GPP Rel8.4)	WCDMA	3.96	±9.6
10277	CAA	PHS (QPSK)	PHS	11.81	±9.6
10278	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.5)	PHS	11.81	±9.6
10279	CAA	PHS (QPSK, BW 884 MHz, Rolloff 0.38)	PHS	12.18	±9.6
10290	AAB	CDMA2000, RC1, SC05, Full Rate	CDMA2000	3.91	±9.6
10291	AAB	CDMA2000, RC2, SC05, Full Rate	CDMA2000	3.46	±9.6
10292	AAB	CDMA2000, RC3, SC02, Full Rate	CDMA2000	3.39	±9.6
10293	AAB	CDMA2000, RC3, SC03, Full Rate	CDMA2000	3.50	±9.6
10295	AAB	CDMA2000, RC1, SC01, 1/8th Rate 25 fr.	CDMA2000	12.49	±9.6
10297	AAE	LTE-FDD (SC-FDMA, 50% RB, 20 MHz, QPSK)	LTE-FDD	5.81	±9.6
10298	AAE	LTE-FDD (SC-FDMA, 50% RB, 3MHz, QPSK)	LTE-FDD	5.72	±9.6
10299	AAE	LTE-FDD (SC-FDMA, 50% RB, 3MHz, 16-QAM)	LTE-FDD	6.39	±9.6
10300	AAE	LTE-FDD (SC-FDMA, 50% RB, 3MHz, 64-QAM)	LTE-FDD	6.60	±9.6
10301	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC)	WIMAX	12.03	±9.6
10302	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, QPSK, PUSC, 3 CTRL symbols)	WIMAX	12.57	±9.6
10303	AAA	IEEE 802.16e WiMAX (31:15, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	12.52	±9.6
10304	AAA	IEEE 802.16e WiMAX (29:18, 5ms, 10MHz, 64QAM, PUSC)	WIMAX	11.86	±9.6
10305	AAA	IEEE 802.16e WiMAX (31:15, 10ms, 10MHz, 64QAM, PUSC, 15 symbols)	WIMAX	15.24	±9.6
10306	AAA	IEEE 802.16e WiMAX (29:18, 10ms, 10MHz, 64QAM, PUSC, 18 symbols)	WIMAX	14.67	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10307	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, PUSC, 18 symbols)	WiMAX	14.49	±9.6
10308	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, PUSC)	WiMAX	14.46	±9.6
10309	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, 16QAM, AMC 2x3, 18 symbols)	WiMAX	14.58	±9.6
10310	AAA	IEEE 802.16e WiMAX (29:18, 10 ms, 10 MHz, QPSK, AMC 2x3, 18 symbols)	WiMAX	14.57	±9.6
10311	AAE	LTE-FDD (SC-FDMA, 100% RB, 15 MHz, QPSK)	LTE-FDD	6.06	±9.6
10313	AAA	iDEN 1:3	iDEN	10.51	±9.6
10314	AAA	iDEN 1:6	iDEN	13.48	±9.6
10315	AAB	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 96pc duty cycle)	WLAN	1.71	±9.6
10316	AAB	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10317	AAD	IEEE 802.11a WiFi 5 GHz (OFDM, 6 Mbps, 96pc duty cycle)	WLAN	8.36	±9.6
10352	AAA	Pulse Waveform (200Hz, 10%)	Generic	10.00	±9.6
10353	AAA	Pulse Waveform (200Hz, 20%)	Generic	6.99	±9.6
10354	AAA	Pulse Waveform (200Hz, 40%)	Generic	3.98	±9.6
10355	AAA	Pulse Waveform (200Hz, 60%)	Generic	2.22	±9.6
10356	AAA	Pulse Waveform (200Hz, 80%)	Generic	0.97	±9.6
10387	AAA	QPSK Waveform, 1 MHz	Generic	5.10	±9.6
10388	AAA	QPSK Waveform, 10 MHz	Generic	5.22	±9.6
10396	AAA	64-QAM Waveform, 100 kHz	Generic	6.27	±9.6
10399	AAA	64-QAM Waveform, 40 MHz	Generic	6.27	±9.6
10400	AAE	IEEE 802.11ac WiFi (20 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.37	±9.6
10401	AAE	IEEE 802.11ac WiFi (40 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.60	±9.6
10402	AAE	IEEE 802.11ac WiFi (80 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.53	±9.6
10403	AAB	CDMA2000 (1xEV-DO, Rev. 0)	CDMA2000	3.76	±9.6
10404	AAB	CDMA2000 (1xEV-DO, Rev. A)	CDMA2000	3.77	±9.6
10406	AAB	CDMA2000, RC3, SC32, SCH0, Full Rate	CDMA2000	5.22	±9.6
10410	AAH	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9, Subframe Conf=4)	LTE-TDD	7.82	±9.6
10414	AAA	WLAN CCDF, 64-QAM, 40 MHz	Generic	8.54	±9.6
10415	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 99pc duty cycle)	WLAN	1.54	±9.6
10416	AAA	IEEE 802.11g WiFi 2.4 GHz (ERP-OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10417	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10418	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Long preamble)	WLAN	8.14	±9.6
10419	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 99pc duty cycle, Short preamble)	WLAN	8.19	±9.6
10422	AAC	IEEE 802.11n (HT Greenfield, 7.2 Mbps, BPSK)	WLAN	8.32	±9.6
10423	AAC	IEEE 802.11n (HT Greenfield, 43.3 Mbps, 16-QAM)	WLAN	8.47	±9.6
10424	AAC	IEEE 802.11n (HT Greenfield, 72.2 Mbps, 64-QAM)	WLAN	8.40	±9.6
10425	AAC	IEEE 802.11n (HT Greenfield, 15 Mbps, BPSK)	WLAN	8.41	±9.6
10426	AAC	IEEE 802.11n (HT Greenfield, 90 Mbps, 16-QAM)	WLAN	8.45	±9.6
10427	AAC	IEEE 802.11n (HT Greenfield, 150 Mbps, 64-QAM)	WLAN	8.41	±9.6
10430	AAE	LTE-FDD (OFDMA, 5 MHz, E-TM 3.1)	LTE-FDD	8.28	±9.6
10431	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1)	LTE-FDD	8.38	±9.6
10432	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10433	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1)	LTE-FDD	8.34	±9.6
10434	AAB	W-CDMA (BS Test Model 1, 64 DPCH)	WCDMA	8.60	±9.6
10435	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10447	AAE	LTE-FDD (OFDMA, 1 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.56	±9.6
10448	AAE	LTE-FDD (OFDMA, 10 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.53	±9.6
10449	AAD	LTE-FDD (OFDMA, 15 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.51	±9.6
10450	AAD	LTE-FDD (OFDMA, 20 MHz, E-TM 3.1, Clipping 44%)	LTE-FDD	7.48	±9.6
10451	AAB	W-CDMA (BS Test Model 1, 64 DPCH, Clipping 44%)	WCDMA	7.59	±9.6
10453	AAE	Validation (Square, 10 ms, 1 ms)	Test	10.00	±9.6
10456	AAC	IEEE 802.11ac WiFi (160 MHz, 64-QAM, 99pc duty cycle)	WLAN	8.63	±9.6
10457	AAB	UMTS-FDD (DC-HSDPA)	WCDMA	6.62	±9.6
10458	AAA	CDMA2000 (1xEV-DO, Rev. B, 2 carriers)	CDMA2000	6.55	±9.6
10459	AAA	CDMA2000 (1xEV-DO, Rev. B, 3 carriers)	CDMA2000	8.25	±9.6
10460	AAB	UMTS-FDD (WCDMA, AMR)	WCDMA	2.39	±9.6
10461	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10462	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.30	±9.6
10463	AAC	LTE-TDD (SC-FDMA, 1 RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10464	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10465	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10466	AAD	LTE-TDD (SC-FDMA, 1 RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10467	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10468	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10469	AAG	LTE-TDD (SC-FDMA, 1 RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.56	±9.6
10470	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10471	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^E k = 2
10472	AAG	LTE-TDD (SC-FDMA, 1 RB, 10 MHz, 8-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10473	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.82	±9.6
10474	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10475	AAF	LTE-TDD (SC-FDMA, 1 RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10477	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.32	±9.6
10478	AAG	LTE-TDD (SC-FDMA, 1 RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.57	±9.6
10479	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10480	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.18	±9.6
10481	AAC	LTE-TDD (SC-FDMA, 50% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10482	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.71	±9.6
10483	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.39	±9.6
10484	AAD	LTE-TDD (SC-FDMA, 50% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.47	±9.6
10485	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.59	±9.6
10486	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.38	±9.6
10487	AAG	LTE-TDD (SC-FDMA, 50% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.60	±9.6
10488	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.70	±9.6
10489	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10490	AAG	LTE-TDD (SC-FDMA, 50% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10491	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10492	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.41	±9.6
10493	AAF	LTE-TDD (SC-FDMA, 50% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10494	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10495	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.37	±9.6
10496	AAG	LTE-TDD (SC-FDMA, 50% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10497	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10498	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.40	±9.6
10499	AAC	LTE-TDD (SC-FDMA, 100% RB, 1.4 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.68	±9.6
10500	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.67	±9.6
10501	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.44	±9.6
10502	AAD	LTE-TDD (SC-FDMA, 100% RB, 3 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.52	±9.6
10503	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.72	±9.6
10504	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.31	±9.6
10505	AAG	LTE-TDD (SC-FDMA, 100% RB, 5 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.54	±9.6
10506	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10507	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.36	±9.6
10508	AAG	LTE-TDD (SC-FDMA, 100% RB, 10 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.55	±9.6
10509	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.99	±9.6
10510	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.49	±9.6
10511	AAF	LTE-TDD (SC-FDMA, 100% RB, 15 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.51	±9.6
10512	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, QPSK, UL Subframe=2,3,4,7,8,9)	LTE-TDD	7.74	±9.6
10513	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 16-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.42	±9.6
10514	AAG	LTE-TDD (SC-FDMA, 100% RB, 20 MHz, 64-QAM, UL Subframe=2,3,4,7,8,9)	LTE-TDD	8.45	±9.6
10515	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10516	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 99pc duty cycle)	WLAN	1.57	±9.6
10517	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 99pc duty cycle)	WLAN	1.58	±9.6
10518	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.23	±9.6
10519	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.39	±9.6
10520	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.12	±9.6
10521	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 99pc duty cycle)	WLAN	7.97	±9.6
10522	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10523	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.08	±9.6
10524	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.27	±9.6
10525	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 99pc duty cycle)	WLAN	8.36	±9.6
10526	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 99pc duty cycle)	WLAN	8.42	±9.6
10527	AAC	IEEE 802.11ac WiFi (20 MHz, MCS2, 99pc duty cycle)	WLAN	8.21	±9.6
10528	AAC	IEEE 802.11ac WiFi (20 MHz, MCS3, 99pc duty cycle)	WLAN	8.36	±9.6
10529	AAC	IEEE 802.11ac WiFi (20 MHz, MCS4, 99pc duty cycle)	WLAN	8.36	±9.6
10531	AAC	IEEE 802.11ac WiFi (20 MHz, MCS6, 99pc duty cycle)	WLAN	8.43	±9.6
10532	AAC	IEEE 802.11ac WiFi (20 MHz, MCS7, 99pc duty cycle)	WLAN	8.29	±9.6
10533	AAC	IEEE 802.11ac WiFi (20 MHz, MCS8, 99pc duty cycle)	WLAN	8.38	±9.6
10534	AAC	IEEE 802.11ac WiFi (40 MHz, MCS0, 99pc duty cycle)	WLAN	8.45	±9.6
10535	AAC	IEEE 802.11ac WiFi (40 MHz, MCS1, 99pc duty cycle)	WLAN	8.45	±9.6
10536	AAC	IEEE 802.11ac WiFi (40 MHz, MCS2, 99pc duty cycle)	WLAN	8.32	±9.6
10537	AAC	IEEE 802.11ac WiFi (40 MHz, MCS3, 99pc duty cycle)	WLAN	8.44	±9.6
10538	AAC	IEEE 802.11ac WiFi (40 MHz, MCS4, 99pc duty cycle)	WLAN	8.54	±9.6
10540	AAC	IEEE 802.11ac WiFi (40 MHz, MCS6, 99pc duty cycle)	WLAN	8.39	±9.6

UID	Rev	Communication System Name	Group	PAR (dB)	Unc ^{II} k = 2
10541	AAC	IEEE 802.11ac WiFi (40 MHz, MCS7, 99pc duty cycle)	WLAN	8.46	±9.6
10542	AAC	IEEE 802.11ac WiFi (40 MHz, MCS8, 99pc duty cycle)	WLAN	8.65	±9.6
10543	AAC	IEEE 802.11ac WiFi (40 MHz, MCS9, 99pc duty cycle)	WLAN	8.65	±9.6
10544	AAC	IEEE 802.11ac WiFi (80 MHz, MCS0, 99pc duty cycle)	WLAN	8.47	±9.6
10545	AAC	IEEE 802.11ac WiFi (80 MHz, MCS1, 99pc duty cycle)	WLAN	8.55	±9.6
10546	AAC	IEEE 802.11ac WiFi (80 MHz, MCS2, 99pc duty cycle)	WLAN	8.35	±9.6
10547	AAC	IEEE 802.11ac WiFi (80 MHz, MCS3, 99pc duty cycle)	WLAN	8.49	±9.6
10548	AAC	IEEE 802.11ac WiFi (80 MHz, MCS4, 99pc duty cycle)	WLAN	8.37	±9.6
10550	AAC	IEEE 802.11ac WiFi (80 MHz, MCS6, 99pc duty cycle)	WLAN	8.38	±9.6
10551	AAC	IEEE 802.11ac WiFi (80 MHz, MCS7, 99pc duty cycle)	WLAN	8.50	±9.6
10552	AAC	IEEE 802.11ac WiFi (80 MHz, MCS8, 99pc duty cycle)	WLAN	8.42	±9.6
10553	AAC	IEEE 802.11ac WiFi (80 MHz, MCS9, 99pc duty cycle)	WLAN	8.45	±9.6
10554	AAD	IEEE 802.11ac WiFi (160 MHz, MCS0, 99pc duty cycle)	WLAN	8.48	±9.6
10555	AAD	IEEE 802.11ac WiFi (160 MHz, MCS1, 99pc duty cycle)	WLAN	8.47	±9.6
10556	AAD	IEEE 802.11ac WiFi (160 MHz, MCS2, 99pc duty cycle)	WLAN	8.50	±9.6
10557	AAD	IEEE 802.11ac WiFi (160 MHz, MCS3, 99pc duty cycle)	WLAN	8.52	±9.6
10558	AAD	IEEE 802.11ac WiFi (160 MHz, MCS4, 99pc duty cycle)	WLAN	8.61	±9.6
10560	AAD	IEEE 802.11ac WiFi (160 MHz, MCS6, 99pc duty cycle)	WLAN	8.73	±9.6
10561	AAD	IEEE 802.11ac WiFi (160 MHz, MCS7, 99pc duty cycle)	WLAN	8.56	±9.6
10562	AAD	IEEE 802.11ac WiFi (160 MHz, MCS8, 99pc duty cycle)	WLAN	8.69	±9.6
10563	AAD	IEEE 802.11ac WiFi (160 MHz, MCS9, 99pc duty cycle)	WLAN	8.77	±9.6
10564	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 99pc duty cycle)	WLAN	8.25	±9.6
10565	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 99pc duty cycle)	WLAN	8.45	±9.6
10566	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 99pc duty cycle)	WLAN	8.13	±9.6
10567	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 99pc duty cycle)	WLAN	8.00	±9.6
10568	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 99pc duty cycle)	WLAN	8.37	±9.6
10569	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 99pc duty cycle)	WLAN	8.10	±9.6
10570	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 99pc duty cycle)	WLAN	8.30	±9.6
10571	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 1 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10572	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 2 Mbps, 90pc duty cycle)	WLAN	1.99	±9.6
10573	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 5.5 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10574	AAA	IEEE 802.11b WiFi 2.4 GHz (DSSS, 11 Mbps, 90pc duty cycle)	WLAN	1.98	±9.6
10575	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10576	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10577	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10578	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10579	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10580	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.78	±9.6
10581	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10582	AAA	IEEE 802.11g WiFi 2.4 GHz (DSSS-OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10583	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 6 Mbps, 90pc duty cycle)	WLAN	8.59	±9.6
10584	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 9 Mbps, 90pc duty cycle)	WLAN	8.60	±9.6
10585	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 12 Mbps, 90pc duty cycle)	WLAN	8.70	±9.6
10586	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 18 Mbps, 90pc duty cycle)	WLAN	8.49	±9.6
10587	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 24 Mbps, 90pc duty cycle)	WLAN	8.36	±9.6
10588	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 36 Mbps, 90pc duty cycle)	WLAN	8.76	±9.6
10589	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 48 Mbps, 90pc duty cycle)	WLAN	8.35	±9.6
10590	AAC	IEEE 802.11a/h WiFi 5 GHz (OFDM, 54 Mbps, 90pc duty cycle)	WLAN	8.67	±9.6
10591	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS0, 90pc duty cycle)	WLAN	8.63	±9.6
10592	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS1, 90pc duty cycle)	WLAN	8.79	±9.6
10593	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS2, 90pc duty cycle)	WLAN	8.84	±9.6
10594	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS3, 90pc duty cycle)	WLAN	8.74	±9.6
10595	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS4, 90pc duty cycle)	WLAN	8.74	±9.6
10596	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS5, 90pc duty cycle)	WLAN	8.71	±9.6
10597	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS6, 90pc duty cycle)	WLAN	8.72	±9.6
10598	AAC	IEEE 802.11n (HT Mixed, 20 MHz, MCS7, 90pc duty cycle)	WLAN	8.50	±9.6
10599	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS0, 90pc duty cycle)	WLAN	8.79	±9.6
10600	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS1, 90pc duty cycle)	WLAN	8.88	±9.6
10601	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS2, 90pc duty cycle)	WLAN	8.82	±9.6
10602	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS3, 90pc duty cycle)	WLAN	8.94	±9.6
10603	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS4, 90pc duty cycle)	WLAN	9.03	±9.6
10604	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS5, 90pc duty cycle)	WLAN	8.76	±9.6
10605	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS6, 90pc duty cycle)	WLAN	8.97	±9.6
10606	AAC	IEEE 802.11n (HT Mixed, 40 MHz, MCS7, 90pc duty cycle)	WLAN	8.82	±9.6
10607	AAC	IEEE 802.11ac WiFi (20 MHz, MCS0, 90pc duty cycle)	WLAN	8.64	±9.6
10608	AAC	IEEE 802.11ac WiFi (20 MHz, MCS1, 90pc duty cycle)	WLAN	8.77	±9.6