RF Exposure evaluation

According to 447498 D04 Interim General RF Exposure Guidance v01

$$P_{\text{th}} \text{ (mW)} = \begin{cases} ERP_{20 \text{ cm}} (d/20 \text{ cm})^3 & d \leq 20 \text{ cm} \\ ERP_{10 \text{ cm}} & 20 \text{ cm} < d \leq 40 \text{ cm} \end{cases}$$
(B.2)

where

$$x = -\log_{10}\left(\frac{\epsilon_0}{\epsilon_{RP_{10}} \cos \sqrt{f}}\right)$$

and f is in GHz, d is the separation distance (on), and ERP_{20m} is per Formula (B.1). The example values shown in Table B.2 are for illustration only.

$$P_{\text{th}} (\text{mW}) = ERP_{20 \text{ cm}} (\text{mW}) = \begin{cases} 2040f & 0.3 \text{ GHz} \le f < 1.5 \text{ GHz} \\ \\ 3060 & 1.5 \text{ GHz} \le f \le 6 \text{ GHz} \end{cases}$$
(B. 1)

Table B.2—Example Power Thresholds (nW)

	Distance (mm)										
		5	10	1.5	20	25	30	35	40	45	50
Frequency (MHz)	300	39	65	88	110	129	148	166	184	201	217
	450	22	44	67	89	1112	135	158	180	203	226
	835	9	25	44	66	90	116	145	175	207	240
	1900	3	12	26	44	66	92	122	157	195	236
	2450	3	10	22	38	59	83	111	143	179	219
	3600	2	8	18	32	49	71	96	125	158	195
	5800	1	6	14	25	40	58	80	106	136	169

eirp = pt x gt =
$$(EXd)^2/30$$

where:

pt = transmitter output power in watts,

gt = numeric gain of the transmitting antenna (unitless),

E = electric field strength in V/m, --- $10^{((dBuV/m)/20)}/10^6$

d = measurement distance in meters (m)---3m

Sopt = $(EXd)^2/30 \times gt$

Ant gain =1.3dBi so Ant numeric gain= 1.349

Field strength =90.68dB μ V/m @3m@2402MHz

So Pt={
$$[10^{(90.68/20)}/10^6 \times 3]^2/30\times1.349$$
} $\times 1000 \text{ mW} = 0.26\text{mW}$ <2.79 mW

Then SAR evaluation is not required