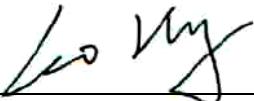


FCC&IC Radio Test Report

FCC ID: 2ABZ2-A2005


IC:12739A-A2005

This report concerns (check one): Original Grant Class II Change

Project No. : 1506C242
Equipment : Mobile Phone
Model Name : ONE A2005
Applicant : OnePlus Technology (Shenzhen) Co., Ltd.
Address : 18/F, Tower C, Tai Ran Building, No.8 Tai Ran Road, Shenzhen, China

Date of Receipt : Jun. 13, 2015
Date of Test : Jun. 13, 2015 ~ Jul. 03, 2015
Issued Date : Jul. 06, 2015
Tested by : BTL Inc.

Testing Engineer :
(David Mao)

Technical Manager :
(Leo Hung)

Authorized Signatory :
(Steven Lu)

B T L I N C .

No.3, Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

TEL: +86-769-8318-3000 FAX: +86-769-8319-6000

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with the standards traceable to National Measurement Laboratory (**NML**) of **R.O.C.**, or National Institute of Standards and Technology (**NIST**) of **U.S.A.**

BTL's reports apply only to the specific samples tested under conditions. It is manufacturer's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

BTL's report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the Federal Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and **BTL-self**, extracts from the test report shall not be reproduced except in full with **BTL**'s authorized written approval.

BTL's laboratory quality assurance procedures are in compliance with the **ISO Guide17025** requirements, and accredited by the conformity assessment authorities listed in this test report.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Table of Contents	Page
REPORT ISSUED HISTORY	5
1 . CERTIFICATION	6
2 . SUMMARY OF TEST RESULTS	7
2.1 TEST FACILITY	8
2.2 MEASUREMENT UNCERTAINTY	8
3 . GENERAL INFORMATION	9
3.1 GENERAL DESCRIPTION OF EUT	9
3.2 DESCRIPTION OF TEST MODES	10
3.3 BLOCKDIAGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED	11
3.4 DESCRIPTION OF SUPPORT UNITS	11
4 . TEST RESULT	12
4.1 RADIATEDRF OUTPUT POWER MEASUREMENT	12
4.1.1 LIMIT	12
4.1.2 MEASURING INSTRUMENTS AND SETTING	12
4.1.3 TEST PROCEDURE	12
4.1.4 TESTSETUP LAYOUT	13
4.1.5 TESTDEVIATION	13
4.1.6 EUT OPERATIONDURING TEST	13
4.1.7 EUT TEST CONDITIONS	13
4.1.8 TEST RESULTS	13
4.2 99% OCCUPIED BANDWIDTH MEASUREMENT	14
4.2.1 LIMIT	14
4.2.2 MEASURING INSTRUMENTS AND SETTING	14
4.2.3 TEST PROCEDURE	14
4.2.4 TESTSETUP LAYOUT	14
4.2.5 TESTDEVIATION	14
4.2.6 EUT OPERATIONDURING TEST	14
4.2.7 EUT TEST CONDITIONS	14
4.2.8 TEST RESULTS	15
4.3 SPURIOUS EMISSIONS AT ANTENNA TERMINALS MEASUREMENT	16
4.3.1 LIMIT	16
4.3.2 MEASURING INSTRUMENTS AND SETTING	16
4.3.3 TEST PROCEDURES	16
4.3.4 TESTSETUP LAYOUT	16
4.3.5 TESTDEVIATION	16
4.3.6 EUT OPERATIONDURING TEST	16
4.3.7 EUT TEST CONDITIONS	17

Table of Contents	Page
4.3.8 TEST RESULTS	17
4.4 SPURIOUS RADIATED EMISSIONS MEASUREMENT	18
4.4.1 LIMIT	18
4.4.2 MEASURING INSTRUMENTS AND SETTING	18
4.4.3 TEST PROCEDURES	18
4.4.4 TESTSETUP LAYOUT	19
4.4.5 TESTDEVIATION	19
4.4.6 EUT OPERATIONDURING TEST	19
4.4.7 EUT TEST CONDITIONS	19
4.4.8 TEST RESULTS	19
4.5 BAND EDGE MEASUREMENT	20
4.5.1 LIMIT	20
4.5.2 MEASURING INSTRUMENTS AND SETTING	20
4.5.3 TEST PROCEDURES	20
4.5.4 TESTSETUP LAYOUT	20
4.5.5 TESTDEVIATION	20
4.5.6 EUT OPERATIONDURING TEST	20
4.5.7 EUT TEST CONDITIONS	20
4.5.8 TEST RESULTS	21
4.6 FREQUENCY STABILITY MEASUREMENT	22
4.6.1 LIMIT	22
4.6.2 MEASURING INSTRUMENTS AND SETTING	22
4.6.3 TEST PROCEDURES	22
4.6.4 TESTSETUP LAYOUT	22
4.6.5 TESTDEVIATION	22
4.6.6 EUT OPERATIONDURING TEST	22
4.6.7 EUT TEST CONDITIONS	23
4.6.8 TEST RESULTS	23
5. LIST OF MEASUREMENT EQUIPMENTS	24
6. EUT TEST PHOTO	26
ATTACHMENT A -RADIATED RF OUTPUT POWER	29
ATTACHMENT B - 99% OCCUPIED BANDWIDTH	31
ATTACHMENT C - SPURIOUS EMISSIONS AT ANTENNA TERMINALS	36
ATTACHMENT D - SPURIOUS RADIATED EMISSION	38
ATTACHMENT E - BAND EDGE	47
ATTACHMENT F - FREQUENCY STABILITY	50

REPORT ISSUED HISTORY

Issued No.	Description	Issued Date
BTL-FICP-6-1506C242	Original Issue.	Jul. 06, 2015

1. CERTIFICATION

Equipment : Mobile Phone

Brand Name : **ONEPLUS**

Model Name : ONE A2005

Applicant : OnePlus Technology (Shenzhen) Co., Ltd.

Manufacturer : OnePlus Technology (Shenzhen) Co., Ltd.

Address : 18/F, Tower C, Tai Ran Building, No.8 Tai Ran Road, Shenzhen, China

Factory : OnePlus Technology (Shenzhen) Co., Ltd.

Address : 18/F, Tower C, Tai Ran Building, No.8 Tai Ran Road, Shenzhen, China

Date of Test : Jun. 13, 2015 ~ Jul. 03, 2015

Standard(s) : 47 CFR FCC Part 22 Subpart H

47 CFR FCC Part 2 &ANSI/TIA-603-C-2004

RSS-132 Issue 3 January 2013

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FICP-6-1506C242) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO-17025 quality assessment standard and technical standard(s).

Test result included in this report is only for the GSM 850MHz approval part of the product.

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

FCC Part 22 Subpart H& Part 2/ RSS-132 Issue 3				
Standard(s) Section		Test Item	Judgment	Remark
FCC	IC			
2.1047(d)	5.2	Modulation Characteristics	PASS	
2.1046 22.913(a)	5.4	Radiated RF Output	PASS	
2.1049(h) 22.917(a)	-	99% Occupied Bandwidth	PASS	
2.1051 22.917(a)	5.5	Spurious Emissions at Antenna Terminal	PASS	
2.1053 22.917(a)	5.5	Spurious Radiated Emissions	PASS	
22.917(a)	5.5	Band Edge Emissions	PASS	
2.1055 22.355	5.3	Frequency Stability	PASS	

NOTE:

(1)" N/A" denotes test is not applicable in this test report

2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No.3,Jinshagang 1st Road, Shixia, Dalang Town, Dongguan, Guangdong, China.

BTL's test firm number for FCC: 319330

BTL's test firm number for IC: 4428B-1

2.2 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cisp} requirement.

The reported uncertainty of measurement $y \pm U$, where expanded uncertainty U is based on a standard uncertainty multiplied by a coverage factor of $k=2$, providing a level of confidence of approximately 95%.

A. Radiated Measurement :

Test Site	Method	Measurement Frequency Range	Ant. H / V	U,(dB)	Note
DG-CB03 (3m)	CISPR	9KHz~30MHz	V	3.79	
		9KHz~30MHz	H	3.57	
		30MHz ~ 200MHz	V	3.82	
		30MHz ~ 200MHz	H	3.78	
		200MHz ~ 1,000MHz	V	4.10	
		200MHz ~ 1,000MHz	H	4.06	
		1GHz~18GHz	V	3.12	
		1GHz~18GHz	H	3.68	
		18GHz~40GHz	V	4.15	
		18GHz~40GHz	H	4.14	

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Equipment	Mobile Phone	
Brand Name	ONEPLUS	
Model Name	ONE A2005	
Model Difference	N/A	
Product Description	Operation Frequency:	TX:824.2MHz~848.8MHz RX:869.2MHz~893.8MHz
	Modulation Type:	GMSK;8-PSK
	ERP Output Power	26.41dBm
PowerSource	#1 DC Voltage supplied from AC/DC adapter. 1) Brand / Model: ONEPLUS / YJ1100 2) Brand / Model: ONEPLUS / AY0520	
	#2 Supplied from battery. Model: BLP597	
Power Rating	#1 1) I/P: 100-240V~ 50-60Hz 0.4A O/P: DC 5V 2A 2) I/P: 100-240V~ 50-60Hz 0.3A O/P: DC 5V 2A #2 DC 3.8V 3200mAh/3300mAh (min/typ)	

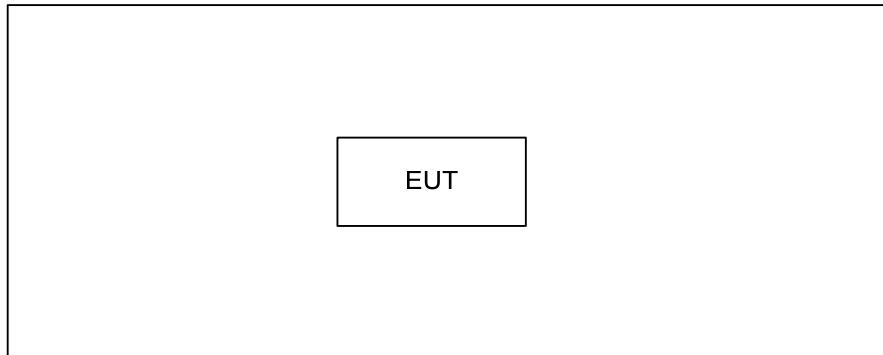
Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
2. Channel List:

Band	Channel	Frequency	
		(MHz)	
824.2MHz~848.8MHz	128	Low	824.2
	190	Mid	836.6
	251	High	848.8

3. Table for Filed Antenna @GSM850:

Ant.	Manufacture	Model Name	Antenna Type	Connector	Gain (dBi)
1	N/A	N/A	Internal	N/A	-2.61


3.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Items	Worst TX Mode	Channel
Radiated RF Output	GSM/EDGE	128/190/251
Spurious Radiated Emissions	GSM/EDGE	190
Band Edge	GSM/GPRS/EDGE	128/251
Frequency Stability	GSM/EDGE	128
99% Occupied Bandwidth	GSM/GPRS/EDGE	128/190/251
Spurious Emissions at Antenna Terminal	GSM	128/190/251

Note:

- (1) The measurements are performed at the highest, middle, lowest available channels.
- (2) The EUT is considered a portable unit; it was pre-tested on the positioned of each 3 axis. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.
- (3) Both adapter and battery are evaluated, operated the battery is the worst and recorded as below test data

3.3 BLOCKDIGRAMSHOWINGTHECONFIGURATIONOFSYSTEMTESTED**3.4 DESCRIPTION OF SUPPORT UNITS**

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	FCC ID	Series No.	Note
-	-	-	-	-	-	

Item	Shielded Type	Ferrite Core	Length	Note
-	-	-	-	-

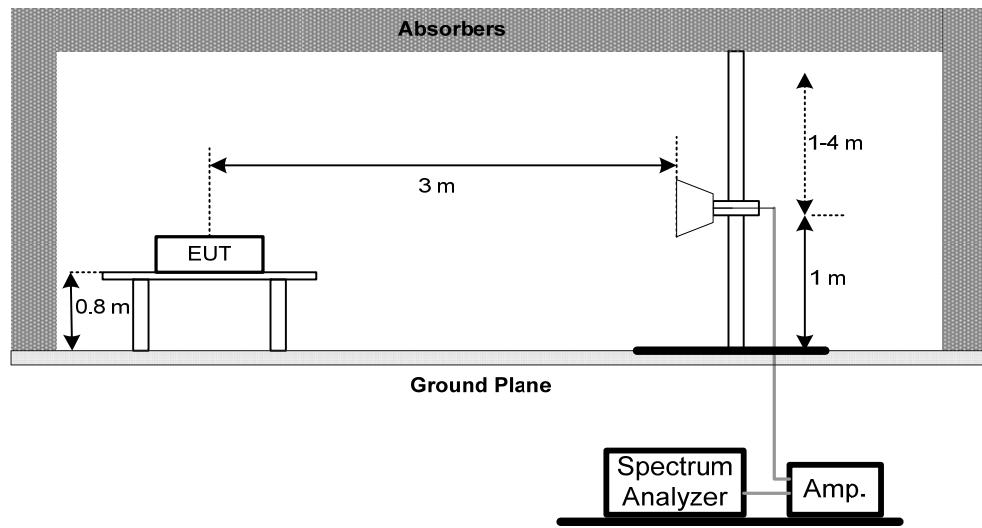
4. TEST RESULT

4.1 RADIATEDRF OUTPUT POWER MEASUREMENT

4.1.1 LIMIT

The Radiated Peak Output Power shall be according to the specific rule Part 22.913(a)&RSS-132 section 5.4 that “Mobile/Portable station are limited to 7 watts e.r.p.” and 22.913(a)&RSS-132 section 5.4 specified that “Peak transmit power must be measured over any interval of continuous transmission using instrumentation calibration in terms of rms-equivalent voltage.

4.1.2 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Center Frequency	Low / middle / high channels
Span Frequency	10MHz
RB / VB	3MHz / 3MHz for Peak

4.1.3 TEST PROCEDURE

1. All measurements were done at low, middle and high operational frequency range. RBW and VBW is 1MHz for GSM, GPRS & EDGE, 5MHz for WCDMA & CDMA, and 10MHz for LTE mode.
2. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The “Read Value” is the spectrum reading the maximum power value.
3. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a tx cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to “Read Value” of step b. Record the power level of S.G
4. E.R.P power can be calculated from E.I.R.P power by subtracting the gain of Integral, E.R.P power=E.I.P.R power-2.15dB.

4.1.4 TESTSETUP LAYOUT ERP Power Measurement

4.1.5 TESTDEVIATION

There is no deviation with the original standard.

4.1.6 EUT OPERATION DURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.1.7 EUT TEST CONDITIONS

Temperature: 25°C

Relative Humidity: 55%

Test Voltage: DC 3.8V

4.1.8 TEST RESULTS

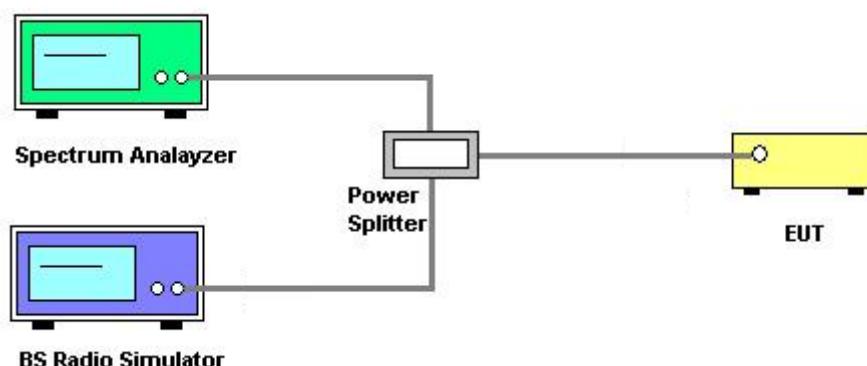
Please refer to the Attachment A.

4.2 99% OCCUPIED BANDWIDTH MEASUREMENT

4.2.1 LIMIT

According to FCC 2.1049(h) specified that emission bandwidth is defined as the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, outside of which all emissions are attenuated at least 26 dB below the transmitter power.

4.2.2 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	Encompass the entire emissions bandwidth (EBW) of the signal
RB	30 kHz
VB	100 kHz
Trace	Max Hold

4.2.3 TEST PROCEDURE

1. The transmitter output (antenna port) was connected to the spectrum analyzer.
2. Used measurement function of spectrum to measure the 99% occupied bandwidth..

4.2.4 TESTSETUP LAYOUT

4.2.5 TESTDEVIATION

There is no deviation with the original standard.

4.2.6 EUT OPERATION DURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.2.7 EUT TEST CONDITIONS

Temperature: 25°C

Relative Humidity: 55%

Test Voltage: DC 3.8V

4.2.8 TEST RESULTS

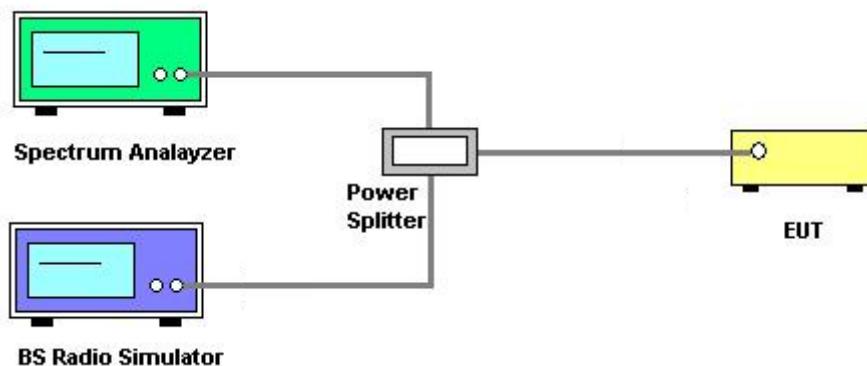
Please refer to the Attachment B.

4.3 SPURIOUS EMISSIONS AT ANTENNA TERMINALS MEASUREMENT

4.3.1 LIMIT

In the FCC 22.917(a)&RSS-132 section 5.5, on any frequency outside a licensee's frequency block within GSM spectrum, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log (P)$ dB. The limit translates in the relevant power range (2 to 0.003W). At 2W(Power Control Level 5) the specified minimum attenuation becomes 43dB and the limit of emission equal to -13dBm

4.3.2 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Start Frequency	30MHz
Stop Frequency	10th carrier harmonic
RB / VB	1 MHz / 1MHz for Peak

4.3.3 TEST PROCEDURES

1. The EUT was set up for the maximum peak power with **GSM/EDGE** link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 3 channels, 128, 190 and 251(low, middle and high operational frequency range.)
2. The conducted spurious emission used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. This splitter loss and cable loss are the worst loss 4dB in the transmitted path track.
3. When the spectrum scanned from 30MHz to 3GHz, it shall be connected to the band reject filter attenuated the carried frequency. The spectrum set RB/VB 1MHz.
4. When the spectrum scanned from 3GHz to 10GHz, it shall be connected to the high pass filter attenuated the carried frequency. The spectrum set RB/VB 1MHz.

4.3.4 TESTSETUP LAYOUT

4.3.5 TESTDEVIATION

There is no deviation with the original standard.

4.3.6 EUT OPERATION DURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.3.7 EUT TEST CONDITIONS

Temperature: 25°C
Relative Humidity: 55%
Test Voltage: DC 3.8V

4.3.8 TEST RESULTS

Please refer to the Attachment C.

4.4 SPURIOUS RADIATED EMISSIONS MEASUREMENT

4.4.1 LIMIT

Out of band emissions, The power of any emissions outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. In the 1 MHz bands immediately outside the frequency block. The spurious emissions of limit equal to -13dBm .

4.4.2 MEASURING INSTRUMENTS AND SETTING

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Start Frequency	30 MHz
Stop Frequency	10th carrier harmonic
Detector	Positive Peak
Span	100 MHz
Sweep Time	1s
RB / VB	1 MHz / 1MHz
Attenuation	Positive Peak

4.4.3 TEST PROCEDURES

1. Substitution method is used for E.I.R.P measurement. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
2. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value " of step a. Record the power level of S.G
3. EIRP = Output power level of S.G – TX cable loss + Antenna gain of substitution horn.
4. E.R.P power can be calculated form E.I.R.P power by subtracting the gain of dipole, E.R.P power = E.I.P.R power - 2.15dBi.
5. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

4.4.4 TESTSETUP LAYOUT

This test setup layout is the same as that shown in **section 4.1.3**.

4.4.5 TESTDEVIATION

There is no deviation with the original standard.

4.4.6 EUT OPERATIONDURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.4.7 EUT TEST CONDITIONS

Temperature: 25°C

Relative Humidity: 55%

Test Voltage: DC 3.8V

4.4.8 TEST RESULTS

Please refer to the Attachment D.

4.5 BAND EDGE MEASUREMENT

4.5.1 LIMIT

According to FCC 22.917(a)&RSS-132 section 5.5 specified that power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of atleast one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. Then we measure that the bandwidth is about 300kHz and the resolution bandwidth is 3kHz.

4.5.2 MEASURING INSTRUMENTS AND SETTING

Please refer to section 5 in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	5 MHz
RB / VB	10 kHz /30 kHz
Trace	Sample
Sweep Time	Auto

4.5.3 TEST PROCEDURES

1. The EUT was set up for the maximum peak power with **GSM/EDGE** link data modulation. The power was measured with R&S Spectrum Analyzer. All measurements were done at 2 channels, 128 and 251 (low and high operational frequency range.)
2. The band edge measurement used the power splitter via EUT RF power connector between simulation base station and spectrum analyzer. The splitter loss and cable loss are the worst loss 4dB in the transmitted path track.
3. The center frequency of spectrum is the band edge frequency and span is 2 MHz. RB of the spectrum is 10kHz and VB of the spectrum is 30KHz.
4. Record the Sample trace plot into the test report.

4.5.4 TESTSETUP LAYOUT

This test setup layout is the same as that shown in section 4.2.4.

4.5.5 TESTDEVIATION

There is no deviation with the original standard.

4.5.6 EUT OPERATION DURING TEST

The BS simulator was used to set the TX channel and power level and modulate the TX signal.

4.5.7 EUT TEST CONDITIONS

Temperature: 25°C

Relative Humidity: 55%

Test Voltage: DC 3.8V

4.5.8 TEST RESULTS

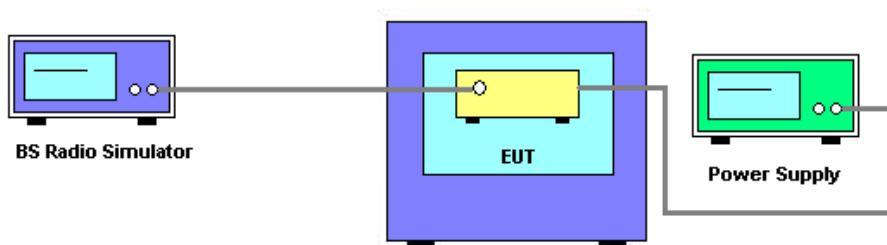
Please refer to the Attachment E.

4.6 FREQUENCY STABILITY MEASUREMENT

4.6.1 LIMIT

According to the FCC part 22.355&RSS-132 section 5.3 shall be tested the frequency stability. The rule is defined that "The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block." The frequency error rate is according to the JTC standard that the frequency error rate shall be accurate to within 2.5 ppm of the received frequency from the base station. The test extreme voltage is according to the 2.1055(d)(1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment and the extreme temperature rule is comply with the 2.1055(a)(1) $-30^{\circ}\text{C} \sim 50^{\circ}\text{C}$.

4.6.2 MEASURING INSTRUMENTS AND SETTING


Please refer to section 5 in this report. The following table is the setting of the BS Simulator.

Spectrum Parameters	Setting
Frequency Error	The maximum of transmit frequency error

4.6.3 TEST PROCEDURES

1. The transmitter output (antenna port) was connected to the BS Simulator.
2. The BS simulator was used to set the TX channel and power level and modulate the TX signal with different bit patterns.
3. BS simulator used the frequency error function and measured the peak frequency error. Power must be removed when changing from one temperature to another or one voltage to another voltage. Power warm up is at least 15 min and power applied should perform before recording frequency error. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.
4. EUT is connected the external power supply to control the DC input power. The various Volts from the minimum 3.1 Volts to 4.3 Volts. Each step shall be record the frequency error rate.
5. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value.
6. Reduced operating temperature range of $-10^{\circ} \sim +45^{\circ}\text{C}$ as defined in Operational description and declared in User Manual.

4.6.4 TESTSETUP LAYOUT

4.6.5 TESTDEVIATION

There is no deviation with the original standard.

4.6.6 EUT OPERATION DURING TEST

The EUT was programmed to be in continuously un-modulation transmitting mode.

4.6.7 EUT TEST CONDITIONS

Temperature: 25°C
Relative Humidity: 55%
Test Voltage: DC 3.8V

4.6.8 TEST RESULTS

Please refer to the Attachment F.

5. LIST OF MEASUREMENT EQUIPMENTS

Radiated Emission & ERP or EIRP Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Antenna	Schwarbeck	VULB9160	9160-3232	Mar. 28, 2016
2	Amplifier	HP	8447D	2944A09673	Nov. 17, 2015
3	Receiver	AGILENT	N9038A	MY52130039	Sep. 30, 2015
4	Test Cable	emci	LMR-400(30MHz -1GHz)	C-01	Jun. 28, 2016
5	Controller	CT	SC100	N/A	N/A
6	Antenna	ETS	3115	00075789	Mar. 28, 2016
7	Amplifier	Agilent	8449B	3008A02274	Nov. 02, 2015
8	Receiver	AGILENT	N9038A	MY52130039	Sep. 30, 2015
9	Test Cable	emci	EMC104-SM-S M-10000(1GHz - 26.5GHz)	C-68	Jun. 28, 2016
10	Controller	CT	SC100	N/A	N/A
11	Broad-Band Horn Antenna	Schwarzbeck	BBHA 9170	9170319	Mar. 28, 2016
12	Microwave Preamplifier With Adaptor	EMC INSTRUMENT	EMC2654045	980039 & HA01	Mar. 28, 2016
13	Double Ridged Guide Antenna	ETS-LINDGREN	3115	00075846	Mar. 28, 2016
14	Antenna	SCHWARZBECK	VULB 9160	9160-3231	Mar. 28, 2016
15	MXG Analog Signal Generator	Agilent	N5181A	MY49060710	Nov. 02, 2015
16	Signal Generator	R&S	SMR40	100504	Mar. 28, 2016
17	Measurement Software	Farad	EZ-EMC Ver.NB-03A1-01	N/A	N/A

Antenna Conducted Spurious Emission Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016
2	Wireless Communication Test SET	(8960 Series) Agilent	E5515C	MY48364183	Mar. 28, 2016
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123-S+	331000910-1	Mar. 17, 2016
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015

Band Edge Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016
2	Wireless Communication Test SET	(8960 Series) Agilent	E5515C	MY48364183	Mar. 28, 2016
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123-S+	331000910-1	Mar. 17, 2016
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015

99% Occupied Bandwidth Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	EXA Spectrum Analyzer	Agilent	N9010A	MY50520044	Mar. 28, 2016
2	Wireless Communication Test SET	(8960 Series) Agilent	E5515C	MY48364183	Mar. 28, 2016
3	POWER SPLITTER	Mini-Circuits	ZFRSC-123-S+	331000910-1	Mar. 17, 2016
4	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015
5	Test Cable	N/A	CL-CB12-00 4	N/A	Oct. 22, 2015

Frequency Stability Measurement					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated until
1	Wireless Communication Test SET	(8960 Series) Agilent	E5515C	MY48364183	Mar. 28, 2016
2	POWER SPLITTER	Mini-Circuits	ZFRSC-123-S+	331000910-1	Mar. 17, 2016
3	Test Cable	N/A	CL-CB12-00 1	N/A	Oct. 22, 2015
4	Const Temp. & Humidity Chamber	GIANT FORCE	ITH-1200-40-CP-AR	IAA1210-003	Aug.01, 2015
5	DC power supply	GW Instek	GPC-30300N	EK880675	Oct.12, 2015

Remark: "N/A" denotes no model name, serial no. or calibration specified.

All calibration period of equipment list is one year.

6. EUT TEST PHOTO

Radiated Measurement Photos

9KHz to 30MHz

Radiated Measurement Photos

30MHz to 1000MHz

Radiated Measurement Photos

Above 1000MHz

ATTACHMENT A - RADIATED RF OUTPUT POWER

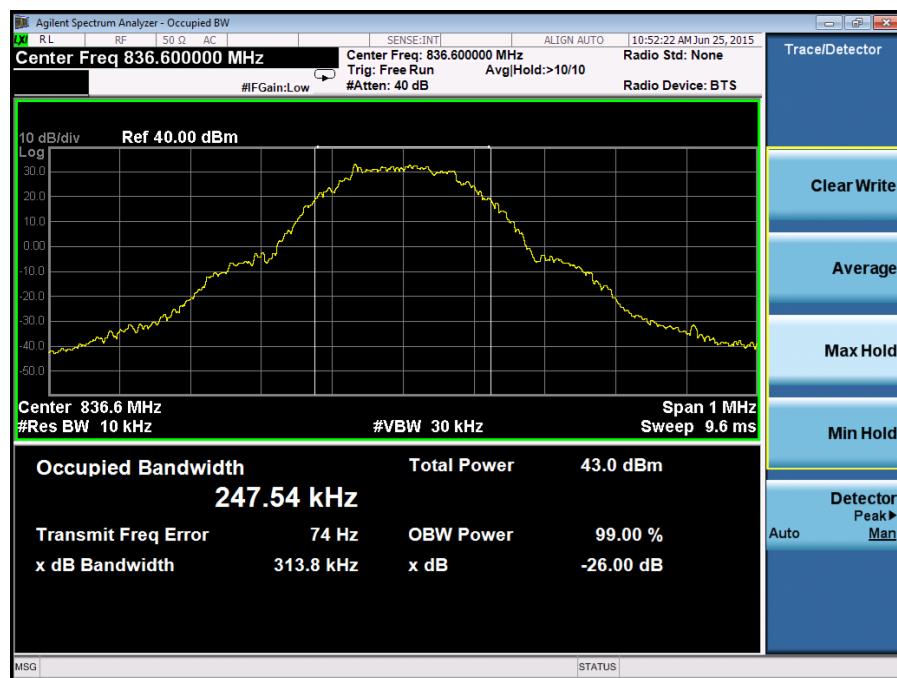
Test Mode:	TX CH 128/190/251
------------	-------------------

GSM 850		ERP Power(dBm)			Max. Limit(dBm)	Result
		Channel 128	Channel 190	Channel 251		
GSM	H	26.22	26.08	26.41	38.50	Complies
EDGE	H	22.79	22.1	22.07	38.50	Complies

GSM 850		Conducted Power(dBm)		
		Channel 128	Channel 190	Channel 251
GSM (CS)		32.88	32.86	32.76
GPRS (GMSK)	1 Tx Slot	32.79	32.72	32.67
	2 Tx Slot	30.69	31.12	31.19
	3 Tx Slot	28.84	29.28	29.34
	4 Tx Slot	27.81	27.73	27.63
EDGE (8PSK)	1 Tx Slot	26.64	26.58	26.60
	2 Tx Slot	25.65	25.55	25.61
	3 Tx Slot	24.13	24.02	24.37
	4 Tx Slot	22.73	22.84	22.77

REMARKS:

1. Radiated Output Power(dBm)=Raw Value(dBm) + Correction Factor(dB) + Ant Gain(dBi)
2. Correction Factor(dB) = Power SplitterLoss(dB) + Cable Loss(dB)
3. The antenna gain is -2.61dBi
4. Tests have been conducted for both vertical and horizontal plane and the worst case was found in horizontal plane and the results were selected and recorded in the report


ATTACHMENT B - 99% OCCUPIED BANDWIDTH

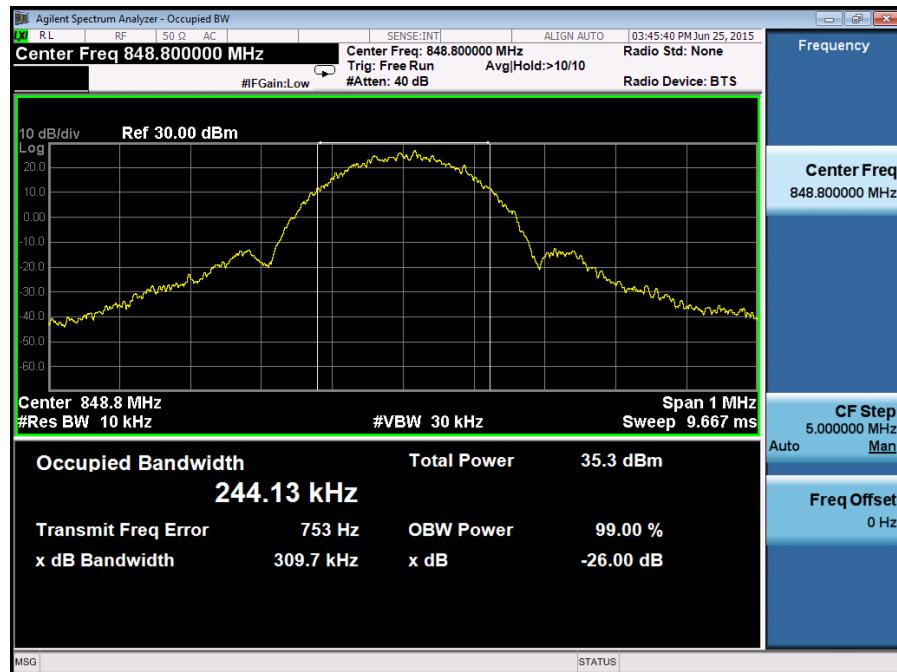
Test Mode : TX Mode Configuration GSM				
Channel	Frequency	99% OBW (MHz)	-26dBc Bandwidth(MHz)	Result
128	824.20 MHz	0.245	0.319	Complies
190	836.60 MHz	0.248	0.314	Complies
251	848.80 MHz	0.243	0.312	Complies

99% Occupied Bandwidth channel 128

99% Occupied Bandwidth channel 190

99% Occupied Bandwidth channel 251

Test Mode : TX Mode Configuration EDGE				
Channel	Frequency	99% OBW (MHz)	-26dBc Bandwidth(MHz)	Result
128	824.20 MHz	0.246	0.317	Complies
190	836.60 MHz	0.244	0.320	Complies
251	848.80 MHz	0.244	0.310	Complies

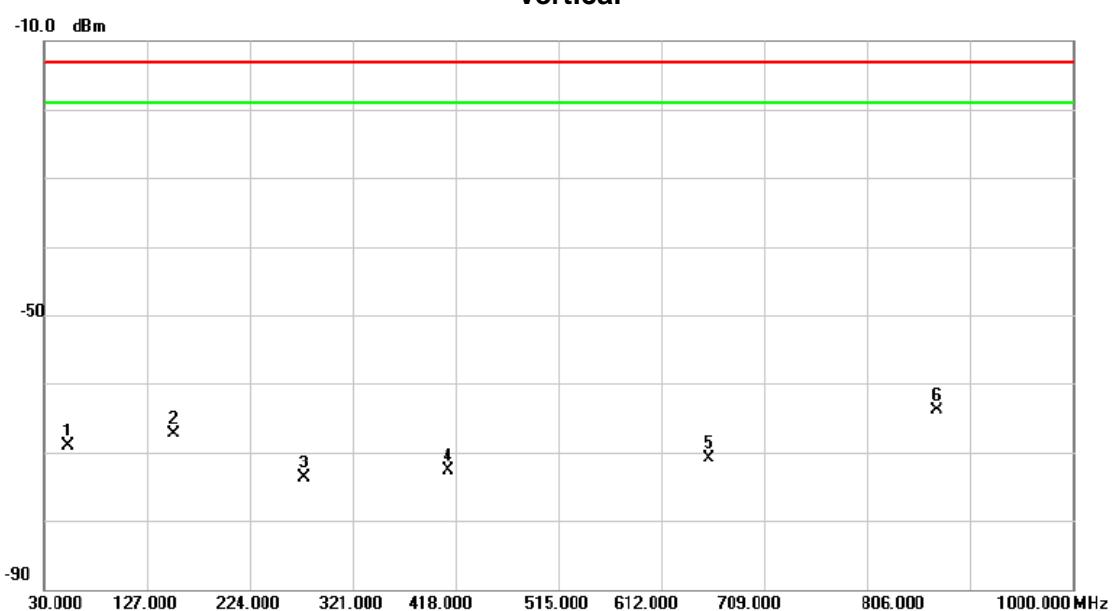

99% Occupied Bandwidth channel 128

99% Occupied Bandwidth channel 190

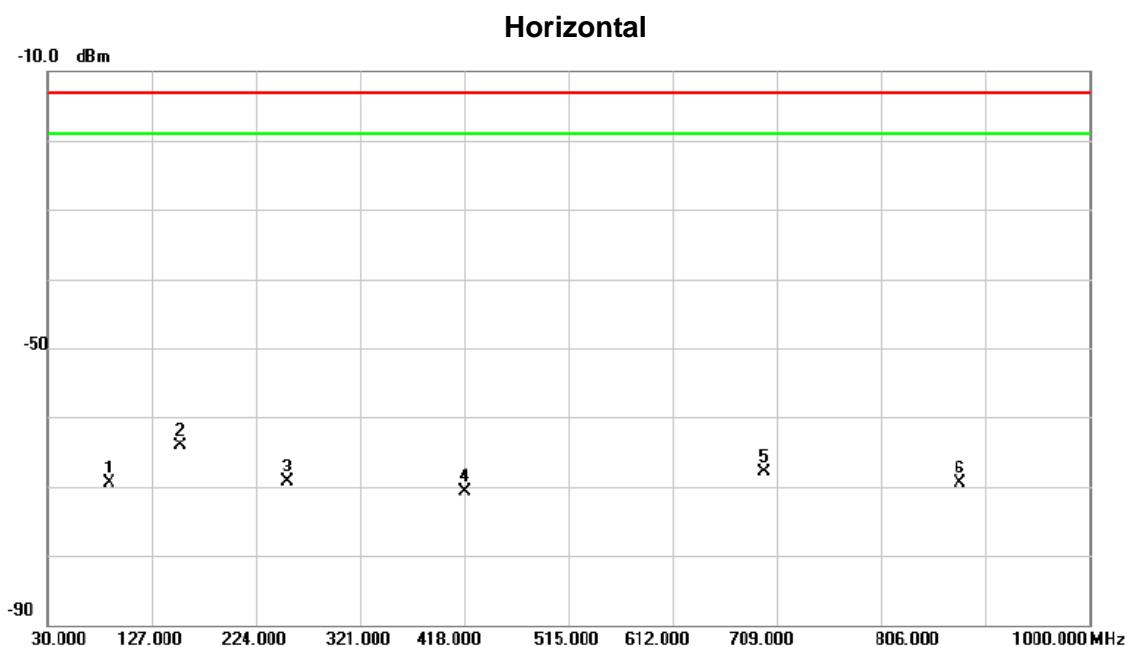


99% Occupied Bandwidth channel 251

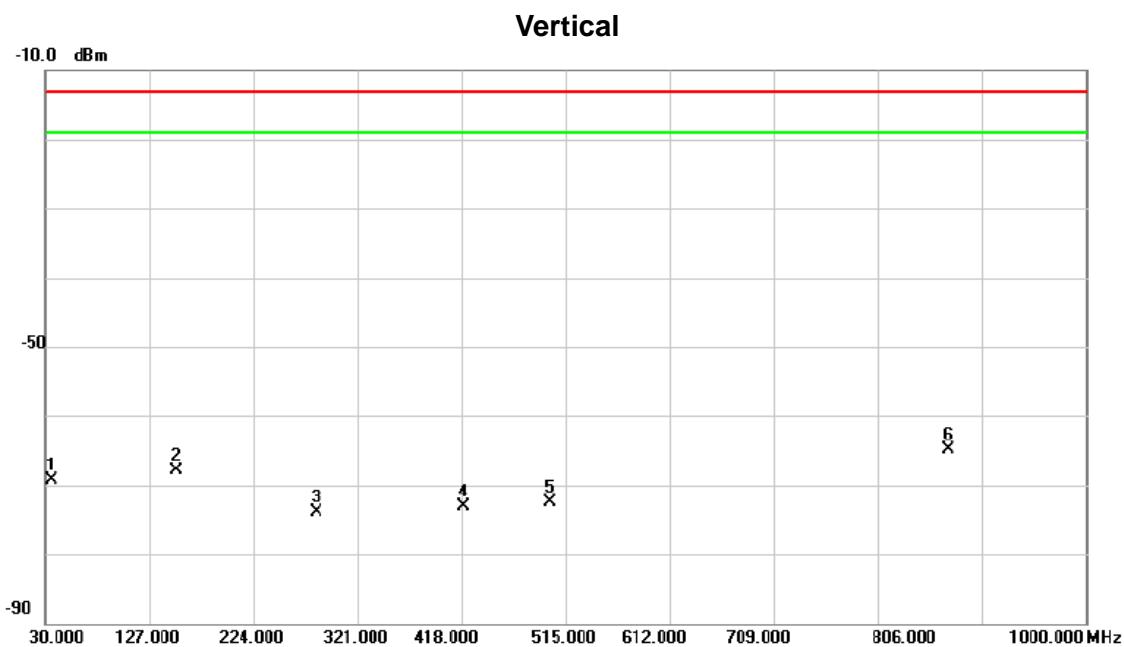
ATTACHMENT C - SPURIOUS EMISSIONS AT ANTENNA TERMINALS


Conducted Spurious of Configuration GSMchannel 190

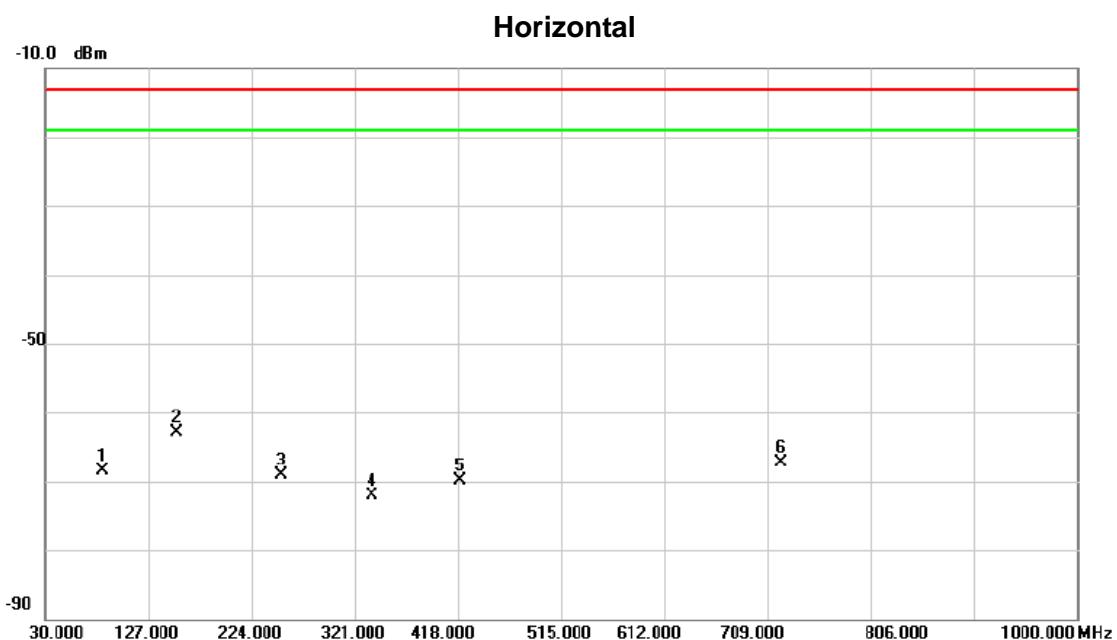
ATTACHMENTD - SPURIOUS RADIATED EMISSION


Test Mode: TX CH190 GSM

Vertical

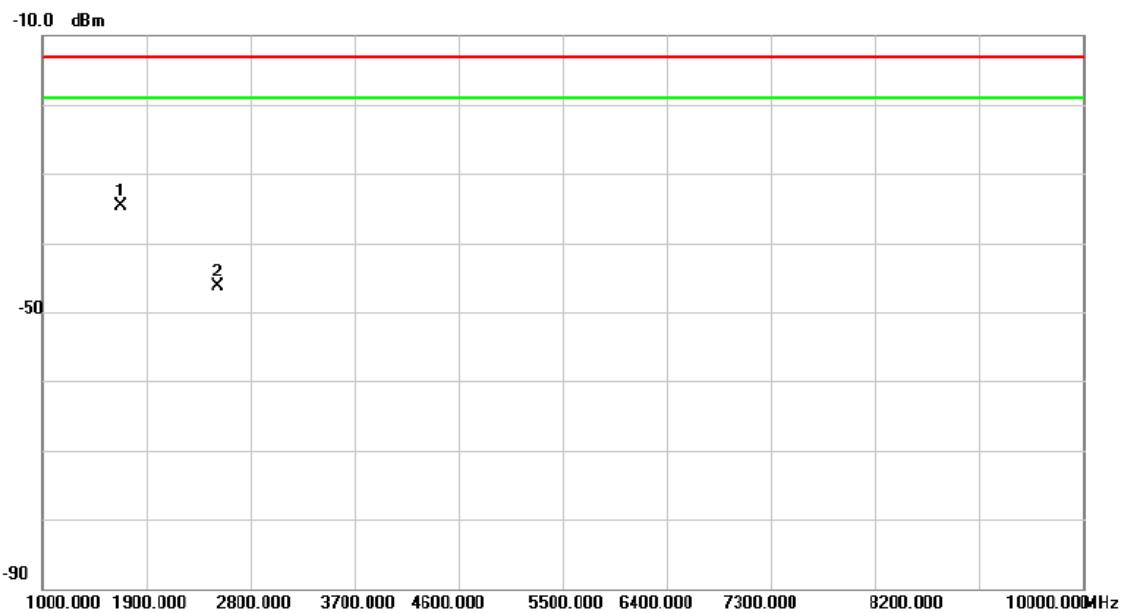

No.	Mk.	Freq. MHz	Reading dBm	Correct Factor dB	Measurement dBm	Limit dBm	Margin dB	Detector	Comment
1		52.3100	-70.62	1.58	-69.04	-13.00	-56.04		peak
2		152.2200	-70.52	3.16	-67.36	-13.00	-54.36		peak
3		274.4400	-76.01	2.39	-73.62	-13.00	-60.62		peak
4		410.2400	-77.07	4.39	-72.68	-13.00	-59.68		peak
5		656.6200	-81.00	10.17	-70.83	-13.00	-57.83		peak
6	*	870.9900	-77.71	13.72	-63.99	-13.00	-50.99		peak

Test Mode: TX CH190 GSM


No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin		
			Level	Factor	ment		dBm	dB	Detector
1		87.2300	-62.21	-7.38	-69.59	-13.00	-56.59		peak
2	*	153.1900	-67.78	3.76	-64.02	-13.00	-51.02		peak
3		253.1000	-71.28	1.89	-69.39	-13.00	-56.39		peak
4		418.9700	-77.60	6.83	-70.77	-13.00	-57.77		peak
5		696.3900	-81.72	13.73	-67.99	-13.00	-54.99		peak
6		878.7500	-81.97	12.47	-69.50	-13.00	-56.50		peak

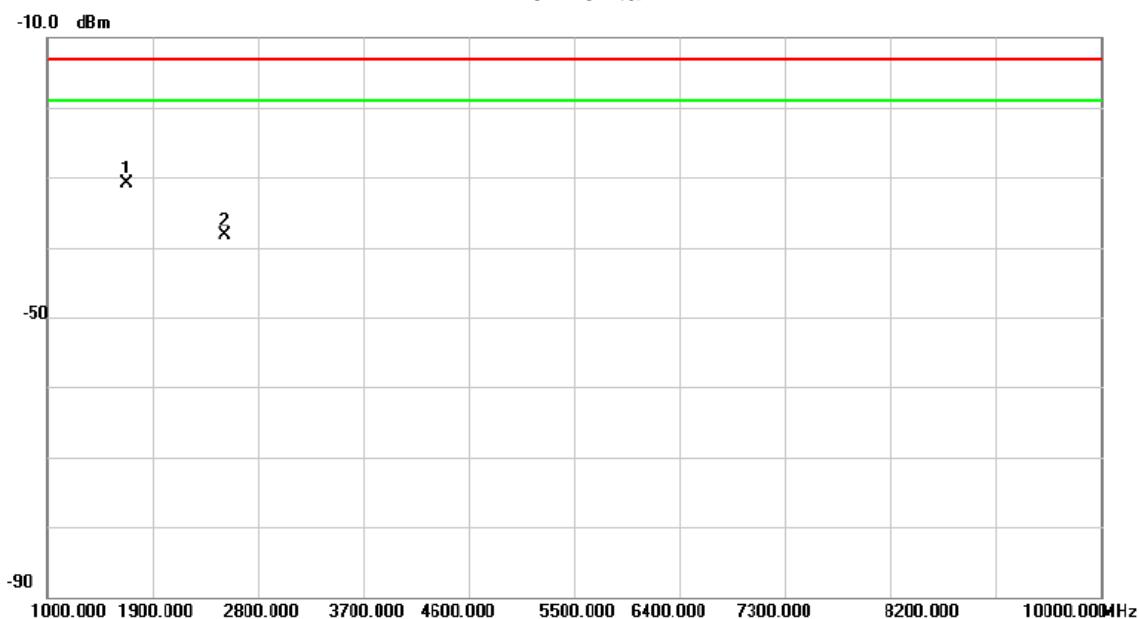
Test Mode: TX CH190 EDGE

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Detector	Comment
			MHz	Level	Factor				
1		35.8200	-68.32	-0.88	-69.20	-13.00	-56.20	peak	
2		152.2200	-71.06	3.16	-67.90	-13.00	-54.90	peak	
3		283.1700	-76.43	2.51	-73.92	-13.00	-60.92	peak	
4		419.9400	-77.73	4.65	-73.08	-13.00	-60.08	peak	
5		499.4800	-79.92	7.52	-72.40	-13.00	-59.40	peak	
6	*	870.9900	-78.68	13.72	-64.96	-13.00	-51.96	peak	

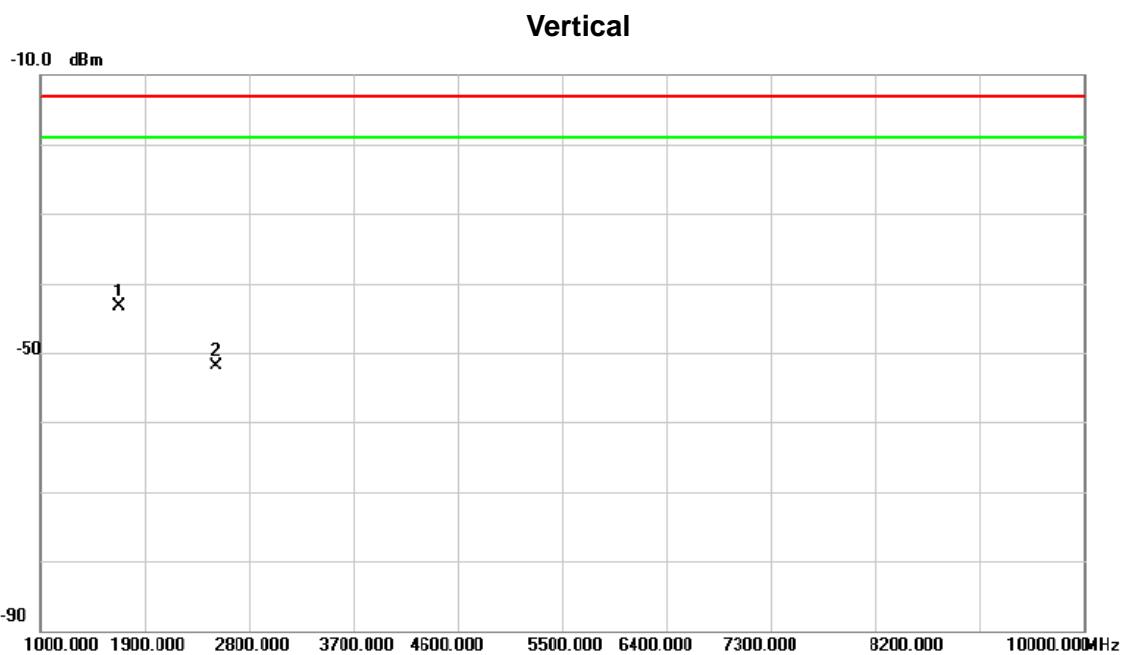

Test Mode: TX CH190 EDGE

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	
			Level	Factor	ment			
		MHz	dBm	dB	dBm	dB	Detector	Comment
1		83.3500	-60.73	-7.76	-68.49	-13.00	-55.49	peak
2	*	153.1900	-66.70	3.76	-62.94	-13.00	-49.94	peak
3		252.1300	-71.04	1.88	-69.16	-13.00	-56.16	peak
4		336.5200	-74.56	2.49	-72.07	-13.00	-59.07	peak
5		419.9400	-76.76	6.88	-69.88	-13.00	-56.88	peak
6		720.6400	-80.74	13.48	-67.26	-13.00	-54.26	peak

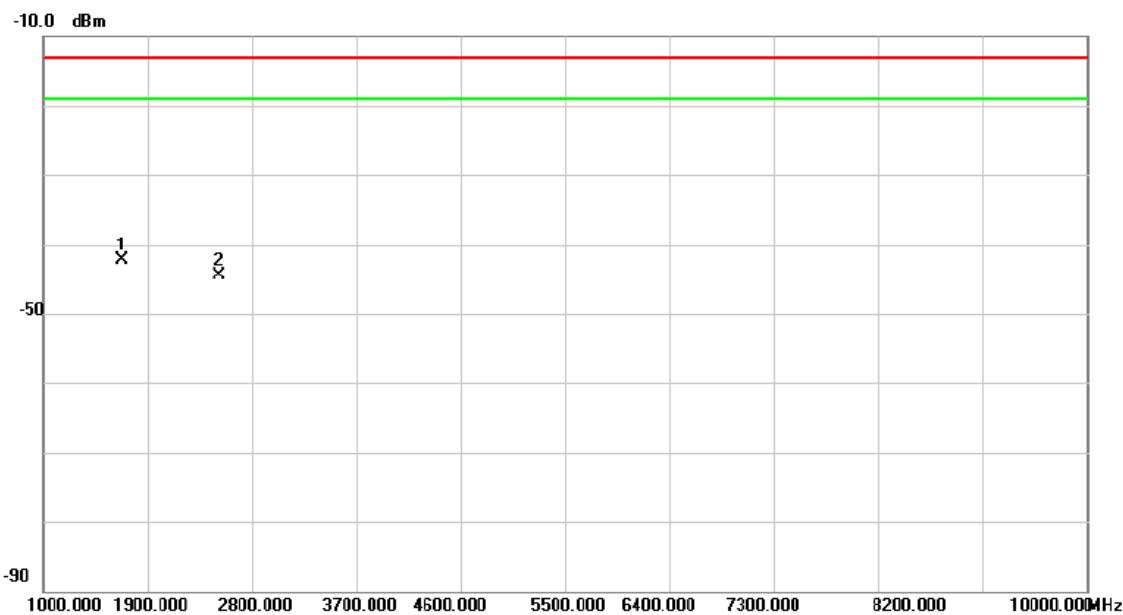
Test Mode: TX CH190 GSM


Vertical

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comment
1	*	1675.000	-33.66	-1.09	-34.75	-13.00	-21.75	peak	
2		2512.000	-46.99	0.63	-46.36	-13.00	-33.36	peak	

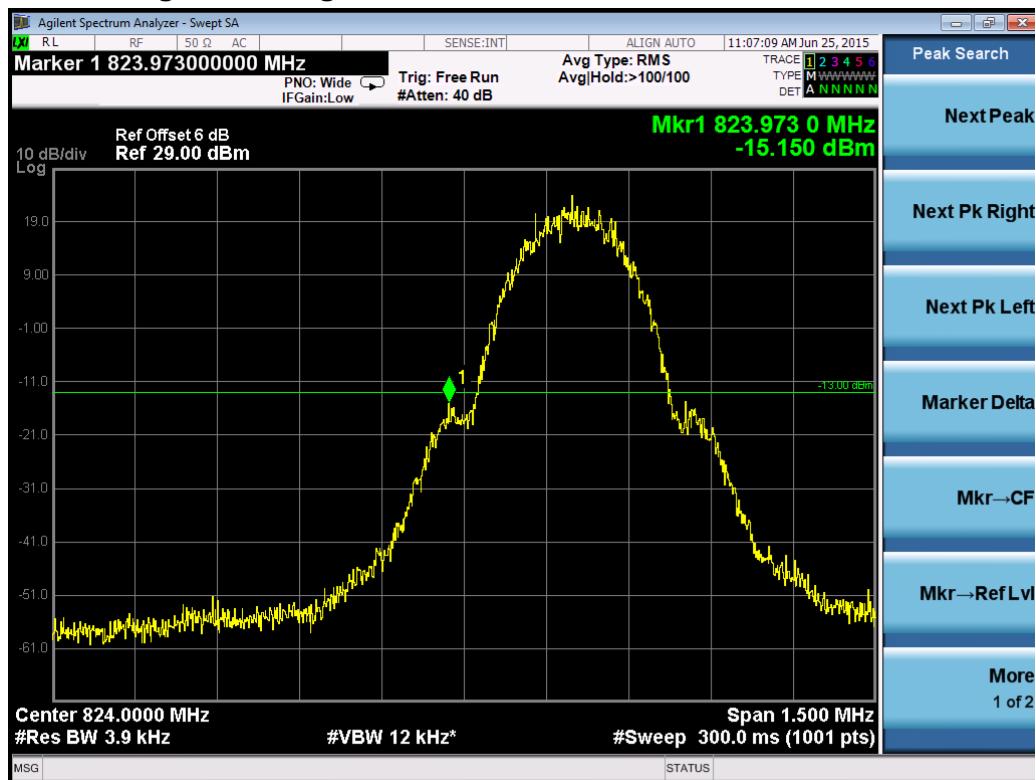

Test Mode: TX CH190 GSM

Horizontal

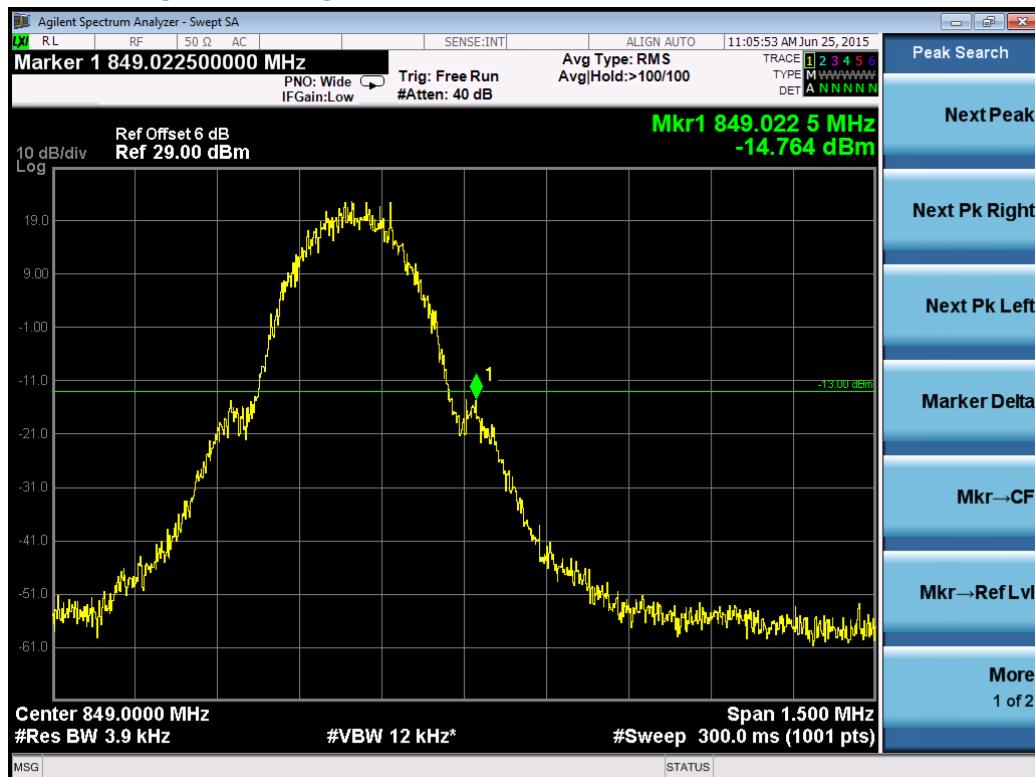

No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	
			Level	Factor	ment			
		MHz	dBm	dB	dBm	dB	Detector	Comment
1	*	1675.000	-33.70	2.87	-30.83	-13.00	-17.83	peak
2		2512.000	-41.24	3.00	-38.24	-13.00	-25.24	peak

Test Mode:	TX CH190 EDGE
------------	---------------

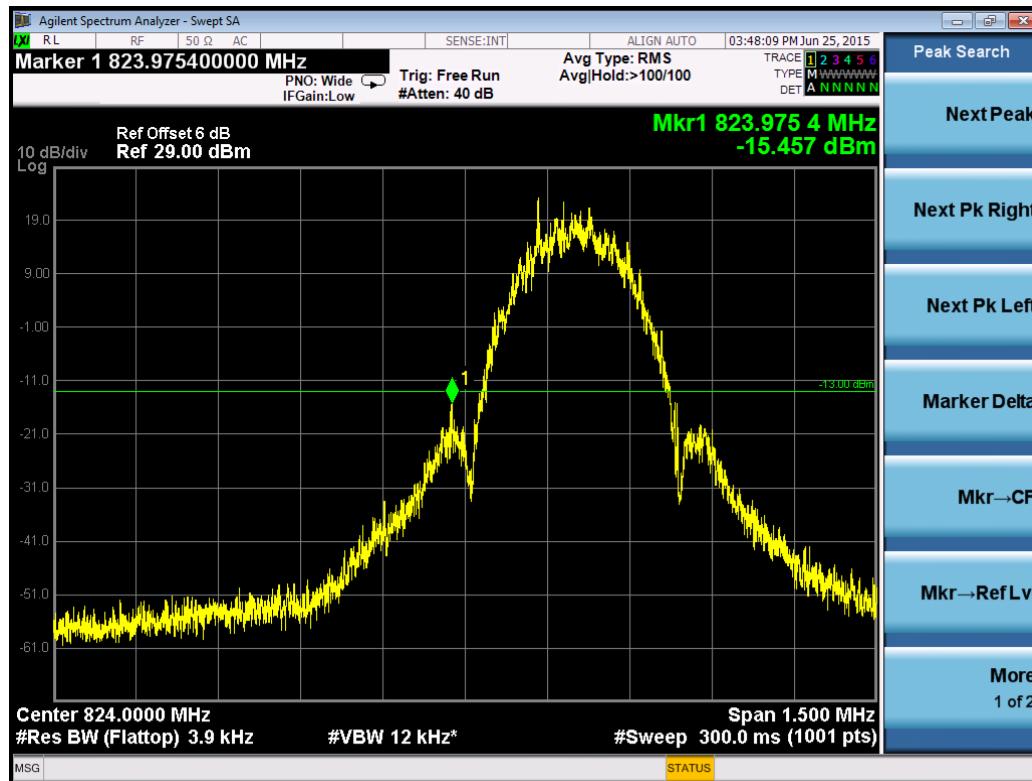
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Detector	Comment
			Level	Factor	ment				
		MHz	dBm	dB	dBm	dB			
1	*	1675.000	-42.27	-1.09	-43.36	-13.00	-30.36	peak	
2		2512.000	-52.58	0.63	-51.95	-13.00	-38.95	peak	

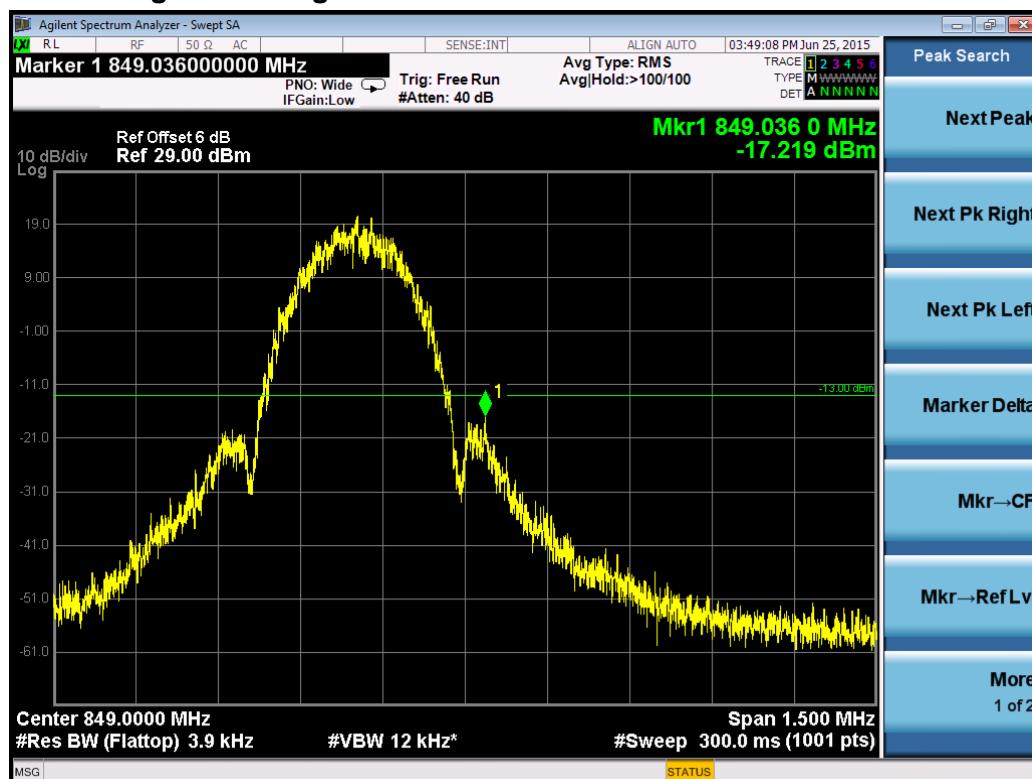

Test Mode:	TX CH190 EDGE
------------	---------------

Horizontal


No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Margin	Detector	Comment
			Level	Factor	ment				
		MHz	dBm	dB	dBm	dB			
1	*	1675.000	-45.25	2.87	-42.38	-13.00	-29.38	peak	
2		2512.000	-47.58	3.00	-44.58	-13.00	-31.58	peak	

ATTACHMENTE - BAND EDGE


Band Edge on Configuration GSM / Channel 128-CONDUCTED MODE


Band Edge on Configuration GSM / Channel 251-CONDUCTED MODE

Band Edge on Configuration EDGE / Channel 128-CONDUCTED MODE

Band Edge on Configuration EDGE / Channel 251-CONDUCTED MODE

ATTACHMENTF - FREQUENCY STABILITY

Test Mode:	TX CH 128 GSM
------------	---------------

Temperature vs. Frequency Stability

Temperature(°C)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
-10	7.56	0.009172531	2.5
0	6.25	0.007583111	2.5
10	1.21	0.00146809	2.5
20	4.58	0.005556904	2.5
30	8.99	0.010907547	2.5
40	9.08	0.011016744	2.5
45	3.11	0.003773356	2.5
Max. Deviation (ppm)	9.08	0.011016744	2.5

Voltage vs. Frequency Stability

Voltage(Volts)	Frequency Error (Hz)	Frequency Error (ppm)	Limit(ppm)
3.8	7.35	0.008917738	2.5
3.5	4.58	0.005556904	2.5
4.35	3.19	0.00387042	2.5
Max. Deviation (ppm)	7.35	0.008917738	2.5