

TEST REPORT

Product : LED Video Light
Trade mark : Godox
Model/Type reference : VL150, VLC150
Serial Number : N/A
Report Number : EED32M00004501
FCC ID : 2ABYN003
Date of Issue : May 29, 2020
Test Standards : 47 CFR Part 15Subpart C
Test result : PASS

Prepared for:

Godox Photo Equipment Co., Ltd .
1st to 4th Floor, Building 2/Ist to 4th Floor, Building 4,
Yaochuan Industrial Zone, Tangwei Community,
Fuhai Street, Baoan District, Shenzhen, China

Prepared by:

Centre Testing International Group Co., Ltd.
Hongwei Industrial Zone, Bao'an 70 District,
Shenzhen, Guangdong, China

TEL: +86-755-3368 3668

FAX: +86-755-3368 3385

Tested By:

mark. chen.

Compiled by:

Sunlight Sun

Mark Chen

Sunlight Sun

Reviewed by:

Ware Xin

Ware Xin

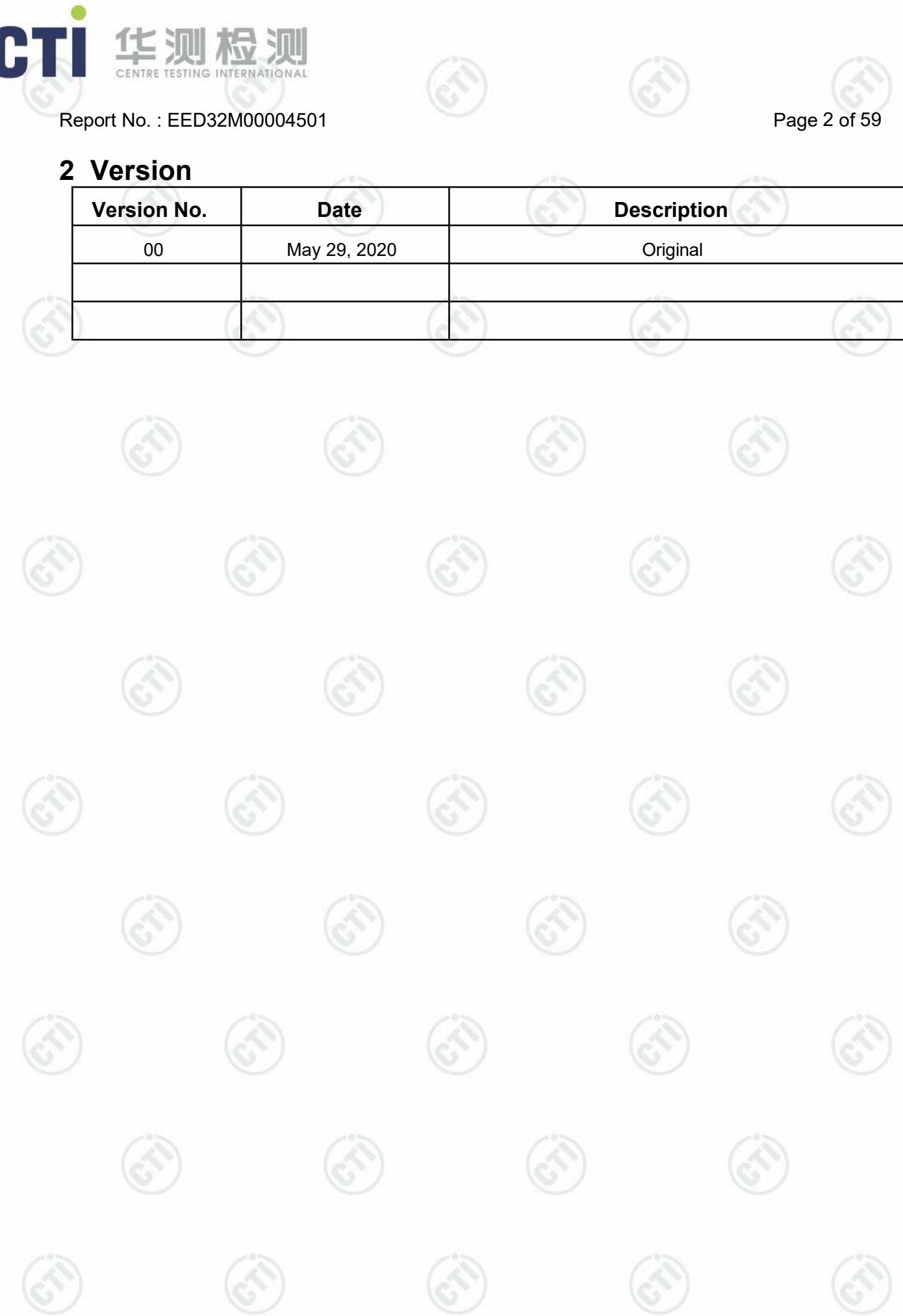
Approved by:

CTI

Sam Chuang

Sam Chuang

Date:


May 29, 2020

Check No.:2447612317

2 Version

Version No.	Date	Description
00	May 29, 2020	Original

3 Test Summary

Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

Remark:

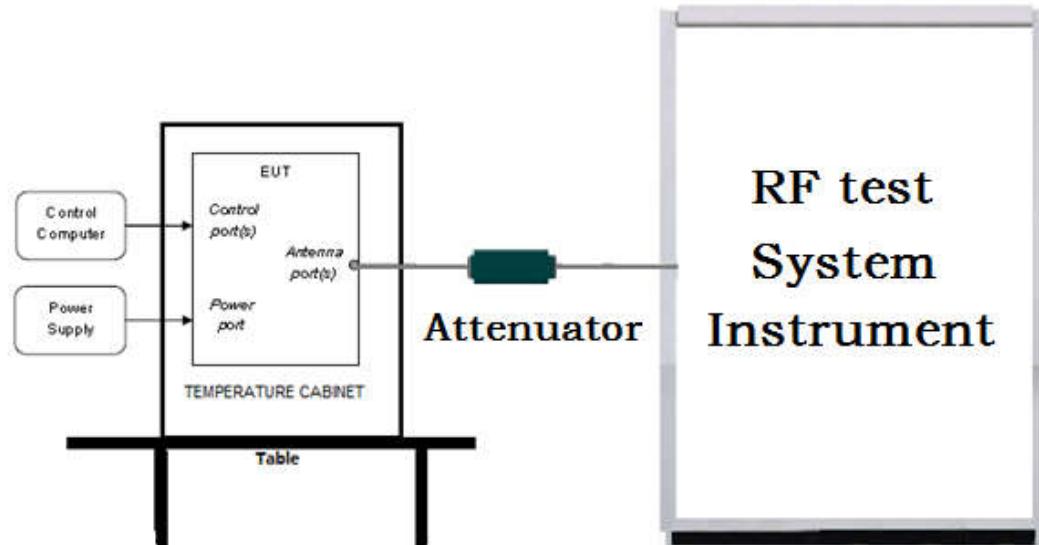
Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

The tested sample(s) and the sample information are provided by the client.

Model No.: VL150, VLC150

Only the model VL150 was tested, The product model of our LED video light/ LED Video Light is: VL150.

Because the product can be divided into three parts: LED light, control box and adapter, the separate model of the control box is: VLC150, in which the Bluetooth wireless module of the product is embedded in the control box VLC150.


4 Content

1 COVER PAGE	1
2 VERSION	2
3 TEST SUMMARY	3
4 CONTENT	4
5 TEST REQUIREMENT	5
5.1 TEST SETUP.....	5
5.1.1 For Conducted test setup.....	5
5.1.2 For Radiated Emissions test setup.....	5
5.1.3 For Conducted Emissions test setup.....	6
5.2 TEST ENVIRONMENT.....	6
5.3 TEST CONDITION.....	6
6 GENERAL INFORMATION	7
6.1 CLIENT INFORMATION.....	7
6.2 GENERAL DESCRIPTION OF EUT.....	7
6.3 PRODUCT SPECIFICATION SUBJECTIVE TO THIS STANDARD.....	8
6.4 DESCRIPTION OF SUPPORT UNITS.....	8
6.5 TEST LOCATION.....	9
6.6 DEVIATION FROM STANDARDS.....	9
6.7 ABNORMALITIES FROM STANDARD CONDITIONS.....	9
6.8 OTHER INFORMATION REQUESTED BY THE CUSTOMER.....	9
6.9 MEASUREMENT UNCERTAINTY (95% CONFIDENCE LEVELS, K=2).....	9
7 EQUIPMENT LIST	10
8 RADIO TECHNICAL REQUIREMENTS SPECIFICATION	13
EUT DUTY CYCLE.....	14
Appendix A): 6dB Occupied Bandwidth.....	15
Appendix B): Conducted Peak Output Power.....	19
Appendix C): Band-edge for RF Conducted Emissions.....	22
Appendix D): RF Conducted Spurious Emissions.....	24
Appendix E): Power Spectral Density.....	28
Appendix F): Antenna Requirement.....	31
Appendix G): AC Power Line Conducted Emission.....	33
Appendix H): Restricted bands around fundamental frequency (Radiated).....	36
Appendix I) Radiated Spurious Emissions.....	45
PHOTOGRAPHS OF TEST SETUP	49
PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	52

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

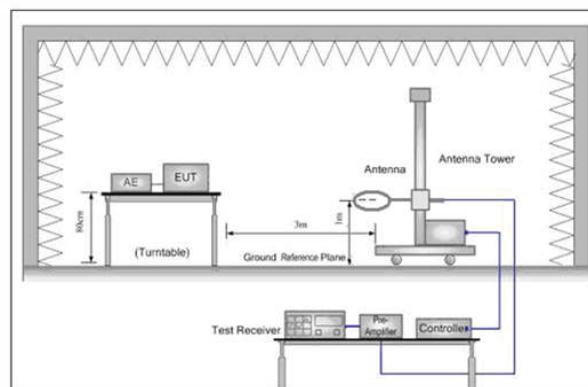


Figure 1. Below 30MHz

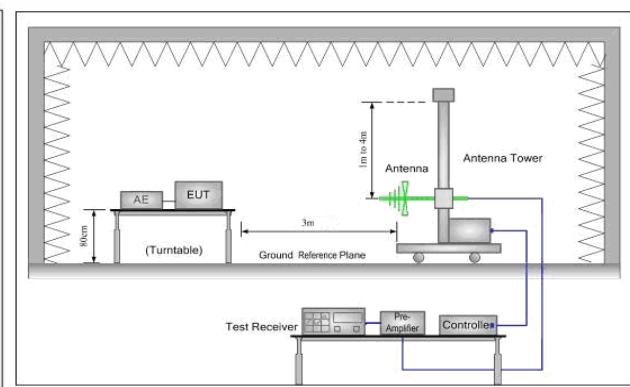


Figure 2. 30MHz to 1GHz

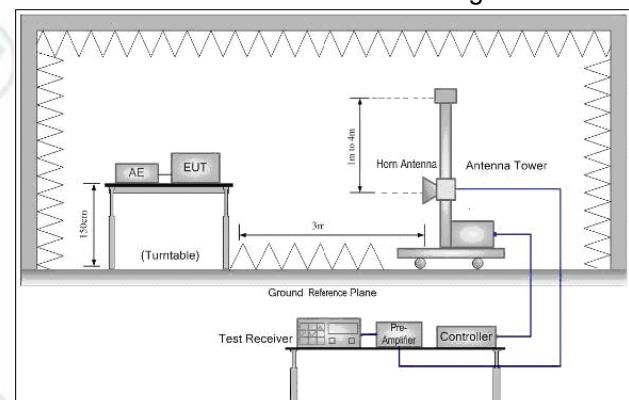
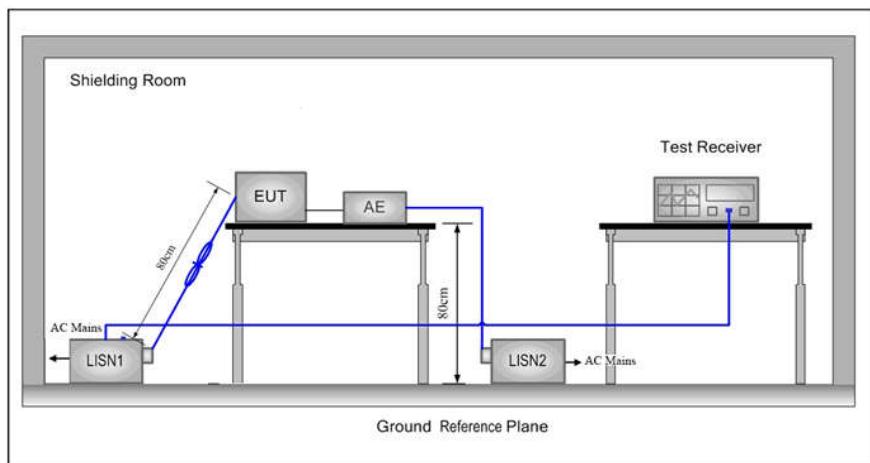



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup

Conducted Emissions setup

5.2 Test Environment

Operating Environment:

Temperature:	23.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar

5.3 Test Condition

Test channel:

Test Mode	Tx/Rx	RF Channel		
		Low(L)	Middle(M)	High(H)
GFSK	2402MHz ~2480 MHz	Channel 1	Channel 20	Channel 40
		2402MHz	2440MHz	2480MHz
Transmitting mode:	Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.			

6 General Information

6.1 Client Information

Applicant:	Godox Photo Equipment Co., Ltd .
Address of Applicant:	1st to 4th Floor, Building 2/1st to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, China
Manufacturer:	Godox Photo Equipment Co., Ltd .
Address of Manufacturer:	1st to 4th Floor, Building 2/1st to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, China
Factory:	Godox Photo Equipment Co., Ltd .
Address of Factory:	1st to 4th Floor, Building 2/1st to 4th Floor, Building 4, Yaochuan Industrial Zone, Tangwei Community, Fuhai Street, Baoan District, Shenzhen, China

6.2 General Description of EUT

Product Name:	LED Video Light	
Model No.(EUT):	VL150, VLC150	
Test Model No:	VL150	
Trade mark:	Godox	
EUT Supports Radios application:	BT 4.1 Single mode, 2402MHz to 2480MHz	
Power Supply:	Adapter	Input:AC100V-240V(50/60HZ)/2A Output:DC16.8V 10A
	Lithium Battery	DC14.4V
Sample Received Date:	Jan. 06, 2020	
Sample tested Date:	Jan. 06, 2020 to Apr. 01, 2020	

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz
Bluetooth Version:	4.1
Modulation Technique:	DSSS
Modulation Type:	GFSK
Number of Channel:	40
Test Power Grade:	Default
Test Software of EUT:	Setup_SmartRF_Studio_7-2.6.1.exe
Antenna Type and Gain:	Type: external whip antenna Gain:5 dBi
Test Voltage:	DC 3.3V

Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

1) support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Notebook	DELL	DELL 3490	CE&FCC	DELL

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9×10^{-8}
2	RF power, conducted	0.46dB (30MHz-1GHz)
		0.55dB (1GHz-18GHz)
3	Radiated Spurious emission test	4.3dB (30MHz-1GHz)
		4.5dB (1GHz-12.75GHz)
4	Conduction emission	3.5dB (9kHz to 150kHz)
		3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

7 Equipment List

RF test system					
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019 02-17-2020	02-29-2020 02-16-2021
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019 02-17-2020	02-29-2020 02-16-2021
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	07-26-2019	07-25-2020
High-pass filter	Sinoscite	FL3CX03WG18N M12-0398-002	---	---	---
High-pass filter	MICRO-TRONICS	SPA-F-63029-4	---	---	---
DC Power	Keysight	E3642A	MY56376072	03-01-2019 02-17-2020	02-29-2020 02-16-2021
PC-1	Lenovo	R4960d	---	---	---
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019 02-17-2020	02-29-2020 02-16-2021
RF control unit	JS Tonscend	JS0806-2	158060006	03-01-2019 02-17-2020	02-29-2020 02-16-2021
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	---	---	---

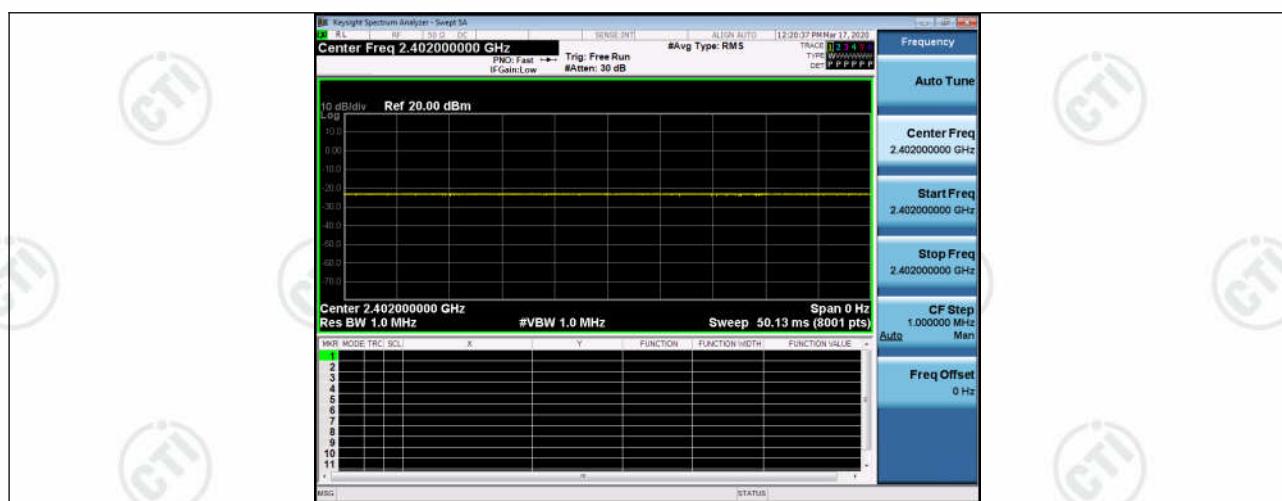
Conducted disturbance Test					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Receiver	R&S	ESCI	100435	05-20-2019	05-19-2020
Temperature/ Humidity Indicator	Defu	TH128	/	06-14-2019	06-13-2020
LISN	R&S	ENV216	100098	05-08-2019	05-07-2020
Barometer	changchun	DYM3	1188	06-20-2019	06-19-2020

3M Semi/full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3	---	05-24-2019	05-23-2022
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-24-2021
Receiver	R&S	ESCI7	100938-003	10-21-2019	10-20-2020
Multi device Controller	maturo	NCD/070/107 11112	---	---	---
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	07-26-2019	07-25-2020
Cable line	Fulai(7M)	SF106	5219/6A	---	---
Cable line	Fulai(6M)	SF106	5220/6A	---	---
Cable line	Fulai(3M)	SF106	5216/6A	---	---
Cable line	Fulai(3M)	SF106	5217/6A	---	---

3M full-anechoic Chamber					
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-18-2020
Receiver	Keysight	N9038A	MY57290136	03-27-2019 03-05-2020	03-26-2020 03-04-2021
Spectrum Analyzer	Keysight	N9020B	MY57111112	03-27-2019 03-05-2020	03-26-2020 03-04-2021
Spectrum Analyzer	Keysight	N9030B	MY57140871	03-27-2019 03-05-2020	03-26-2020 03-04-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-24-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-24-2021
Horn Antenna	ETS-LINDGREN	3117	00057407	07-10-2018	07-09-2021
Preamplifier	EMCI	EMC184055SE	980596	05-22-2019	05-21-2020
Preamplifier	EMCI	EMC001330	980563	05-08-2019	05-07-2020
Preamplifier	JS Tonscend	980380	EMC051845 SE	01-16-2019 01-09-2020	01-15-2020 01-08-2021
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-30-2019	04-29-2020
Fully Anechoic Chamber	TDK	FAC-3	---	01-17-2018	01-16-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-09-2021
Cable line	Times	SFT205-NMSM-2.50M	394812-0001	---	---
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	---	---
Cable line	Times	SFT205-NMSM-2.50M	394812-0003	---	---
Cable line	Times	SFT205-NMSM-2.50M	393495-0001	---	---
Cable line	Times	EMC104-NMNM-1000	SN160710	---	---
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	---	---
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	---	---
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	---	---
Cable line	Times	HF160-KMKM-3.00M	393493-0001	---	---

8 Radio Technical Requirements Specification

Reference documents for testing:


No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices

Test Results List:

Test Requirement	Test method	Test item	Verdict	Note
Part15C Section 15.247 (a)(2)	ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
Part15C Section 15.247 (b)(3)	ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
Part15C Section 15.247(d)	ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
Part15C Section 15.247(d)	ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
Part15C Section 15.247 (e)	ANSI C63.10	Power Spectral Density	PASS	Appendix E)
Part15C Section 15.203/15.247 (c)	ANSI C63.10	Antenna Requirement	PASS	Appendix F)
Part15C Section 15.207	ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
Part15C Section 15.205/15.209	ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
Part15C Section 15.205/15.209	ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)

EUT DUTY CYCLE

Duty Cycle			
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)
BLE	1.000	1.000	100%

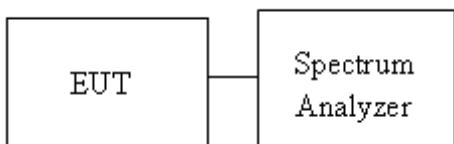
Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth :

Limit	Shall be at least 500kHz
-------	--------------------------


Occupied Bandwidth(99%) : For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

1. The EUT RF output connected to the spectrum analyzer by RF cable.
2. Setting maximum power transmit of EUT
3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth.
5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup

Test Result

6dB Bandwidth

Mode	Channel	6dB Bandwidth [MHz]	Verdict
BLE	LCH	0.7172	PASS
BLE	MCH	0.7207	PASS
BLE	HCH	0.7331	PASS

99%OBW

Mode	Channel	99% OBW[MHz]	Verdict
BLE	LCH	1.0468	PASS
BLE	MCH	1.0569	PASS
BLE	HCH	1.0534	PASS

Test Graphs
6dB Bandwidth

99%OBW

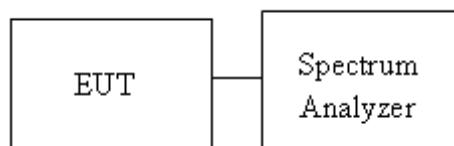
Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power :

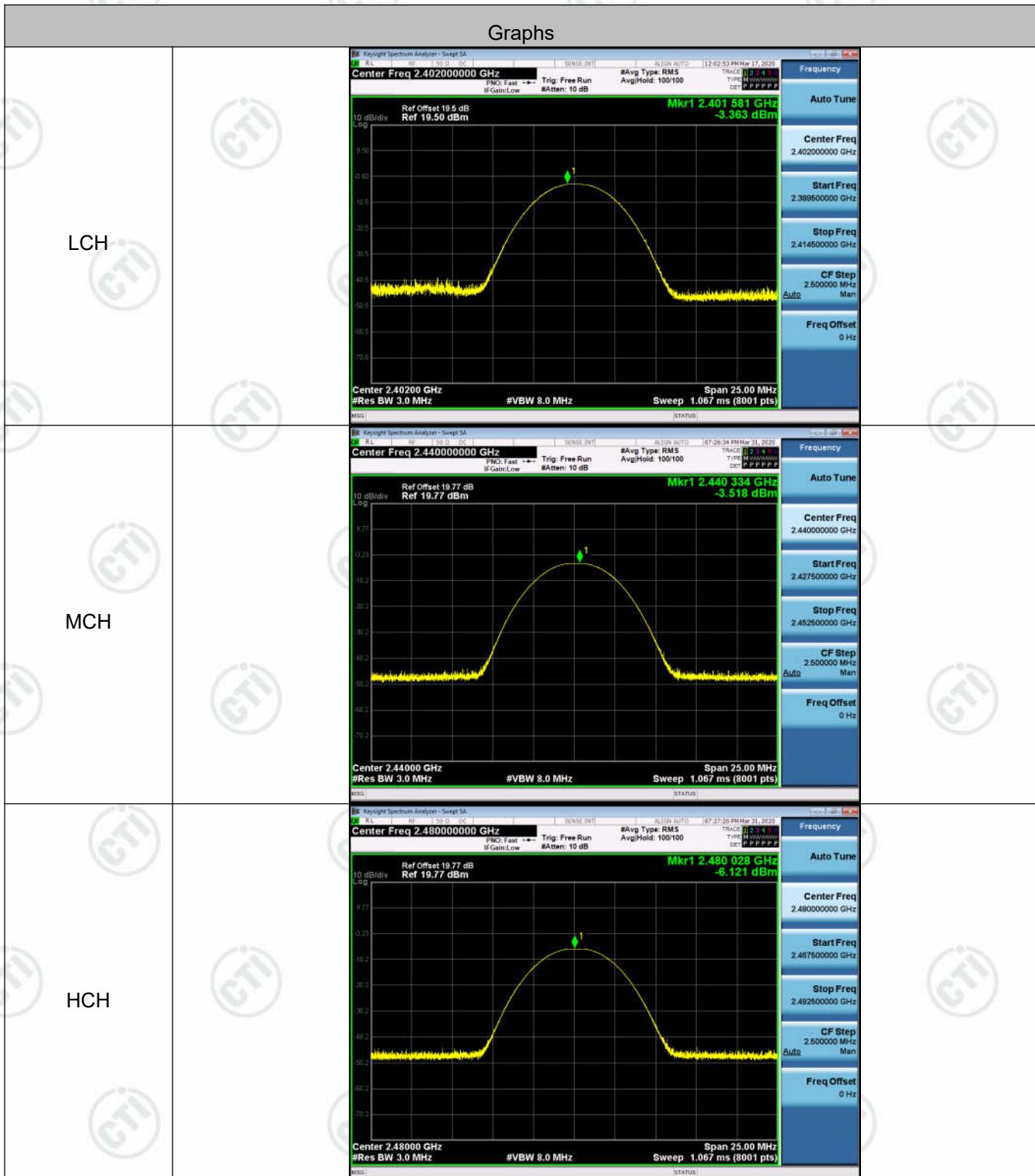
For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


Limit	<input checked="" type="checkbox"/> Antenna not exceed 6 dBi : 30dBm <input type="checkbox"/> Antenna with DG greater than 6 dBi [Limit = 30 – (DG – 6)] <input type="checkbox"/> Point-to-point operation
-------	---

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

1. The EUT RF output connected to spectrum analyzer by RF cable.
2. Setting maximum power transmit of EUT.
3. Spectrum analyzer settings are as follows:
 - a) Set the $RBW \geq DTS$ bandwidth.
 - b) Set $VBW \geq [3 \times RBW]$.
 - c) Set $span \geq [3 \times RBW]$.
 - d) Sweep time = auto couple.
 - e) Detector = peak.
 - f) Trace mode = max hold.
 - g) Allow trace to fully stabilize.
 - h) Use peak marker function to determine the peak amplitude level
4. Measure and record the result in the test report.


Test Setup

Test Result

Mode	Channel	Conduct Peak Power[dBm]	Verdict
BLE	LCH	-3.363	PASS
BLE	MCH	-3.518	PASS
BLE	HCH	-6.121	PASS

Test Graphs

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

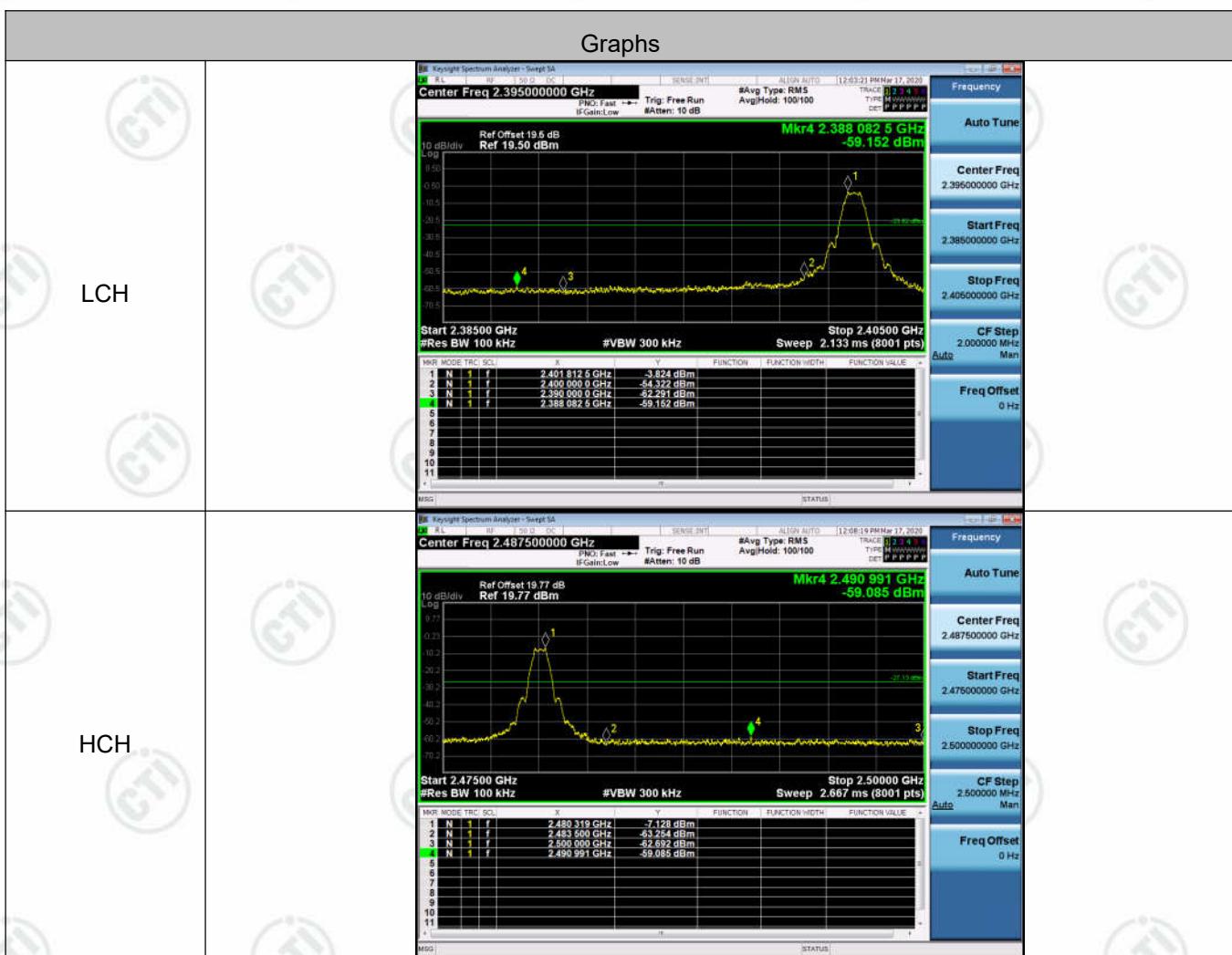
In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


Test Setup

Result Table

Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
BLE	LCH	-3.824	-59.152	-23.82	PASS
BLE	HCH	-7.128	-59.085	-27.13	PASS

Test Graphs

Appendix D): RF Conducted Spurious Emissions

Test Limit

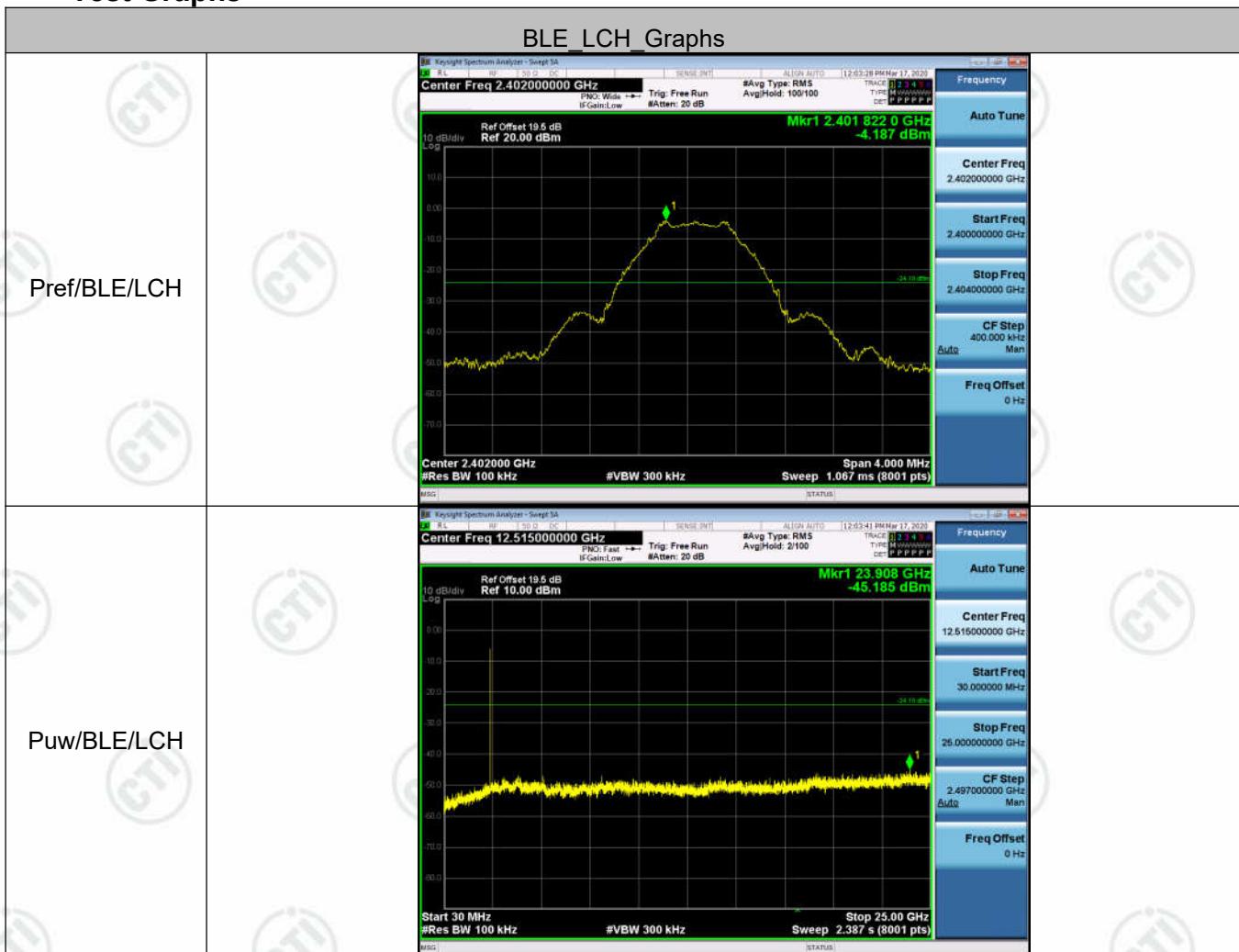
According to §15.247(d) and RSS-247 section 5.5

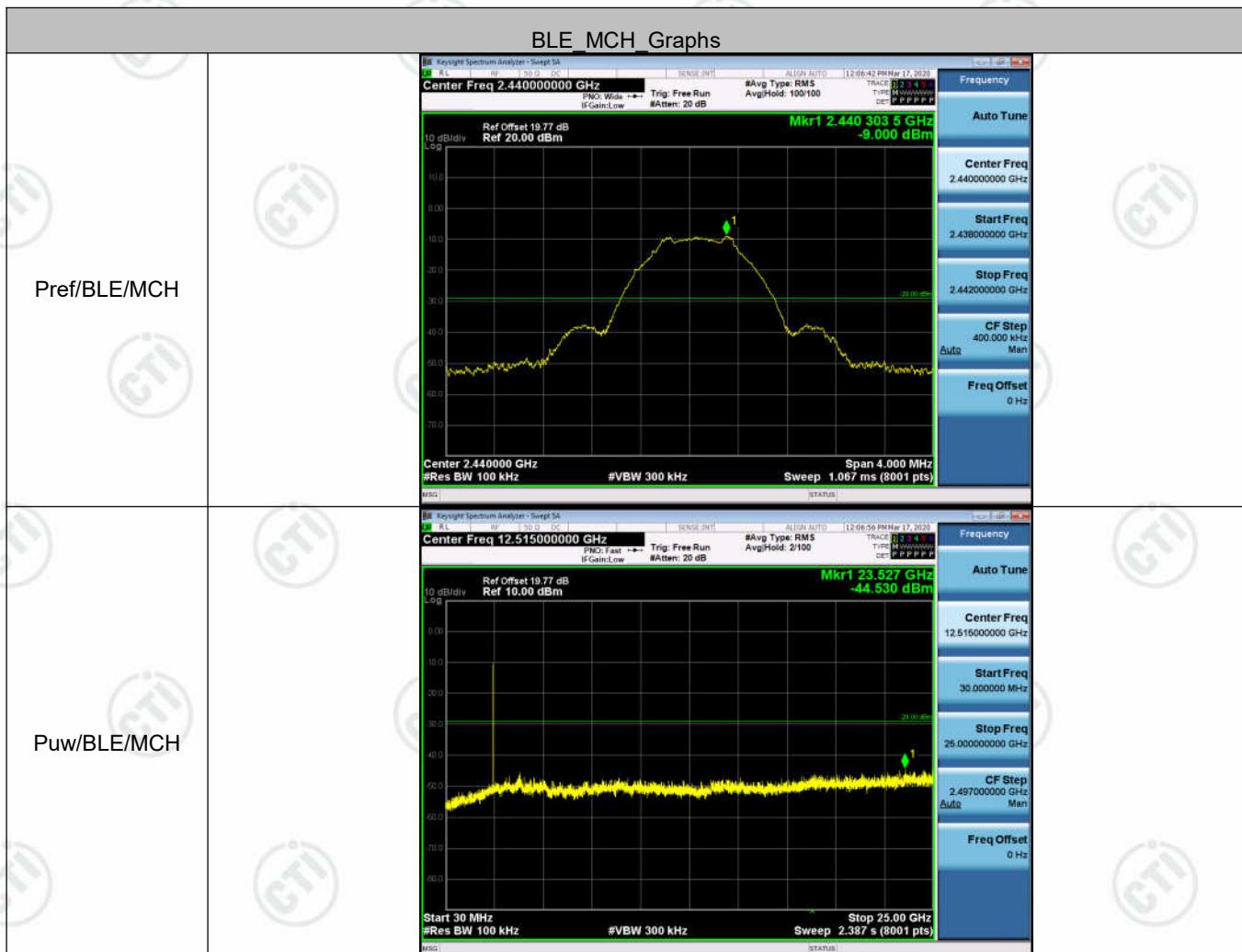
In any 100 kHz bandwidth outside the authorized frequency band,

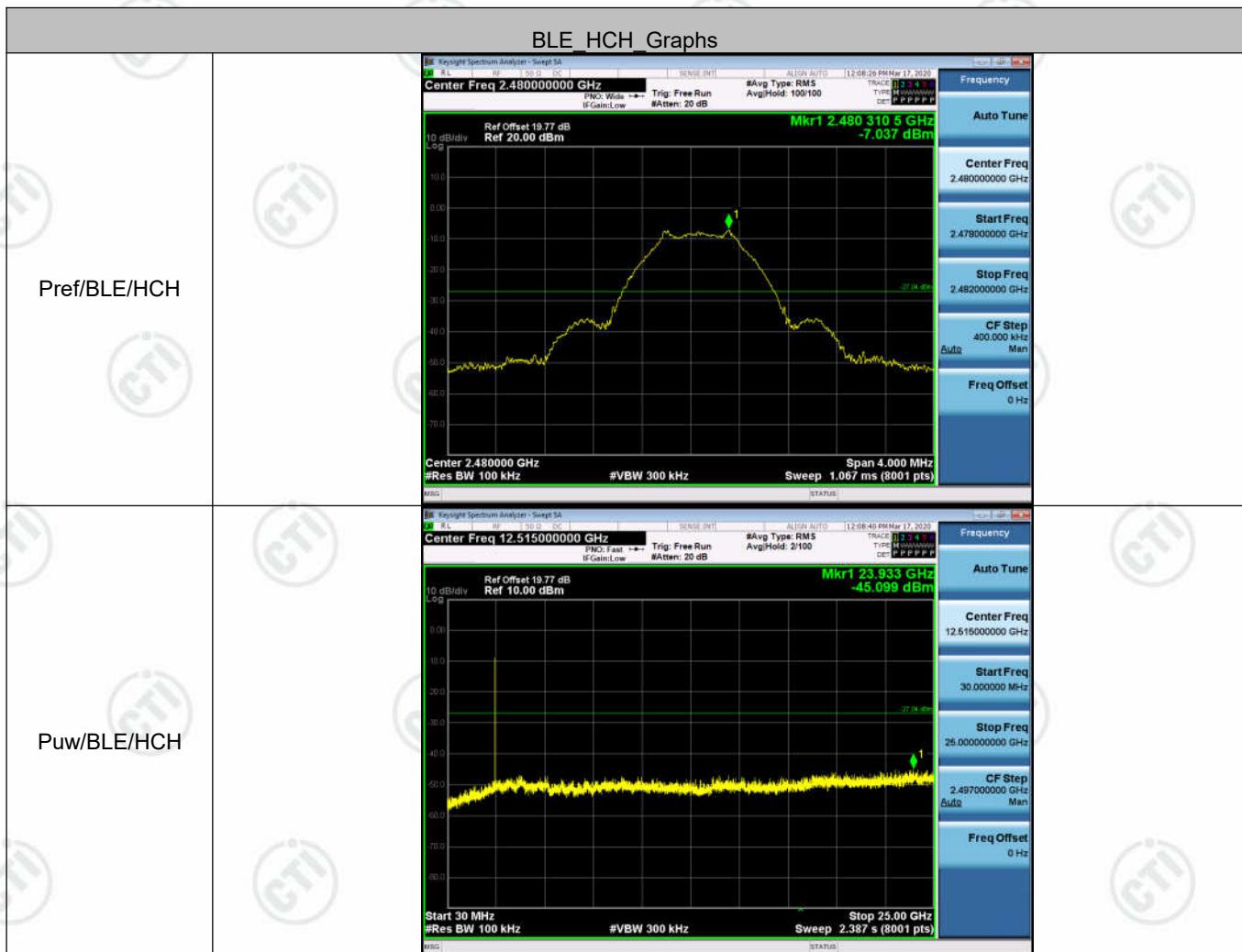
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.


1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.


Test Setup



Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-4.187	<Limit	PASS
BLE	MCH	-9	<Limit	PASS
BLE	HCH	-7.037	<Limit	PASS

Test Graphs

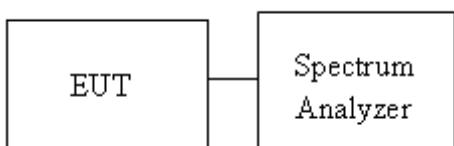
Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit	<input checked="" type="checkbox"/> Antenna not exceed 6 dBi : 8dBm <input type="checkbox"/> Antenna with DG greater than 6 dBi [Limit = 8 – (DG – 6)] <input type="checkbox"/> Point-to-point operation :
-------	---


Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 10.2

1. The EUT RF output connected to the spectrum analyzer by RF cable.
2. Setting maximum power transmit of EUT
3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
5. Mark the maximum level.

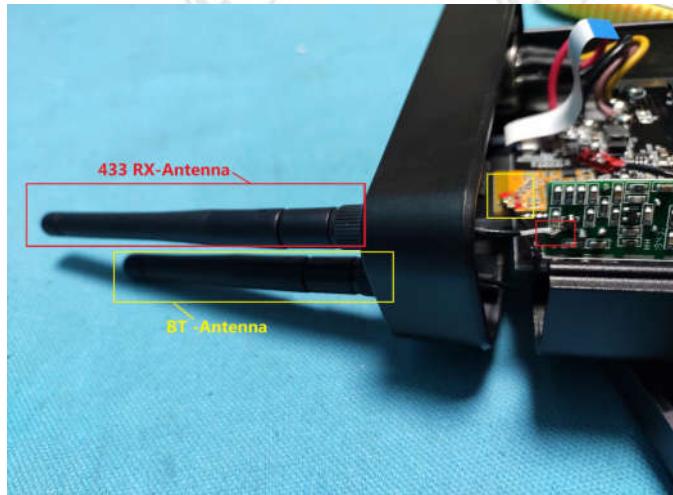
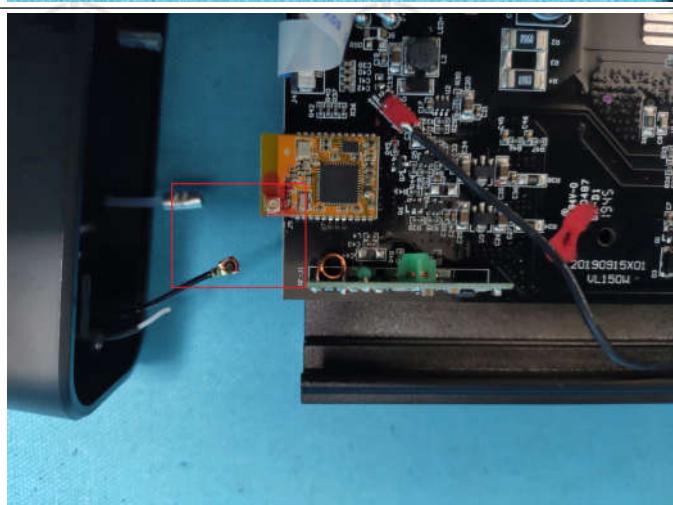
Measure and record the result of power spectral density. in the test report.

Test Setup

Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-14.546	PASS
BLE	MCH	-16.786	PASS
BLE	HCH	-16.982	PASS

Test Graphs



Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

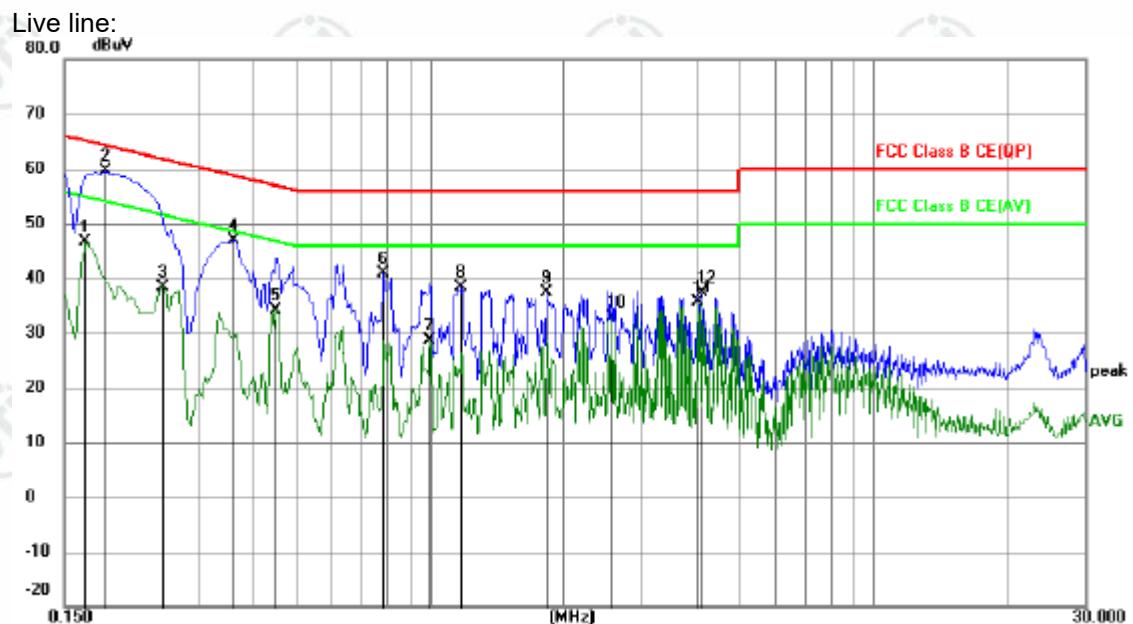
15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	

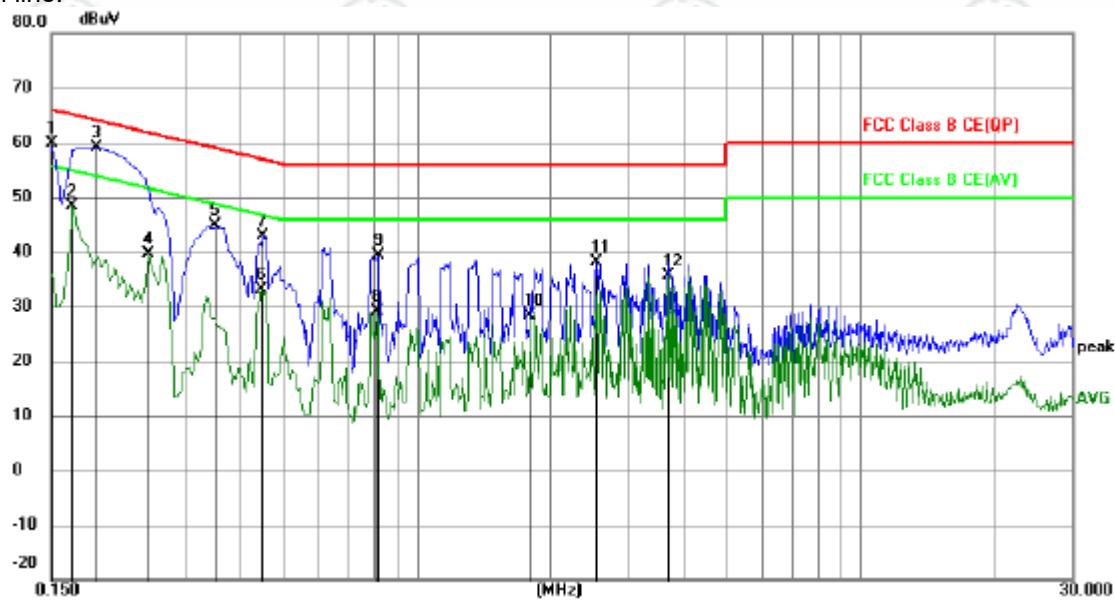
The antenna type is external whip antenna with reverse SMA connector. It is compliant with the requirement for 15.203. The best case gain of the antenna is 5 dBi.

Appendix G): AC Power Line Conducted Emission


Test Procedure:	<p>Test frequency range :150KHz-30MHz</p> <p>1)The mains terminal disturbance voltage test was conducted in a shielded room.</p> <p>2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a $50\Omega/50\mu\text{H} + 5\Omega$ linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.</p> <p>3)The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,</p> <p>4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.</p> <p>5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.</p>																
Limit:	<table border="1"> <thead> <tr> <th rowspan="2">Frequency range (MHz)</th> <th colspan="2">Limit (dBμV)</th> </tr> <tr> <th>Quasi-peak</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15-0.5</td> <td>66 to 56*</td> <td>56 to 46*</td> </tr> <tr> <td>0.5-5</td> <td>56</td> <td>46</td> </tr> <tr> <td>5-30</td> <td>60</td> <td>50</td> </tr> </tbody> </table> <p>* The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.</p> <p>NOTE : The lower limit is applicable at the transition frequency</p>			Frequency range (MHz)	Limit (dB μ V)		Quasi-peak	Average	0.15-0.5	66 to 56*	56 to 46*	0.5-5	56	46	5-30	60	50
Frequency range (MHz)	Limit (dB μ V)																
	Quasi-peak	Average															
0.15-0.5	66 to 56*	56 to 46*															
0.5-5	56	46															
5-30	60	50															

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector.


Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Product : LED Video Light **Model/Type reference** : VL150
Temperature : 24°C **Humidity** : 52%

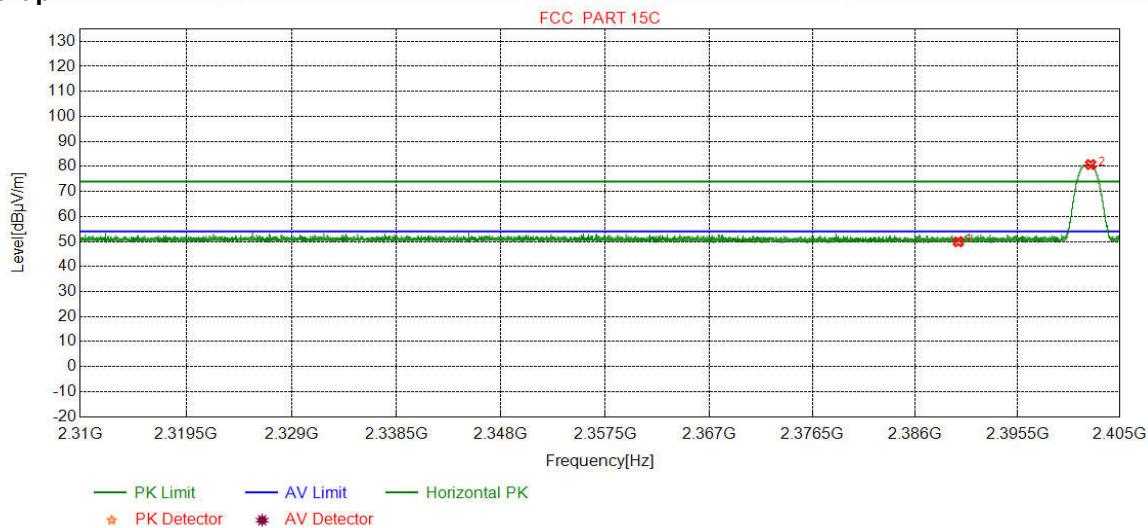
No.	Mk.	Freq. MHz	Reading Level	Correct Factor	Measure- ment	Limit	Margin	Detector	Comment
			dBuV	dB	dBuV	dB			
1		0.1675	36.52	9.99	46.51	55.08	-8.57	AVG	
2	*	0.1853	49.50	10.01	59.51	64.24	-4.73	QP	
3		0.2505	28.26	10.06	38.32	51.74	-13.42	AVG	
4		0.3613	36.84	10.04	46.88	58.70	-11.82	QP	
5		0.4490	24.04	10.00	34.04	46.89	-12.85	AVG	
6		0.7873	30.94	9.88	40.82	56.00	-15.18	QP	
7		0.9996	18.69	9.91	28.60	46.00	-17.40	AVG	
8		1.1779	28.54	9.90	38.44	56.00	-17.56	QP	
9		1.8286	27.62	9.84	37.46	56.00	-18.54	QP	
10		2.5807	23.14	9.83	32.97	46.00	-13.03	AVG	
11		4.0274	25.87	9.83	35.70	46.00	-10.30	AVG	
12		4.0918	27.50	9.83	37.33	56.00	-18.67	QP	

Neutral line:

No.	Mk.	Freq. MHz	Reading Level dBuV	Correct Factor dB	Measure- ment dBuV	Limit dBuV	Margin dB	Detector	Comment
1		0.1500	49.84	9.97	59.81	66.00	-6.19	QP	
2		0.1675	38.32	9.99	48.31	55.08	-6.77	AVG	
3	*	0.1901	49.00	10.01	59.01	64.03	-5.02	QP	
4		0.2480	29.49	10.06	39.55	51.82	-12.27	AVG	
5		0.3519	34.78	10.05	44.83	58.92	-14.09	QP	
6		0.4466	23.25	10.00	33.25	46.94	-13.69	AVG	
7		0.4490	32.95	10.00	42.95	56.89	-13.94	QP	
8		0.8129	19.13	9.91	29.04	46.00	-16.96	AVG	
9		0.8173	29.51	9.91	39.42	56.00	-16.58	QP	
10		1.8000	18.57	9.85	28.42	46.00	-17.58	AVG	
11		2.5400	28.21	9.83	38.04	56.00	-17.96	QP	
12		3.7000	25.73	9.83	35.56	46.00	-10.44	AVG	

Notes:

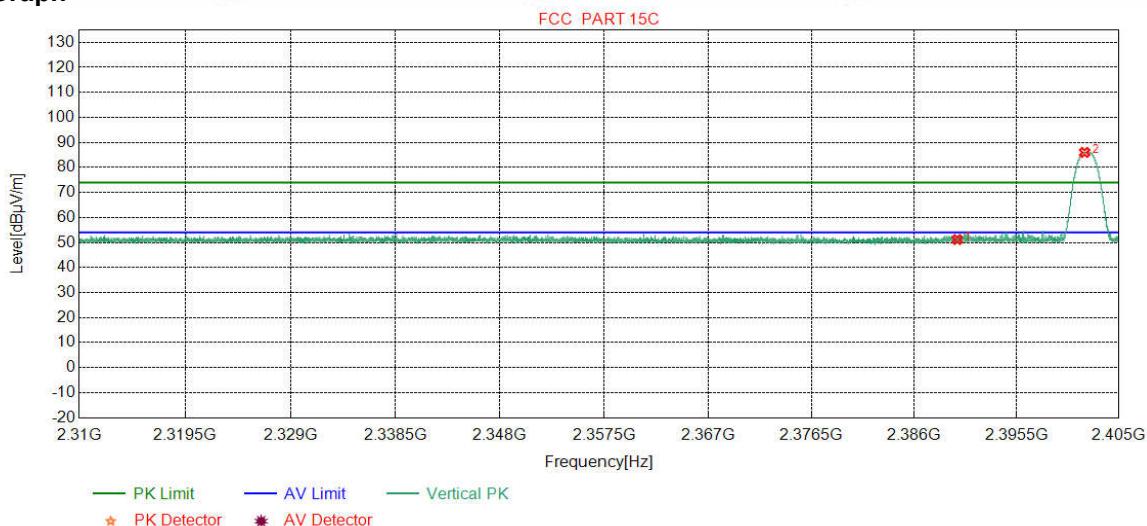
1. The following Quasi-Peak and Average measurements were performed on the EUT:
2. Final Test Level = Receiver Reading + LISN Factor + Cable Loss.


Appendix H): Restricted bands around fundamental frequency (Radiated)

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
	Above 1GHz	Peak	1MHz	3MHz	Peak	
		Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test procedure as below:					
	Test method Refer as KDB 558074 D01 v04, Section 12.1					
	<ol style="list-style-type: none"> The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. Place a marker at the end of the restricted band closest to the transmit frequency to show compliance. Also measure any emissions in the restricted bands. Save the spectrum analyzer plot. Repeat for each power and modulation for lowest and highest channel 					
	Above 1GHz test procedure as below:					
	<ol style="list-style-type: none"> Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter). Test the EUT in the lowest channel , the Highest channel The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case. Repeat above procedures until all frequencies measured was complete. 					
Limit:	Frequency	Limit (dB μ V/m @3m)	Remark			
	30MHz-88MHz	40.0	Quasi-peak Value			
	88MHz-216MHz	43.5	Quasi-peak Value			
	216MHz-960MHz	46.0	Quasi-peak Value			
	960MHz-1GHz	54.0	Quasi-peak Value			
	Above 1GHz	54.0	Average Value			
		74.0	Peak Value			

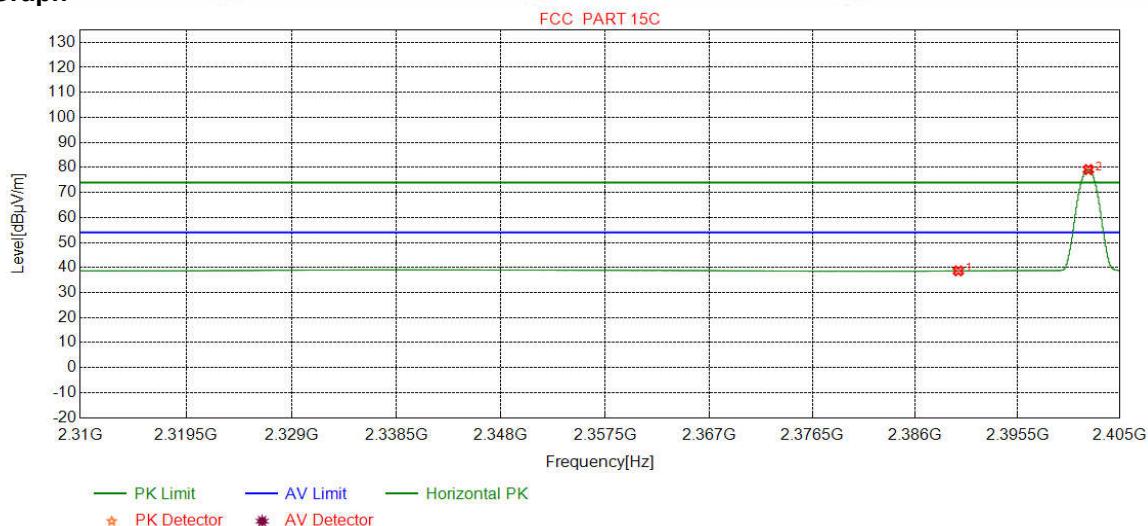
Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		


Test Graph

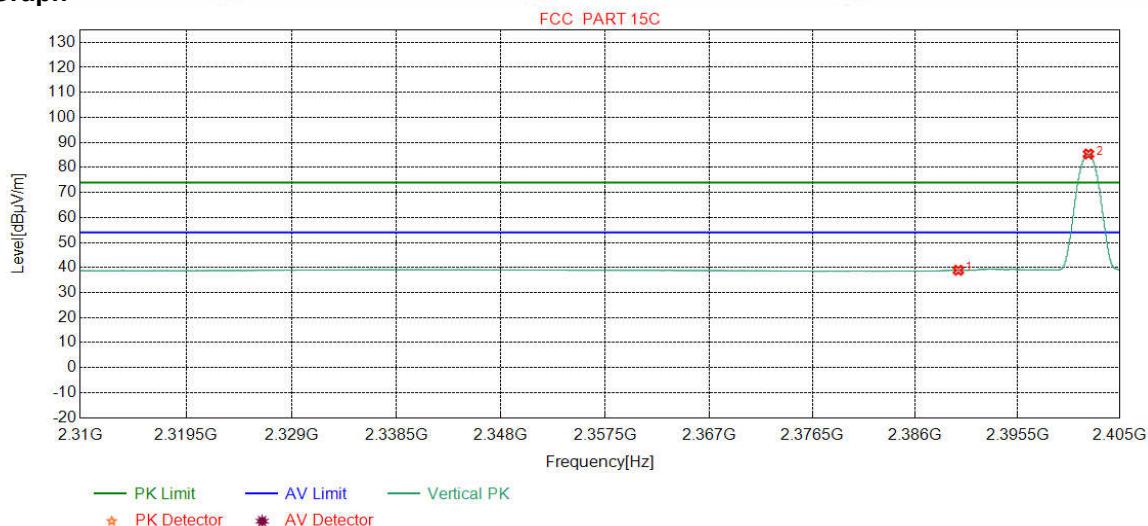
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	47.37	49.87	74.00	24.13	Pass	Horizontal
2	2402.2892	32.26	13.31	-43.12	78.30	80.75	74.00	-6.75	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		


Test Graph

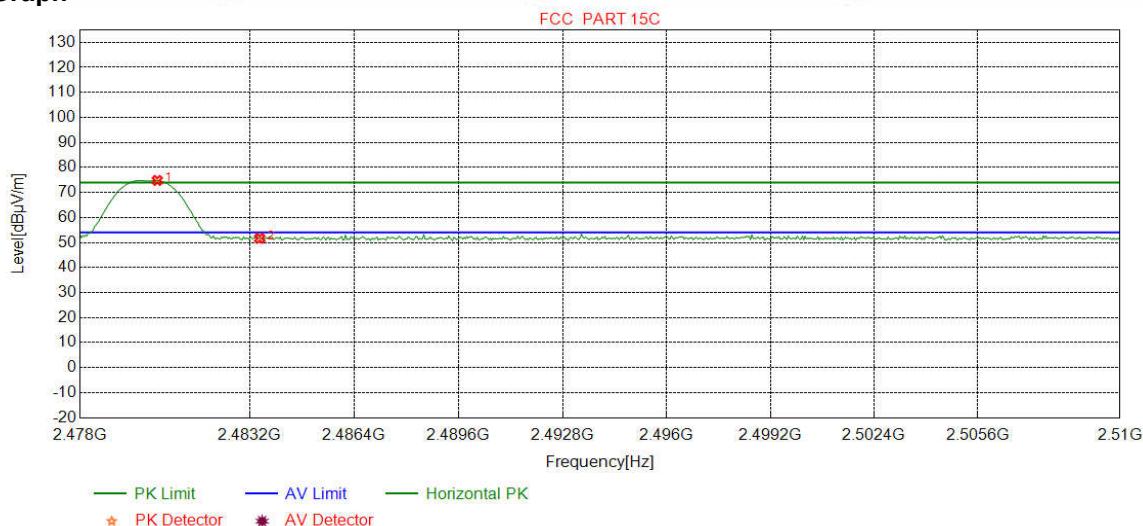
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	48.68	51.18	74.00	22.82	Pass	Vertical
2	2401.8205	32.26	13.31	-43.12	83.56	86.01	74.00	-12.01	Pass	Vertical

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		


Test Graph

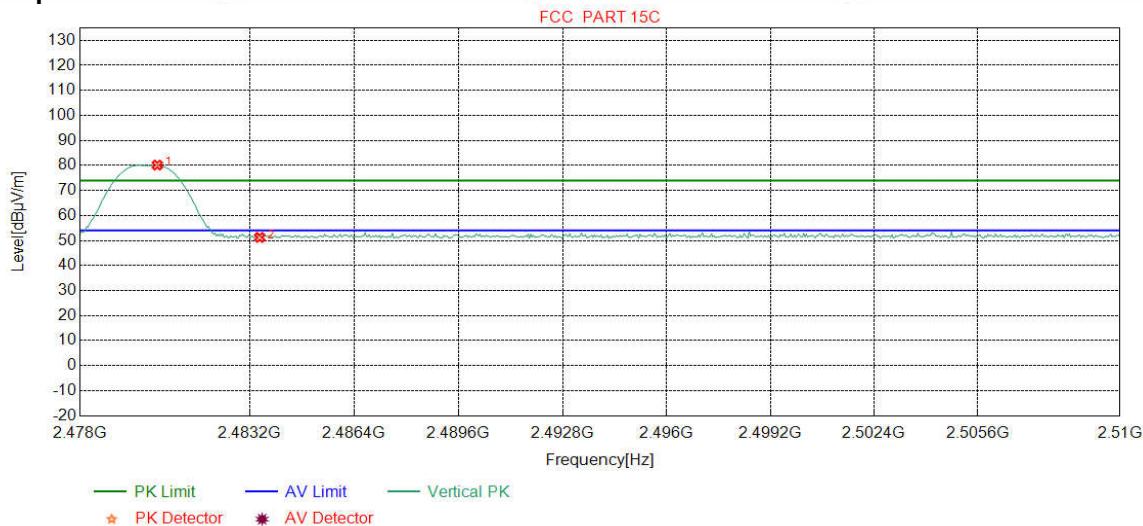
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.15	38.65	54.00	15.35	Pass	Horizontal
2	2402.0801	32.26	13.31	-43.12	76.70	79.15	54.00	-25.15	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

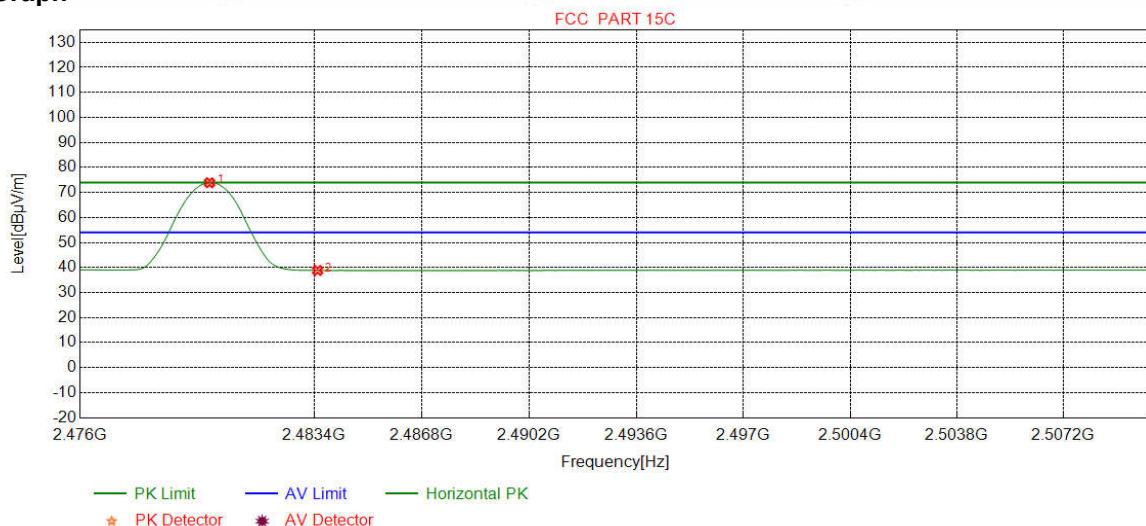

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2390.0000	32.25	13.37	-43.12	36.40	38.90	54.00	15.10	Pass	Vertical
2	2402.0865	32.26	13.31	-43.12	82.93	85.38	54.00	-31.38	Pass	Vertical

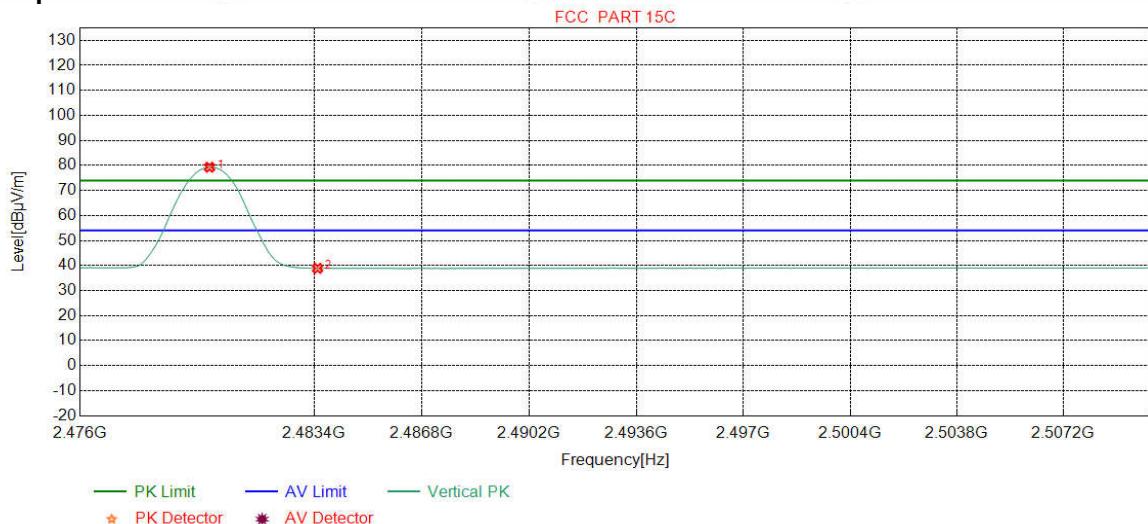
Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		


Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2480.3630	32.37	13.39	-43.10	72.15	74.81	74.00	-0.81	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	49.01	51.66	74.00	22.34	Pass	Horizontal


Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	PK		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2480.3630	32.37	13.39	-43.10	77.49	80.15	74.00	-6.15	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	48.57	51.22	74.00	22.78	Pass	Vertical

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	71.22	73.88	54.00	-19.88	Pass	Horizontal
2	2483.5000	32.38	13.38	-43.11	36.19	38.84	54.00	15.16	Pass	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity
1	2480.0851	32.37	13.39	-43.10	76.63	79.29	54.00	-25.29	Pass	Vertical
2	2483.5000	32.38	13.38	-43.11	36.23	38.88	54.00	15.12	Pass	Vertical

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
Above 1GHz		Peak	1MHz	3MHz	Peak	
		Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

Limit:	Frequency	Field strength (microvolt/meter)	Limit (dB μ V/m)	Remark	Measurement distance (m)
	0.009MHz-0.490MHz	2400/F(kHz)	-	-	300
	0.490MHz-1.705MHz	24000/F(kHz)	-	-	30
	1.705MHz-30MHz	30	-	-	30
	30MHz-88MHz	100	40.0	Quasi-peak	3
	88MHz-216MHz	150	43.5	Quasi-peak	3
	216MHz-960MHz	200	46.0	Quasi-peak	3
	960MHz-1GHz	500	54.0	Quasi-peak	3
	Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

**Radiated Spurious Emissions test Data:
Radiated Emission below 1GHz**

Mode:			BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity	Remark
1	144.6655	7.36	1.42	-32.00	57.91	34.69	43.50	8.81	Pass	H	PK
2	192.7823	10.21	1.63	-31.95	50.74	30.63	43.50	12.87	Pass	H	PK
3	360.0270	14.52	2.27	-31.84	43.77	28.72	46.00	17.28	Pass	H	PK
4	467.9988	16.49	2.58	-31.87	41.72	28.92	46.00	17.08	Pass	H	PK
5	610.0210	19.08	2.96	-32.06	40.21	30.19	46.00	15.81	Pass	H	PK
6	974.9715	22.55	3.75	-30.95	36.64	31.99	54.00	22.01	Pass	H	PK
7	44.2604	13.07	0.75	-31.66	50.67	32.83	40.00	7.17	Pass	V	PK
8	108.3838	10.92	1.23	-32.05	41.85	21.95	43.50	21.55	Pass	V	PK
9	144.6655	7.36	1.42	-32.00	51.97	28.75	43.50	14.75	Pass	V	PK
10	360.0270	14.52	2.27	-31.84	46.28	31.23	46.00	14.77	Pass	V	PK
11	649.9890	19.40	3.10	-32.07	37.03	27.46	46.00	18.54	Pass	V	PK
12	974.9715	22.55	3.75	-30.95	36.16	31.51	54.00	22.49	Pass	V	PK

Transmitter Emission above 1GHz

Mode:			BLE GFSK Transmitting					Channel:		2402	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity	Remark
1	1798.0798	30.37	3.32	-42.72	59.67	50.64	74.00	23.36	Pass	H	PK
2	2987.7988	33.18	4.51	-43.10	53.61	48.20	74.00	25.80	Pass	H	PK
3	4804.0000	34.50	4.55	-42.80	55.84	52.09	74.00	21.91	Pass	H	PK
4	7206.0000	36.31	5.81	-42.16	51.54	51.50	74.00	22.50	Pass	H	PK
5	9608.0000	37.64	6.63	-42.10	46.08	48.25	74.00	25.75	Pass	H	PK
6	12010.0000	39.31	7.60	-41.90	46.20	51.21	74.00	22.79	Pass	H	PK
7	2199.9200	31.98	3.65	-43.16	57.98	50.45	74.00	23.55	Pass	V	PK
8	3064.0043	33.23	4.80	-43.11	49.96	44.88	74.00	29.12	Pass	V	PK
9	4804.0000	34.50	4.55	-42.80	57.86	54.11	74.00	19.89	Pass	V	PK
10	7206.0000	36.31	5.81	-42.16	55.41	55.37	74.00	18.63	Pass	V	PK
11	9608.0000	37.64	6.63	-42.10	46.60	48.77	74.00	25.23	Pass	V	PK
12	12010.0000	39.31	7.60	-41.90	46.80	51.81	74.00	22.19	Pass	V	PK

Mode:			BLE GFSK Transmitting					Channel:		2440	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity	Remark
1	1999.5000	31.70	3.47	-43.20	57.71	49.68	74.00	24.32	Pass	H	PK
2	2845.1845	32.95	4.23	-43.10	56.21	50.29	74.00	23.71	Pass	H	PK
3	4880.0000	34.50	4.80	-42.80	55.76	52.26	74.00	21.74	Pass	H	PK
4	7320.0000	36.42	5.85	-42.14	52.80	52.93	74.00	21.07	Pass	H	PK
5	9760.0000	37.70	6.73	-42.10	46.57	48.90	74.00	25.10	Pass	H	PK
6	12200.0000	39.42	7.67	-41.90	45.62	50.81	74.00	23.19	Pass	H	PK
7	1894.0894	31.00	3.42	-42.94	55.87	47.35	74.00	26.65	Pass	V	PK
8	2198.7199	31.98	3.65	-43.16	56.78	49.25	74.00	24.75	Pass	V	PK
9	4881.1254	34.50	4.80	-42.80	59.64	56.14	74.00	17.86	Pass	V	PK
10	7321.2881	36.42	5.85	-42.13	59.69	59.83	74.00	14.17	Pass	V	PK
11	9764.0000	37.71	6.71	-42.10	48.03	50.35	74.00	23.65	Pass	V	PK
12	12205.0000	39.42	7.67	-41.89	45.82	51.02	74.00	22.98	Pass	V	PK
13	4881.0767	34.50	4.80	-42.80	46.73	43.23	54.00	10.77	Pass	V	AV
14	7321.2395	36.42	5.85	-42.14	47.25	47.38	54.00	6.62	Pass	V	AV

Mode:			BLE GFSK Transmitting					Channel:		2480	
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dB μ V]	Level [dB μ V/m]	Limit [dB μ V/m]	Margin [dB]	Result	Polarity	Remark
1	1996.4997	31.68	3.47	-43.20	57.78	49.73	74.00	24.27	Pass	H	PK
2	2950.3950	33.12	4.40	-43.10	51.64	46.06	74.00	27.94	Pass	H	PK
3	4960.0000	34.50	4.82	-42.80	56.09	52.61	74.00	21.39	Pass	H	PK
4	7440.0000	36.54	5.85	-42.11	53.04	53.32	74.00	20.68	Pass	H	PK
5	9920.0000	37.77	6.79	-42.10	46.91	49.37	74.00	24.63	Pass	H	PK
6	12400.0000	39.54	7.86	-41.90	48.39	53.89	74.00	20.11	Pass	H	PK
7	1597.4597	29.04	3.07	-42.90	58.16	47.37	74.00	26.63	Pass	V	PK
8	2192.5193	31.97	3.65	-43.16	56.88	49.34	74.00	24.66	Pass	V	PK
9	4960.0000	34.50	4.82	-42.80	59.79	56.31	74.00	17.69	Pass	V	PK
10	7440.0000	36.54	5.85	-42.11	58.27	58.55	74.00	15.45	Pass	V	PK
11	9920.0000	37.77	6.79	-42.10	46.10	48.56	74.00	25.44	Pass	V	PK
12	12400.0000	39.54	7.86	-41.90	47.50	53.00	74.00	21.00	Pass	V	PK
13	4961.0812	34.50	4.82	-42.80	46.79	43.31	54.00	10.69	Pass	V	AV
14	7440.2471	36.54	5.85	-42.11	51.84	52.12	54.00	1.88	Pass	V	AV

Note:

- 1) Through Pre-scan Non-hopping transmitting mode and charge+transmitter mode with all kind of data type, find the DH5 of data type is the worse case of GFSK modulation type in charge + transmitter mode.
- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor- Antenna Factor-Cable Factor

- 3) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.