

FCC PART 15.407

TEST REPORT

For

Beijing Noitom Technology Limited

Room 432 ,Main Tower 28 Xijiekouwai Blvd, Beijing, China

FCC ID: 2ABTRN10030020

Report Type: Original Report	Product Name: Noitom Tablet
Test Engineer: <u>Tom Tang</u>	
Report Number: <u>RBJ161012051D</u>	
Report Date: <u>2016-12-06</u>	
Reviewed By: <u>Henry Ding</u> <u>EMC Leader</u>	
Test Laboratory: Bay Area Compliance Laboratories Corp. (Chengdu) 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China Tel: 028-65523123, Fax: 028-65525125 www.baclcorp.com	

Note: This test report was prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (Chengdu). Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. This report was valid only with a valid digital signature.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT).....	4
OBJECTIVE.....	4
RELATED SUBMITTAL(S)/GRANT(S).....	4
TEST METHODOLOGY	4
TEST FACILITY.....	5
SYSTEM TEST CONFIGURATION.....	6
DESCRIPTION OF TEST CONFIGURATION	6
EUT EXERCISE SOFTWARE.....	6
EQUIPMENT MODIFICATIONS	7
EXTERNAL CABLE.....	7
BLOCK DIAGRAM OF TEST SETUP.....	7
SUMMARY OF TEST RESULTS	8
FCC §15.407 (f) & §1.1310 & §2.1093- RF EXPOSURE.....	9
APPLICABLE STANDARD	9
FCC §15.203 – ANTENNA REQUIREMENT	10
APPLICABLE STANDARD	10
ANTENNA CONNECTOR CONSTRUCTION	10
FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS.....	11
APPLICABLE STANDARD	11
MEASUREMENT UNCERTAINTY	11
EUT SETUP	11
EMI TEST RECEIVER SETUP	12
CORRECTED AMPLITUDE & MARGIN CALCULATION	12
TEST EQUIPMENT LIST AND DETAILS	13
TEST PROCEDURE	13
TEST RESULTS SUMMARY	13
TEST DATA.....	13
FCC §15.209, §15.205 & §15.407(b) (1) (6) (7) –UNWANTED EMISSION	16
APPLICABLE STANDARD	16
MEASUREMENT UNCERTAINTY	17
EUT SETUP	17
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	18
TEST PROCEDURE	18
CORRECTED AMPLITUDE & MARGIN CALCULATION	19
TEST EQUIPMENT LIST AND DETAILS	19
TEST RESULTS SUMMARY	20
TEST DATA.....	20
FCC §15.407(a)&15.407 (e) –EMISSION BANDWIDTH	22
APPLICABLE STANDARD	22
TEST EQUIPMENT LIST AND DETAILS	22
TEST PROCEDURE	22
TEST DATA.....	22
FCC §15.407(A) (1) (II) (4) –MAXIMUM CONDUCTED OUTPUT POWER.....	25
APPLICABLE STANDARD	25

TEST EQUIPMENT LIST AND DETAILS	26
TEST PROCEDURE	26
TEST DATA.....	26
FCC §15.407(a) - POWER SPECTRAL DENSITY	28
APPLICABLE STANDARD	28
TEST PROCEDURE	29
TEST EQUIPMENT LIST AND DETAILS	29
TEST DATA.....	29

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The **Beijing Noitom Technology Limited**'s product, model number: **n10030020** (**FCC ID: 2ABTRN10030020**) (the "EUT") in this report was a **Noitom Tablet**, which was measured approximately: 25.7 cm (L) × 17.2 cm (W) × 0.93 cm (H), rated input voltage: DC3.7V rechargeable Li-ion battery or DC5V from adapter.

Adapter information:

MODEL: MX12X8-0502000UX
INPUT: 100-240V~ 50-60Hz 0.35A
OUTPUT: DC5.0V 2A

**All measurement and test data in this report was gathered from final production sample, serial number: 161012051 (assigned by the BAACL, Chengdu). It may have deviation from any other sample. The EUT supplied by the applicant was received on 2016-10-12, and EUT conformed to test requirement.*

Objective

This type approval report is prepared on behalf of **Beijing Noitom Technology Limited** in accordance with Part 2-Subpart J, Part 15-Subparts A, B and E of the Federal Communications Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

FCC Part 15B JBP submissions with FCC ID: 2ABTRN10030020.
FCC Part 15C DTS submissions with FCC ID: 2ABTRN10030020.
FCC Part 15C DSS submissions with FCC ID: 2ABTRN10030020.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Chengdu). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

The uncertainty of any RF tests which use conducted method measurement is ±3.17 dB, the uncertainty of any radiation on emissions measurement is:

30M~200MHz: ±4.7 dB;
200M~1GHz: ±6.0 dB;
1G~6GHz: ±5.13dB;
6G~25GHz: ±5.47dB;

And the uncertainty will not be taken into consideration for all test data recorded in the report.

Test Facility

The test site used by BACL to collect test data is located in the 5040, HuiLongWan Plaza, No. 1, ShaWan Road, JinNiu District, ChengDu, China.

Test site at BACL has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on April 24, 2015. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 560332. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

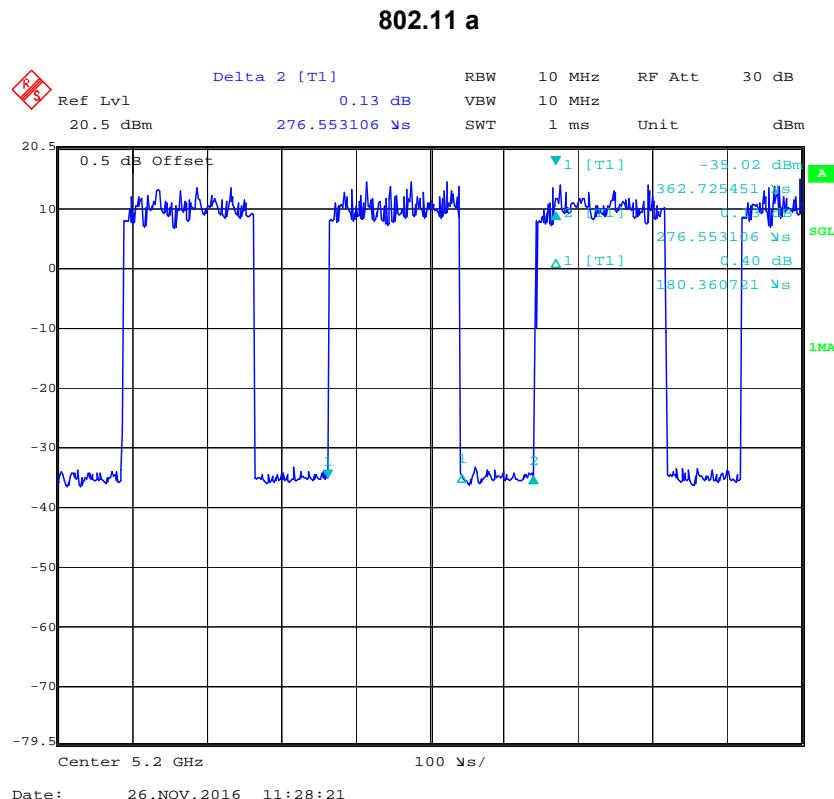
SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which is provided by manufacturer.

The system only support 802.11a.

For 5150~5250 MHz band, 4 channels are provided:

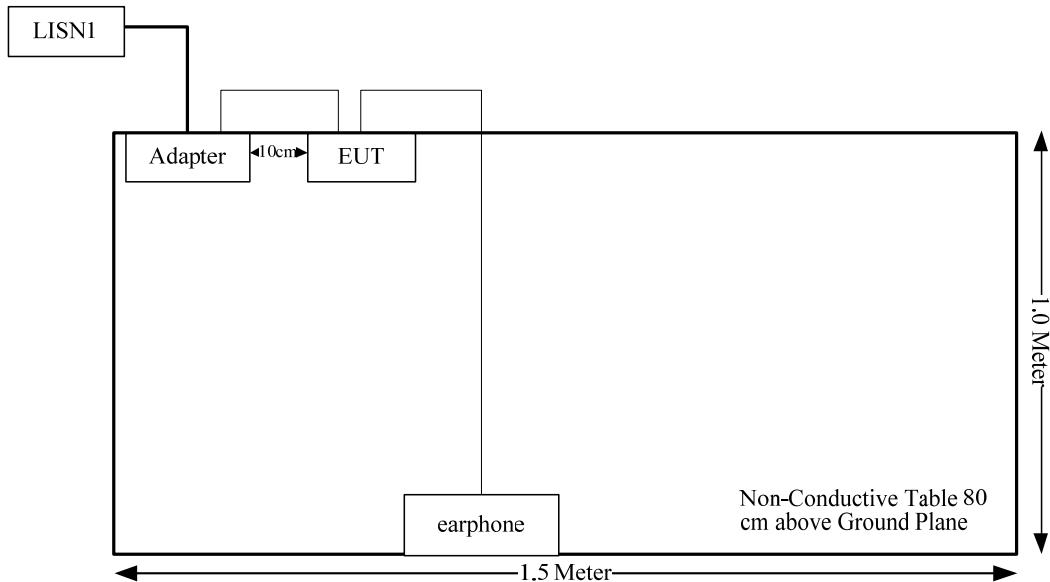

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
40	5200	48	5240

For 802.11a, Channel 36, 40 and 48 was tested.

EUT Exercise Software

The maximum duty cycle was setting in engineering mode as following table:

Test mode	T _{on} (ms)	T _{on+off} (ms)	Duty Cycle (%)
802.11 a	0.180	0.277	65%


Equipment Modifications

No modification was made to the EUT.

External Cable

Cable Description	Shielding Type	Ferrite Core	Length (m)	From Port	To
Adapter Cable	Yes	Yes	1.04	Adapter	EUT
Earphone Cable	No	No	1.02	EUT	Earphone

Block Diagram of Test Setup

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.407 (f) & §1.1310 & §2.1093	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(6)& §15.207(a)	Conducted Emissions	Compliance
§15.205& §15.209 &§15.407(b) (1),(6),(7)	Undesirable Emission& Restricted Bands	Compliance
&§15.407(b) (1),(6),(7)	Spurious Emission Attenna Ports	Compliance
§15.407(a) (1)& §15.407(e)	26 dB Bandwidth & 6 dB Bandwidth	Compliance
§15.407(a)(1),	Conducted Transmitter Output Power	Compliance
§15.407 (a)(1),(5)	Power Spectral Density	Compliance
§15.407(H)	Dynamic Frequency Selection	Not Applicable

FCC §15.407 (f) & §1.1310 & §2.1093- RF EXPOSURE

Applicable Standard

According to §15.247(i) and §1.1310, systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB447498 D01 General RF Exposure Guidance v06

The 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50 mm are determined by:

$[(\text{max. power of channel, including tune-up tolerance, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}] \leq 3.0$ for 1-g SAR and ≤ 7.5 for 10-g extremity SAR, where

- $f(\text{GHz})$ is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison
- 3.0 and 7.5 are referred to as the numeric thresholds in the step 2 below

The test exclusions are applicable only when the minimum test separation distance is \leq 50 mm and for transmission frequencies between 100 MHz and 6 GHz. When the minimum test separation distance is $<$ 5 mm, a distance of 5 mm according to 5) in section 4.1 is applied to determine SAR test exclusion.

Measurement Result

The tune-up power is 8.0dBm (6.31 mW).

$[(\text{max. power of channel, mW}) / (\text{min. test separation distance, mm})] \cdot [\sqrt{f(\text{GHz})}]$
 $= 6.31 / 5 \cdot (\sqrt{5.240}) = 2.9 < 3.0$

So the stand-alone SAR evaluation is not necessary.

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to FCC 47 CFR section 15.407 (a)(1), if transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one internal antenna arrangement for WLAN, and the max antenna gain is 2.0 dBi@ 5GHz band, fulfill the requirement of this section, please refer to the EUT photos.

Result: Compliance.

FCC §15.407 (b) (6) §15.207 (a) – CONDUCTED EMISSIONS

Applicable Standard

FCC §15.207, §15.407(b) (6)

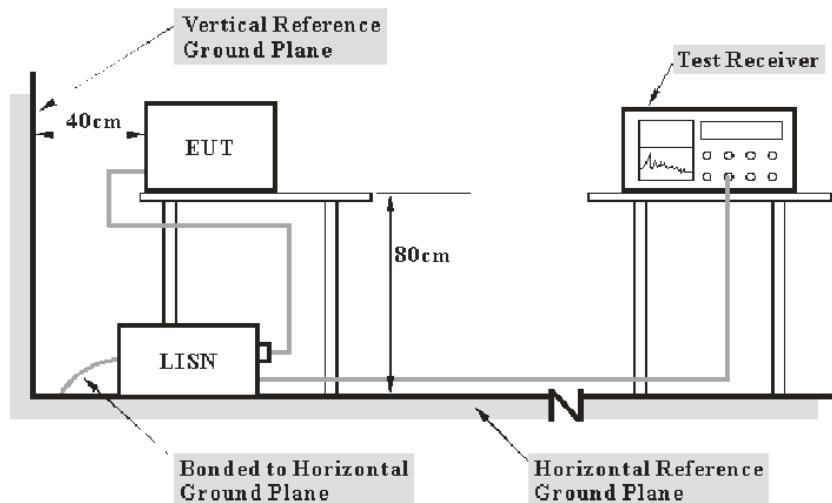
Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to $U_{\text{cisp}}_{\text{r}}$ of Table 1, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than $U_{\text{cisp}}_{\text{r}}$ of Table 1, then:


- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}}_{\text{r}})$, exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}}_{\text{r}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2:2011, measurement uncertainty of conducted disturbance at mains port using AMN at Bay Area Compliance Laboratories Corp. (Chengdu) is ± 3.17 dB (150 kHz to 30 MHz).

Table 1 – Values of $U_{\text{cisp}}_{\text{r}}$

Measurement	$U_{\text{cisp}}_{\text{r}}$
Conducted disturbance at mains port using AMN (150 kHz to 30 MHz)	3.4 dB

EUT Setup

Note: 1. Support units were connected to second LISN.
2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

The adapter was connected to a 120V/60 Hz AC power source.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Corrected Amplitude & Margin Calculation

The basic equation is as follows:

$$V_C = V_R + A_C + VDF$$
$$C_f = A_C + VDF$$

Herein,

V_C (cord. Reading): corrected voltage amplitude

V_R : reading voltage amplitude

A_C : attenuation caused by cable loss

VDF: voltage division factor of AMN

C_f : Correction Factor

The “Margin” column of the following data tables indicates the degree of compliance within the applicable limit. For example, a margin of 7dB means the emission is 7dB below the maximum limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Corrected Amplitude}$$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS 30	836858/0016	2016-12-02	2017-12-01
Rohde & Schwarz	L.I.S.N.	ENV216	3560.6550.06	2016-12-02	2017-12-01
N/A	Conducted Cable	NO.5	N/A	2016-11-10	2017-11-09
Rohde & Schwarz	PULSE LIMITER	ESH3Z2	357.8810.52	2016-10-31	2017-10-30
R&S	Test Software	EMC32	Version8.53.0	N/A	N/A

* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

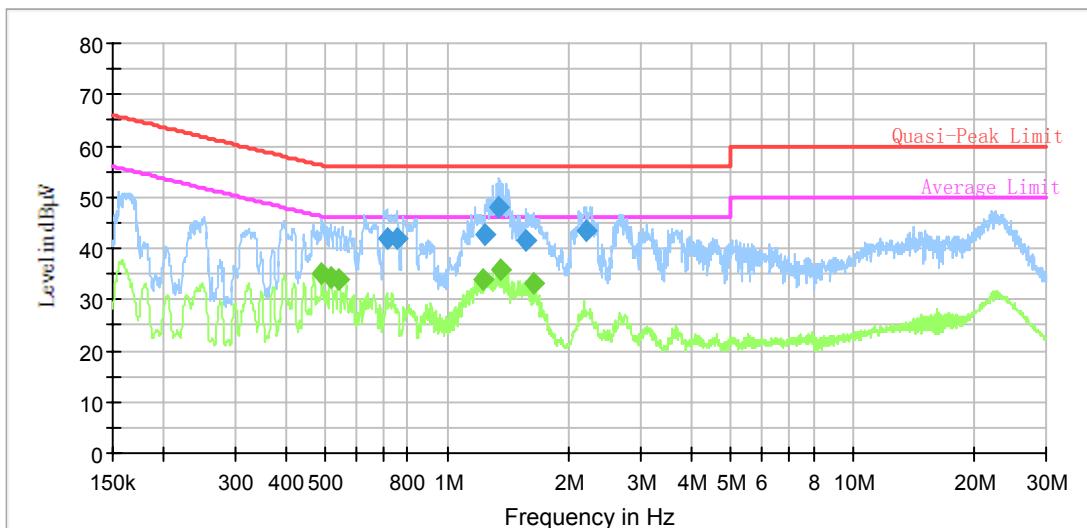
During the conducted emission test, the adapter was connected to the first LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

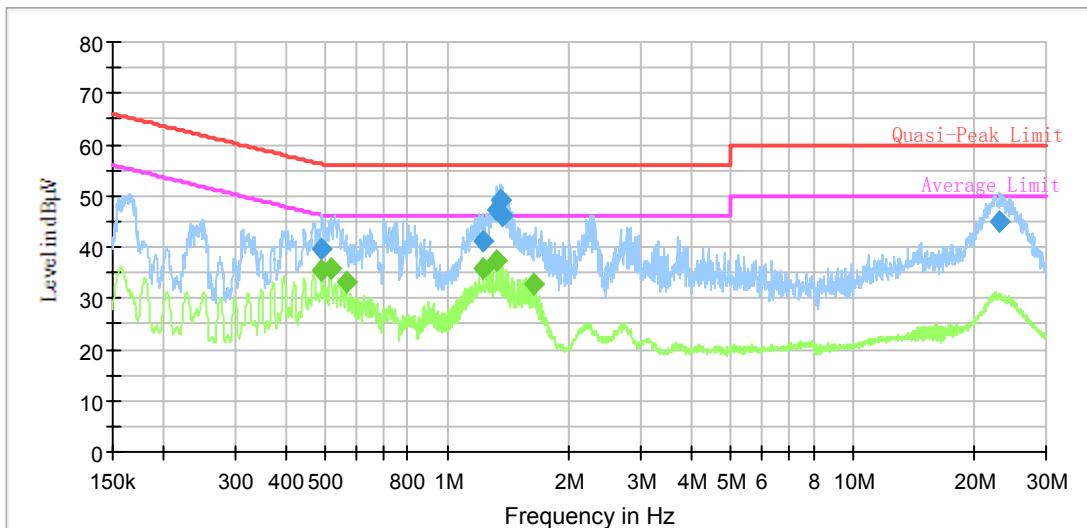
Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.


Test Data

Environmental Conditions

Temperature:	28.6 °C
Relative Humidity:	60 %
ATM Pressure:	101.1 kPa


The testing was performed by Tom Tang on 2016-12-05.

Test Mode: Transmitting

Line:

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.709870	42.0	9.000	L1	19.6	14.0	56.0	Compliance
0.756739	41.9	9.000	L1	19.6	14.1	56.0	Compliance
1.242055	42.5	9.000	L1	19.6	13.5	56.0	Compliance
1.345395	48.0	9.000	L1	19.6	8.0	56.0	Compliance
1.562892	41.6	9.000	L1	19.7	14.4	56.0	Compliance
2.203825	43.4	9.000	L1	19.7	12.6	56.0	Compliance

Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.492477	35.0	9.000	L1	19.6	11.1	46.1	Compliance
0.516668	34.3	9.000	L1	19.6	11.7	46.0	Compliance
0.540965	33.9	9.000	L1	19.6	12.1	46.0	Compliance
1.224805	33.7	9.000	L1	19.6	12.3	46.0	Compliance
1.348086	35.9	9.000	L1	19.6	10.1	46.0	Compliance
1.636389	33.3	9.000	L1	19.7	12.7	46.0	Compliance

Neutral:

Frequency (MHz)	QuasiPeak (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.492477	39.6	9.000	N	19.7	16.5	56.1	Compliance
1.227254	41.1	9.000	N	19.7	14.9	56.0	Compliance
1.324061	47.4	9.000	N	19.7	8.6	56.0	Compliance
1.348086	49.0	9.000	N	19.7	7.0	56.0	Compliance
1.375291	45.9	9.000	N	19.7	10.1	56.0	Compliance
23.100295	45.0	9.000	N	20.1	15.0	60.0	Compliance

Frequency (MHz)	Average (dB μ V)	Bandwidth (kHz)	Line	Corr. (dB)	Margin (dB)	Limit (dB μ V)	Comment
0.492477	35.3	9.000	N	19.7	10.8	46.1	Compliance
0.516668	35.8	9.000	N	19.7	10.2	46.0	Compliance
0.565274	33.2	9.000	N	19.7	12.8	46.0	Compliance
1.227254	36.0	9.000	N	19.7	10.0	46.0	Compliance
1.324061	37.2	9.000	N	19.7	8.8	46.0	Compliance
1.636389	32.7	9.000	N	19.7	13.3	46.0	Compliance

FCC §15.209, §15.205 & §15.407(b) (1) (6) (7) –UNWANTED EMISSION

Applicable Standard

FCC §15.407; §15.209; §15.205;

(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
 - (i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
 - (ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- (5) The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207.
- (7) The provisions of §15.205 apply to intentional radiators operating under this section.

Measurement Uncertainty

Compliance or non- compliance with a disturbance limit shall be determined in the following manner:

If U_{lab} is less than or equal to U_{cisp} of Table 2, then:

- compliance is deemed to occur if no measured disturbance level exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level exceeds the disturbance limit.

If U_{lab} is greater than U_{cisp} of Table 2, then:

- compliance is deemed to occur if no measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}})$, exceeds the disturbance limit;
- non - compliance is deemed to occur if any measured disturbance level, increased by $(U_{\text{lab}} - U_{\text{cisp}})$, exceeds the disturbance limit.

Based on CISPR 16-4-2-2011, measurement uncertainty of radiated emission at a distance of 3m at Bay Area Compliance Laboratories Corp. (Chengdu) is:

30M~200MHz: ± 4.7 dB;

200M~1GHz: ± 6.0 dB;

1G~6GHz: ± 5.13 dB;

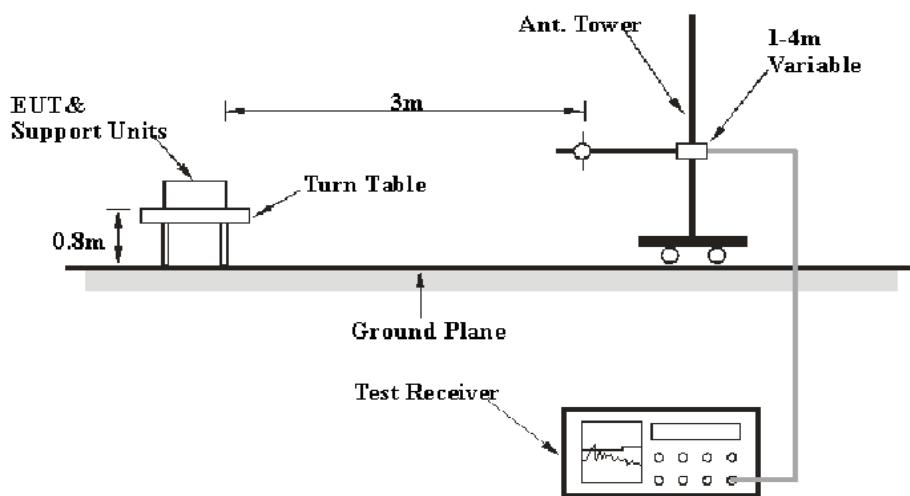
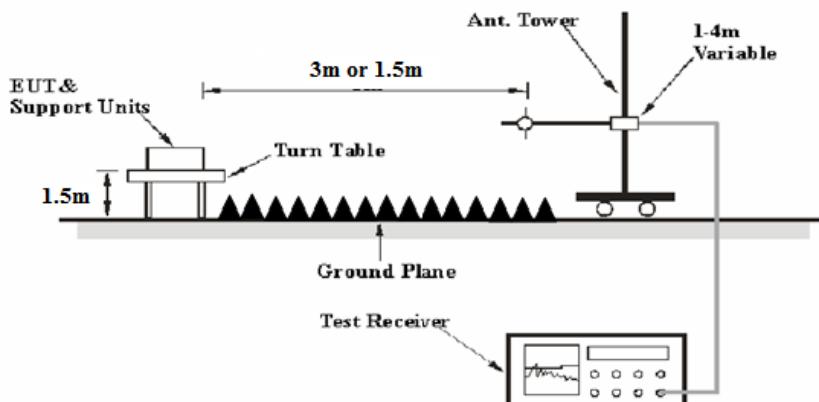

6G~25GHz: ± 5.47 dB;

Table 2 – Values of U_{cisp}


Measurement	U_{cisp}
Radiated disturbance (electric field strength at an OATS or in a SAC) (30 MHz to 1000 MHz)	6.3 dB
Radiated disturbance (electric field strength in a FAR) (1 GHz to 6 GHz)	5.2 dB
Radiated disturbance (electric field strength in a FAR) (6 GHz to 18 GHz)	5.5 dB

EUT Setup

Below 1 GHz:

Above 1 GHz:

The radiated emission tests were performed in the 3 meters chamber, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The adapter connected to a 120 V/60 Hz AC power source,

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1MHz	3 MHz	/	PK
	1MHz	10 Hz	/	Av

Test Procedure

During the radiated emission test, the adapter was connected to the first AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

According to C63.10-2013, emission shall be computed as: $E [\text{dB}\mu\text{V/m}] = \text{EIRP}[\text{dBm}] + 95.2$, for $d = 3$ meters.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

$$\text{Corrected Amplitude} = \text{Meter Reading} + \text{Antenna Loss} + \text{Cable Loss} - \text{Amplifier Gain}$$

The “Margin” column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

$$\text{Margin} = \text{Limit} - \text{Extrapolation result}$$

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Amplifier	8447D	2944A10442	2015-12-02	2016-12-01
Rohde & Schwarz	EMI Test Receiver	ESCI	100028	2015-12-02	2016-12-01
Sunol Sciences	Broadband Antenna	JB3	A101808	2016-04-10	2019-04-09
Rohde & Schwarz	Spectrum Analyzer	FSEM30	100018	2015-12-02	2016-12-01
ETS	Horn Antenna	3115	003-6076	2015-12-02	2016-12-01
Ducommun Technologies	Horn Antenna	ARH-4223-02	1007726-0113024	2014-06-16	2017-06-15
Mini-circuits	Amplifier	ZVA-183-S+	771001215	2016-05-20	2017-05-19
EMCT	Semi-Anechoic Chamber	966	N/A	2015-04-24	2018-04-23
N/A	RF Cable (below 1GHz)	NO.1	N/A	2016-11-10	2017-11-09
N/A	RF Cable (below 1GHz)	NO.4	N/A	2016-11-10	2017-11-09
N/A	RF Cable (above 1GHz)	NO.2	N/A	2016-11-10	2017-11-09
Ducommun Technologies	Horn Antenna	ARH-2823-02	1007726-011312	2016-08-18	2017-08-18
Quinstar	Amplifier	QLW-18405536-JO	15964001032	2016-08-18	2017-08-18
Agilent	Spectrum Analyzer	8564E	5943A01752	2016-08-18	2017-08-18

* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Title 47, Part 15, Subpart C, Section 15.205, 15.209 and Subpart E, section 15.407.

Test Data

Environmental Conditions

Temperature:	24.1 °C
Relative Humidity:	60 %
ATM Pressure:	101.2 kPa

The testing was performed by Tom Tang on 2016-11-24.

Result: Compliance.

Note 1: the emission compliance 15.209 general requirements, or compliance the outside band emission limits in the un-restricted bands.

Please refer to the following tables

30MHz-40GHz:

5150-5250MHz Band: 802.11a Mode:

Frequency (MHz)	Receiver		Rx Antenna		Cable loss (dB)	Amplifier Gain (dB)	Corrected Amplitude (dB μ V/m)	Limit (dB μ V/m)	Margin (dB)
	Reading (dB μ V)	Detector	Polar (H/V)	Factor (dB)					
Low Channel: 5180 MHz									
5180	65.62	PK	H	31.46	5.40	0.00	102.48	N/A	N/A
5180	51.46	AV	H	31.46	5.40	0.00	88.32	N/A	N/A
5180	59.76	PK	V	31.46	5.40	0.00	96.62	N/A	N/A
5180	45.32	AV	V	31.46	5.40	0.00	82.18	N/A	N/A
5150	27.43	PK	H	31.40	5.26	0.00	64.09	74.00	9.91
5150	16.33	AV	H	31.40	5.26	0.00	52.99	54.00	1.01
10360	30.62	PK	H	36.97	8.36	25.52	50.43	74.00	23.57
10360	30.25	AV	H	36.97	8.36	25.52	50.06	54.00	3.94
1663	43.16	PK	H	23.93	2.90	27.72	42.27	74.00	31.73
1663	42.86	AV	H	23.93	2.90	27.72	41.97	54.00	12.03
1995	38.67	PK	H	24.59	3.12	27.48	38.90	74.00	35.10
1995	38.92	AV	H	24.59	3.12	27.48	39.15	54.00	14.85
307.42	44.69	QP	V	14.29	1.10	27.57	32.51	46.00	13.49
364.65	43.75	QP	V	15.70	1.47	27.95	32.97	46.00	13.03
Middle Channel: 5200 MHz									
5200	64.55	PK	H	31.50	5.49	0.00	101.54	N/A	N/A
5200	49.40	AV	H	31.50	5.49	0.00	86.39	N/A	N/A
5200	63.37	PK	V	31.50	5.49	0.00	100.36	N/A	N/A
5200	44.53	AV	V	31.50	5.49	0.00	81.52	N/A	N/A
10400	30.22	PK	H	36.98	8.32	25.50	50.02	74.00	23.98
10400	30.84	AV	H	36.98	8.32	25.50	50.64	54.00	3.36
1663	44.05	PK	H	23.93	2.90	27.72	43.16	74.00	30.84
1663	43.82	AV	H	23.93	2.90	27.72	42.93	54.00	11.07
1995	38.50	PK	H	24.59	3.12	27.48	38.73	74.00	35.27
1995	39.38	AV	H	24.59	3.12	27.48	39.61	54.00	14.39
307.42	44.89	QP	V	14.29	1.10	27.57	32.71	46.00	13.29
364.65	43.86	QP	V	15.70	1.47	27.95	33.08	46.00	12.92
High Channel: 5240 MHz									
5240	64.17	PK	H	31.58	5.28	0.00	101.03	N/A	N/A
5240	48.77	AV	H	31.58	5.28	0.00	85.63	N/A	N/A
5240	57.64	PK	V	31.58	5.28	0.00	94.50	N/A	N/A
5240	42.49	AV	V	31.58	5.28	0.00	79.35	N/A	N/A
5350	28.31	PK	H	31.80	5.61	0.00	65.72	74.00	8.28
5350	16.20	AV	H	31.80	5.61	0.00	53.61	54.00	0.39
10480	29.81	PK	H	37.00	8.23	26.01	49.03	74.00	24.97
10480	30.66	AV	H	37.00	8.23	26.01	49.88	54.00	4.12
1663	43.84	PK	H	23.93	2.90	27.72	42.95	74.00	31.05
1663	42.42	AV	H	23.93	2.90	27.72	41.53	54.00	12.47
1995	38.58	PK	H	24.59	3.12	27.48	38.81	74.00	35.19
1995	39.55	AV	H	24.59	3.12	27.48	39.78	54.00	14.22
307.42	45.06	QP	V	14.29	1.10	27.57	32.88	46.00	13.12
364.65	44.14	QP	V	15.70	1.47	27.95	33.36	46.00	12.64

FCC §15.407(a)&15.407 (e) –EMISSION BANDWIDTH

Applicable Standard

15.407(a)

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	/

* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

1. According to KDB789033 D02 General U-NII Test Procedures New Rules v01r03

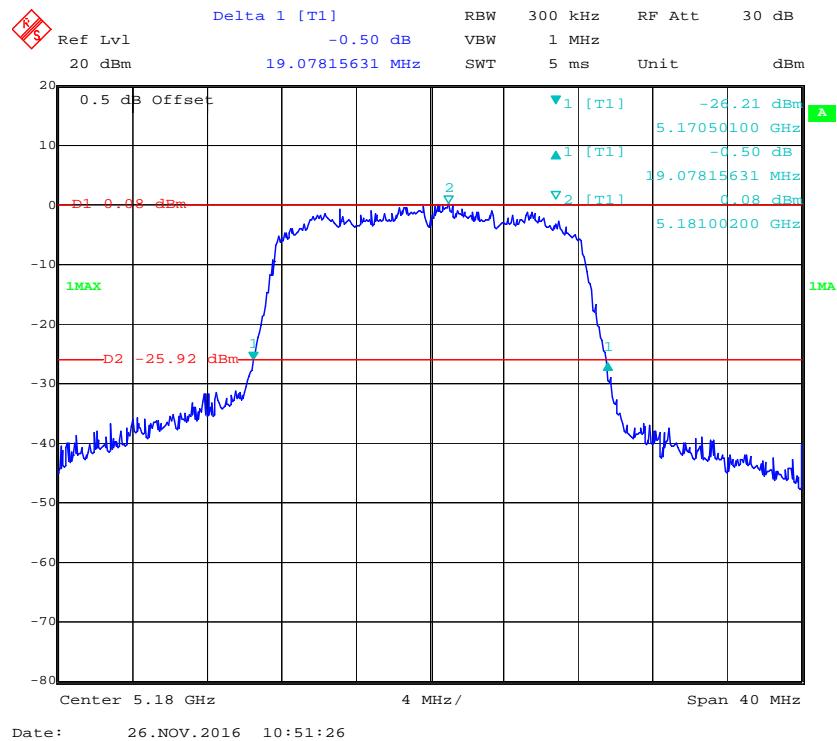
Test Data

Environmental Conditions

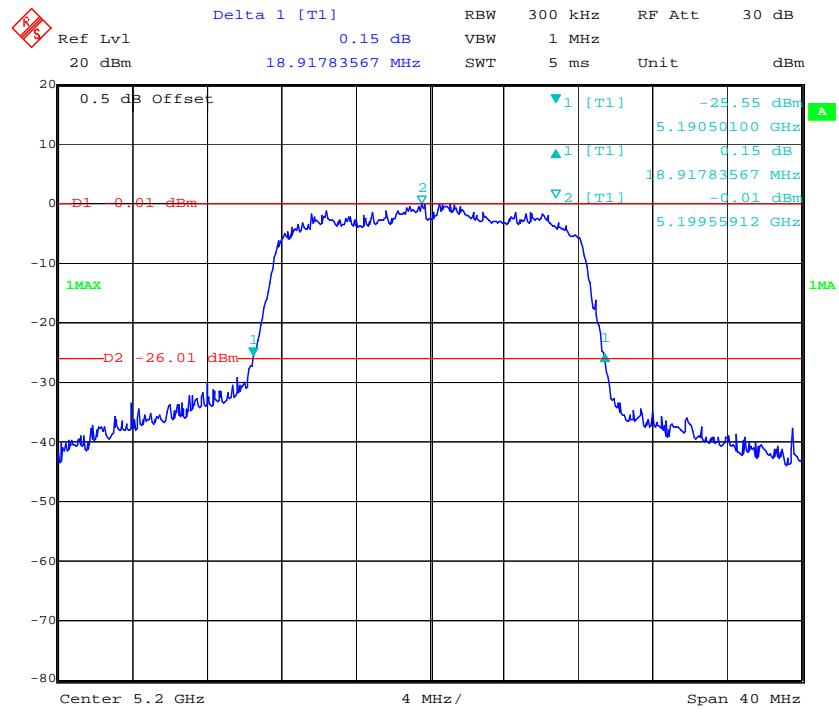
Temperature:	29.8 °C
Relative Humidity:	39 %
ATM Pressure:	101.2 kPa

The testing was performed by Tom Tang on 2016-11-26.

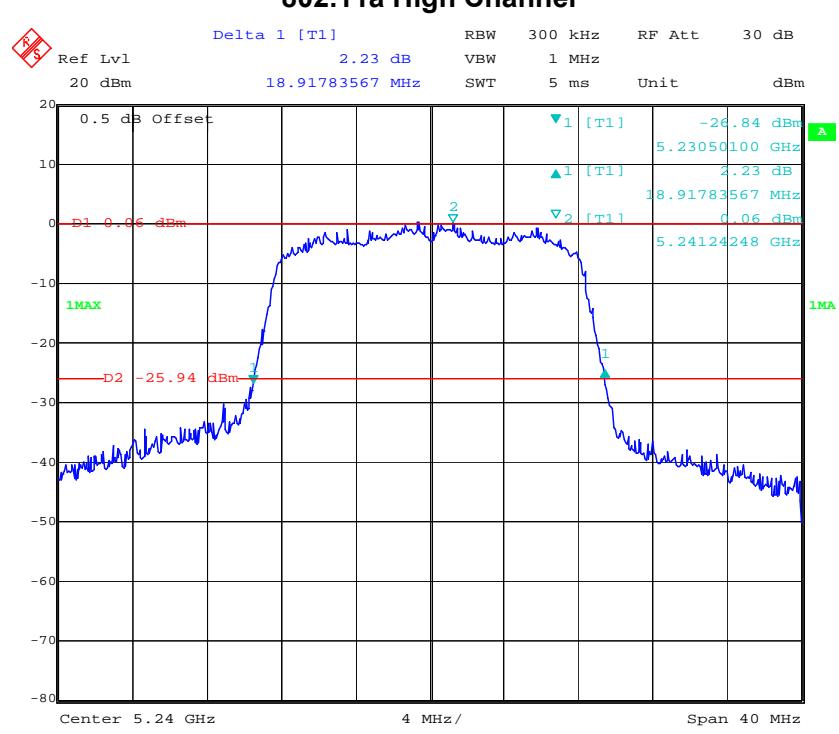
Test Result: Pass.


Please refer to the following tables and plots.

Test mode: Transmitting


Mode	Channel	Frequency (MHz)	26 dB Emission Bandwidth (MHz)
802.11 a	Low	5180	19.08
	Middle	5200	18.92
	High	5240	18.92

5150-5250MHz:


802.11a Low Channel

802.11a Middle Channel

802.11a High Channel

FCC §15.407(A) (1) (II) (4) –MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna

exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is

professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Note to paragraph (a)(3): The Commission strongly recommends that parties employing U-NII devices to provide critical communications services should determine if there are any nearby Government radar systems that could affect their operation.

(4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

(5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	Wideband Power Sensor	N1921A	MY54170074	2016-01-03	2017-01-03
Agilent	P-Series Power Meter	N1912A	MY5000798	2016-01-03	2017-01-03
N/A	RF Cable	N/A	N/A	Each Time	/

* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Procedure

According to KDB789033 D02 General U-NII Test Procedures New Rules v01r03

Test Data

Environmental Conditions

Temperature:	29.8 °C
Relative Humidity:	39 %
ATM Pressure:	101.2 kPa

The testing was performed by Tom Tang on 2016-11-26.

Test Mode: Transmitting

Mode	Channel	Frequency (MHz)	RMS Channel Power (dBm)	Limit (dBm)
802.11 a	Low	5180	7.84	24
	Middle	5200	7.78	24
	High	5240	7.84	24

FCC §15.407(a) - POWER SPECTRAL DENSITY

Applicable Standard

(a) Power limits:

(1) For the band 5.15-5.25 GHz.

(i) For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).

(ii) For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

(iv) For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or $11 \text{ dBm} + 10 \log B$, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

(3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna

exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is

professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Note to paragraph (a)(3): The Commission strongly recommends that parties employing U-NII devices to provide critical communications services should determine if there are any nearby Government radar systems that could affect their operation.

(4) The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

(5) The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used.

Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Test Procedure

According to KDB 789033 D02 General U-NII Test Procedures New Rules v01r03

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	831929/005	2016-09-21	2017-09-20
N/A	RF Cable	N/A	N/A	Each Time	/

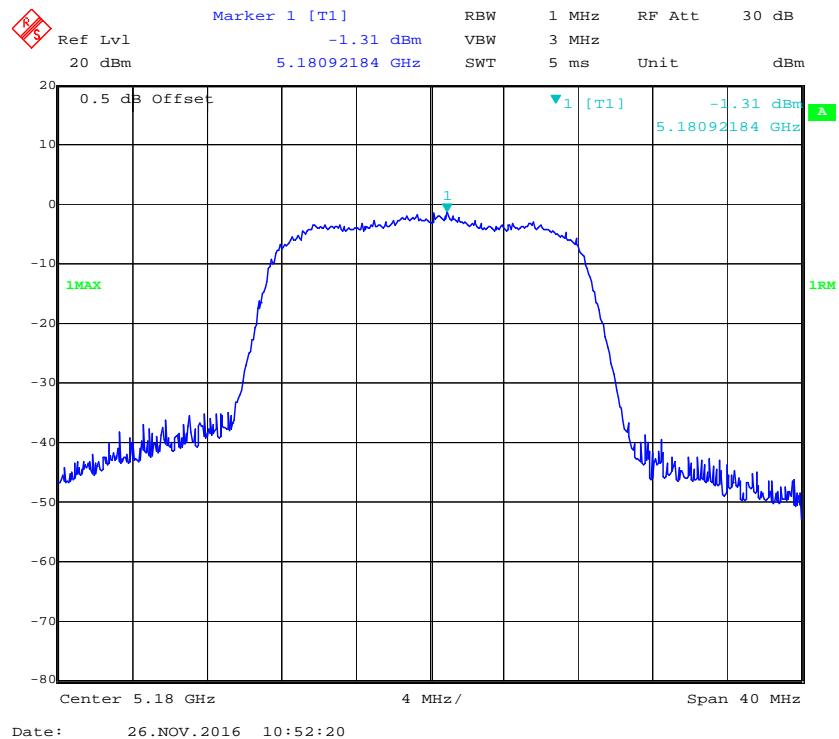
* **Statement of Traceability:** BACL (Chengdu) attested that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

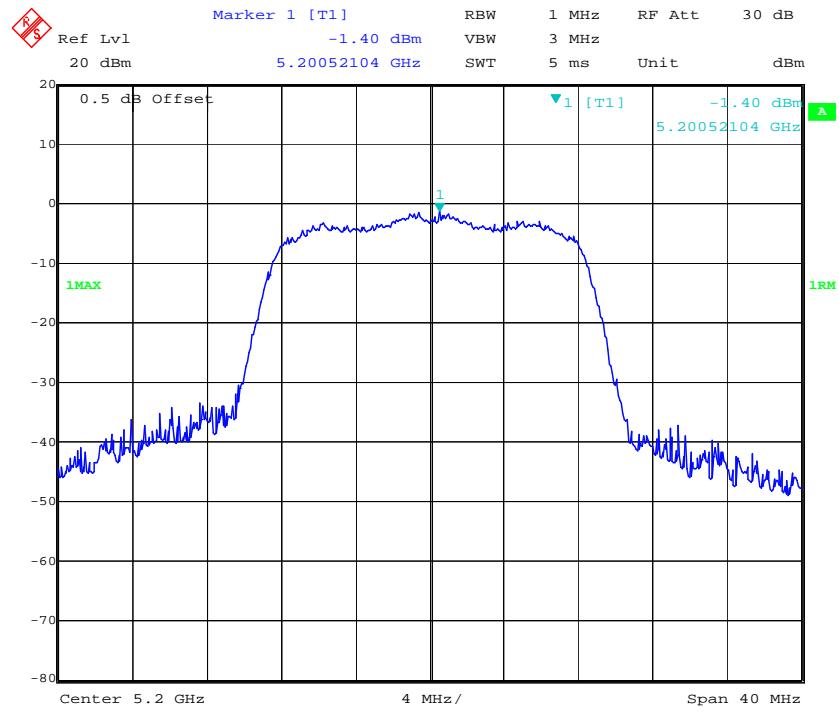
Environmental Conditions

Temperature:	29.8 °C
Relative Humidity:	39 %
ATM Pressure:	101.2 kPa

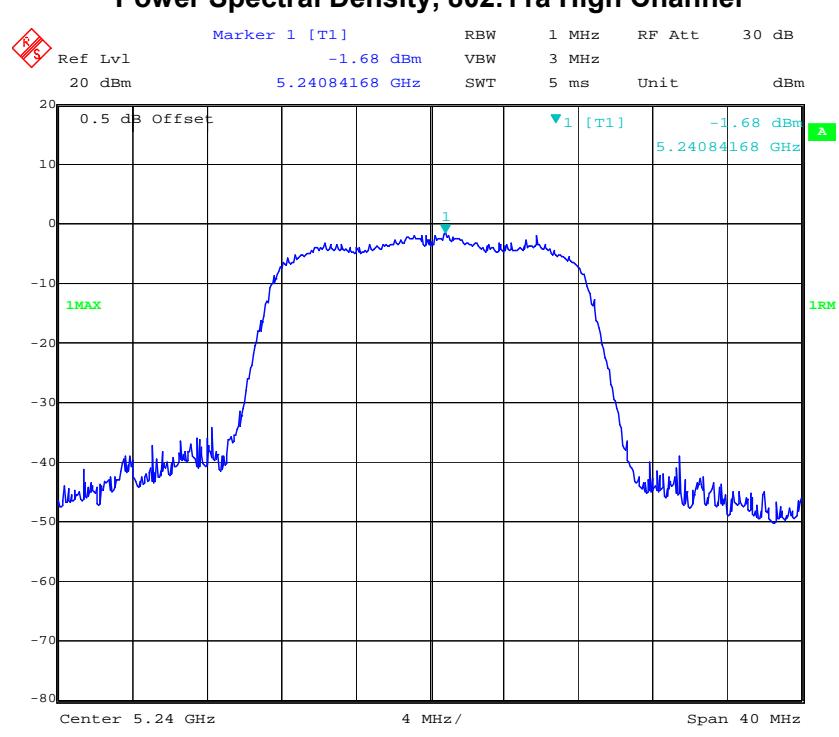
The testing was performed by Tom Tang on 2016-11-26.


Test Result:Compliance.

Test Mode: Transmitting


Mode	Channel	Frequency (MHz)	Power Spectral Density (dBm/MHz)	Limit (dBm/MHz)
802.11 a	Low	5180	-1.31	11
	Middle	5200	-1.4	11
	High	5240	-1.68	11

5150-5250MHz:


Power Spectral Density, 802.11a Low Channel

Power Spectral Density, 802.11a Middle Channel

Power Spectral Density, 802.11a High Channel

***** END OF REPORT *****