

TEST REPORT

APPLICANT : Reliance Communications LLC
PRODUCT NAME : Orbic Speed 5G
MODEL NAME : R500L5
BRAND NAME : Orbic
FCC ID : 2ABGH-R500L5
STANDARD(S) : 47 CFR Part 22, Subpart H
 : 47 CFR Part 24, Subpart E
 : 47 CFR Part 27, Subpart F&L&O
RECEIPT DATE : 2021-03-30
TEST DATE : 2021-03-31 to 2021-06-23
ISSUE DATE : 2021-10-11

Edited by:

Tang Jinde

Tang Jinde (Rapporteur)

Shen Junsheng

Approved by:

Shen Junsheng (Supervisor)

NOTE: This document is issued by Shenzhen Morlab Communication Technology Co., Ltd., the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

DIRECTORY

1. Technical Information	3
1.1. Applicant and Manufacturer Information	3
1.2. Equipment Under Test (EUT) Description	3
1.3. Maximum ERP/EIRP and Emission Designator	5
1.4. Test Standards and Results	7
1.5. Environmental Conditions	10
2. 47 CFR Part 2, Part 22H, Part 24E, Part 27L &F&O Requirements	11
2.1. Transmitter Conducted Output Power And ERP/EIRP	11
2.2. Occupied Bandwidth	14
2.3. Frequency Stability	15
2.4. Peak to Average Radio	16
2.5. Conducted Spurious Emissions	17
2.6. Band Edge	19
2.7. Radiated Spurious Emissions	22
Annex A Test Uncertainty	25
Annex B Testing Laboratory Information	26

Change History		
Version	Date	Reason for change
1.0	2021-10-11	First edition

1. Technical Information

Note: Provide by applicant.

1.1. Applicant and Manufacturer Information

Applicant:	Reliance Communications LLC
Applicant Address:	91 Colin Drive, Unit 1, HOLBROOK, New York 11741, United States
Manufacturer:	Unimaxcomm
ManufacturerAddress:	Room 602, Floor 6th, Building B, Software Park T3,Hi-Tech Park South, Nanshan District, Shenzhen, P.R. China

1.2. Equipment Under Test (EUT) Description

Product Name:	Orbic Speed 5G	
Hardware Version:	V1.2	
Software Version:	ORB500L5_v1.0.1.3_BVZRT	
IMEI:	35224120	
Modulation Type:	DFT-s-OFDM	PI/2 BPSK, QPSK, 16QAM,64QAM,256QAM
	CP-OFDM	QPSK, 16QAM,64QAM,256QAM
Operation Band:	N2, N66, N78	
Frequency Range:	N2	Tx: 1850MHz-1910MHz Rx: 1930MHz-1990MHz
	N66	Tx: 1710MHz-1780MHz Rx: 2110MHz-2200MHz
	N78	Tx: 3700MHz-3800MHz Rx: 3700MHz-3800MHz
	N2	5MHz, 10MHz, 15MHz, 20MHz
Channel Bandwidth	N66	5MHz, 10MHz, 15MHz, 20MHz
	N78	100MHz
Antenna Type:	PIFA Antenna	
Antenna Gain:	N2	3.80dBi
	N66	3.68dBi
	N78	3.15dBi
Accessory Information:	AC Adapter 1	
	Brand Name:	Orbic

REPORT No.: SZ21060072W07

	Model No.:	TPA-23A050200UU01
	Serial No.:	(N/A, marked #1 by test site)
	Rated Input:	100-240V~ 50/60HZ,0.3A
	Rated Output:	5V=2A
	Manufacturer:	Dongguan summer electronics Co., LTD
Battery		
	Brand Name:	Orbic
	Model No.:	BTE-4401
	Serial No.:	(N/A, marked #1 by test site)
	Capacity:	4400mAh
	Rated Voltage:	3.8V
	Charge Limit:	4.35V
	Manufacturer:	HUIZHOU DXDRAGON INC

Note 1: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

MORLAB

Shenzhen Morlab Communication Technology Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.cn E-mail: service@morlab.cn

1.3. Maximum ERP/EIRP and Emission Designator

N2	Maximum ERP/EIRP (W)					
	DFT-s-OFDM					CP-OFDM
BW(MHz)	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	QPSK
20	0.628	0.630	0.502	0.444	0.292	0.568
15	0.574	/	/	/	/	/
10	0.535	/	/	/	/	/
5	0.532	/	/	/	/	/

N2	Emission Designator (99%OBW)					
	DFT-s-OFDM					CP-OFDM
BW(MHz)	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	QPSK
20	19M2G7D	18M1G7D	18M2W7D	18M1D7W	18M1D7W	19M3G7D
15	13M6G7D	13M4G7D	13M6W7D	13M7D7W	13M6D7W	14M3G7D
10	9M41G7D	9M08G7D	9M13W7D	9M06D7W	9M06D7W	9M43G7D
5	4M53G7D	4M53G7D	4M53W7D	4M52D7W	4M52D7W	4M53G7D

N66	Maximum ERP/EIRP (W)					
	DFT-s-OFDM					CP-OFDM
BW(MHz)	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	QPSK
20	0.621	0.635	0.516	0.431	0.279	0.631
15	0.621	/	/	/	/	/
10	0.614	/	/	/	/	/
5	0.508	/	/	/	/	/

N66	Emission Designator (99%OBW)					
	DFT-s-OFDM					CP-OFDM
BW(MHz)	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	QPSK
20	18M2G7D	18M2G7D	18M3W7D	18M2D7W	18M2D7W	19M2G7D
15	13M6G7D	13M7G7D	13M7W7D	13M6D7W	13M6D7W	14M3G7D
10	9M04G7D	9M03G7D	9M10W7D	9M07D7W	9M09D7W	9M43G7D
5	4M52G7D	4M52G7D	4M52W7D	4M54D7W	4M53D7W	4M53G7D

N78	Maximum ERP/EIRP (W)					
	DFT-s-OFDM					CP-OFDM
BW(MHz)	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	QPSK
100	0.290	0.295	0.253	0.155	0.101	0.214

N78	Emission Designator (99%OBW)					
	DFT-s-OFDM					CP-OFDM
BW(MHz)	PI/2 BPSK	QPSK	16QAM	64QAM	256QAM	QPSK
100	101MG7D	100MG7D	98M3W7D	100MD7W	100MD7W	98M1G7D

1.4. Test Standards and Results

The objective of the report is to perform testing according to Part 2, Part 22, Part 24, Part 27 for the EUT FCC ID Certification:

No	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	47 CFR Part 22	Public Mobile Services
3	47 CFR Part 24	Personal Communications Services
4	47 CFR Part 27	Miscellaneous Wireless Communications Services

REPORT No.: SZ21060072W07

Test detailed items/section required by FCC rules and results are as below:

Section	Description	Test Date	Test Engineer	Result	Method Determination /Remark
2.1046,27.50(d)(4) 22.913(a)(2) 24.232(c) 27.50(d)(4)	Transmitter Conducted Output Power and ERP/EIRP	Mar 31 to Apr 15,2021	Chen Haiju Yang Jie	PASS	No deviation
2.1049	Occupied Bandwidth	May 16 to Jun 23, 2021	Chen Haiju	PASS	No deviation
2.1055 22.355 24.235 27.54	Frequency Stability	May 29 to 31, 2021	Chen Haiju	PASS	No deviation
24.232(d) 27.50(d)(5) 27.50(j)(4)	Peak to Average Radio	Jun 8 to 22, 2021	Chen Haiju	PASS	No deviation
2.1051, 22.917(a) 24.238(a) 27.53(h)	Conducted Spurious Emissions	May 02 to Jun 04, 2021	Chen Haiju	PASS	No deviation
2.1051, 22.917(a) 24.238(a) 27.53(h)	Band Edge	May 02, to Jun 23, 2021	Chen Haiju	PASS	No deviation
2.1051, 22.917(a) 24.238(a) 27.53(h)	Radiated Spurious Emissions	Jun 04 to 07, 2021	Yang Jie	PASS	No deviation
Note 1: The tests were performed according to the method of measurements prescribed in KDB971168 D01 v03 and ANSI/TIA-603-E-2016.					
Note 2: The path loss during the RF test is calibrated to correct the results by the offset setting in the test equipments. The ref offset 8dB contains two parts that cable loss 8 dB.					
Note 3: These items please refer to the 5G module report SZ21010262W05(SA) which The FCC ID is 2ABGH-R100ML5 and the 5G module has been certified by Shenzhen Morlab Communications Technology Co., Ltd. on 07/02/2021.					

MORLAB

Shenzhen Morlab Communication Technology Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555
Fax: 86-755-36698525
Http://www.morlab.cn
E-mail: service@morlab.cn

REPORT No.: SZ21060072W07

Note 4: There is no more evaluation for host RSE because the hosts are the same between hotspot and module when RSE test. For all test results, please refer to Report No.: SZ21010262W05.

MORLAB

Shenzhen Morlab Communication Technology Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
[Http://www.morlab.cn](http://www.morlab.cn) E-mail: service@morlab.cn

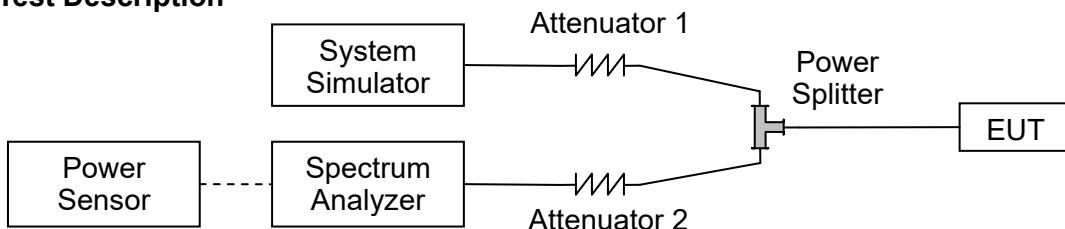
1.5. Environmental Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2.47 CFR Part 2, Part 22H, Part 24E, Part 27L &F&O Requirements

2.1. Transmitter Conducted Output Power And ERP/EIRP


2.1.1. Requirement

According to FCC section 2.1046(a), for transmitters other than single sideband, independent sideband and controlled carrier radiotelephone, power output shall be measured at the RF output terminals when the transmitter is adjusted in accordance with the tune-up procedure to give the values of current and voltage on the circuit elements specified in FCC section 2.1033(c)(8).

According to FCC section 27.50 (d)(4) for N66, mobile, and portable (hand-held) stations operating in the 1710-1755 MHz band and mobile and portable stations operating in the 1695-1710 MHz and 1755-1780 MHz bands are limited to 1 watt EIRP.

According to FCC section 27.50 (i)(3) for N78, Mobile and portable stations are limited to 1 Watt EIRP.

2.1.2. Test Description

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

2.1.3. Test procedure

KDB 971168 D01v03 Section 5.2 and ANSI/TIA-603-E-2016.

$$\text{EIRP (dBm)} = \text{Conducted Output Power (dBm)} + \text{Antenna Gain (dBi)}$$

$$\text{ERP (dBm)} = \text{EIRP (dBm)} - 2.15$$

REPORT No.: SZ21060072W07

2.1.4. Result

Conducted Output Power:

Note: The test results was recorded in Report No.: SZ21010262W05.

MORLAB

Shenzhen Morlab Communication Technology Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
[Http://www.morlab.cn](http://www.morlab.cn) E-mail: service@morlab.cn

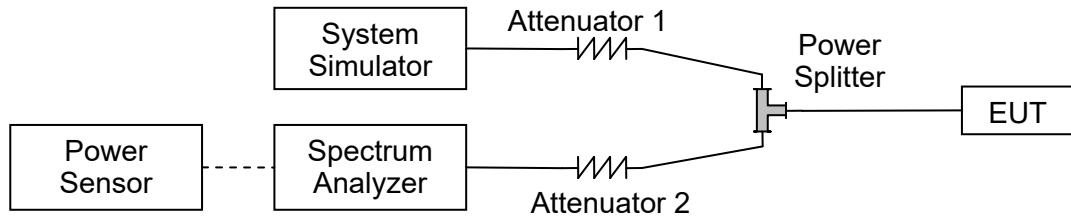
REPORT No.: SZ21060072W07

Effective Radiated Power and Effective Isotropic Radiated Power:

Note: The test results was recorded in Report No.: SZ21010262W05.

MORLAB

Shenzhen Morlab Communication Technology Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China


Tel: 86-755-36698555 Fax: 86-755-36698525
[Http://www.morlab.cn](http://www.morlab.cn) E-mail: service@morlab.cn

2.2. Occupied Bandwidth

2.2.1. Requirement

According to FCC section 2.1049, the occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers radiated are each equal to 0.5 percent of the total mean power radiated by a given emission. Occupied bandwidth is also known as the 99% emission bandwidth.

2.2.2. Test Description

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

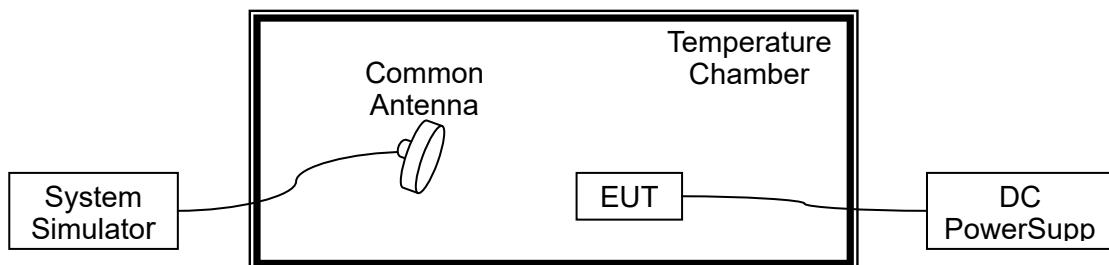
2.2.3. Test procedure

KDB 971168 D01v03 Section 4.1 and ANSI/TIA-603-E-2016.

2.2.4. Test Result

Note: The test results was recorded in Report No.: SZ21010262W05.

2.3. Frequency Stability


2.3.1. Requirement

According to FCC section 2.1055 & 27.54, the frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. According to FCC section 2.1055, the test conditions are:

- (a) The temperature is varied from -30°C to +50°C at intervals of not more than 10°C.
- (b) For hand carried battery powered equipment, the primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer. The supply voltage shall be measured at the input to the cable normally provided with the equipment, or at the power supply terminals if cables are not normally provided.

Note: The operating temperature of EUT is from 0°C to 45°C, which are specified by the applicant.

2.3.2. Test Description

The EUT which is powered by the DC Power Supply directly, is located in the Temperature Chamber. The EUT is commanded by the System Simulator (SS) to operate at the maximum output power. A call is established between the EUT and the SS via a Common Antenna.

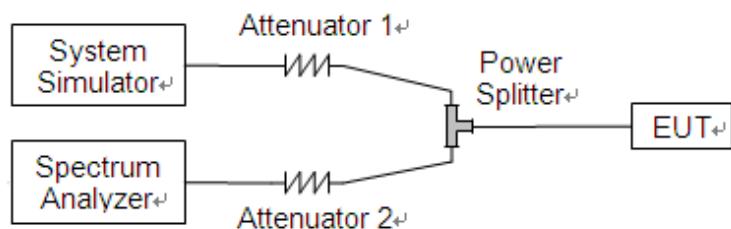
2.3.3. Test procedure

KDB 971168 D01v03 Section 9.0 and ANSI/TIA-603-E-2016.

2.3.4. Test Result

The nominal, highest and lowest extreme voltages are separately 3.8VDC, 4.2VDC and 3.6VDC, which are specified by the applicant; the normal temperature here used is 20°C.

Note: The test results was recorded in Report No.: SZ21010262W05.


2.4. Peak to Average Radio

2.4.1. Requirement

According to FCC section 24.232(d), the peak to average ratio (PAR) of the transmission may not exceed 13dB.

2.4.2. Test Description

Test Set:

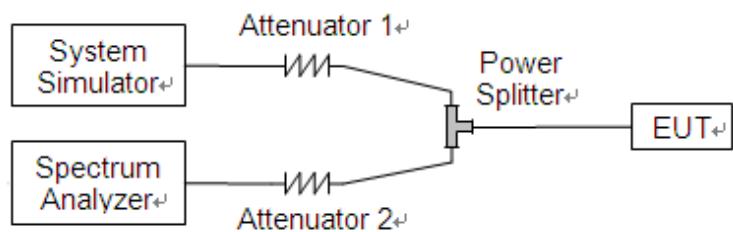
The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

2.4.3. Test procedure

KDB 971168 D01v03 Section 5.7 and ANSI/TIA-603-E-2016.

2.4.4. Test Result

Record the maximum PAPR level associated with a probability of 0.1%.


Note: The test results was recorded in Report No.: SZ21010262W05.

2.5. Conducted Spurious Emissions

2.5.1. Requirement

According to FCC section 2.1051, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43+10\log(P)$ dB. This calculated to be -13dBm.

2.5.2. Test Description

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ω; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

REPORT No.: SZ21060072W07

2.5.3. Test procedure

KDB 971168 D01v03 Section 6.0 and ANSI/TIA-603-E-2016.

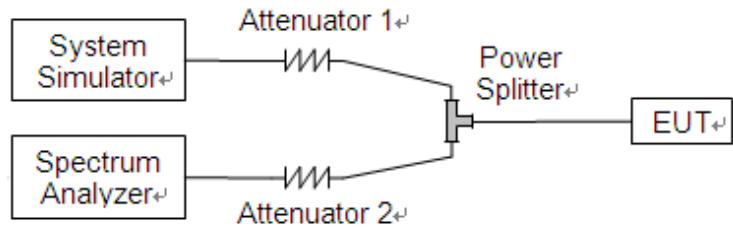
2.5.4. Test Result

Note: The test results was recorded in Report No.: SZ21010262W05.

REPORT No.: SZ21060072W07

2.6. Band Edge

2.6.1. Requirement


According to FCC section 22.917(a), the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB.

MORLAB

Shenzhen Morlab Communication Technology Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.cn E-mail: service@morlab.cn

2.6.2. Test Description

The EUT is coupled to the Spectrum Analyzer (SA) and the System Simulator (SS) with Attenuators through the Power Splitter; the RF load attached to the EUT antenna terminal is 50Ohm; the path loss as the factor is calibrated to correct the reading. The EUT is commanded by the SS to operate at the maximum output power. A call is established between the EUT and the SS.

2.6.3. Test procedure

KDB 971168 D01v03 Section 6.0 and ANSI/TIA-603-E-2016.

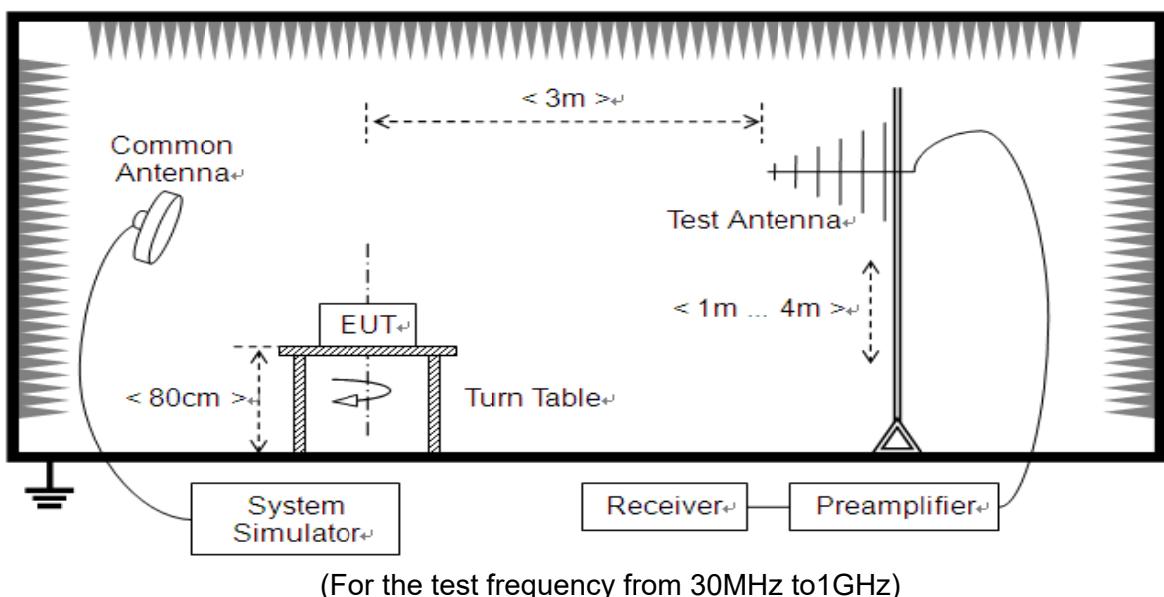
REPORT No.: SZ21060072W07

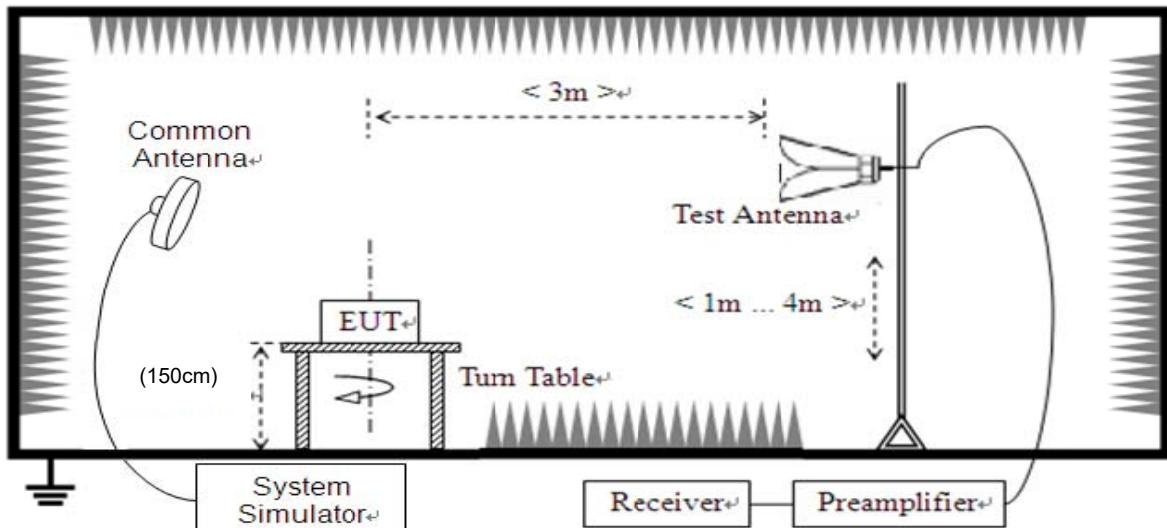
2.6.4. Test Result

The center frequency of spectrum is the band edge frequency and span is 2MHz, Record the max trace into the test report.

Note: The test results was recorded in Report No.: SZ21010262W05.

2.7. Radiated Spurious Emissions


2.7.1. Requirement


According to FCC section 2.1051, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P)$ dB. This calculated to be -13dBm.

Additional requirement for NR Band n41:

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $55 + 10 \log(P)$ dB. This calculated to be -25dBm.

2.7.2. Test Description

(For the test frequency above 1GHz)

The EUT is located in a 3m Full-Anechoic Chamber, the cable loss, air loss and so on of the site as factors are pre-calibrated using the "Substitution" method, and calculated to correct the reading. A call is established between the EUT and the SS via a Common Antenna. The EUT is commanded by the SS to operate at the maximum and minimum output power, and only the test result of the maximum output power was recorded.

In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground and the Turn Table is actuated to turn from 0° to 360° to determine the maximum value of the radiated power. The emission levels at both horizontal and vertical polarizations should be tested. The Filters consists of Notch Filters and High Pass Filter.

Note: when doing measurements above 1GHz, the EUT has been within the 3dB cone width of the horn antenna during horizontal antenna.

2.7.3. Test procedure

KDB 971168 D01v03 Section 5.8 and ANSI/TIA-603-E-2016.

2.7.4. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. Test Antenna height is varied from 1m to 4m above the ground, and the Turn Table is actuated to turn from 0° to 360°, both horizontal and vertical polarizations of the Test Antenna are used to find the maximum radiated power. Mid channels on all channel bandwidth verified. Only the worst RB size/offset presented.

The substitution corrections are obtained as described below:

$$A_{SUBST} = P_{SUBST_TX} - P_{SUBST_RX} - L_{SUBST_CABLES} + G_{SUBST_TX_ANT}$$

$$A_{TOT} = L_{CABLES} + A_{SUBST}$$

Where A_{SUBST} is the final substitution correction including receive antenna gain.

P_{SUBST_TX} is signal generator level,

P_{SUBST_RX} is receiver level,

L_{SUBST_CABLES} is cable losses including TX cable,

$G_{SUBST_TX_ANT}$ is substitution antenna gain.

A_{TOT} is total correction factor including cable loss and substitution correction

During the test, the data of A_{TOT} was added in the Test Spectrum Analyze, so Spectrum Analyze reading is the final values which contain the data of A_{TOT} .

Note1: The power of the EUT transmitting frequency should be ignored.

Note2: All Spurious Emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

Note3: All bandwidth and modulation were considered and evaluated respectively by performing full test for each band, only the worst cases (Max Bandwidth and QPSK mode) were recorded in this test report.

Note4: The test results was recorded in Report No.: SZ21010262W05.

Annex A Test Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Test items	Uncertainty
Output Power	±2.22 dB
Bandwidth	±5%
Conducted Spurious Emission	±2.77 dB
Band Edge	±2.77 dB
Equivalent Isotropic Radiated Power	±2.22 dB
Radiated Spurious Emissions	±6 dB

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

Annex B Testing Laboratory Information

1. Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China
Telephone:	+86 755 36698555
Facsimile:	+86 755 36698525

2. Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China

3. Facilities and Accreditations

All measurement facilities used to collect the measurement data are located at FL.3, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10-2013 and CISPR Publication 22; the FCC designation number is CN1192, the test firm registration number is 226174.

4. Test Equipments Utilized

4.1 Conducted Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Cal. Due
Power Splitter	NW521	1506A	Weinschel	N/A	N/A
Attenuator 1	(N/A.)	10dB	Resnet	N/A	N/A
Attenuator 2	(N/A.)	3dB	Resnet	N/A	N/A
EXA Signal Analyzer	MY54170556	N9030A	Keysight	2021.01.08	2022.01.07
USB Power Sensor	MY54210011	U2021XA	Agilent	2020.10.23	2021.10.22
System Simulator	6262012906	MT8000A	Anritsu	2020.10.28	2021.10.27
RF cable (30MHz-26GHz)	CB01	RF01	Morlab	N/A	N/A
Coaxial cable	CB02	RF02	Morlab	N/A	N/A
SMA connector	CN01	RF03	HUBER-SUHNER	N/A	N/A
Temperature Chamber	(N/A)	HUT705P	CHONGQING HANBA EXPERIMENTAL EQUIPMENT CO.,LTD	2020.10.26	2021.10.25
Computer	T430i	Think Pad	Lenovo	N/A	N/A
Test system	N/A	WCS FCC V1.0	CeSheng	N/A	N/A

4.2 Radiated Test Equipments

Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Cal. Due
System Simulator	6262012906	MT8000A	Anritsu	2019.10.07	2021.10.06
Receiver	MY54130016	N9038A	Agilent	2020.07.21	2021.07.20
Test Antenna - Bi-Log	9163-519	VULB 9163	Schwarzbeck	2019.05.24	2022.05.23
Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2019.07.26	2022.07.25
Test Antenna - Horn	01774	BBHA 9120D	Schwarzbeck	2019.07.26	2022.07.25
Coaxial cable (N male) (9KHz-30MHz)	CB04	EMC04	Morlab	N/A	N/A
Coaxial cable (N male) (30MHz-26GHz)	CB02	EMC02	Morlab	N/A	N/A
Coaxial cable(N male) (30MHz-26GHz)	CB03	EMC03	Morlab	N/A	N/A
1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde& Schwarz	2020.07.21	2021.07.20
18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde& Schwarz	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B2	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B4	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B5	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B7	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B12	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B17	Wainwright	2020.07.21	2021.07.20

REPORT No.: SZ21060072W07

Notch Filter	N/A	WRCGV -LTE B19	Wainwright	2020.07.21	2021.07.20
Equipment Name	Serial No.	Type	Manufacturer	Cal. Date	Cal.Due
Notch Filter	N/A	WRCGV -LTE B25	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B26	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B30	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE 38	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B40	Wainwright	2020.07.21	2021.07.20
Notch Filter	N/A	WRCGV -LTE B41	Wainwright	2020.07.21	2021.07.20
Anechoic Chamber	N/A	9m*6m*6m	CRT	2020.07.21	2021.07.20

— END OF REPORT —

MORLAB

Shenzhen Morlab Communication Technology Co., Ltd.
FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road,
Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China

Tel: 86-755-36698555 Fax: 86-755-36698525
Http://www.morlab.cn E-mail: service@morlab.cn