

TEST REPORT

1. Applicant

Name : Ericsson-LG Enterprise Co., Ltd.
Address : 77,Heungan-daero 81 beon-gil,Dongan-gu, Anyang-si,Gyeonggi-do, Korea

2. Products

Name : Wireless Handy Telephone
Model : GDC-480H
Manufacturer : Ericsson-LG Enterprise Co., Ltd.

3. Test Standard : FCC 47 CFR § 2.1093,

4. Test Method : IEEE 1528-2003

5. Test Results : Positive

6. Date of Application : October 8, 2015

7. Date of Issue : November 30, 2015

Tested by

Jong-gon Ban

RF Application Technology Center
Senior Engineer

Approved by

Jang tae-heon

RF Application Technology Center
Manager

The test results contained apply only to the test sample(s) supplied by the applicant, and this test report shall not be reproduced in full or in part without approval of the KTL in advance.

Korea Testing Laboratory

REVISION HISTORY

REPORT No.	Version	Description	Issued Date
12-056909-01-2	Rev 01	Initial Issue	Dec 26, 2012
15-059152-01-2	Rev 02	Removal of Bluetooth module. All SAR results are re-used	Nov 30, 2015

TABLE OF CONTENTS

REVISION HISTORY	2
1. GENERAL INFORMATIONS	5
1.1. Applicant (Client)	5
1.2. Equipment (EUT).....	5
1.3. Testing Laboratory.....	6
2. SAR DEFINITION	7
3. TEST METHODOLOGY	8
4. DESCRIPTION OF SAR MEASUREMENT SYSTEM	9
4.1. SAR Measurement System	9
4.2. E-Field Probe Type and Performance	10
4.3. Probe Calibration Process (Dosimetric Assessment Procedure).....	11
4.4. Data Acquisition Electronics	12
4.5. Phantom Properties	12
4.6. Device Holder for DASY4	13
4.7. Brain & Muscle Simulating Mixture Characteristic	13
5. SYSTEM VERIFICATION	14
5.1. Tissue Verification	14
5.2. System Validation	14
5.3. Justification for Extended SAR Dipole Calibrations	16
6. SAR MEASUREMENT PROCEDURE USING DASY4	17
7. DESCRIPTION OF TEST POSITION	18
7.1. Cheek Position	18
7.2. Tilt Position.....	19
7.3. Body Holster/ Belt Clip Configurations	19
8. MEASUREMENT UNCERTAINTY	21

9. FCC RF EXPOSURE LIMITS	22
10. RF CONDUCTED POWERS	23
10.1. Nominal and Maximum Output Power Specifications	23
10.2. SAR scaling factors sample calculation.....	23
11. SAR MEASUREMENT RESULTS.....	24
11.1. UPCH SAR Measurement Results	24
12. FCC MULTI-TX CONSIDERATION	25
13. SAR MEASUREMENT VARIABILITY	26
13.1. Measurement Variability.....	26
13.2. Measurement Uncertainty	26
14. CONCLUSION.....	27
15. EQUIPMENT LIST AND CALIBRATION DETAILS.....	28

A APPENDIX A. SAR PLOTS

APPENDIX B. CALIBRATION DATA SHEETS

APPENDIX C. SAR MEASUREMENT SETUP PHOTOS

1. GENERAL INFORMATIONS

1.1. Applicant (Client)

Name	Ericsson-LG Enterprise Co., Ltd.
Address	77,Heungan-daero 81 beon-gil,Dongan-gu, Anyang-si, Gyeonggi-do, Korea
Contact Person	Sang-Jin Kang
Telephone No.	82 31 8054 6017
E-mail address	Sangjin.kang@ericssonlg.com
Manufacturer	Ericsson-LG Enterprise Co., Ltd.
Manufacturer Address	77,Heungan-daero 81 beon-gil,Dongan-gu, Anyang-si, Gyeonggi-do, Korea

1.2. Equipment (EUT)

Product Name	Wireless Handy Telephone
Model Name	GDC-480H
FCC ID	2ABGAGDC-480H
Device Category	Part 15 Unlicensed PCS portable Tx held to ear (PUE)
Type of Modulation	UPCS (GFSK)
Max. Conducted Power	UPCS : 18.34 mW
Tx Frequency Range	UPCS : 1921.536 MHz ~ 1928.448 MHz
Duty Cycle	UPCS (1:24)
Antenna Type	Internal Antenna
Operating Power	3.7 VDC Battery
RF exposure Category	General Population/Uncontrolled
Maximum 1g SAR	Head : 0.043 mW/g Body : 0.013 mW/g

1.3. Testing Laboratory

Testing Place	Korea Testing Labortory (KTL) 723, Haean-ro, Sangnok-gu, Ansan-si, Gyeonggi-do, KOREA (426-910)
FCC registration number	408324
Industry Canada filing number	6298A
Test Engineer	Jong-gon Ban
Telephone number	+82 31 5000 133
Facsimile number	+82 31 5000 149
E-mail address	banjg@ktl.re.kr
Other Comments	-

Frequency Band	Frequency
Channel 1	1921.536 MHz
Channel 2	1923.264 MHz
Channel 3	1924.992 MHz
Channel 4	1926.720 MHz
Channel 5	1928.448 MHz

2. SAR DEFINITION

Specific Absorption Rate (SAR) is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density(p). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body. (see Figure.1)

$$SAR = \frac{d}{dt} \left(\frac{dU}{dm} \right) = \frac{d}{dt} \left(\frac{dU}{pdv} \right)$$

Figure 1. SAR Mathematical Equation

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \sigma E^2 / p$$

Where :

σ = conductivity of the tissue-simulant material (S/m)
 p = mass density of the tissue-simulant material (kg/m³)
 E = Total RMS electric field strength (V/m)

Note: The primary factors that control rate or energy absorption were found to be the wavelength of the incident field in realtions to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflectinf surfaces, and whether conductive contact is made by the organism with a ground plane.[4]

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with IEEE Standard 1528-2003 and the following published KDB procedures.

- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01 SAR measurement 100 MHz to 6 GHz v01r04
- FCC KDB Publication 865664 D02 SAR Reporting v01r02

4. DESCRIPTION OF SAR MEASUREMENT SYSTEM

4.1. SAR Measurement System

These measurements are performed using the DASY4 automated dosimetric assessment system. It is made by Schmid & Partner Engineering AG (SPEAG) in Zurich, Switzerland and consists of high precision robotics system (Staubli), robot controller, measurement server, Measurement computer, near-field probe, probe alignment sensor, and the SAM twin phantom containing the brain equivalent material. The robot is a six-axis industrial robot performing precise movements to position the probe to the location (points) of maximum electromagnetic field (EMF) (see Fig.2).

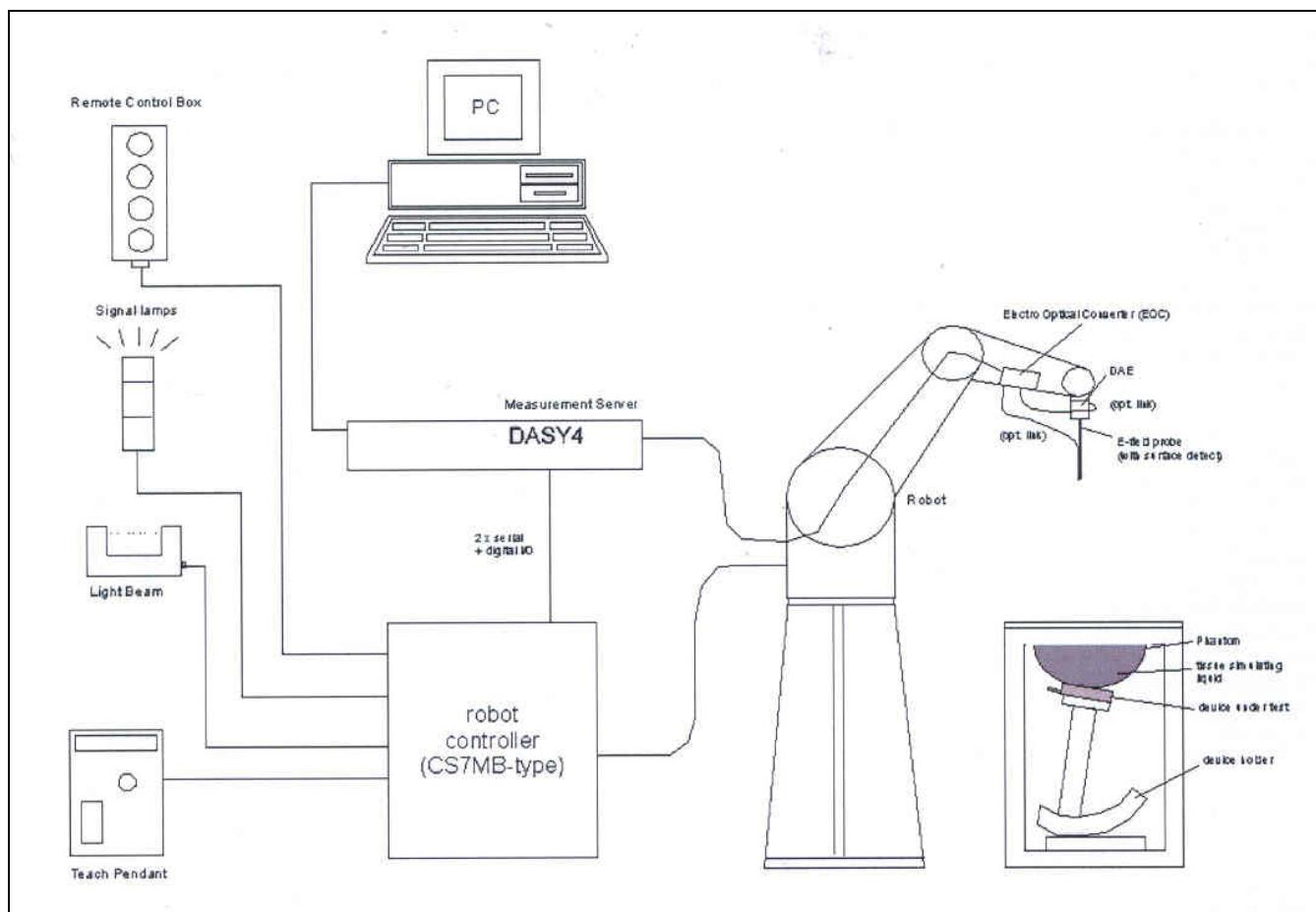


Figure 2. SAR Measurement System

The DAE4 consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the PC-card is accomplished through an optical downlink for data and status information and an optical uplink for commands and clock lines. The mechanical probe mounting device includes two different sensor systems for front- and sidewise probe contacts. They are also used for mechanical surface detection and probe collision detection. The robot uses its own controller with a built in VME-bus computer. The system is described in detail in [5].

4.2. E-Field Probe Type and Performance

The SAR measurements were conducted with the dosimetric probe designed in the classical triangular configuration [5] and optimised for dosimetric evaluation. The probe has been constructed using the thick film technique; with printed resistive lines on ceramic substrates. The probe is equipped with an optical mortifier line ending at the front of the probe tip. It is connected to the EOC box on the robot arm and provides an automatic detection of the phantom surface. Half of the fibers are connected to a pulsed infrared transmitter, the other half to a synchronized receiver. As the probe approaches the surface, the reflection from the surface produces a coupling from the transmitting to the receiving fibers. This reflection increases first during the approach, reaches a maximum and then decreases. If the probe is flatly touching the surface, the coupling is zero. The distance of the coupling maximum to the surface is independent of the surface reflectivity and largely independent of the surface to probe angle. The DASY4 software reads the reflection during a software approach and looks for the maximum using a 2nd order fitting. The approach is stopped at reaching the maximum.

Figure 3. Probe and DAE

Probe Specifications

Construction	Symmetrical design with triangular core Built-in optical fiber for surface detection System Built-in shielding against static charges
Calibration	In air from 10 MHz to 2.5 GHz In brain and muscle simulating tissue at Frequencies of 450 MHz, 900 MHz and 1.8 GHz (accuracy 8%)
Frequency	10 MHz to > 6 GHz; Linearity: 0.2 dB (30 MHz to 3 GHz)
Directivity	0.2 dB in brain tissue (rotation around probe axis) 0.4 dB in brain tissue (rotation normal probe axis)
Dynamic Range Linearity	5 uW/g to > 100 mW/g; 0.2 dB
Surface Detection	0.2 mm repeatability in air and clear liquids Over diffuse reflecting surfaces.
Dimensions	Overall length: 337 mm Tip length: 10 mm Body diameter: 10 mm Tip diameter: 4 mm Distance from probe tip to dipole centers: 2.7 mm
Application	General dissymmetry up to 3 GHz Compliance tests of mobile phones/ Fast automatic scanning in arbitrary phantoms

Figure 4. E-Field Probe

4.3. Probe Calibration Process (Dosimetric Assessment Procedure)

Each probe is calibrated according to a dosimetric assessment procedure described [6] with an accuracy better than +/- 10%. The spherical isotropy was evaluated with the procedure described in [7] and found to be better than +/- 0.25dB. The sensitivity parameters (NornX, NornY, NornZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe is tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies below 1 GHz, and in a waveguide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$SAR = C \frac{\Delta T}{\Delta t}$$

where:

Δt = exposure time (30 seconds),

C = heat capacity of tissue (brain or muscle),

ΔT = temperature increase due to RF exposure.

SAR is proportional to $\Delta T / \Delta t$, the initial rate of tissue heating, before thermal diffusion takes place. Now it's possible to quantify the electric field in the simulated tissue by equating the thermally derived SAR to the E-field;

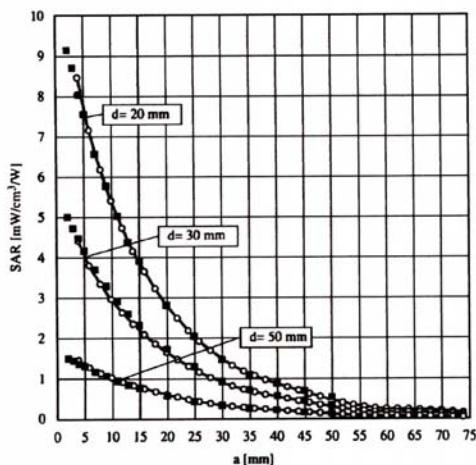


Figure B.1. E-Field and Temperature measurements at 900MHz[5]

$$SAR = \frac{|\mathbf{E}|^2 \cdot \sigma}{\rho}$$

where:

σ = simulated tissue conductivity,

ρ = Tissue density (1.25 g/cm³ for brain tissue)

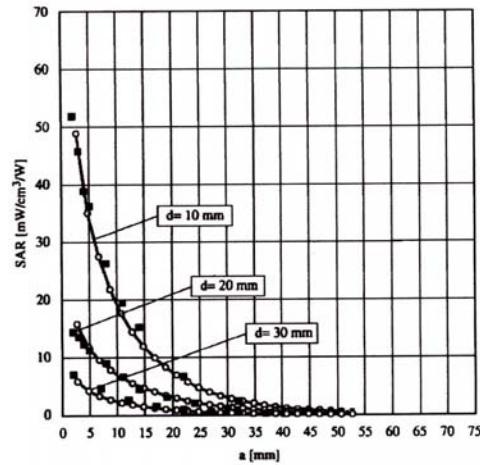


Figure B.2. E -field and temperature measurements at 1.8GHz[5]

4.4. Data Acquisition Electronics

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. The input impedance of the DAE4 box is 200 Mohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB. Transmission to the PC-card is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe-mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

4.5. Phantom Properties

The SAM Phantom is constructed of a fiberglass shell integrated in a wooden table. The shape of the shell is based on data from an anatomical study designed to determine the maximum exposure in at least 90% of all users [9][10]. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents the evaporation of the liquid. Reference markings on the Phantom allow the complete setup of all predefined phantom positions and measurement grids by manually teaching three points in the robot.

Figure 5. SAM twin phantom

Phantom Properties	Requirement for specific EUT	Measured
Depth of Phantom	> 150 mm	200 mm
Width of flat section	> 10 cm (Twice EUT Width)	20 cm
Length of flat section	> 26 cm (Twice EUT Length)	30 cm
Thickness of flat section	2 mm ± 0.2 mm	2.08 ~ 2.20 mm

Table 1. Flat Section Properties of SAM Twin Phantom

4.6. Device Holder for DASY4

In combination with the SAM Phantom V4.0, the Mounting Device(POM) enables the rotation of the mounted transmitter in spherical coordinates whereby the rotation points is the ear opening. The devices can be easily, accurately, and repeatable positioned according to the FCC CENELEC specifications. The device holder can be locked at different phantom locations(left head, right head, flat phantom).

Note: A simulating human hand is not used due to the complex anatomical and geometrical structure of the hand that may produced infinite number of configurations [10]. To produce the Worst-case condition (the hand absorbs antenna output power), the hand is omitted during the tests.

Figure 6. Device Holder

4.7. Brain & Muscle Simulating Mixture Characteristic

The brain and muscle mixtures consist of a viscous gel using hydroxethylcellulose (HEC) gelling agent and saline solution (see Table 2). Preservation with bacteriacide is added and visual inspection is made to make sure air bubbles are not trapped during the mixing process. The mixture is calibrated to obtain proper dielectric constant (permittivity) and conductivity of the desired tissue. The mixture characterizations used for the brain and muscle tissue simulating liquids are according to the data by C. Gabriel and G. Hartsgrove [11].

Ingredients	1900 MHz Brain	1900 MHz Muscle
Water	55.24%	70.23%
Sugar	-	-
Salt	0.31%	0.29%
DGBE	44.45%	29.47%
Bacteriacide	-	-
HEC	-	-

Table 2 : Composition of Tissue Equivalent Matter

5. SYSTEM VERIFICATION

5.1. Tissue Verification

The dielectric parameters of the brain and muscle simulating liquid were measured prior to SAR assessment using the HP85070D dielectric probe kit and Agilent 8753D Network Analyzer. The actual dielectric parameters are shown in the following table.

Freq. [MHz]	Date	Liquid Temp [°C]	parameters	Target Value	Measured Value	Deviation (%)	Limit (%)
1900 Head	November 1, 2012	21.0	ε _r	40.0	39.4	-1.5	±5
			σ	1.40	1.38	-1.5	±5
1900 Body	November 2, 2012	21.5	ε _r	53.3	52.1	-2.3	±5
			σ	1.52	1.54	+1.3	±5

Table 3 : Measured Simulating Liquid Dielectric Values

The humidity and dielectric/ambient temperatures are recorded during the assessment of the tissue material dielectric parameters. The difference between the ambient temperature of the liquid during the dielectric measurement and the temperature during tests was less than |2|°C.

5.2. System Validation

Prior to the SAR assessment, the system validation kit was used to verify that the DASY4 was operating within its specifications. The validation dipoles are highly symmetric and matched at the centre frequency for the specified liquid and distance to the phantom. The accurate distance between the liquid surface and the dipole centre is achieved with a distance holder that snaps onto the dipole.

System validation is performed by feeding a known power level into a reference dipole, set at a known distance from the phantom.

The measured SAR is compared to the theoretically derived level. The reference SAR values are derived using a reference dipole and flat phantom suitable. The forward power into the reference dipole for each SAR validation was adjusted to 250 mW.

Figure 7. Validation setup

These reference SAR values are normalized to 1 W. The measured 1g(10g) SAR should be within 10 % of the expected target reference values shown in table 4 below.

System Validation Kit	Date	Liquid Temp.(°C)	Ambient Temp.(°C)	Targeted SAR10g (mW/g)	Measured SAR 10 g (mW/g)	Deviation (%)
D1900V2 S/N: 5d038	November 1, 2012	21.0	21.0	39.7	38.0	-4.3
D1900V2 S/N: 5d038	November 2, 2012	21.5	21.0	39.7	40	+0.7

Table 4 : Deviation from Reference Validation Values

5.3. Justification for Extended SAR Dipole Calibrations

According to maintaining return loss and impedance requirements per extended calibrations in KDB 865664, usage of SAR dipole calibrated less than 2 years ago but more than 1 year ago was confirmed.

KDB 865664 requirements

- a) return loss : < -20 dB, within 20% of prior calibration
- b) impedance : within 5Ω from prior calibration.

D1900V2 S/N:5d038					
Head/Body	Date of Measurement	Return Loss (dB)	$\Delta\%$	Impedance (Ω)	$\Delta\Omega$
Head	11/25/2010	-23.5	-	52.9	-
	07/16/2012	-22.2	-6.6	51.5	-1.4
Body	04/19/2011	-22.2	-	48.3	-
	07/12/2012	-22.0	-0.2	45.9	-2.4

6. SAR MEASUREMENT PROCEDURE USING DASY4

The SAR evaluation was performed with the SPEAG DASY4 system. A summary of the procedure follows ;

- a) A measurement of the SAR value at a fixed location is used as a reference value for assessing the power drop of the EUT. The SAR at this point is measured at the start of the test and then again at the end of the test.
- b) The SAR distribution at the exposed side of the phantom is measured at a distance of 3.9 mm from the inner surface of the shell. The area covers the entire dimension of the EUT and the horizontal grid spacing is 15 mm x 15 mm(or 20mm x 20mm). The actual Area Scan has dimensions surrounding the test device. Based on this data, the area of the maximum absorption is determined by Spline interpolation.
- c) Around this point, a volume is assessed by measuring 5 x 5 x 7 (7 x 7 x 7) points. On the basis of this data set, the spatial peak SAR value is evaluated with the following procedure ;
 - (i) The data at the surface are extrapolated, since the centre of the dipoles is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is 1.2 mm. The extrapolation is based on a least square algorithm[13]. A polynomial of the fourth order is calculated through the points in z-axes. This polynomial is then used to evaluate the points between the surface and the probe tip.
 - (ii) The maximum interpolated value is searched with a straightforward algorithm. Around this maximum the SAR values averaged over the spatial volumes (1 g and 10 g) are computed using the 3D-Spline interpolation algorithm. The 3D-Spline is composed of three one-dimensional splines with the “Not a knot”- condition (in x, y and z-direction)[13][14]. The volume is integrated with the trapezoidal-algorithm. One thousand points (10 x 10 x 10) are interpolated to calculate the averages.
 - (iii) All neighbouring volumes are evaluated until no neighbouring volume with a higher average value is found.
 - (iv) The SAR value at the same location as in Step (a) is again measured (If the value changed by more than 5%, the evaluation is repeated.)

7. DESCRIPTION OF TEST POSITION

SAR measurements were performed in the “cheek” and “tilted” positions on left and right sides of the phantom according to IEEE 1528. Both were measured in the head section of the SAM Twin Phantom.

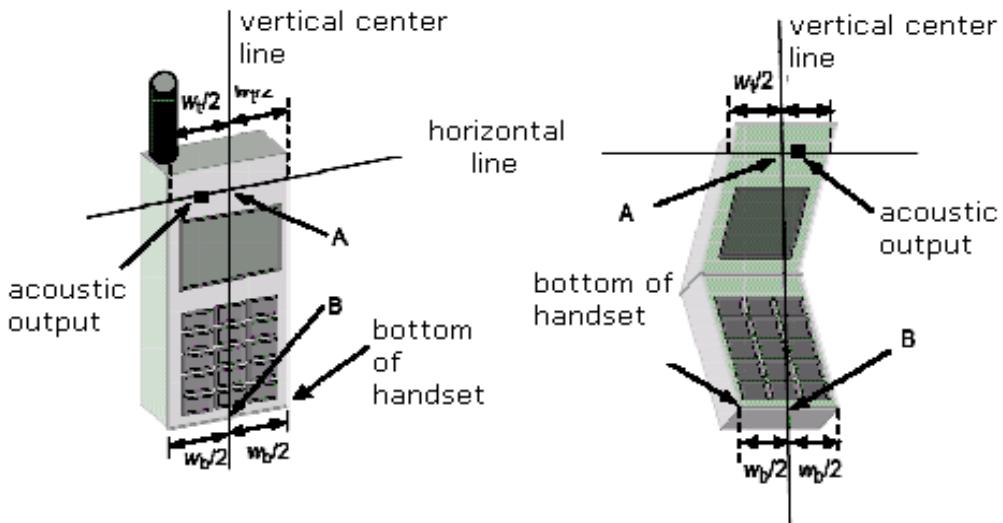
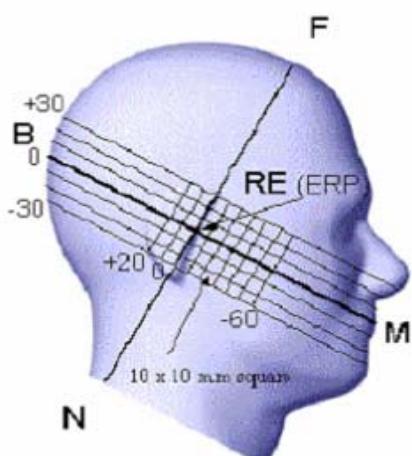



Figure 8. Handset vertical and horizontal reference line

7.1. Cheek Position

The device was positioned with the vertical center line of the body of the device and the horizontal line crossing the center (see Figure 8) of the ear piece in a plane parallel to the sagittal plane of the phantom (see Figure 9). While maintaining the device in this plane, it was aligned the vertical center line with the reference plane containing the three ear and mouth reference points (M, RE and LE) and aligned the center of the ear piece with the line RE-LE. Then device was translated towards the phantom with the ear piece aligned with the line LE-RE until it touched the ear. While maintaining the device in the reference plane and maintaining the device contact with the ear, the bottom of the device was moved until any point on the front side is in contact with the cheek of the phantom. (see Figure 10)

Figure 9. Side view of SAM phantom

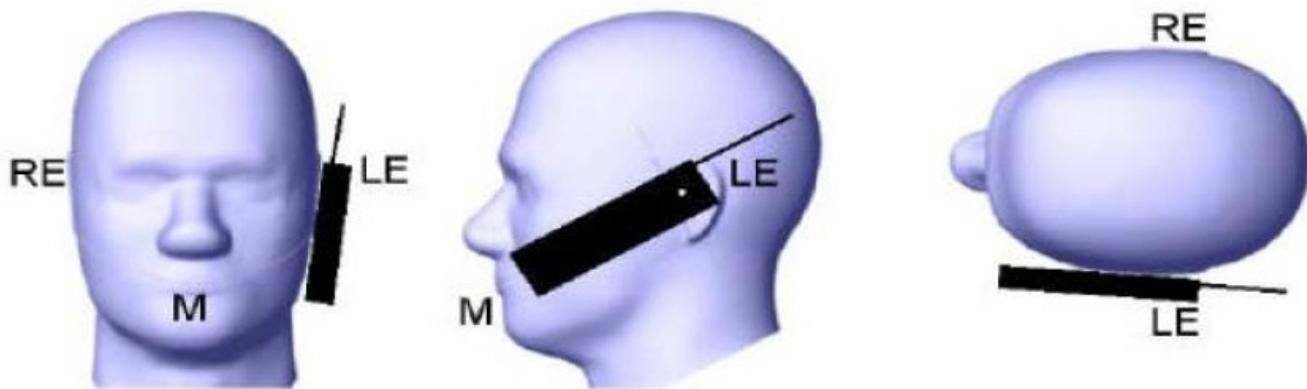


Figure 10. Cheek/Touch Position

7.2. Tilt Position

The device was positioned in the "Cheek" position. While maintaining the device in the reference plane described above cheek position and pivoting against the ear, device was moved outward away from the mouth by an angle of 15 degrees. (see Figure 11)

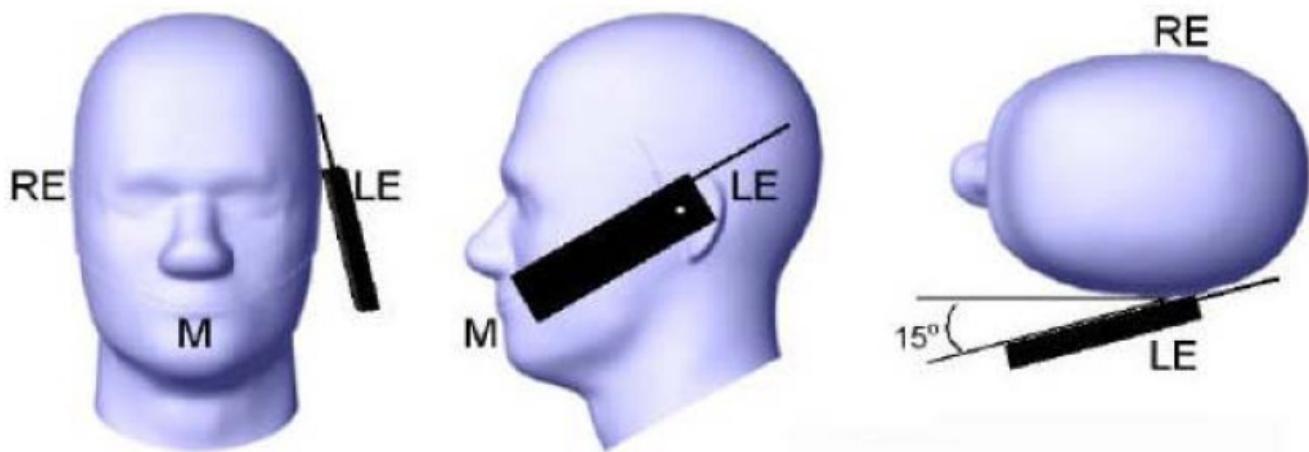


Figure 11. Ear/Tilt Position

7.3. Body Holster/ Belt Clip Configurations

Body-worn operating configurations are tested without the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration. A device with a headset output is tested with a headset connected to the device.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the

closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component(i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as the push-to-talk configurations, are test for SAR compliance with the front of the device positioned to face the flat phantom in brain fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

In all cases SAR measurements are performed to investigate the worst-case positioning. Worst-case positioning is then documented and used to perform Body SAR testing.

8. MEASUREMENT UNCERTAINTY

Applicable for frequencies up to 6GHz

Uncertainty Component	Tol. (%)	Prob Dist	Div	c_i 1g	c_i 10g	u_i (%) 1g	u_i (%) 10g	v_i
Measurement System								
Probe Calibration	± 6.55	N	1	1	1	± 6.55	± 6.55	∞
Axial Isotropy	± 4.70	R	$\sqrt{3}$	0.7	0.7	± 1.90	± 1.90	∞
Hemispherical Isotropy	± 9.60	R	$\sqrt{3}$	0.7	0.7	± 3.38	± 3.38	∞
Linearity	± 4.70	R	$\sqrt{3}$	1	1	± 2.71	± 2.71	∞
System Detection Limits	± 1.00	R	$\sqrt{3}$	1	1	± 0.58	± 0.58	∞
Boundary Effect	± 1.00	R	$\sqrt{3}$	1	1	± 0.58	± 0.58	∞
Response Time	± 0.80	R	$\sqrt{3}$	1	1	± 0.46	± 0.46	∞
RF Ambient conditions	± 3.00	R	$\sqrt{3}$	1	1	± 1.73	± 1.73	∞
Readout Electronics	± 1.00	N	1	1	1	± 1.00	± 1.00	∞
Integration time	± 2.60	R	$\sqrt{3}$	1	1	± 1.50	± 1.50	∞
Probe Positioner	± 0.40	R	$\sqrt{3}$	1	1	± 0.23	± 0.23	∞
Probe Positioning	± 2.90	R	$\sqrt{3}$	1	1	± 1.67	± 1.67	∞
Max. SAR evaluation	± 1.00	R	$\sqrt{3}$	1	1	± 0.58	± 0.58	∞
Test Sample Related								
Device Positioning	± 2.90	N	1	1	1	± 2.90	± 2.90	145
Device Holder	± 3.60	N	1	1	1	± 3.60	± 3.60	5
Power Drift	± 5.00	R	$\sqrt{3}$	1	1	± 2.89	± 2.89	∞
Phantom and Setup								
Phantom Uncertainty	± 4.00	R	$\sqrt{3}$	1	1	± 2.31	± 2.31	∞
Liquid Conductivity (target)	± 5.00	R	$\sqrt{3}$	0.64	0.43	± 1.85	± 1.24	∞
Liquid Conductivity (meas.)	± 2.07	N	1	0.78	0.71	± 1.61	± 1.47	9
Liquid Permittivity (target)	± 5.00	R	$\sqrt{3}$	0.60	0.49	1.73	1.43	∞
Liquid Permittivity (meas.)	± 3.07	N	1	0.26	0.26	± 0.80	± 0.80	9
Combined Std. Uncertainty (k=1)	RSS					10.43	10.33	
Expanded STD Uncertainty (95% CONFIDENCE LEVEL)	k=2					20.87	20.66	

Table 5. Uncertainty Budget

9. FCC RF Exposure Limits

HUMAN EXPOSURE	UNCONTROLLED ENVIRONMENT	CONTROLLED ENVIRONMENT
	General Population (W/Kg) or (mW/g)	Occupational (W/Kg) or (mW/g)
SPATIAL PEAK SAR (Brain)	1.60	8.00
SPATIAL AVERAGE SAR (Whole Body)	0.08	0.40
SPATIAL PEAK SAR (Hand / Feet / Ankle / Wrist)	4.00	20.00

Table. 6 Safety Limits for Partial Body Exposure

NOTE :

* The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

10. RF CONDUCTED POWERS

10.1. Nominal and Maximum Output Power Specifications

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

Mode		Modulated Average Power (dBm)	
IEEE 802.11b (2.4G)	Maximum	20.0	
	Nominal	18.5	

10.2. SAR scaling factors sample calculation

Scaled SAR results are derived after scaling factors are applied to the measured values as below. Scaling for maximum tune-up tolerance must be considered separately.

SAR Section	Test Position	Mode	Dist. (mm)	Freq. (MHz)	CH #	Power (dBm]		SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Plot. No.
						Max. allowed	Measured				
Head	Right Touch	UPCS	N/A	1934.992	3	20.0	18.34	0.029	1.466	0.043	1

*Scaled SAR = Measured SAR x Scaling Factor

$$0.043 = 0.029 \times 1.466$$

11. SAR MEASUREMENT RESULTS

11.1. UPSCS SAR Measurement Results

SAR Section	Test Position	Mode	Dist. (mm)	Freq. (MHz)	CH #	Power (dBm]		SAR 1g (W/kg)	Scaling Factor	Scaled SAR 1g (W/kg)	Plot. No.
						Max. allowed	Measured				
Head	Right Touch	UPCS	N/A	1924.992	3	20.0	18.34	0.029	1.466	0.043	1
	Right Tilt	UPCS	N/A	1924.992	3	20.0	18.34	0.015	1.466	0.022	-
	Left Touch	UPCS	N/A	1924.992	3	20.0	18.34	0.020	1.466	0.029	-
	Left Tilt	UPCS	N/A	1924.992	3	20.0	18.34	0.012	1.466	0.018	-
Body	Front	UPCS	15	1924.992	3	20.0	18.34	0.009	1.466	0.013	2
	Rear	UPCS	15	1924.992	3	20.0	18.34	0.009	1.466	0.013	-
ANSI/IEEE C95.1 – 1992-Safety Limit Spatial Peak Uncontrolled Exposure/ General Population						1.6 W/kg (mW/g) Averaged over 1 gram					

NOTES:

1. The test data reported are the worst-case SAR value with the position set in a typical configuration
2. All modes of operation were investigated and the worst-case are reported.
3. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
4. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB 447498 D01v06.
5. Per FCC KDB 648474 D04v01, SAR was evaluated without a headset connected to the device. Since the standalone reported SAR was less than 1.2 W/kg, no additional SAR evaluation using a headset cable were required.
6. Per FCC KDB 865664 D01v01, variability SAR tests were not performed since the measured SAR results for all frequency bands were less than 0.8 W/kg. Please see Section 13 for variability analysis information.
7. Justification for reduced test configurations: per KDB 447498 D01v06, if the SAR measured at the middle channel for each test configuration (Left, right, cheek/touch, tilt/ear, extended and retracted) is at least 3.0 dB lower than the SAR limit, testing at the high and low channels is optional for such test configuration(s).
8. Battery was fully charged for all readings.
9. Test Signal Call mode: Base Station Simulator (CMD60)
10. Duty Cycle is 1:24
11. Depth of simulation Tissue is 15.0 cm ± 0.2 cm

12. FCC MULTI-TX CONSIDERATION

This device doesn't have any licensed transmitter. So there is no need consideration for Multi-Tx consideration

13. SAR MEASUREMENT VARIABILITY

13.1. Measurement Variability

Per FCC KDB Publication 865864 D01v01, SAR measurement variability was assessed when measured 1g SAR is > 0.80 W/kg or when measured 10g SAR is >2.00 W/kg. Since all measured 1g SAR values were <0.8 W/kg SAR measurement variability was not assessed.

13.2. Measurement Uncertainty

The measured SAR was <1.5 W/kg for all frequency bands. Therefore, per KDB Publication 865664 D01v01, the extended measurement uncertainty analysis per IEEE 1528-2003 was not required.

14.CONCLUSION

The SAR evaluation indicates that GDC-450H complies with the RF radiation exposure limits of the FCC. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

15. EQUIPMENT LIST AND CALIBRATION DETAILS

Equipment Type	Manufacturer	Model Number	Serial Number	Calibration Due	Used For this Test
Robot - Six Axes	Staubli	RX60	N/A	N/A	<input checked="" type="checkbox"/>
Robot Remote Control	SPEAG	CS7MB	F03/5U96A1 /C/01	N/A	<input checked="" type="checkbox"/>
SAM Twin Phantom	SPEAG	TP1276	QD000P40CA	N/A	<input checked="" type="checkbox"/>
Flat Phantom V4.4	SPEAG	QD000P44BA, BB	1001, higher	N/A	<input type="checkbox"/>
Data Acquisition Electronics	SPEAG	DAE4	559	2013.01.23	<input checked="" type="checkbox"/>
Probe E-Field	SPEAG	ES3DV2	3020	2013.01.26	<input checked="" type="checkbox"/>
Antenna Dipole 835 MHz	SPEAG	D835V2	481	2013.03.15	<input type="checkbox"/>
Antenna Dipole 900 MHz	SPEAG	D900V2	194	2013.11.18	<input type="checkbox"/>
Antenna Dipole 1800 MHz	SPEAG	D1800V2	2d066	2014.01.26	<input type="checkbox"/>
Antenna Dipole 1900 MHz	SPEAG	D1900V2	5d038	2013.04.19	<input checked="" type="checkbox"/>
Antenna Dipole 1950 MHz	SPEAG	D1950V2	1027	2014.01.24	<input type="checkbox"/>
Antenna Dipole 2450 MHz	SPEAG	D2450V2	746	2014.01.24	<input type="checkbox"/>
High power RF Amplifier	EMPOWER	2057-BBS3Q5KCK	1002D/C0321	2013.02.15	<input checked="" type="checkbox"/>
Digital Communication Tester	R&S	CMD60	84289/006	2013.02.16	<input checked="" type="checkbox"/>
Signal Generator	Agilent	8648C	3629U00868	2013.02.07	<input checked="" type="checkbox"/>
RF Power Meter Dual	Hewlett Packard	E4419A	GB37170495	2013.02.08	<input checked="" type="checkbox"/>
RF Power Sensor 0.01 - 18 GHz	Hewlett Packard	8481A	US37299851	2013.02.16	<input checked="" type="checkbox"/>
RF Power Sensor 0.01 - 18 GHz	Hewlett Packard	8481A	3318A92872	2013.02.16	<input checked="" type="checkbox"/>
S-Parameter Network Analyzer	Agilent	8753D	3410A07251	2013.03.13	<input checked="" type="checkbox"/>
Dual Directional Coupler	Hewlett Packard	778D	1144AO4576	2013.02.13	<input checked="" type="checkbox"/>
Directional Coupler	Agilent	773D	MY28390213	2013.02.13	<input checked="" type="checkbox"/>
Bluetooth Test Set	Anritsu	MT8852B	6K00006994	2013.01.28	<input type="checkbox"/>

APPENDIX A. SAR PLOTS

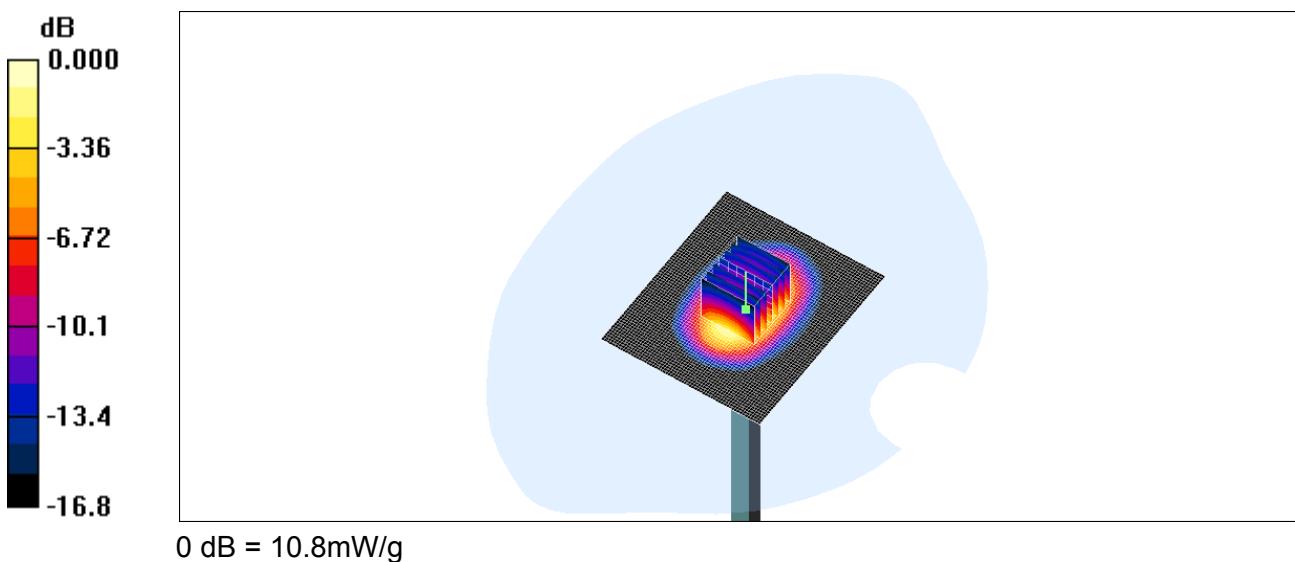
- **Test Laboratory: KTL**
- **D1900V2: HEAD 1900MHz Validation**
- **Test Date: November 1, 2012**
- **Measured Liquid Temperature: 21.0 °C, Ambient Temperature: 21.0 °C**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1
Medium: HSL1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³
Phantom section: Flat Section
Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 - SN3020; ConvF(5, 5, 5); Calibrated: 2012-01-26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn559; Calibrated: 2012-01-23
- Phantom: SAM Twin Phantom_1800MHz; Type: SAM; Serial: TP-1433
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 12.8 mW/g


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 93.1 V/m; Power Drift = -0.204 dB

Peak SAR (extrapolated) = 17.4 W/kg

SAR(1 g) = 9.50 mW/g; SAR(10 g) = 5.02 mW/g

Maximum value of SAR (measured) = 10.8 mW/g

- SAR Plot : #1
- Test Laboratory: KTL
- Model: GDC-480H
- Position: RIGHT CHEEK TOUCH
- Test Date: December 1, 2012
- Measured Liquid Temperature: 21.0 °C, Ambient Temperature: 21.0 °C

Communication System: UPCS1900; Frequency: 1924.99 MHz; Duty Cycle: 1:24

Medium: HSL1900 Medium parameters used: $f = 1924.99$ MHz; $\sigma = 1.38$ mho/m; $\epsilon_r = 39.2$; $\rho = 1000$ kg/m³

Phantom section: Right Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

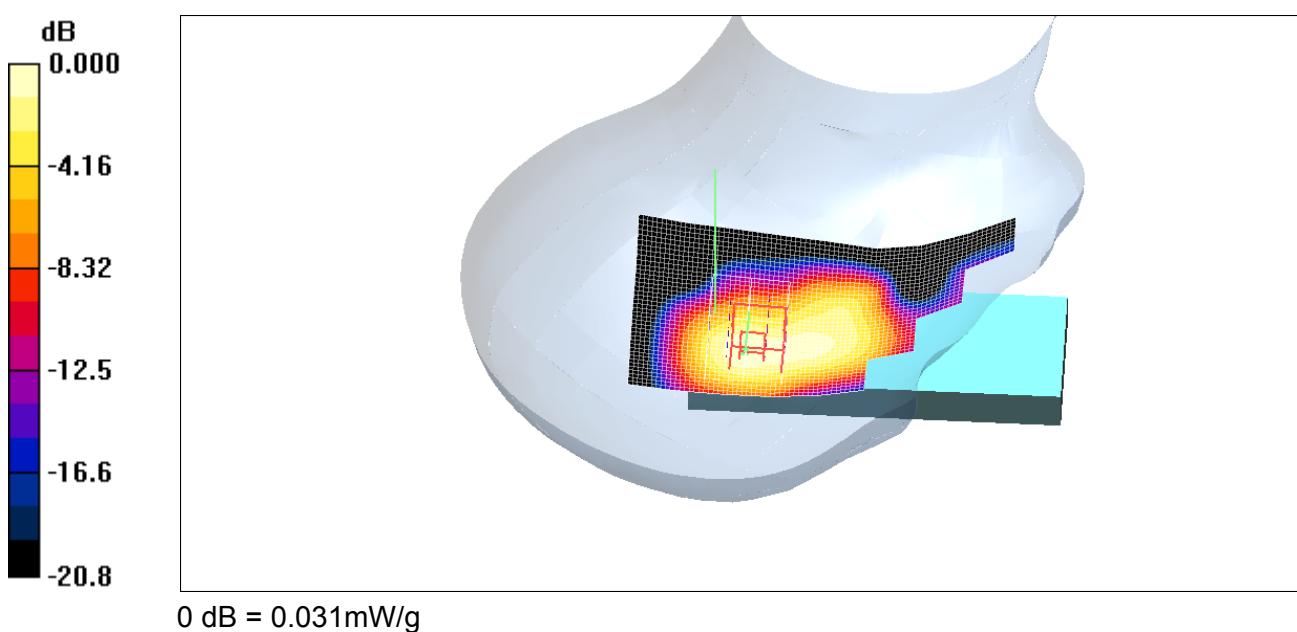
- Probe: ES3DV2 - SN3020; ConvF(5, 5, 5); Calibrated: 2012-01-26
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn559; Calibrated: 2012-01-23
- Phantom: SAM Twin Phantom_1800MHz; Type: SAM; Serial: TP-1433
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

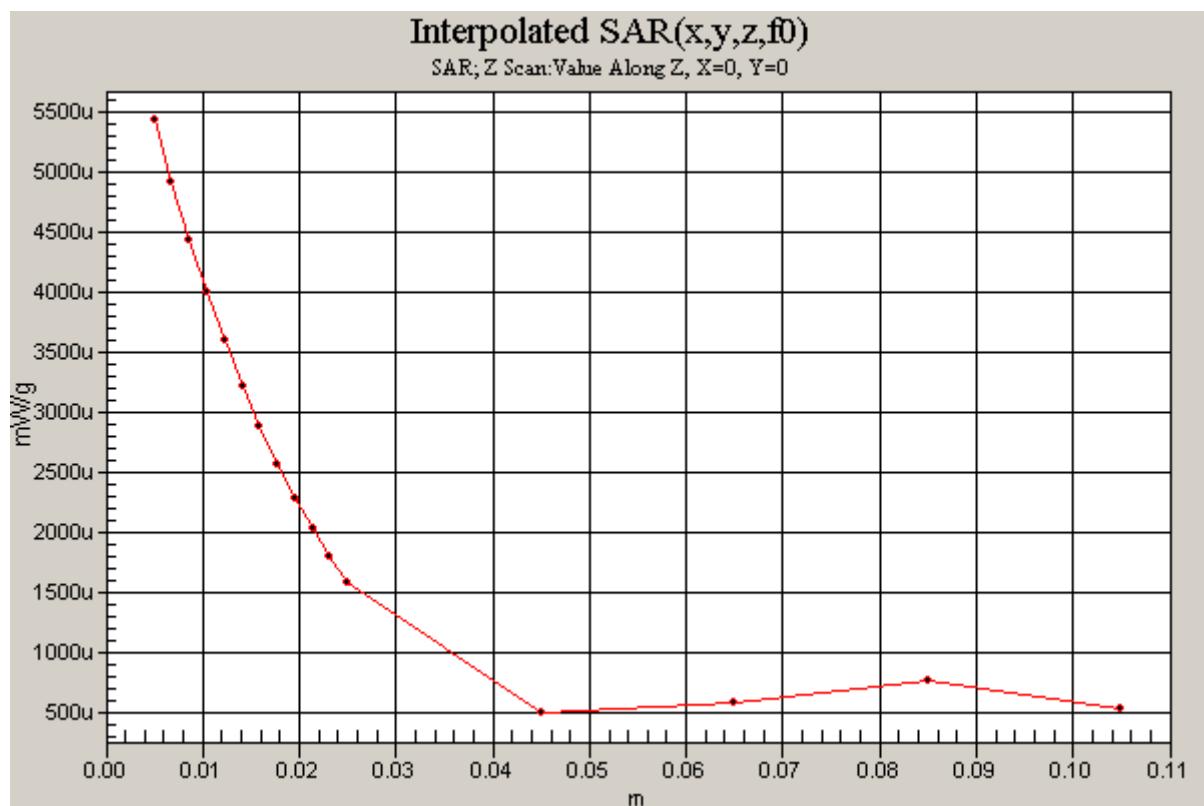
Area Scan (41x81x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.031 mW/g

Z Scan (1x1x16): Measurement grid: dx=20mm, dy=20mm, dz=20mm

Maximum value of SAR (interpolated) = 0.005 mW/g


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm


Reference Value = 2.70 V/m; Power Drift = -0.089 dB

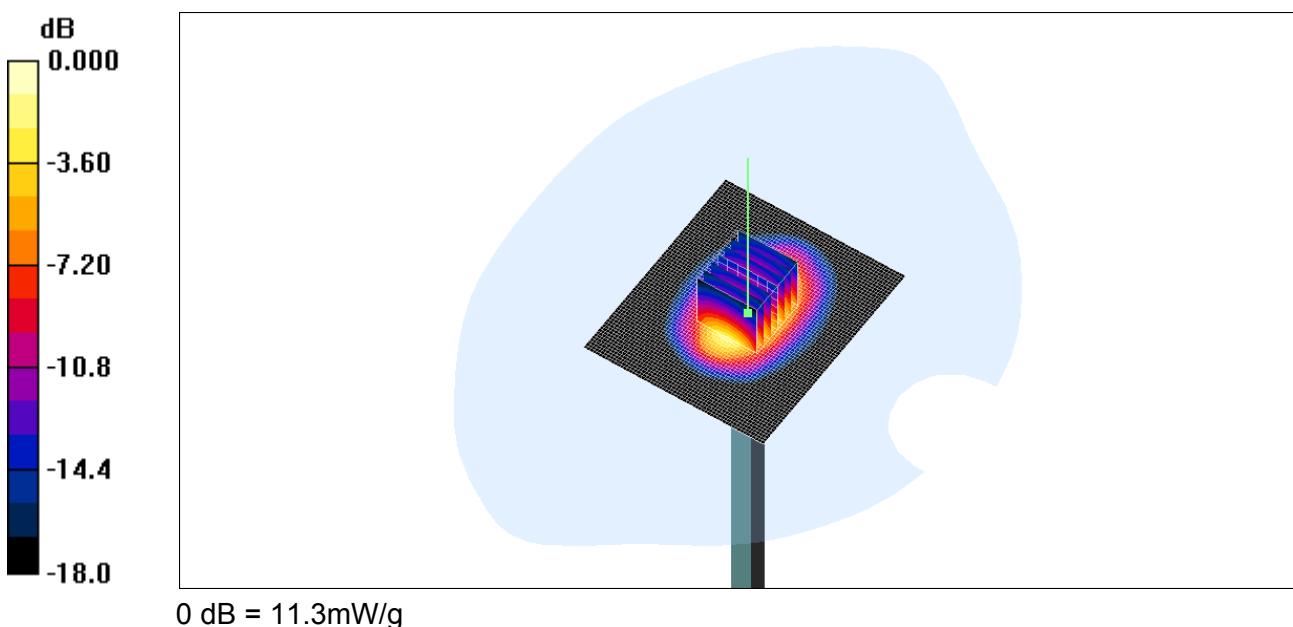
Peak SAR (extrapolated) = 0.051 W/kg

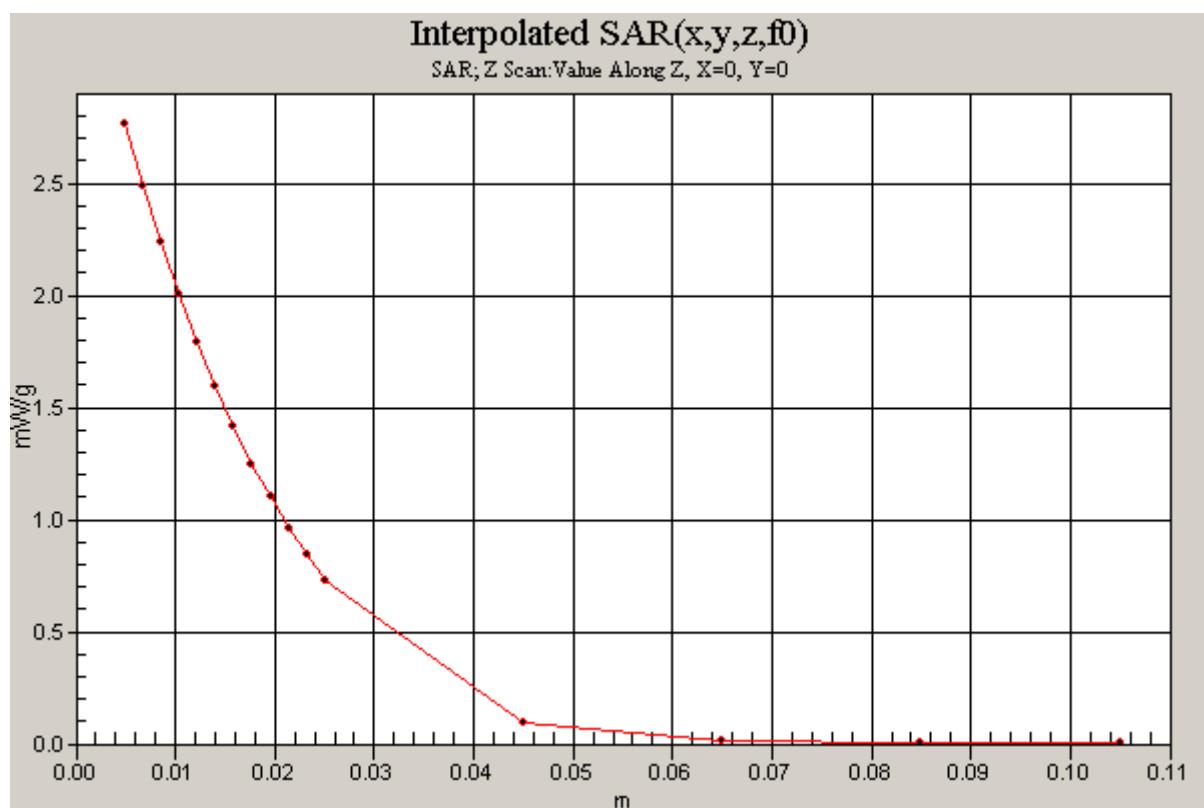
SAR(1 g) = 0.029 mW/g; SAR(10 g) = 0.016 mW/g

Maximum value of SAR (measured) = 0.031 mW/g

- **Test Laboratory: KTL**
- **D1900V2: BODY 1900MHz Validation**
- **Test Date: November 2, 2012**
- **Measured Liquid Temperature: 21.5 °C, Ambient Temperature: 21.0 °C**

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1
Medium: MSL1900 Medium parameters used: $f = 1900$ MHz; $\sigma = 1.54$ mho/m; $\epsilon_r = 52.1$; $\rho = 1000$ kg/m³
Phantom section: Flat Section
Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:


- Probe: ES3DV2 - SN3020; ConvF(4.44, 4.44, 4.44); Calibrated: 2012-01-26
- Sensor-Surface: 4mm (Mechanical Surface Detection) Sensor-Surface: 0mm (Fix Surface)
- Electronics: DAE4 Sn559; Calibrated: 2012-01-23
- Phantom: SAM Twin Phantom_1800MHz; Type: SAM; Serial: TP-1433
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (61x71x1): Measurement grid: dx=15mm, dy=15mm
Maximum value of SAR (interpolated) = 12.3 mW/g

Z Scan (1x1x16): Measurement grid: dx=20mm, dy=20mm, dz=20mm
Maximum value of SAR (interpolated) = 2.74 mW/g

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 87.3 V/m; Power Drift = -0.003 dB
Peak SAR (extrapolated) = 18.2 W/kg
SAR(1 g) = 10.0 mW/g; SAR(10 g) = 5.2 mW/g
Maximum value of SAR (measured) = 11.3 mW/g

- Test Laboratory: KTL

- Model: GDC-480H

- Position: BODY FRONT FACING PHANTOM

- Test Date: December 2, 2012

- Measured Liquid Temperature: 21.5 °C, Ambient Temperature: 21.0 °C

Communication System: UPCS1900; Frequency: 1924.99 MHz; Duty Cycle: 1:24

Medium: HSL1900 Medium parameters used: $f = 1924.99$ MHz; $\sigma = 1.56$ mho/m; $\epsilon_r = 52.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

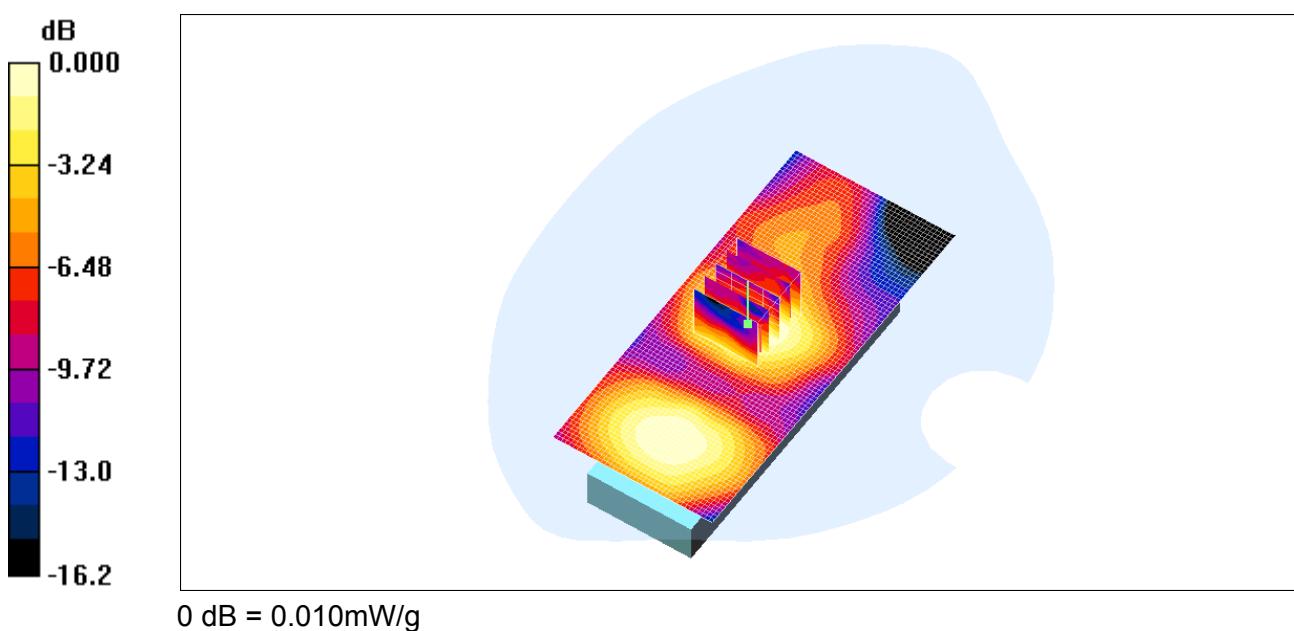
Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ES3DV2 - SN3020; ConvF(5, 5, 5); Calibrated: 2012-01-26
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn559; Calibrated: 2012-01-23
- Phantom: SAM Twin Phantom_1800MHz; Type: SAM; Serial: TP-1433
- Measurement SW: DASY4, V4.7 Build 71; Postprocessing SW: SEMCAD, V1.8 Build 184

Area Scan (41x91x1): Measurement grid: dx=20mm, dy=20mm

Maximum value of SAR (interpolated) = 0.010 mW/g


Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 2.15 V/m; Power Drift = 0.057 dB

Peak SAR (extrapolated) = 0.015 W/kg

SAR(1 g) = 0.00928 mW/g; SAR(10 g) = 0.00578 mW/g

Maximum value of SAR (measured) = 0.010 mW/g

Appendix B. CALIBRATION DATA SHEETS

**E-Field Probe 3020
Dipole Antenna D1900V2-5d038**

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **KTL (Dymstec)**

Certificate No: **ES3-3020_Jan12**

CALIBRATION CERTIFICATE

Object **ES3DV2 - SN:3020**

Calibration procedure(s) **QA CAL-01.v8, QA CAL-23.v4, QA CAL-25.v4**
 Calibration procedure for dosimetric E-field probes

Calibration date: **January 26, 2012**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	31-Mar-11 (No. 217-01372)	Apr-12
Power sensor E4412A	MY41498087	31-Mar-11 (No. 217-01372)	Apr-12
Reference 3 dB Attenuator	SN: S5054 (3c)	29-Mar-11 (No. 217-01369)	Apr-12
Reference 20 dB Attenuator	SN: S5086 (20b)	29-Mar-11 (No. 217-01367)	Apr-12
Reference 30 dB Attenuator	SN: S5129 (30b)	29-Mar-11 (No. 217-01370)	Apr-12
Reference Probe ES3DV2	SN: 3013	29-Dec-11 (No. ES3-3013_Dec11)	Dec-12
DAE4	SN: 654	3-May-11 (No. DAE4-654_May11)	May-12
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8648C	US3642U01700	4-Aug-99 (in house check Apr-11)	In house check: Apr-13
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-11)	In house check: Oct-12

Calibrated by:	Name	Function	Signature
	Jeton Kastrati	Laboratory Technician	
Approved by:	Katja Pokovic	Technical Manager	

Issued: January 26, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization ϑ	ϑ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}**: Assessed for E-field polarization $\vartheta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below *ConvF*).
- NORM(f)x,y,z = NORM_{x,y,z} * frequency_response** (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of *ConvF*.
- DCPx,y,z**: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR**: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; VR_{x,y,z}**: A, B, C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters**: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to $NORM_{x,y,z} * ConvF$ whereby the uncertainty corresponds to that given for *ConvF*. A frequency dependent *ConvF* is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy)**: in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset**: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Probe ES3DV2

SN:3020

Manufactured: December 5, 2002
Calibrated: January 26, 2012

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3020

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm $(\mu\text{V}/(\text{V}/\text{m}))^2$ ^A	1.10	0.98	1.03	$\pm 10.1\%$
DCP (mV) ^B	105.2	106.2	100.9	

Modulation Calibration Parameters

UID	Communication System Name	PAR		A dB	B dB	C dB	VR mV	Unc ^E (k=2)
10000	CW	0.00	X	0.00	0.00	1.00	102.1	$\pm 1.9\%$
			Y	0.00	0.00	1.00	98.3	
			Z	0.00	0.00	1.00	95.5	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3020

Calibration Parameter Determined in Head Tissue Simulating Media

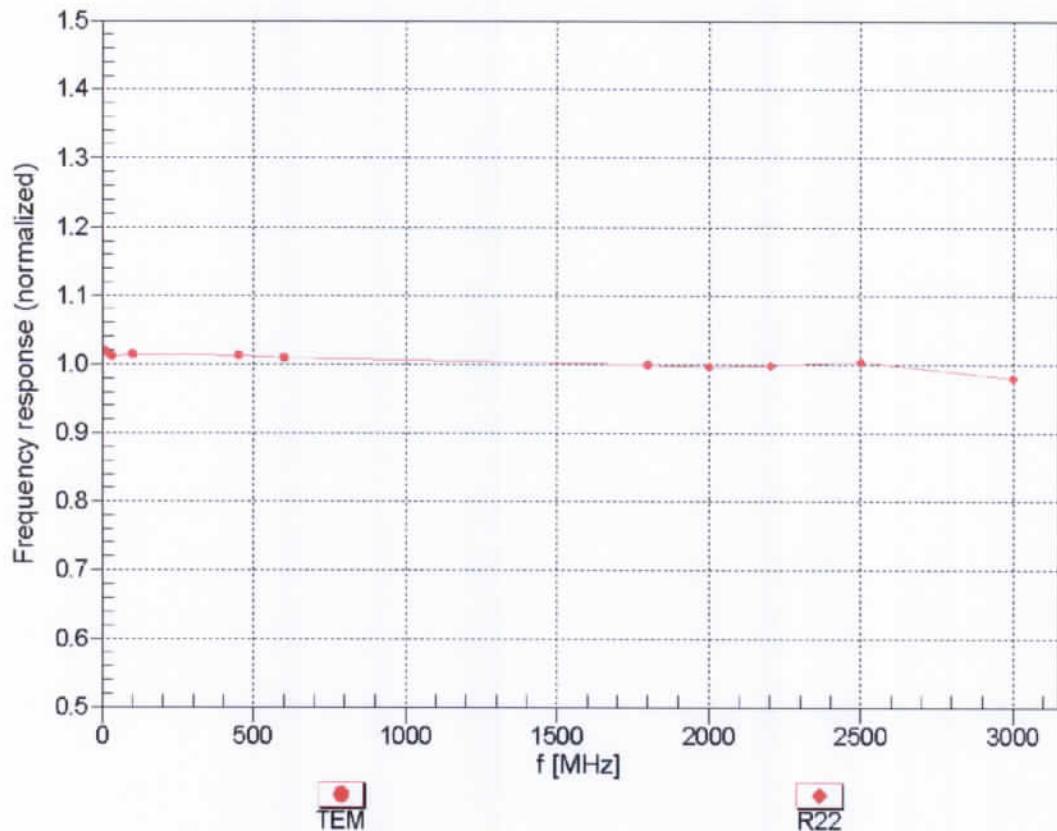
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	41.5	0.90	6.21	6.21	6.21	0.30	1.56	± 12.0 %
1750	40.1	1.37	5.20	5.20	5.20	0.47	1.33	± 12.0 %
1900	40.0	1.40	5.00	5.00	5.00	0.46	1.35	± 12.0 %
2450	39.2	1.80	4.22	4.22	4.22	0.54	1.41	± 12.0 %

^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3020

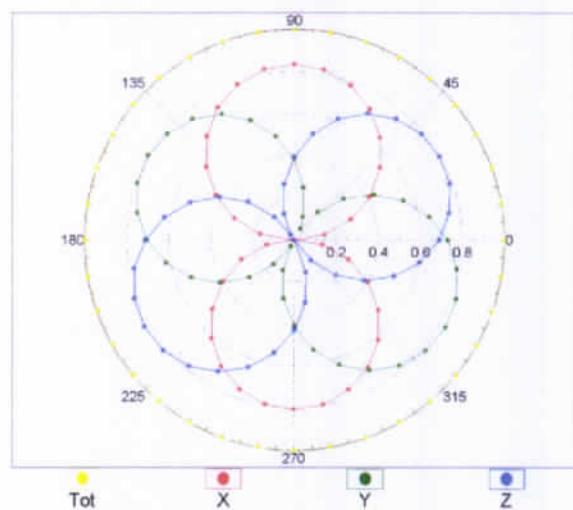
Calibration Parameter Determined in Body Tissue Simulating Media

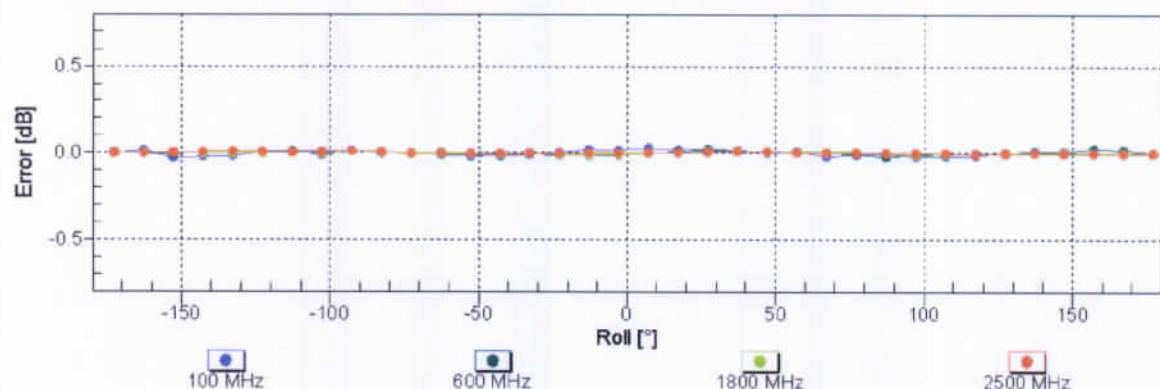
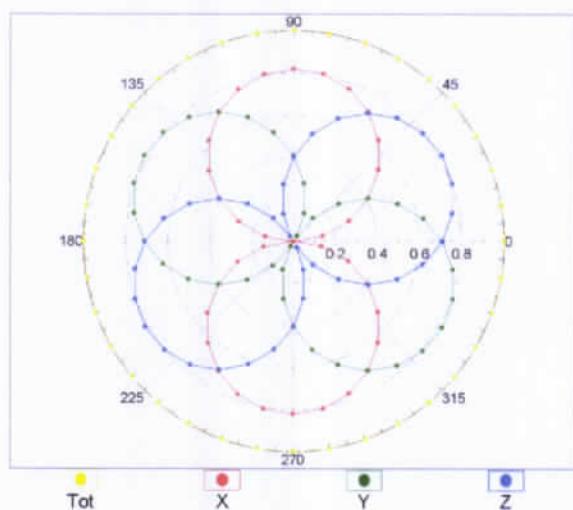

f (MHz) ^c	Relative Permittivity ^f	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
835	55.2	0.97	6.18	6.18	6.18	0.35	1.50	± 12.0 %
1750	53.4	1.49	5.21	5.21	5.21	0.43	1.81	± 12.0 %
1900	53.3	1.52	4.44	4.44	4.44	0.43	1.77	± 12.0 %
2450	52.7	1.95	3.95	3.95	3.95	0.74	1.16	± 12.0 %

^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

^f At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

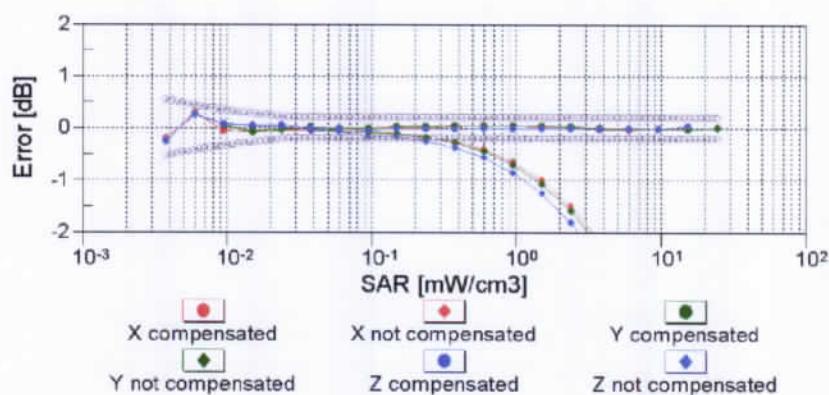
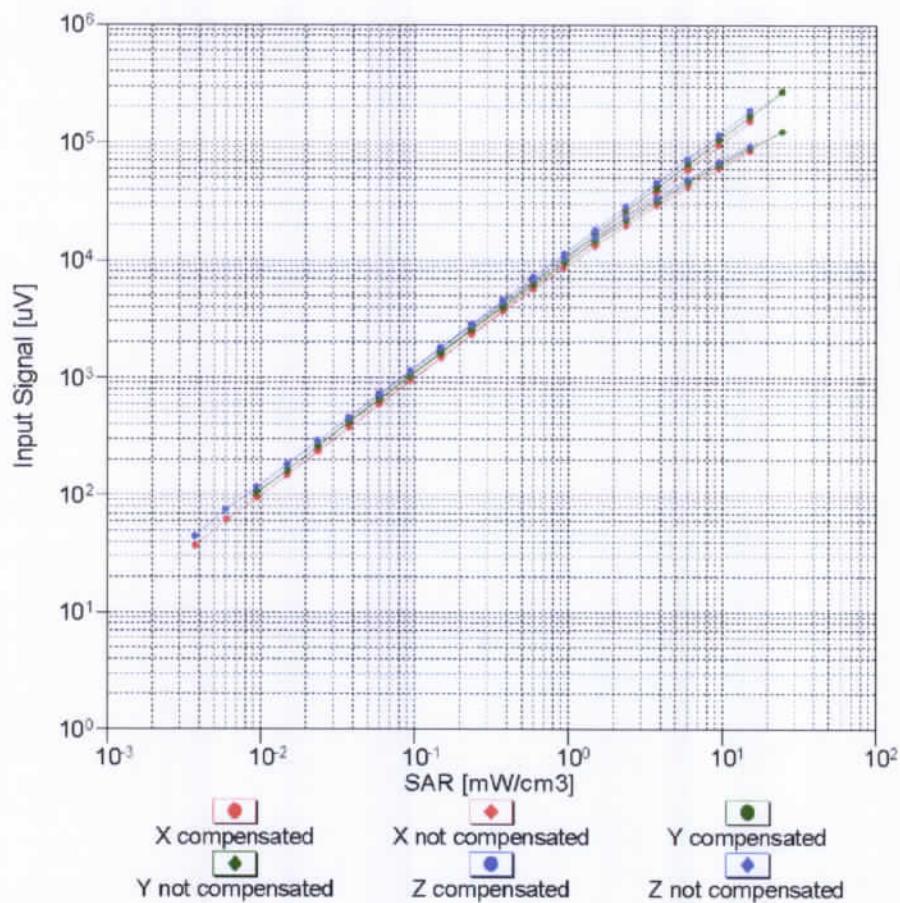
Frequency Response of E-Field


(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

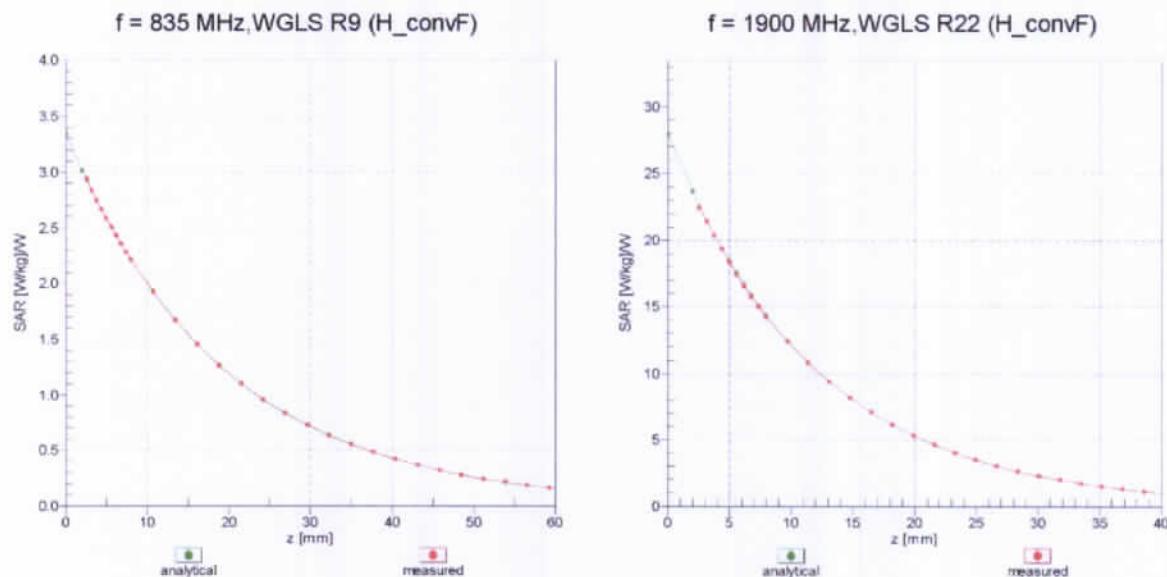
Receiving Pattern (ϕ), $\theta = 0^\circ$

f=600 MHz, TEM

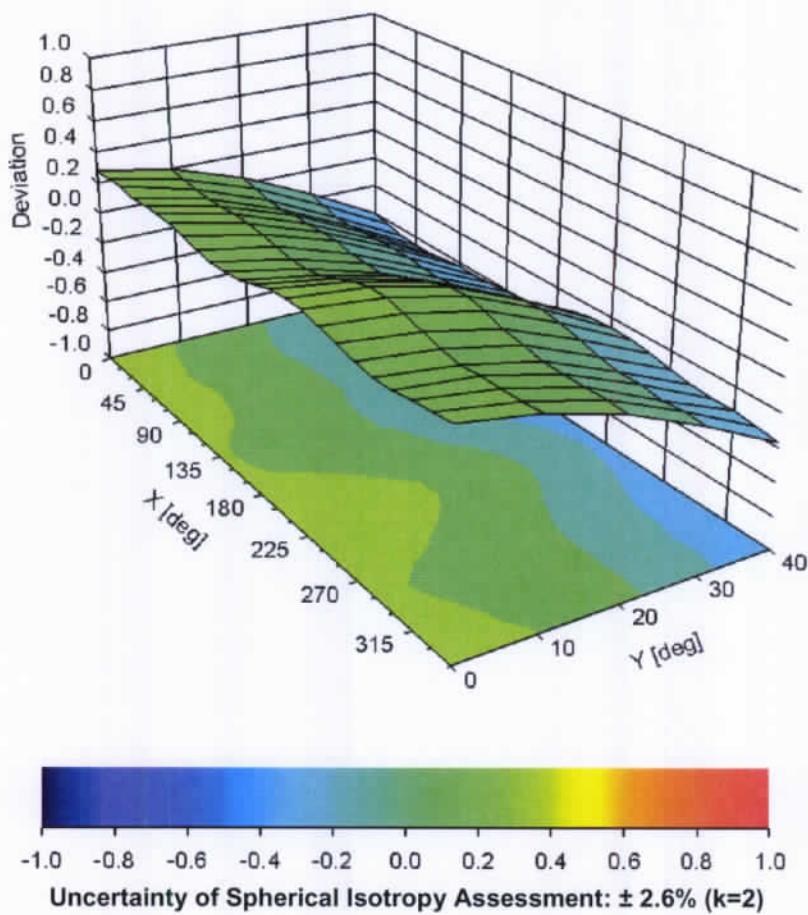



f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: $\pm 0.5\%$ ($k=2$)


Dynamic Range f(SAR_{head})

(TEM cell , f = 900 MHz)


Uncertainty of Linearity Assessment: $\pm 0.6\%$ (k=2)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

DASY/EASY - Parameters of Probe: ES3DV2 - SN:3020

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	Not applicable
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	10 mm
Tip Diameter	4 mm
Probe Tip to Sensor X Calibration Point	2 mm
Probe Tip to Sensor Y Calibration Point	2 mm
Probe Tip to Sensor Z Calibration Point	2 mm
Recommended Measurement Distance from Surface	3 mm

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **KTL (Dymstec)**

Certificate No: **D1900V2-5d038_Nov10**

CALIBRATION CERTIFICATE

Object **D1900V2 - SN: 5d038**

Calibration procedure(s) **QA CAL-05.v7**
 Calibration procedure for dipole validation kits

Calibration date: **November 25, 2010**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	30-Mar-10 (No. 217-01158)	Mar-11
Type-N mismatch combination	SN: 5047.2 / 06327	30-Mar-10 (No. 217-01162)	Mar-11
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11
Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: Name **Jeton Kastrati** Function **Laboratory Technician**

Approved by: Name **Katja Pokovic** Function **Technical Manager**

Issued: November 26, 2010

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.0	1.40 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.3 ± 6 %	1.40 mho/m ± 6 %
Head TSL temperature during test	(21.5 ± 0.2) °C	----	----

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	10.2 mW / g
SAR normalized	normalized to 1W	40.8 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	40.7 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	Condition	
SAR measured	250 mW input power	5.27 mW / g
SAR normalized	normalized to 1W	21.1 mW / g
SAR for nominal Head TSL parameters	normalized to 1W	21.0 mW / g ± 16.5 % (k=2)

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	52.9 Ω + 6.2 $j\Omega$
Return Loss	- 23.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.199 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 04, 2003

DASY5 Validation Report for Head TSL

Date/Time: 25.11.2010 12:50:06

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d038

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL U12 BB

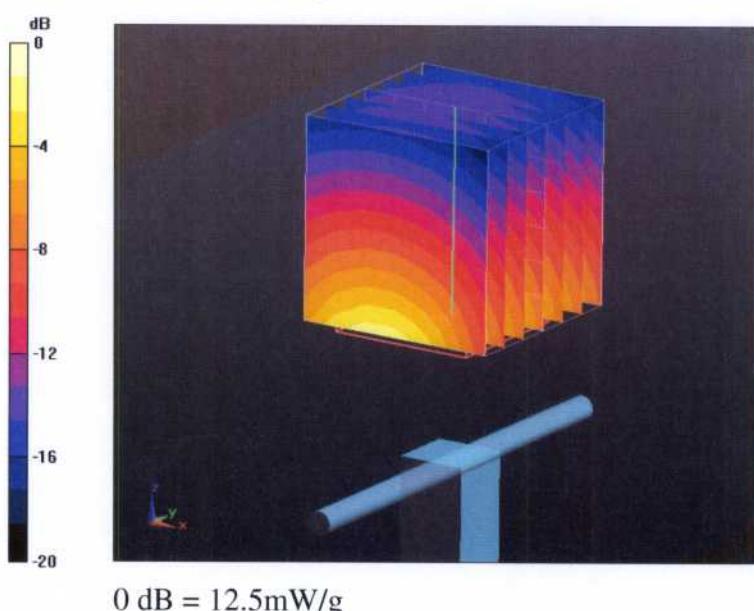
Medium parameters used: $f = 1900$ MHz; $\sigma = 1.4$ mho/m; $\epsilon_r = 39.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

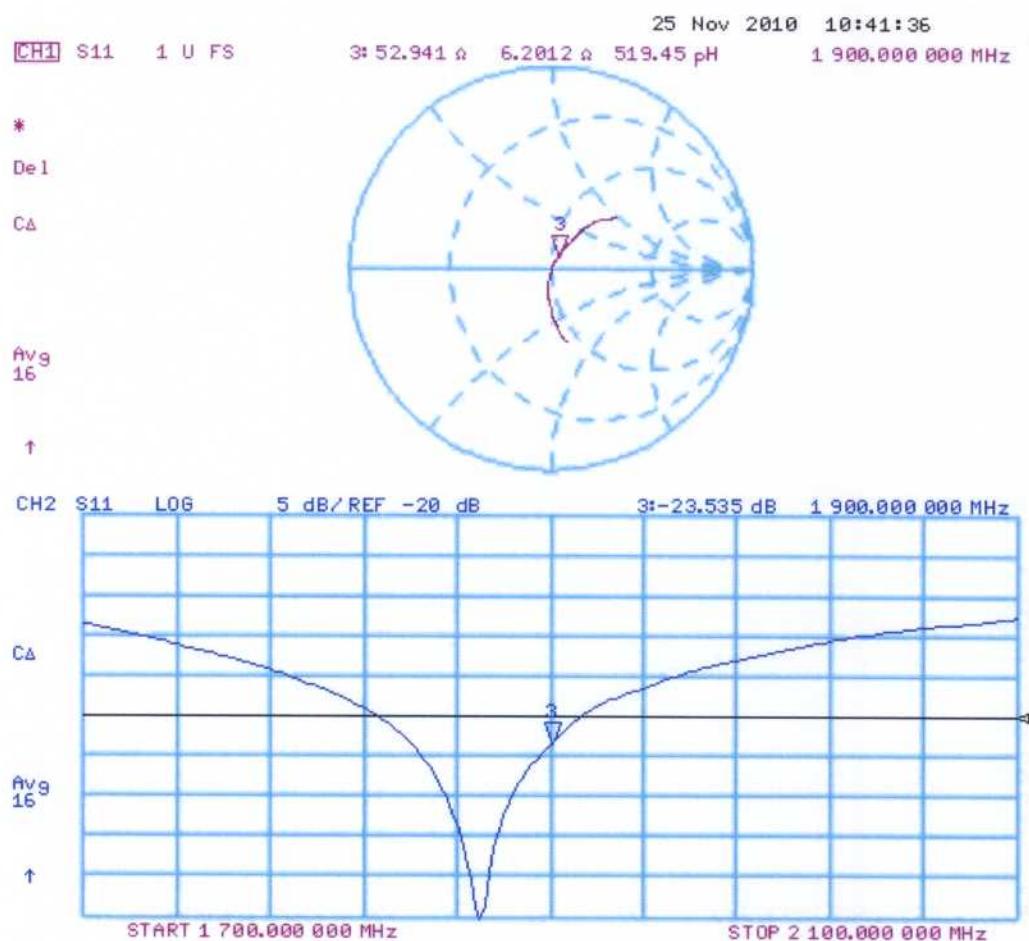
Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(5.09, 5.09, 5.09); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001
- Measurement SW: DASY52, V52.2 Build 0, Version 52.2.0 (163)
- Postprocessing SW: SEMCAD X, V14.2 Build 2, Version 14.2.2 (1685)


Pin=250 mW /d=10mm, dist=3.0mm (ES-Probe)/Zoom Scan (7x7x7) /Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 97.6 V/m; Power Drift = 0.052 dB


Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 10.2 mW/g; SAR(10 g) = 5.27 mW/g

Maximum value of SAR (measured) = 12.5 mW/g

Impedance Measurement Plot for Head TSL

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Client **KTL (Dymstec)**

Certificate No: **D1900V2-5d038_Apr11**

CALIBRATION CERTIFICATE

Object **D1900V2 - SN: 5d038**

Calibration procedure(s) **QA CAL-05.v8**
 Calibration procedure for dipole validation kits

Calibration date: **April 19, 2011**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
 The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	06-Oct-10 (No. 217-01266)	Oct-11
Power sensor HP 8481A	US37292783	06-Oct-10 (No. 217-01266)	Oct-11
Reference 20 dB Attenuator	SN: 5086 (20g)	29-Mar-11 (No. 217-01368)	Apr-12
Type-N mismatch combination	SN: 5047.2 / 06327	29-Mar-11 (No. 217-01371)	Apr-12
Reference Probe ES3DV3	SN: 3205	30-Apr-10 (No. ES3-3205_Apr10)	Apr-11
DAE4	SN: 601	10-Jun-10 (No. DAE4-601_Jun10)	Jun-11

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-09)	In house check: Oct-11
RF generator R&S SMT-06	100005	4-Aug-99 (in house check Oct-09)	In house check: Oct-11
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-10)	In house check: Oct-11

Calibrated by: Name **Claudio Leubler** Function **Laboratory Technician**

Signature

Approved by: Name **Katja Pokovic** Function **Technical Manager**

Signature

Issued: April 19, 2011

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

- d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- *Antenna Parameters with TSL:* The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- *Feed Point Impedance and Return Loss:* These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- *Electrical Delay:* One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- *SAR measured:* SAR measured at the stated antenna input power.
- *SAR normalized:* SAR as measured, normalized to an input power of 1 W at the antenna connector.
- *SAR for nominal TSL parameters:* The measured TSL parameters are used to calculate the nominal SAR result.

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	1900 MHz \pm 1 MHz	

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.3	1.52 mho/m
Measured Body TSL parameters	(22.0 \pm 0.2) °C	51.1 \pm 6 %	1.52 mho/m \pm 6 %
Body TSL temperature during test	(21.8 \pm 0.2) °C	----	----

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	10.1 mW / g
SAR normalized	normalized to 1W	40.4 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	40.0 mW / g \pm 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	5.29 mW / g
SAR normalized	normalized to 1W	21.2 mW / g
SAR for nominal Body TSL parameters	normalized to 1W	21.0 mW / g \pm 16.5 % (k=2)

Appendix

Antenna Parameters with Body TSL

Impedance, transformed to feed point	48.3 Ω + 7.5 $j\Omega$
Return Loss	- 22.2 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.197 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	July 03, 2003

DASY5 Validation Report for Body TSL

Date/Time: 19.04.2011 13:16:13

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d038

Communication System: CW; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: MSL U12 BB

Medium parameters used: $f = 1900$ MHz; $\sigma = 1.52$ mho/m; $\epsilon_r = 51.1$; $\rho = 1000$ kg/m³

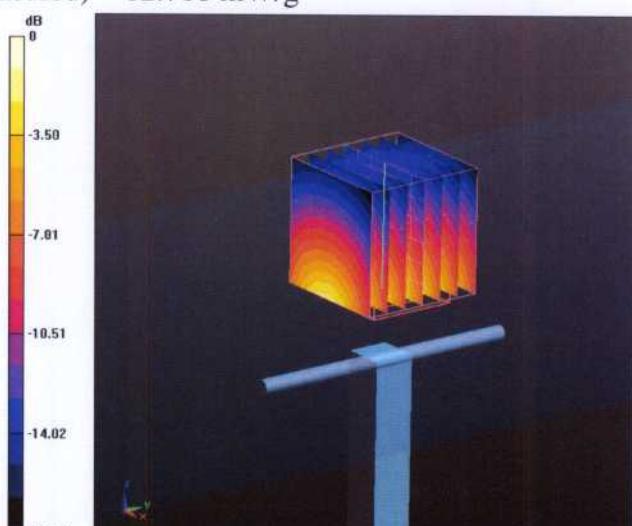
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

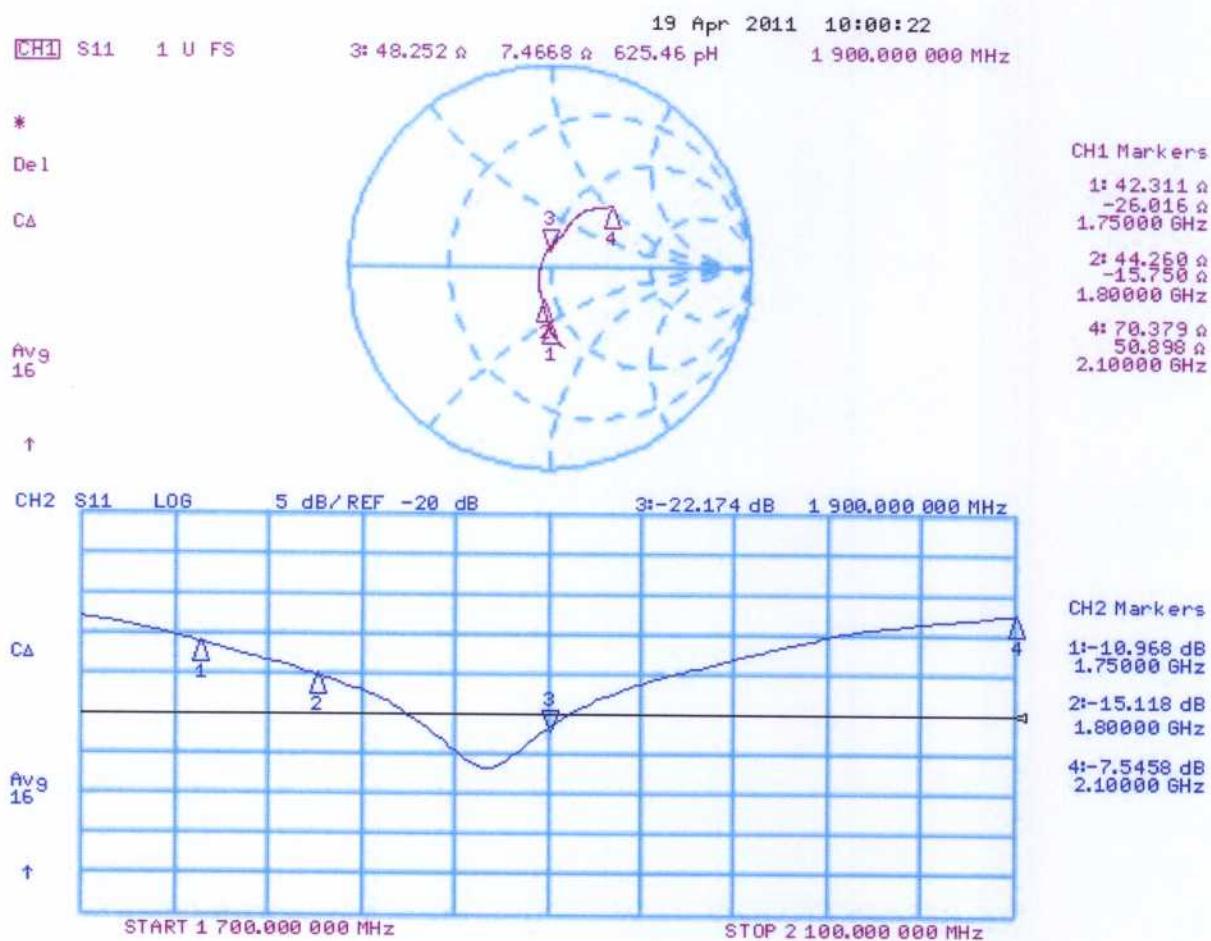
- Probe: ES3DV3 - SN3205; ConvF(4.59, 4.59, 4.59); Calibrated: 30.04.2010
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 10.06.2010
- Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002
- Measurement SW: DASY52, V52.6.2 Build (424)
- Postprocessing SW: SEMCAD X, V14.4.2 Build (2829)

Pin=250 mW, Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 96.371 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 17.425 W/kg

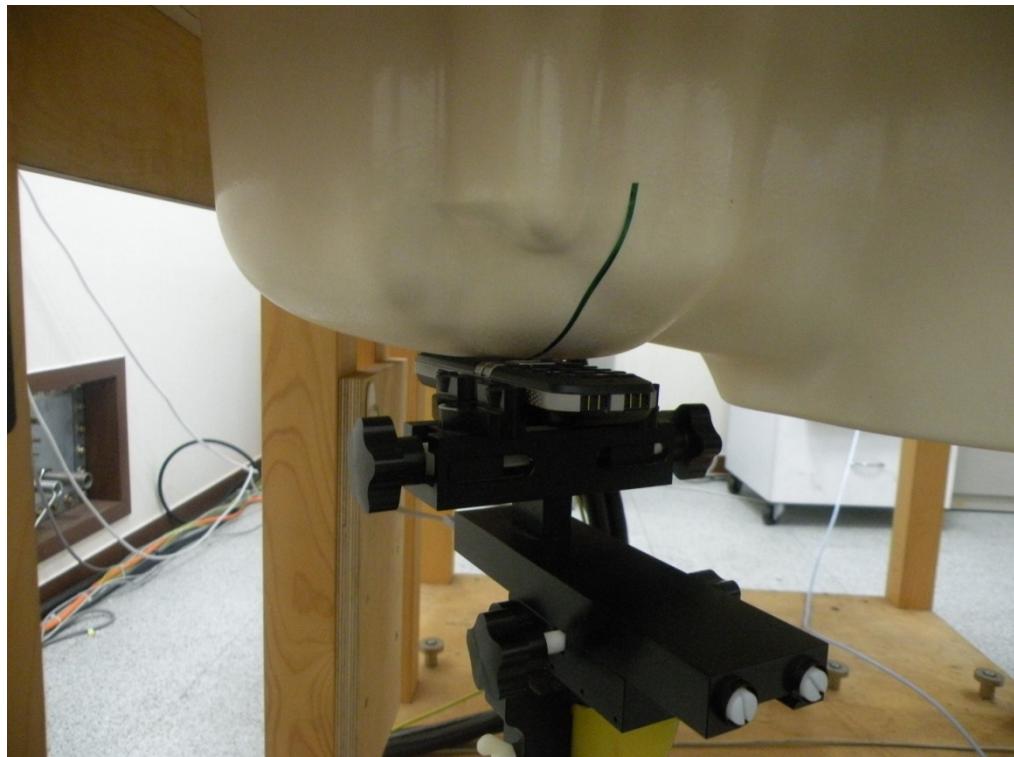

SAR(1 g) = 10.1 mW/g; SAR(10 g) = 5.29 mW/g

Maximum value of SAR (measured) = 12.716 mW/g

0 dB = 12.720mW/g

Impedance Measurement Plot for Body TSL

Appendix C. SAR MEASUREMENT SETUP PHOTOS


Head SAR Configurations

< Left Cheek Touch >

< Left Ear Tilt >

< Right Cheek Touch >

< Right Ear Tilt >.

Body SAR Configurations

< Front facing Phantom >

< Rear facing Phantom >