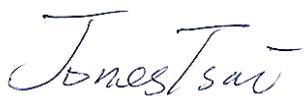


FCC RF Test Report


APPLICANT : Catha Maeve L.L.C.
EQUIPMENT : Bluetooth Remote
MODEL NAME : CV98LM
FCC ID : 2ABDV-0929
STANDARD : FCC Part 15 Subpart C §15.247
CLASSIFICATION : (DSS) Spread Spectrum Transmitter

The testing completed on Jul. 05, 2014. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC.
No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C.

Report No. : FR462109

Report Version : Rev. 01

Page Number : 1 of 43

Report Template No.: BU5-FR15CBT Version 1.0

TABLE OF CONTENTS

REVISION HISTORY.....	3
SUMMARY OF TEST RESULT	4
1 GENERAL DESCRIPTION.....	5
1.1 Applicant	5
1.2 Product Feature of Equipment Under Test.....	5
1.3 Product Specification subjective to this standard	5
1.4 Modification of EUT	5
1.5 Testing Location	6
1.6 Applicable Standards.....	6
2 TEST CONFIGURATION OF EQUIPMENT UNDER TEST.....	7
2.1 Descriptions of Test Mode	7
2.2 Test Mode.....	8
2.3 Connection Diagram of Test System	8
2.4 Support Unit used in test configuration and system	9
2.5 EUT Operation Test Setup	9
2.6 Measurement Results Explanation Example.....	9
3 TEST RESULT	10
3.1 Number of Channel Measurement	10
3.2 Hopping Channel Separation Measurement	12
3.3 Dwell Time Measurement.....	15
3.4 20dB Bandwidth Measurement	18
3.5 Peak Output Power Measurement	21
3.6 Conducted Band Edges Measurement.....	23
3.7 Conducted Spurious Emission Measurement	26
3.8 Radiated Band Edges and Spurious Emission Measurement	30
3.9 Antenna Requirements	41
4 LIST OF MEASURING EQUIPMENT.....	42
5 UNCERTAINTY OF EVALUATION.....	43

REVISION HISTORY

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(1)	Number of Channels	≥ 15Chs	Pass	-
3.2	15.247(a)(1)	Hopping Channel Separation	≥ 2/3 of 20dB BW	Pass	-
3.3	15.247(a)(1)	Dwell Time of Each Channel	≤ 0.4sec in 31.6sec period	Pass	-
3.4	15.247(a)(1)	20dB Bandwidth	NA	Pass	-
3.5	15.247(b)(1)	Peak Output Power	≤ 125 mW	Pass	-
3.6	15.247(d)	Conducted Band Edges	≤ 20dBc	Pass	-
3.7	15.247(d)	Conducted Spurious Emission	≤ 20dBc	Pass	-
3.8	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	15.209(a) & 15.247(d)	Pass	Under limit 12.89 dB at 4803.000 MHz
-	15.207	AC Conducted Emission	15.207(a)	N/A	EUT is powered on by battery only without any AC power port.
3.9	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

1 General Description

1.1 Applicant

Catha Maeve L.L.C.
9465 Counselors Row
Suite 200
Indianapolis, Indiana, 46240

1.2 Product Feature of Equipment Under Test

Product Feature	
Equipment	Bluetooth Remote
Model Name	CV98LM
FCC ID	2ABDV-0929
EUT supports Radios application	Bluetooth v3.0

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.3 Product Specification subjective to this standard

Product Specification subjective to this standard	
Tx/Rx Frequency Range	2402 MHz ~ 2480 MHz
Number of Channels	79
Carrier Frequency of Each Channel	2402+n*1 MHz; n=0~78
Maximum Output Power to Antenna	3.67 dBm (0.0023 W)
Antenna Type	Fixed Internal Antenna with gain 2.73 dBi
Type of Modulation	GFSK

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.	
Test Site Location	No. 52, Hwa Ya 1 st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. TEL: +886-3-327-3456 FAX: +886-3-328-4978	
Test Site No.	Sporton Site No.	
	TH02-HY	03CH06-HY

1.6 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- ♦ FCC Part 15 Subpart C §15.247
- ♦ FCC Public Notice DA 00-705
- ♦ ANSI C63.4-2003

Remark:

1. All test items were verified and recorded according to the standards and without any deviation during the test.
2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

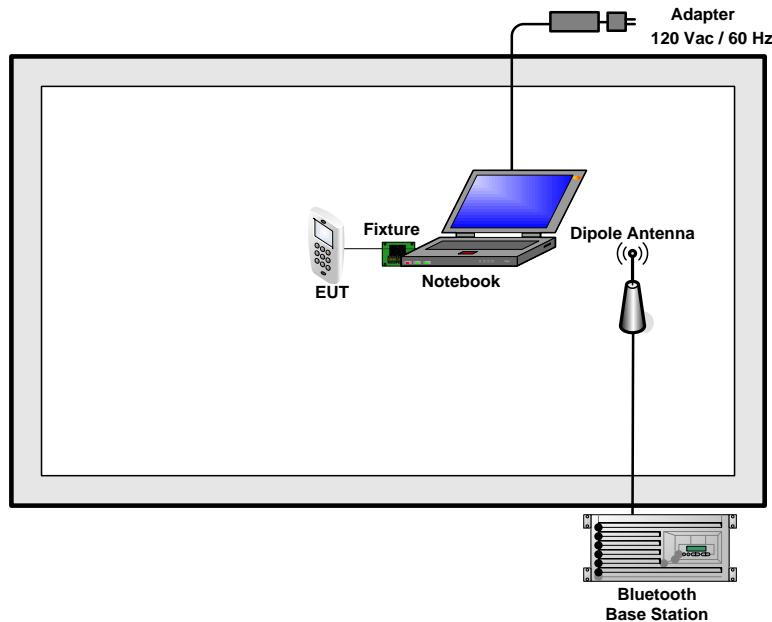
2.1 Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

Channel	Frequency	Bluetooth RF Output Power		
		Data Rate / Modulation		
		GFSK / 1Mbps		
		DH1	DH3	DH5
Ch00	2402MHz	3.10 dBm	3.13 dBm	3.15 dBm
Ch39	2441MHz	3.19 dBm	3.23 dBm	3.29 dBm
Ch78	2480MHz	3.60 dBm	3.65 dBm	3.67 dBm

Remark:

1. All the test data for each data rate were verified, but only the worst case was reported.
2. The data rate was set in 1Mbps for all the test items due to the highest RF output power.


a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower).

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Summary table of Test Cases	
Test Item	Data Rate / Modulation
	Bluetooth BR 1Mbps GFSK
Conducted Test Cases	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz
Radiated Test Cases	Bluetooth BR 1Mbps GFSK
	Mode 1: CH00_2402 MHz Mode 2: CH39_2441 MHz Mode 3: CH78_2480 MHz

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Bluetooth Base Station	R&S	CBT32	N/A	N/A	Unshielded, 1.8 m
2.	Fixture	NA	N/A	N/A	N/A	N/A
3.	Notebook	DELL	P20G	FCC DoC/ Contains FCC ID:QDS-BRCM1051	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

For Bluetooth function, the RF utility, "LYRA_RF_control" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to contact with Bluetooth base station for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

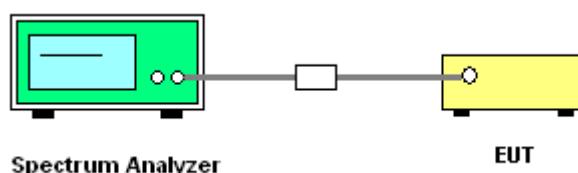
$$\begin{aligned} \text{Offset(dB)} &= \text{RF cable loss(dB)} + \text{attenuator factor(dB)} \\ &= 4.2 + 10 = 14.2 \text{ (dB)} \end{aligned}$$

3 Test Result

3.1 Number of Channel Measurement

3.1.1 Limits of Number of Hopping Frequency

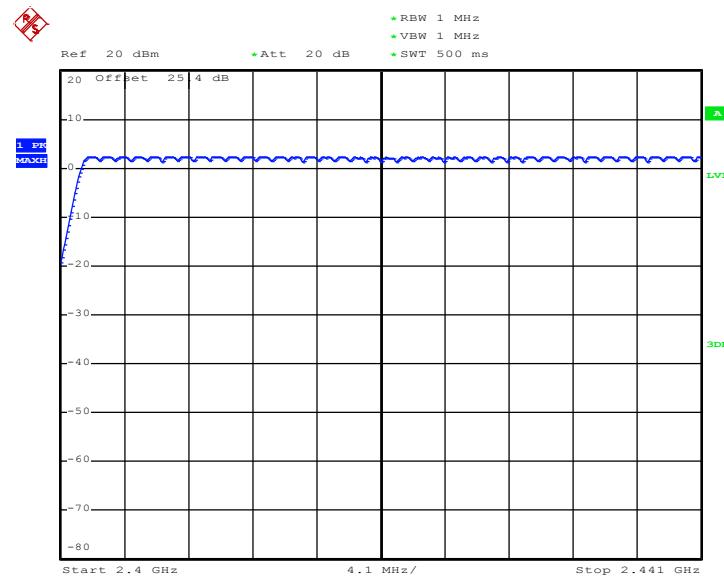
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

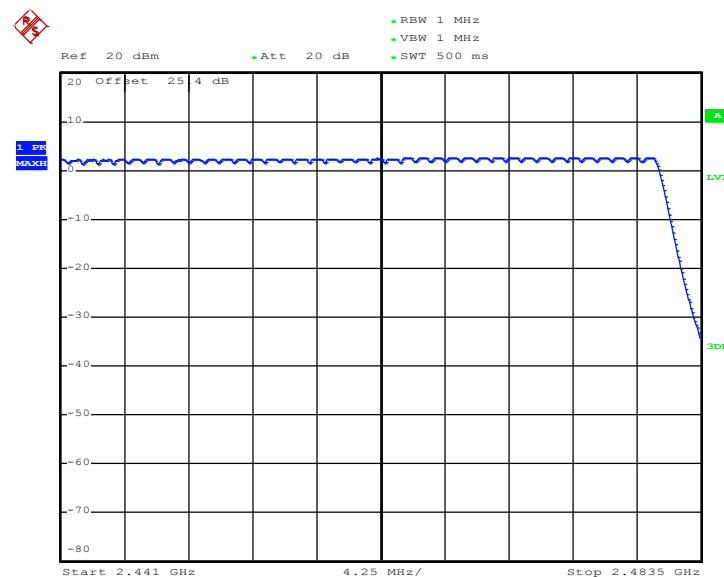

3.1.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedure

1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Enable the EUT hopping function.
5. Use the following spectrum analyzer settings: Span = the frequency band of operation; RBW \geq 1% of the span; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold.
6. The number of hopping frequency used is defined as the number of total channel.
7. Record the measurement data derived from spectrum analyzer.


3.1.4 Test Setup


3.1.5 Test Result of Number of Hopping Frequency

Test Mode :	1Mbps	Temperature :	24~26°C
Test Engineer :	Stuart Lin	Relative Humidity :	48~51%
Number of Hopping (Channel)	Adaptive Frequency Hopping (Channel)	Limits (Channel)	Pass/Fail
79	20	> 15	Pass

Number of Hopping Channel Plot on Channel 00 - 78

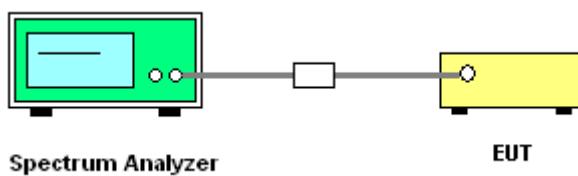
Date: 3.JUL.2014 15:08:36

Date: 3.JUL.2014 15:12:41

3.2 Hopping Channel Separation Measurement

3.2.1 Limit of Hopping Channel Separation

Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.

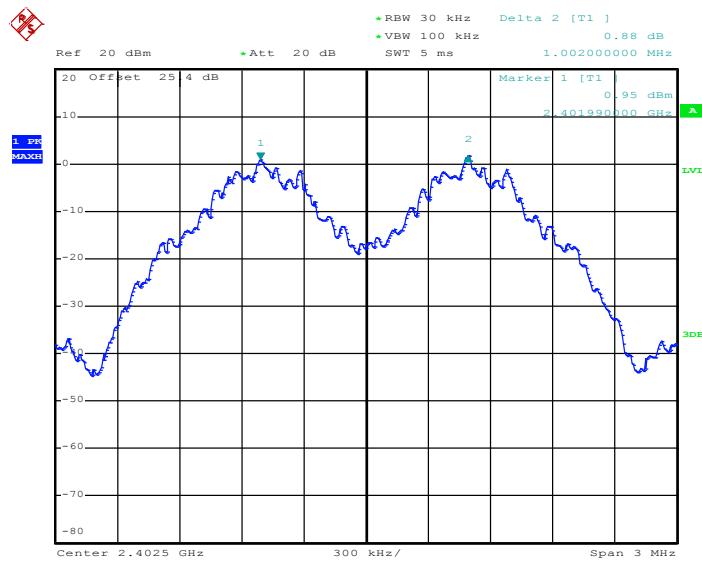

3.2.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.2.3 Test Procedures

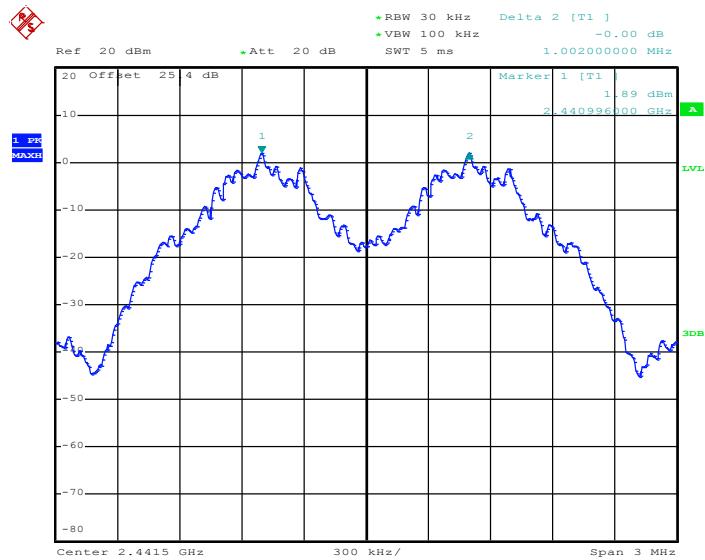
1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Enable the EUT hopping function.
5. Use the following spectrum analyzer settings:
Span = wide enough to capture the peaks of two adjacent channels; RBW \geq 1% of the span;
VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold.
6. Measure and record the results in the test report.

3.2.4 Test Setup

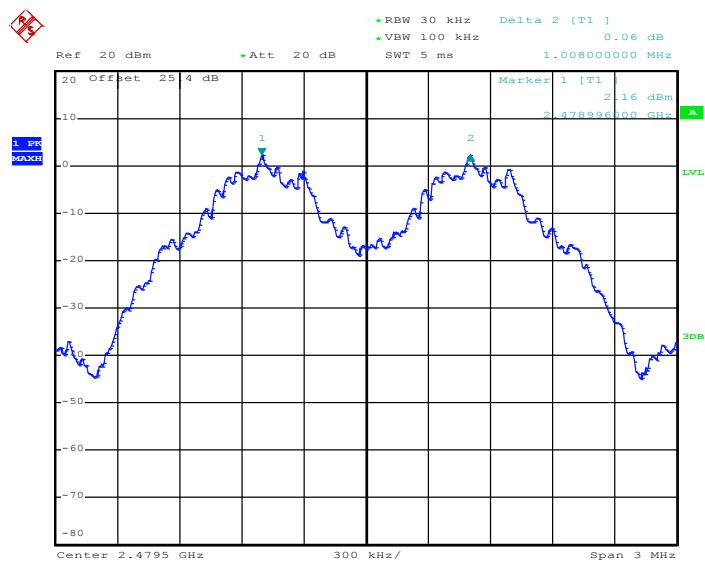


3.2.5 Test Result of Hopping Channel Separation

Test Mode :	1Mbps	Temperature :	24~26°C
Test Engineer :	Stuart Lin	Relative Humidity :	48~51%


Channel	Frequency (MHz)	Frequency Separation (MHz)	(2/3 of 20dB BW) Limits (MHz)	Pass/Fail
00	2402	1.002	0.6293	Pass
39	2441	1.002	0.6267	Pass
78	2480	1.008	0.6027	Pass

Channel Separation Plot on Channel 00 - 01


Date: 3.JUL.2014 15:13:34

Channel Separation Plot on Channel 39 - 40

Date: 3.JUL.2014 15:16:29

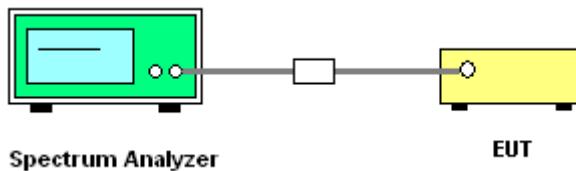
Channel Separation Plot on Channel 77 - 78

Date: 3.JUL.2014 15:21:30

3.3 Dwell Time Measurement

3.3.1 Limit of Dwell Time

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

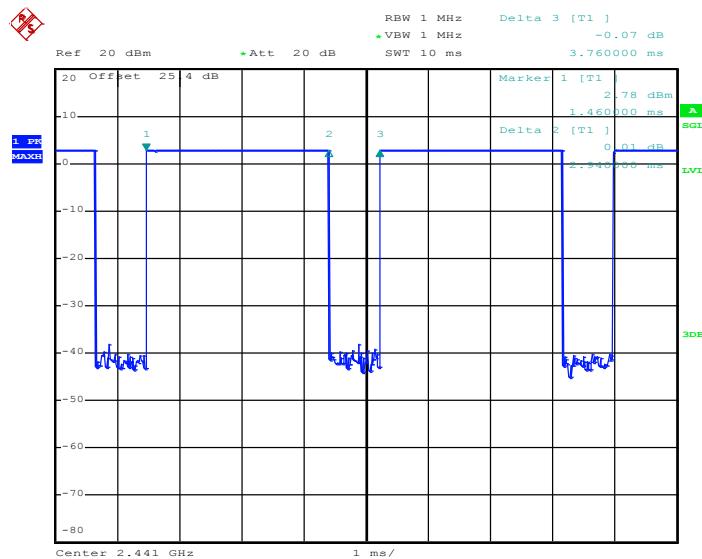

3.3.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.3.3 Test Procedures

1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.
The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Enable the EUT hopping function.
5. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW = 1 MHz; VBW \geq RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold.
6. Measure and record the results in the test report.

3.3.4 Test Setup


3.3.5 Test Result of Dwell Time

Test Mode :	DH5		Temperature :	24~26°C		
Test Engineer :	Stuart Lin		Relative Humidity :	48~51%		
Mode	Hopping Channel Number	Hops Over Occupancy Time(hops)	Package Transfer Time (msec)	Dwell Time (sec)	Limits (sec)	Pass/Fail
Normal	79	106.67	2.94	0.31	0.4	Pass
AFH	20	53.33	2.94	0.16	0.4	Pass

Remark:

1. In normal mode, hopping rate is 1600 hops/s with 6 slots in 79 hopping channels.
With channel hopping rate (1600 / 6 / 79) in Occupancy Time Limit (0.4 x 79) (s),
Hops Over Occupancy Time comes to (1600 / 6 / 79) x (0.4 x 79) = 106.67 hops.
2. In AFH mode, hopping rate is 800 hops/s with 6 slots in 20 hopping channels.
With channel hopping rate (800 / 6 / 20) in Occupancy Time Limit (0.4 x 20) (s),
Hops Over Occupancy Time comes to (800 / 6 / 20) x (0.4 x 20) = 53.33 hops.
3. Dwell Time(s) = Hops Over Occupancy Time (hops) x Package Transfer Time

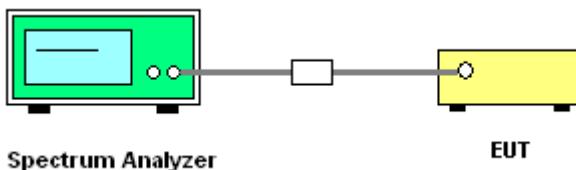
Package Transfer Time Plot

Date: 30.JUN.2014 23:04:17

3.4 20dB Bandwidth Measurement

3.4.1 Limit of 20dB Bandwidth

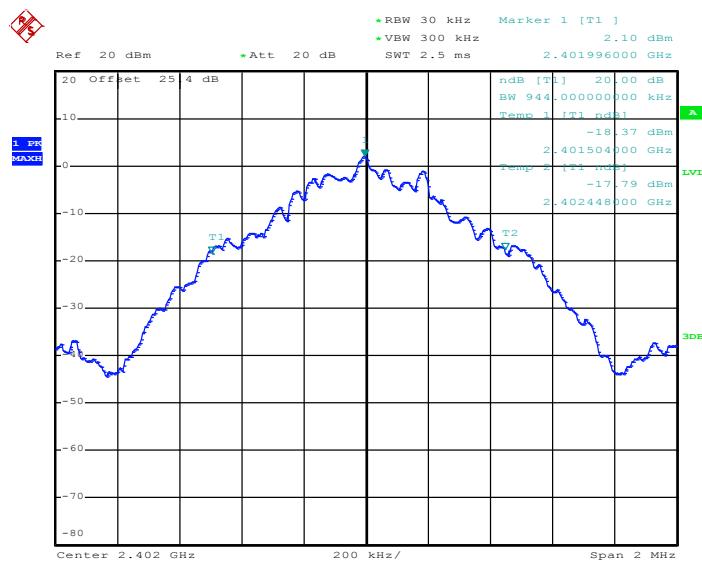
Reporting only


3.4.2 Measuring Instruments

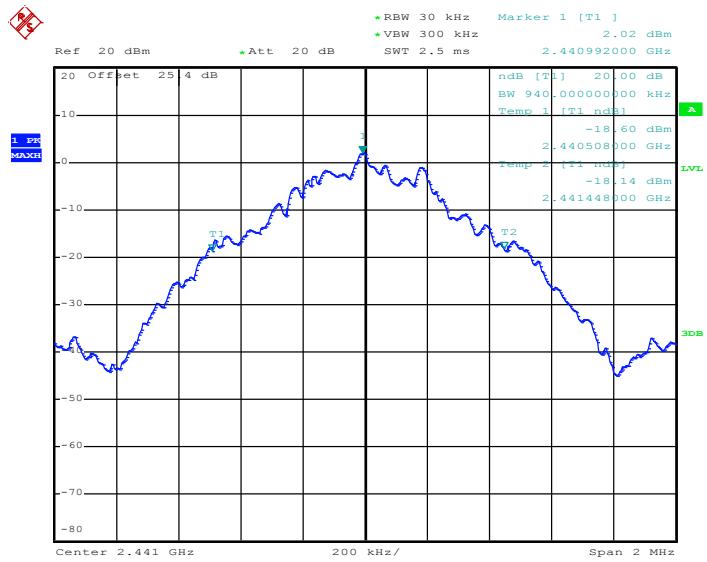
The measuring equipment is listed in the section 4 of this test report.

3.4.3 Test Procedures

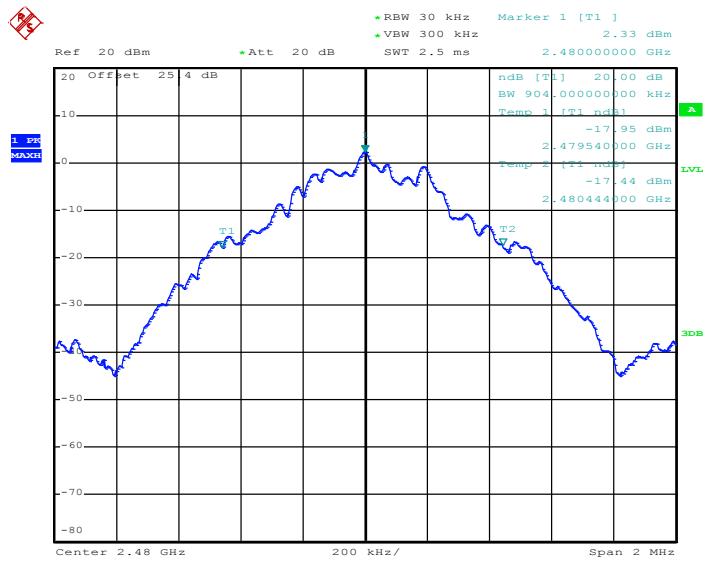
1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.
Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel;
RBW \geq 1% of the 20 dB bandwidth; VBW \geq RBW; Sweep = auto; Detector function = peak;
Trace = max hold.
5. Measure and record the results in the test report.


3.4.4 Test Setup

3.4.5 Test Result of 20dB Bandwidth


Test Mode :	1Mbps	Temperature :	24~26°C
Test Engineer :	Stuart Lin	Relative Humidity :	48~51%
Channel		Frequency (MHz)	
00	2402	20dB Bandwidth (MHz)	
39	2441	0.944	
78	2480	0.940	
		0.904	

20 dB Bandwidth Plot on Channel 00


Date: 3.JUL.2014 15:03:43

20 dB Bandwidth Plot on Channel 39

Date: 3.JUL.2014 15:15:32

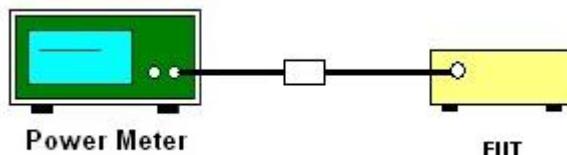
20 dB Bandwidth Plot on Channel 78

Date: 3.JUL.2014 15:20:28

3.5 Peak Output Power Measurement

3.5.1 Limit of Peak Output Power

Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts. The power limit for 1Mbps is 1watt, and for 2Mbps, 3Mbps and AFH are 0.125 watts.


3.5.2 Measuring Instruments

The measuring equipment is listed in the section 4 of this test report.

3.5.3 Test Procedures

1. The testing follows FCC Public Notice DA 00-705 Measurement Guidelines.
2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Measure the conducted output power with cable loss and record the results in the test report.
5. Measure and record the results in the test report.

3.5.4 Test Setup

3.5.5 Test Result of Peak Output Power

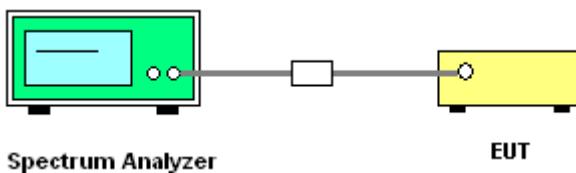
Test Mode :	1Mbps	Temperature :	24~26°C	
Test Engineer :	Stuart Lin	Relative Humidity :	48~51%	
Channel	Frequency (MHz)	RF Power (dBm)		
		GFSK	Max. Limits (dBm)	Pass/Fail
		1 Mbps		
00	2402	3.15	20.97	Pass
39	2441	3.29	20.97	Pass
78	2480	3.67	20.97	Pass

Note: For AFH mode using 20 hopping channels, the maximum output power limit is 20.97dBm.

3.6 Conducted Band Edges Measurement

3.6.1 Limit of Band Edges

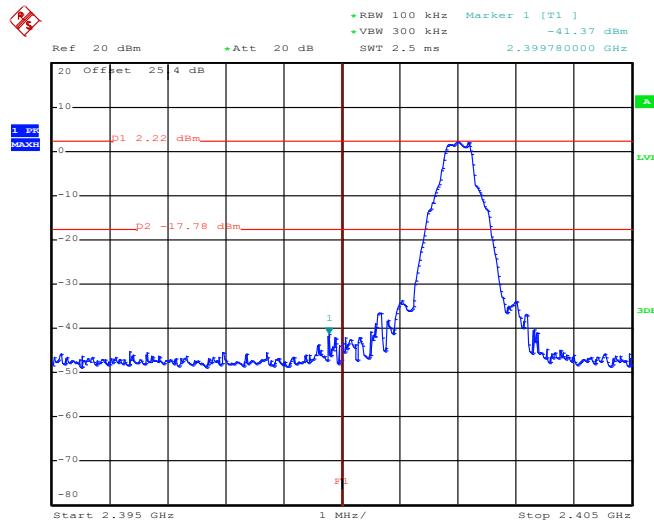
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.6.2 Measuring Instruments

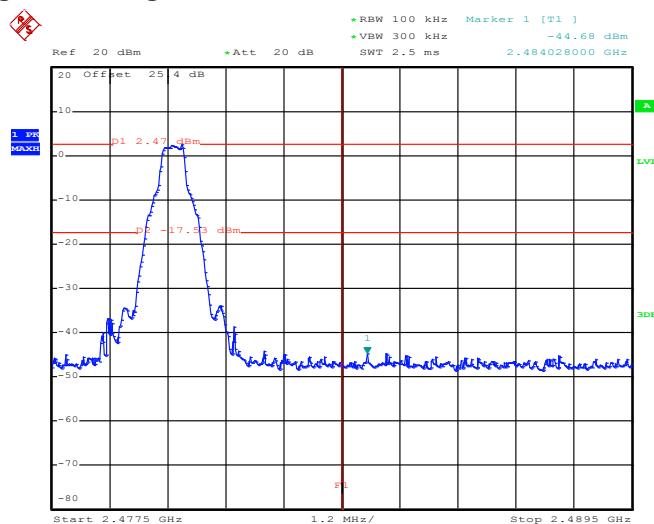
The measuring equipment is listed in the section 4 of this test report.

3.6.3 Test Procedures

1. The testing follows the guidelines in Band-edge Compliance of RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines.
2. Set to the maximum power setting and enable the EUT transmit continuously.
3. Set RBW = 100kHz ($\geq 1\%$ span=10MHz), VBW = 300kHz (\geq RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used.
4. Enable hopping function of the EUT and then repeat step 2. and 3.
5. Measure and record the results in the test report.


3.6.4 Test Setup

3.6.5 Test Result of Conducted Band Edges


Test Mode :	1Mbps	Temperature :	24~26°C
Test Channel :	00 and 78	Relative Humidity :	48~51%
	Test Engineer :		Stuart Lin

Low Band Edge Plot on Channel 00

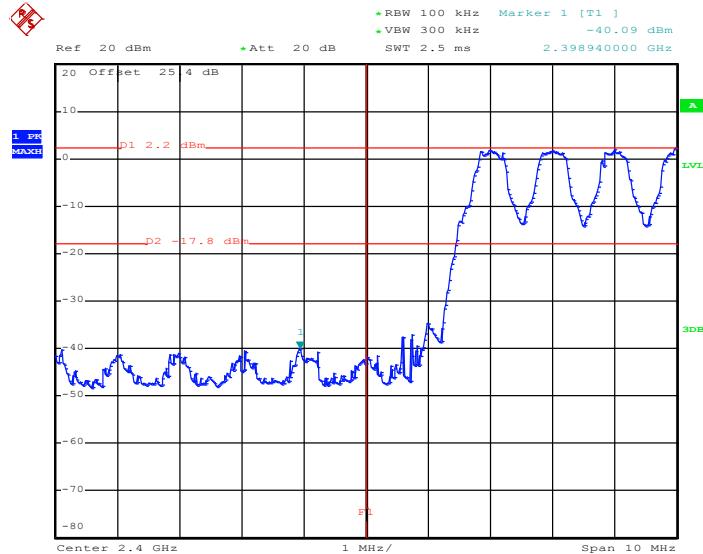
Date: 3.JUL.2014 15:03:19

High Band Edge Plot on Channel 78

Date: 3.JUL.2014 15:20:00

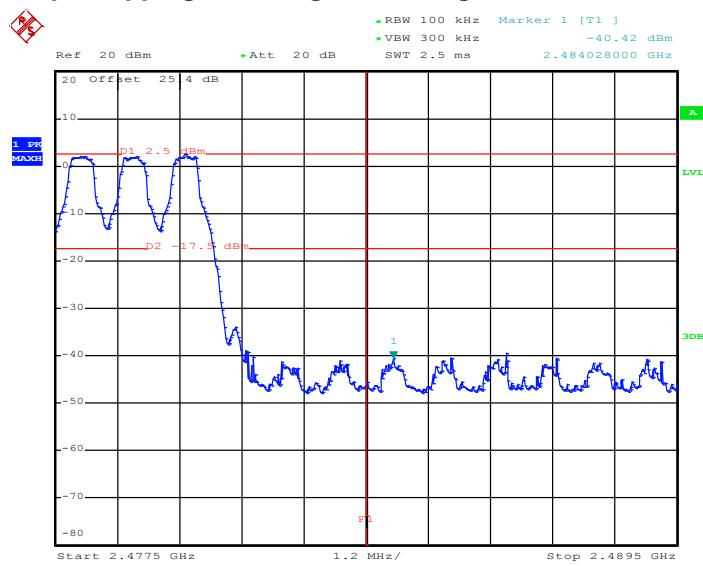
Report No. : FR462109

Report Version : Rev. 01


Page Number : 24 of 43

Report Template No.: BU5-FR15CBT Version 1.0

3.6.6 Test Result of Conducted Hopping Mode Band Edges


Test Mode :	1Mbps	Temperature :	24~26°C
Test Engineer :	Stuart Lin	Relative Humidity :	48~51%

1Mbps Hopping Mode Low Band Edge Plot

Date: 3.JUL.2014 15:30:33

1Mbps Hopping Mode High Band Edge Plot

Date: 3.JUL.2014 15:31:14

Report No. : FR462109

Report Version : Rev. 01

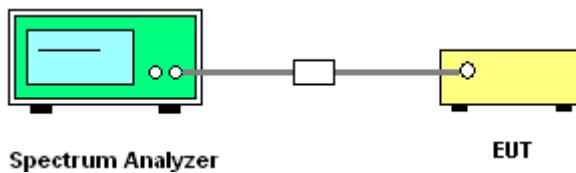
Page Number : 25 of 43

Report Template No.: BU5-FR15CBT Version 1.0

3.7 Conducted Spurious Emission Measurement

3.7.1 Limit of Spurious Emission Measurement

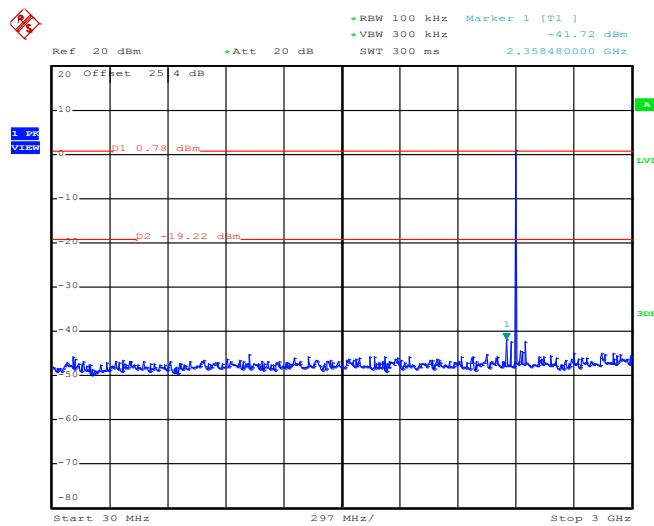
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.


3.7.2 Measuring Instruments

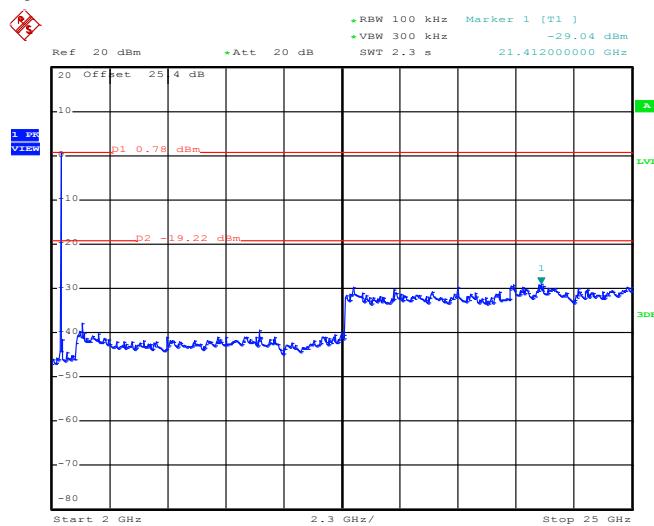
The measuring equipment is listed in the section 4 of this test report.

3.7.3 Test Procedure

1. The testing follows the guidelines in Spurious RF Conducted Emissions of FCC Public Notice DA 00-705 Measurement Guidelines
2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
3. Set to the maximum power setting and enable the EUT transmit continuously.
4. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW.
5. Measure and record the results in the test report.
6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

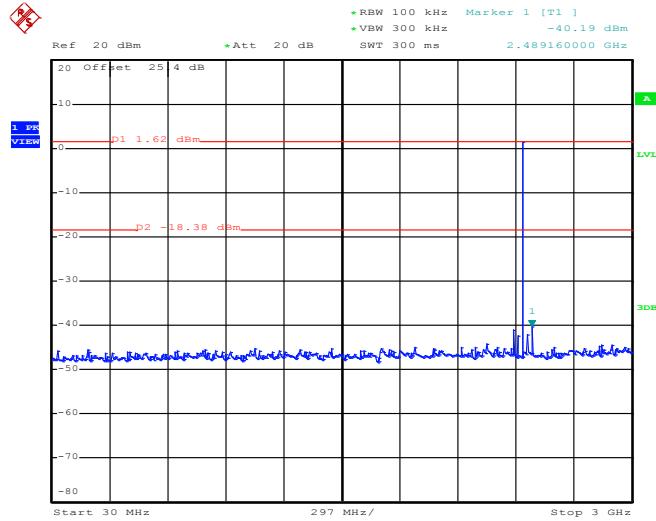

3.7.4 Test Setup

3.7.5 Test Result of Conducted Spurious Emission

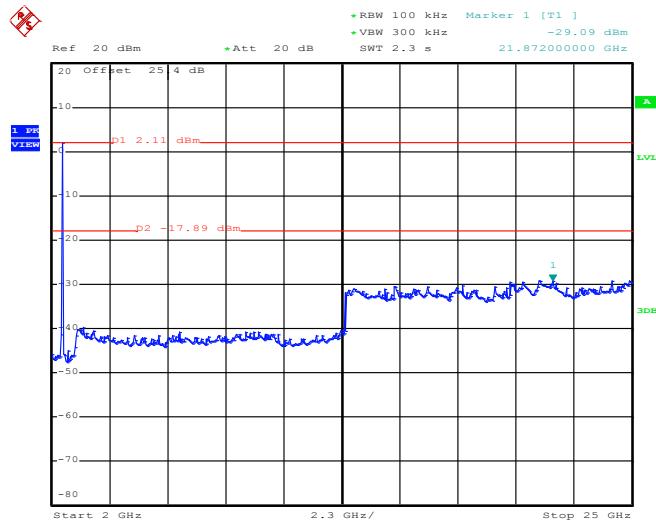

Test Mode :	1Mbps	Temperature :	24~26°C
Test Channel :	00	Relative Humidity :	48~51%
		Test Engineer :	Stuart Lin

1Mbps CSE Plot on Ch 00 between 30MHz ~ 3 GHz

Date: 3.JUL.2014 15:23:51


1Mbps CSE Plot on Ch 00 between 2 GHz ~ 25 GHz

Date: 3.JUL.2014 15:23:14


Test Mode :	1Mbps	Temperature :	24~26°C
Test Channel :	39	Relative Humidity :	48~51%
		Test Engineer :	Stuart Lin

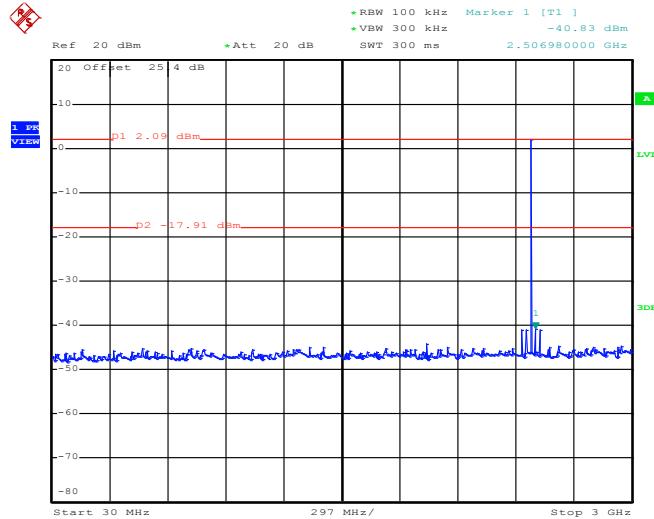
1Mbps CSE Plot on Ch 39 between 30MHz ~ 3 GHz

Date: 3.JUL.2014 15:14:06

1Mbps CSE Plot on Ch 39 between 2 GHz ~ 25 GHz

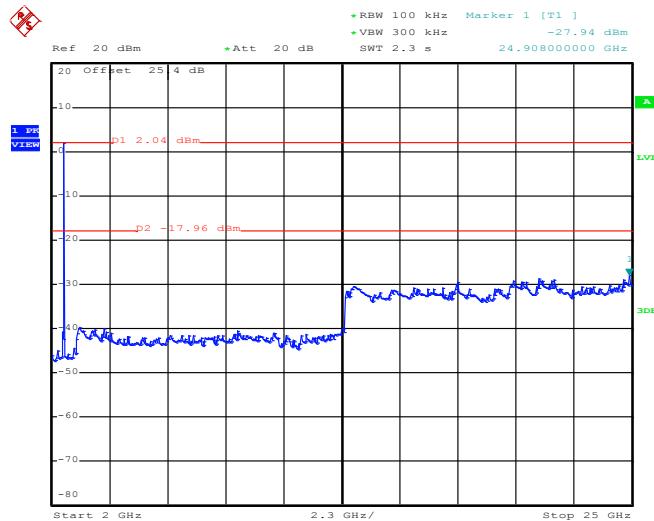
Date: 3.JUL.2014 15:14:28

Report No. : FR462109


Report Version : Rev. 01

Page Number : 28 of 43

Report Template No.: BU5-FR15CBT Version 1.0


Test Mode :	1Mbps	Temperature :	24~26°C
Test Channel :	78	Relative Humidity :	48~51%
		Test Engineer :	Stuart Lin

1Mbps CSE Plot on Ch 78 between 30MHz ~ 3 GHz

Date: 3.JUL.2014 15:18:08

1Mbps CSE Plot on Ch 78 between 2 GHz ~ 25 GHz

Date: 3.JUL.2014 15:18:30

Report No. : FR462109

Report Version : Rev. 01

Page Number : 29 of 43

Report Template No.: BU5-FR15CBT Version 1.0

3.8 Radiated Band Edges and Spurious Emission Measurement

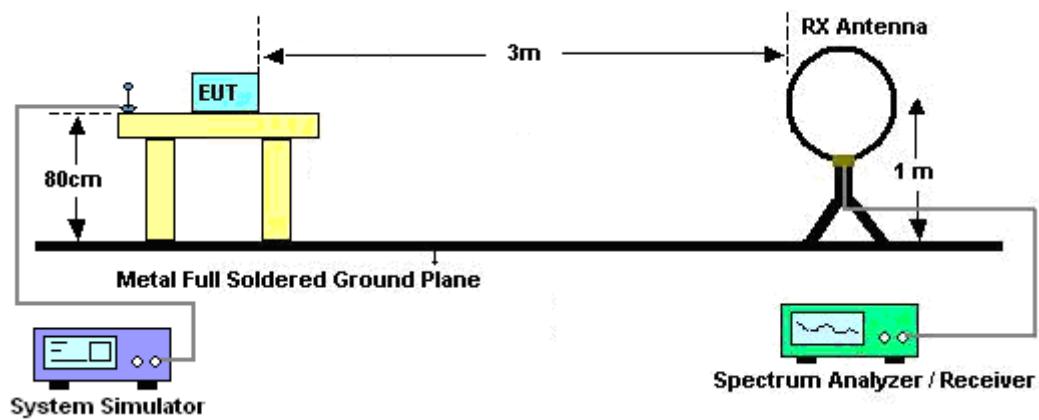
3.8.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

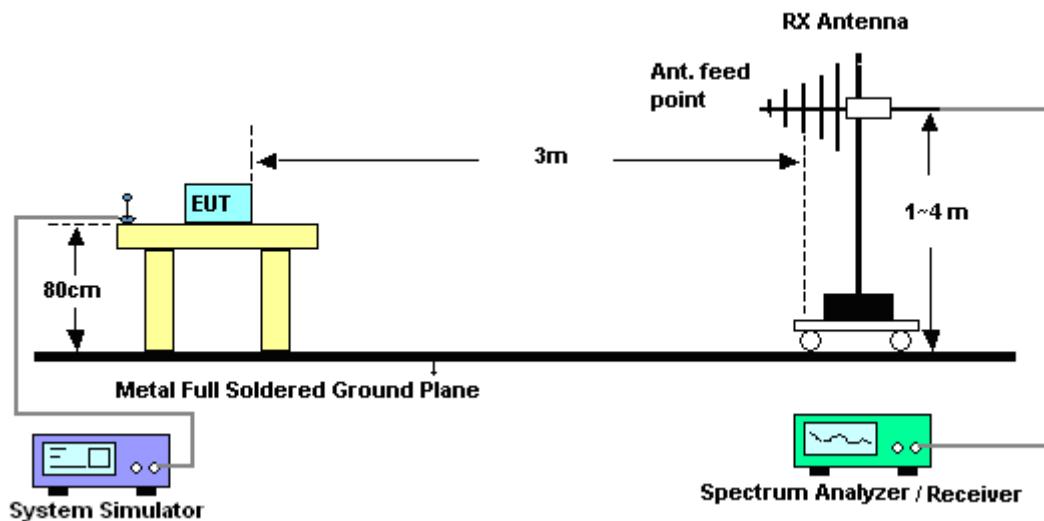
Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 – 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.8.2 Measuring Instruments

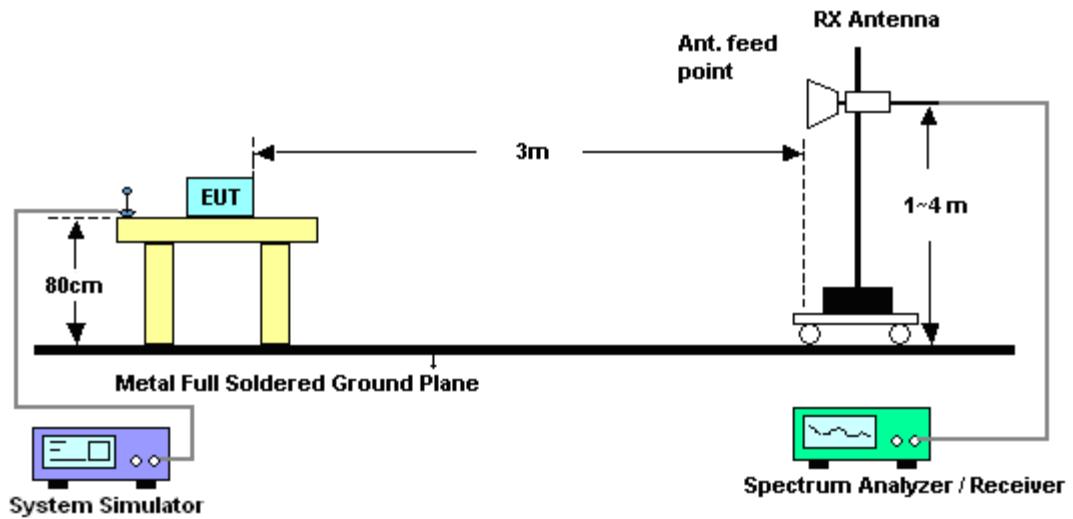
The measuring equipment is listed in the section 4 of this test report.


3.8.3 Test Procedures

1. The testing follows the guidelines in Spurious Radiated Emissions of FCC Public Notice DA 00-705 Measurement Guidelines.
2. The EUT was placed on a turntable with 0.8 meter above ground.
3. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
5. Set to the maximum power setting and enable the EUT transmit continuously.
6. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for $f < 1$ GHz, RBW=1MHz for $f > 1$ GHz ; VBW \geq RBW; Sweep = auto; Detector function = peak; Trace = max hold for peak
 - (3) For average measurement: use duty cycle correction factor method per 15.35(c).
Duty cycle = On time/100 milliseconds
On time = $N_1 \cdot L_1 + N_2 \cdot L_2 + \dots + N_{n-1} \cdot L_{n-1} + N_n \cdot L_n$
Where N_1 is number of type 1 pulses, L_1 is length of type 1 pulses, etc.
Average Emission Level = Peak Emission Level + $20 \cdot \log(\text{Duty cycle})$
7. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

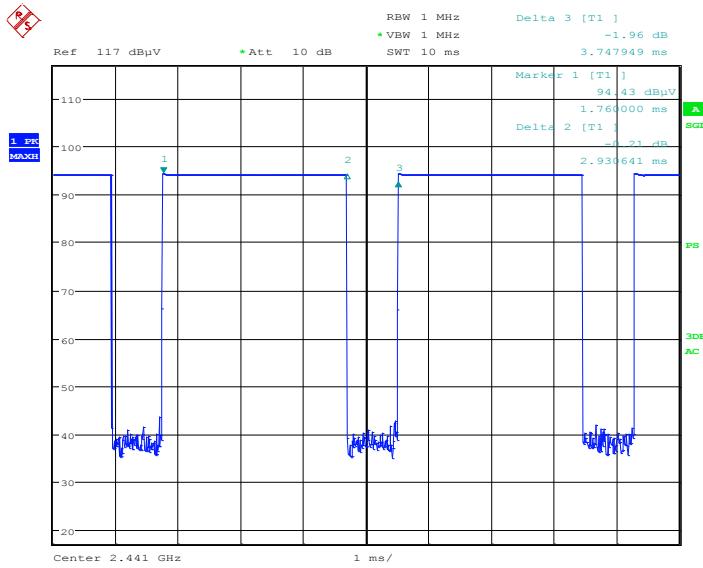

Note: The average levels were calculated from the peak level corrected with duty cycle correction factor (-30.66dB) derived from $20 \log(\text{dwell time}/100\text{ms})$. This correction is only for signals that hop with the fundamental signal, such as band-edge and harmonic. Other spurious signals that are independent of the hopping signal would not use this correction.

3.8.4 Test Setup


For radiated emissions below 30MHz

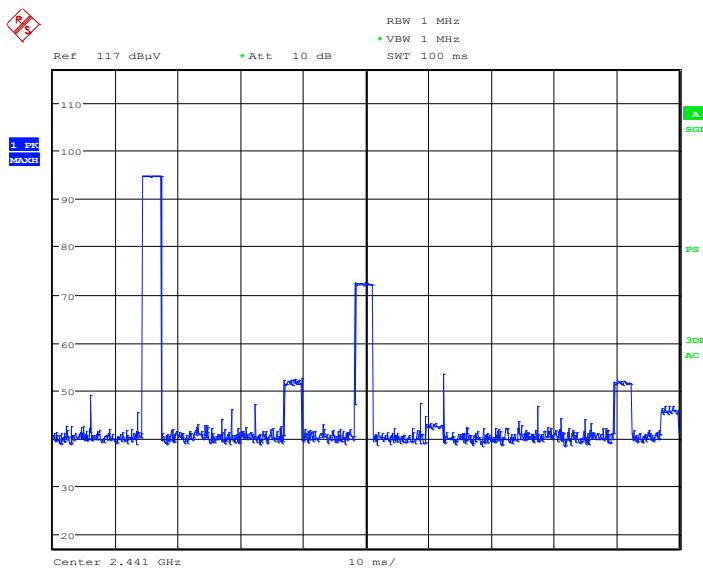
For radiated emissions from 30MHz to 1GHz

For radiated emissions above 1GHz



3.8.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.


3.8.6 Duty cycle correction factor for average measurement

DH5 on time (One Pulse) Plot on Channel 39

Date: 4.JUL.2014 21:35:45

DH5 on time (Count Pulses) Plot on Channel 39

Date: 4.JUL.2014 21:40:40

Note:

1. Worst case Duty cycle = on time/100 milliseconds = $1 * 2.93 / 100 = 2.93 \%$
2. Worst case Duty cycle correction factor = $20 * \log(\text{Duty cycle}) = -30.66 \text{ dB}$
3. DH5 has the highest duty cycle worst case and is reported.

Duty Cycle Correction Factor Consideration for AFH mode:

Bluetooth normal hopping rate is 1600Hz and reduced to 800Hz in AFH mode; due to the reduced number of hopping frequencies, with the same packet configuration the dwell time in each channel frequency within 100msec period is longer in AFH mode than normal mode.

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time DH5 packet is observed; the period to have DH5 packet completing one hopping sequence is

$$2.93 \text{ ms} \times 20 \text{ channels} = 58.6 \text{ ms}$$

There cannot be 2 complete hopping sequences within 100ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. $[100\text{ms} / 57.6\text{ms}] = 2 \text{ hops}$

Thus, the maximum possible ON time:

$$2.93 \text{ ms} \times 1 = 2.93 \text{ ms}$$

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time,

$$20 \times \log(2.93 \text{ ms}/100\text{ms}) = -30.66 \text{ dB}$$

3.8.7 Test Result of Radiated Spurious at Band Edges

Test Mode :	1Mbps				Temperature :	22~25°C				
Test Channel :	00				Relative Humidity :	42~45%				
					Test Engineer :	Donny Tang and Hayden Wu				

ANTENNA POLARITY : HORIZONTAL										
Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2377.95	55.68	-18.32	74	52.01	31.9	6.42	34.65	188	181	Peak
2377.95	25.02	-28.98	54	-	-	-	-	-	-	Average

ANTENNA POLARITY : VERTICAL										
Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2353.74	52.99	-21.01	74	49.37	31.89	6.38	34.65	140	89	Peak
2353.74	22.33	-31.67	54	-	-	-	-	-	-	Average

Test Mode :	1Mbps				Temperature :	22~25°C				
Test Channel :	78				Relative Humidity :	42~45%				
					Test Engineer :	Donny Tang and Hayden Wu				

ANTENNA POLARITY : HORIZONTAL										
Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2484.19	55.77	-18.23	74	51.82	31.99	6.59	34.63	100	167	Peak
2484.19	25.11	-28.89	54	-	-	-	-	-	-	Average

ANTENNA POLARITY : VERTICAL										
Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2483.5	53.84	-20.16	74	49.89	31.99	6.59	34.63	100	109	Peak
2483.5	23.18	-30.82	54	-	-	-	-	-	-	Average

Note: Average Emission Level = Peak Emission Level + duty cycle correction factor(-30.66dB)

3.8.8 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Note: Pre-scanned all test modes and only choose the worst case mode recorded in the test report for radiated spurious emission below 1GHz.

Test Mode :	1Mbps	Temperature :		22~25°C				
Test Channel :	00	Relative Humidity :		42~45%				
Test Engineer :	Donny Tang and Hayden Wu	Polarization :		Horizontal				
Remark :	2402 MHz is fundamental signal which can be ignored.							

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2402	98.36	-	-	94.63	31.92	6.45	34.64	188	181	Peak
2402	67.70	-	-	-	-	-	-	-	-	Average
4803	61.11	-12.89	74	77.4	34.41	10.16	60.86	188	201	Peak
4803	30.45	-23.55	54	-	-	-	-	-	-	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-30.66)

Test Mode :	1Mbps	Temperature :		22~25°C				
Test Channel :	00	Relative Humidity :		42~45%				
Test Engineer :	Donny Tang and Hayden Wu	Polarization :		Vertical				
Remark :	2402 MHz is fundamental signal which can be ignored.							

Frequency (mzH)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2402	94.24	-	-	90.51	31.92	6.45	34.64	140	89	Peak
2402	63.58	-	-	-	-	-	-	-	-	Average
4806	59.44	-14.56	74	75.72	34.41	10.17	60.86	140	76	Peak
4806	28.78	-25.22	54	-	-	-	-	-	-	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-30.66)

Test Mode :	1Mbps	Temperature :		22~25°C				
Test Channel :	39	Relative Humidity :		42~45%				
Test Engineer :	Donny Tang and Hayden Wu	Polarization :		Horizontal				
Remark :	2442 MHz is fundamental signal which can be ignored.							

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2442	98.82	-	-	94.98	31.96	6.52	34.64	100	0	Peak
2442	68.16	-	-	-	-	-	-	-	-	Average
4884	57.19	-16.81	74	73.32	34.37	10.19	60.69	100	33	Peak
4884	26.53	-27.47	54	-	-	-	-	-	-	Average
7323	58.95	-15.05	74	72.94	35.6	10.94	60.53	100	50	Peak
7323	28.29	-25.71	54	-	-	-	-	-	-	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-30.66)

Test Mode :	1Mbps	Temperature :		22~25°C				
Test Channel :	39	Relative Humidity :		42~45%				
Test Engineer :	Donny Tang and Hayden Wu	Polarization :		Vertical				
Remark :	2442 MHz is fundamental signal which can be ignored.							

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
2442	94.54	-	-	90.7	31.96	6.52	34.64	133	107	Peak
2442	63.88	-	-	-	-	-	-	-	-	Average
4881	58.13	-15.87	74	74.26	34.37	10.19	60.69	133	112	Peak
4881	27.47	-26.53	54	-	-	-	-	-	-	Average
7323	51.61	-22.39	74	65.6	35.6	10.94	60.53	133	110	Peak
7323	20.95	-33.05	54	-	-	-	-	-	-	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-30.66)

Test Mode :	1Mbps	Temperature :	22~25°C
Test Channel :	78	Relative Humidity :	42~45%
Test Engineer :	Donny Tang and Hayden Wu	Polarization :	Horizontal
Remark :	2480 MHz is fundamental signal which can be ignored.		

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
120.45	13.65	-29.85	43.5	31.98	12.2	1.22	31.75	-	-	Peak
227.1	11.83	-34.17	46	32.03	9.9	1.64	31.74	-	-	Peak
271.65	15.54	-30.46	46	32.49	12.96	1.82	31.73	-	-	Peak
455.4	22.16	-23.84	46	34.64	17.08	2.32	31.88	-	-	Peak
641.6	22.1	-23.9	46	31.76	19.58	2.8	32.04	-	-	Peak
930	25.5	-20.5	46	32.19	21.2	3.36	31.25	-	-	Peak
2480	98.1	-	-	94.15	31.99	6.59	34.63	100	167	Peak
2480	67.44	-	-	-	-	-	-	-	-	Average
4959	39.53	-34.47	74	55.48	34.32	10.21	60.48	100	185	Peak
4959	8.87	-45.13	54	-	-	-	-	-	-	Average
7440	41.58	-32.42	74	55.73	35.53	10.9	60.58	100	156	Peak
7440	10.92	-43.08	54	-	-	-	-	-	-	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-30.66)

Test Mode :	1Mbps	Temperature :	22~25°C
Test Channel :	78	Relative Humidity :	42~45%
Test Engineer :	Donny Tang and Hayden Wu	Polarization :	Vertical
Remark :	2480 MHz is fundamental signal which can be ignored.		

Frequency (MHz)	Level (dB μ V/m)	Over Limit (dB)	Limit Line (dB μ V/m)	Read Level (dB μ V)	Antenna Factor (dB)	Cable Loss (dB)	Preamp Factor (dB)	Ant Pos (cm)	Table Pos (deg)	Remark
48.36	16.7	-23.3	40	38.96	8.73	0.79	31.78	-	-	Peak
131.25	12.6	-30.9	43.5	31.64	11.44	1.27	31.75	-	-	Peak
258.96	14.88	-31.12	46	31.08	13.75	1.78	31.73	-	-	Peak
767.6	23.55	-22.45	46	32.34	20.13	3.05	31.97	-	-	Peak
867	24.44	-21.56	46	31.96	20.87	3.28	31.67	-	-	Peak
931.4	24.89	-21.11	46	31.56	21.21	3.36	31.24	100	215	Peak
2480	95.98	-	-	92.03	31.99	6.59	34.63	100	109	Peak
2480	65.32	-	-	-	-	-	-	-	-	Average
4959	40.24	-33.76	74	56.19	34.32	10.21	60.48	100	302	Peak
4959	9.58	-44.42	54	-	-	-	-	-	-	Average
7440	41.71	-32.29	74	55.86	35.53	10.9	60.58	100	289	Peak
7440	11.05	-42.95	54	-	-	-	-	-	-	Average

Note: 1. Other harmonics are lower than background noise.

2. Average Emission Level = Peak Emission Level + duty cycle correction factor(-30.66)

3.9 Antenna Requirements

3.9.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.9.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.9.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz~40GHz	Jun. 09, 2014	Jun. 30, 2014 ~ Jul. 03, 2014	Jun. 08, 2015	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB412923 44	300MHz~40GHz	Jan. 28, 2014	Jun. 30, 2014 ~ Jul. 03, 2014	Jan. 27, 2015	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US404415 48	300MHz~40GHz	Jan. 28, 2014	Jun. 30, 2014 ~ Jul. 03, 2014	Jan. 27, 2015	Conducted (TH02-HY)
Spectrum Analyzer	R&S	FSP30	101067	9kHz ~ 30GHz	Nov. 20, 2013	Jul. 04, 2014 ~ Jul. 05, 2014	Nov. 19, 2014	Radiation (03CH06-HY)
Spectrum Analyzer	Agilent	E4408B	MY442110 30	9kHz ~ 26.5GHz	Dec. 02, 2013	Jul. 04, 2014 ~ Jul. 05, 2014	Dec. 01, 2014	Radiation (03CH06-HY)
EMI Test Receiver	R&S	ESVS10	834468/00 03	20MHz ~ 1000MHz	May 06, 2014	Jul. 04, 2014 ~ Jul. 05, 2014	May 05, 2015	Radiation (03CH06-HY)
Bilog Antenna	Schaffner	CBL6112B	2885	30MHz ~ 2GHz	Oct. 10, 2013	Jul. 04, 2014 ~ Jul. 05, 2014	Oct. 09, 2014	Radiation (03CH06-HY)
Double Ridge Horn Antenna	EMCO	3117	00066583	1GHz ~ 18GHz	Aug. 02, 2013	Jul. 04, 2014 ~ Jul. 05, 2014	Aug. 01, 2014	Radiation (03CH06-HY)
Amplifier	SONOMA	310N	186713	9kHz ~ 1GHz	Apr. 16, 2014	Jul. 04, 2014 ~ Jul. 05, 2014	Apr. 15, 2015	Radiation (03CH06-HY)
Pre Amplifier	EMCI	EMC051845	SN980048	1GHz ~ 18GHz	Jul. 18, 2013	Jul. 04, 2014 ~ Jul. 05, 2014	Jul. 17, 2014	Radiation (03CH06-HY)
SHF-EHF Horn Antenna	SCHWARZBECK	BBHA 9170 251	BBHA9170 251	15GHz ~ 40GHz	Oct. 03, 2013	Jul. 04, 2014 ~ Jul. 05, 2014	Oct. 02, 2014	Radiation (03CH06-HY)
Preamplifier	Agilent	8449B	3008A019 17	1GHz ~ 26.5GHz	Apr. 10, 2014	Jul. 04, 2014 ~ Jul. 05, 2014	Apr. 09, 2015	Radiation (03CH06-HY)
Turn Table	INN-CO	DS2000	420/650/00	0 ~ 360 degree	N/A	Jul. 04, 2014 ~ Jul. 05, 2014	N/A	Radiation (03CH06-HY)
Antenna Mast	MF	MF-7802	MF780208 212	1 m ~ 4 m	N/A	Jul. 04, 2014 ~ Jul. 05, 2014	N/A	Radiation (03CH06-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence of 95% (U = 2Uc(y))	4.50
---	------