

TEST REPORT

Report No. SST2504E0570

Applicant: SHENZHEN ELECTRON TECHNOLOGY CO., LTD.

Address of Applicant:

Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang

Street, Bao'an, Shenzhen, China.

Product Name: Smart Screen

Trade Mark: /

Standard(s): FCC CFR Title 47 Part 15 Subpart E Section 15.407

ANSI C63.10-2020

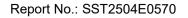
FCC ID: 2ABC5-E0089

Test Report Form No: SST-RD-7.5-02-E01(A/0)

Date of sample receipt: 2025/3/12

Date of Test: 2025/3/12 - 2025/4/22

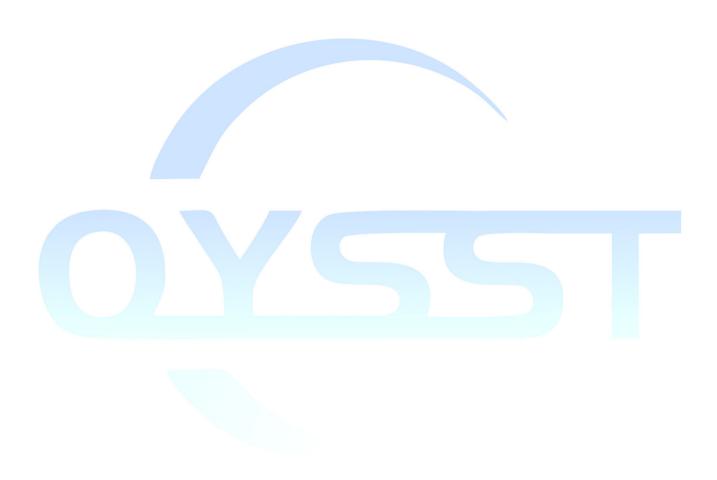
Date of report issued: 2025/4/28

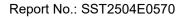

*The equipment complies with the requirements according to the standard(s) or Specification above, it is applicable only to the tested sample identified in the report.

Prepared by:

Reviewed by:

Approved by:


*The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.



Revision History

Version	Description	Date of Issue
V1.0	Original	2025/4/28

2 Contents

		· · · · · · · · · · · · · · · · · · ·	Page
1	cov	/ER PAGE	1
2	CON	ITENTS	3
3		T SUMMARY	
4		ASUREMENT UNCERTAINTY	
5		IERAL INFORMATION	
J	GEN		
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF EUT	5
	5.3	TEST MODE(S)	6
	5.4	TEST FACILITY	
	5.5	DESCRIPTION OF SUPPORT UNITS	7
	5.6	ADDITIONAL INSTRUCTIONS	
	5.7	ANTENNA INFORMATION	
	5.8	OTHERS	7
6	TEC	HNICAL REQUIREMENT AND MEASUREMENT DATA	8
	6.1	GENERALLY REQUIREMENT	8
	6.2	DUTY CYCLE	
	6.3	CONDUCTED PEAK OUTPUT POWER	
	6.4	EMISSION BANDWIDTH	_
	6.5	Power Spectral Density	
	6.6	FREQUENCY STABILITY	
	6.7	RADIATED SPURIOUS EMISSION	
	6.8	CONDUCTED EMISSIONS	
		T SETUP PHOTO	
7	TES	T SETUP PHOTO	21
8	EUT	CONSTRUCTIONAL DETAILS	21
Δ	NNFX A	TEST INSTRUMENTS LIST	22

3 Test Summary

Test items	Basics standards	Result
Antenna requirement	FCC part 15.203	PASS
Automatically discontinue transmission	FCC part 15.407(c)	Pass
AC Power Line Conducted Emission	FCC part 15.207	PASS
99% Bandwidth	Report only	PASS
Emission Bandwidth	FCC part 15.407(a)	PASS
Peak Transmit Power	FCC part 15.407(a)(1)(2)	PASS
Power Spectral Density	FCC part 15.407(a) (1)(2)	PASS
Undesirable Emission	FCC part 15.407(b), 15.205/15.209	PASS
Radiated Emission	FCC part 15.205/15.209	PASS
Frequency Stability	FCC part 15.407(g)	PASS

Notes:

- 1: NA =Not Applicable
- 2: Determining compliance based on the results of the compliance measurement, not taking into account measurement uncertainty. If necessary, the applicant shall informing test lab in advance
- 3: Additions, Deviations and Exclusions from Standards: None.

4 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Item	Uncertainty (±) (k=2, 95%)		
Output Power, Conducted	0.54		
Power Spectral Density, Conducted	1.3	28	
Spurious Emissions, Conducted	1.3	28	
Padiated Emissions(<1CHz)	9kHz~30MHz	2.6	
Radiated Emissions(<1GHz)	30MHz~1GHz	5.08	
	1GHz~6GHz	4.02	
Radiated Emissions(>1GHz)	6GHz~18GHz	4.62	
	18GHz~40GHz	4.7	
Occupied Bandwidth	1.	14	
Conducted Emissions—AC mains	9kHz~150KHz	1.76	
Conducted Emissions—AC mains	150kHz~30MHz	2.52	
Conducted Emissions—Telecom	2.0	64	

5 General Information

5.1 Client Information

Applicant: SHENZHEN ELECTRON TECHNOLOGY CO., LTD.

Address of applicant: Bld.2, Yingfeng Industrial Zone, Tantou Community, Songgang

Street, Bao'an, Shenzhen, China.

Manufacturer:Same as applicantAddress of
Manufacturer:Same as applicantFactory:Same as applicantAddress of Factory:Same as applicant

5.2 General Description of EUT

Product Name:	Smart Screen				
Model No.:	NW1499T				
Test sample(s) ID:	2503110109				
Sample(s) Status:	Continuously transmitter				
S/N:	1				
Hardware version:					
Software version:	1				
Operation Frequency:	5180MHz~5240MHz				
Technical specific:	802.11a, 802.11n, 802.11ac, 802.11ax				
Supported bandwidth:	20MHz, 40MHz, 80MHz				
Modulation technology:	OFDM(A)				
Antenna gain:	Refer to section 5.7 for details				
Power supply:	SWITCHING ADAPTOR				
	MODEL: FJ-SW126G1202000U				
	INPUT: 100-240V, 50/60Hz, 0.6A				
	OUTPUT: DC 12V, 2A				

Channel list for 802.11							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
36	5180MHz	54	5270MHz	104	5520MHz	122	5610MHz
38	5190MHz	56	5280MHz	106	5530MHz	124	5620MHz
40	5200MHz	58	5290MHz	108	5540MHz	126	5630MHz
42	5210MHz	60	5300MHz	110	5550MHz	128	5640MHz
44	5220MHz	62	5310MHz	112	5560MHz	132	5660MHz
46	5230MHz	64	5320MHz	116	5580MHz	134	5670MHz
48	5240MHz	100	5500MHz	118	5590MHz	136	5680MHz
52	5260MHz	102	5510MHz	120	5600MHz	140	5700MHz

Test mode(s) 5.3

Mode 1:	continuously transmitting, with its lowest data rate which emit the max power level
Mode 2:	
Mode 3:	

5.4 Test Facility

	FCC Accredited Lab
The test facility is	Test Firm Registration Number: 638130 Designation Number: CN1359
recognized, certified,	IC Registration Lab
or accredited by these organizations:	CAB Identifier No.CN0154
these organizations.	A2LA Accreditation Lab
	Certificate No.:7057.01

	Name
	GuangDong Set Sail Testing Co., Ltd.
Test Performed at:	Address
	101, No.19, Tianxin Hudie 1st Road, Huangjiang Town, Dongguan, Guangdong,
	China

5.5 Description of Support Units

Device Type	Brand	Model	Series No.	Note
Notebook PC	HP	ZHAN 66P		

5.6 Additional Instructions

Test Software	Special test command provided by manufacturer(adb command)			
Command version	V1.0			
Power level setup	Default			

5.7 Antenna Information

Ant	Manufacturer	Model	Antenna Type	Antenna Gain (dBi)	Note
1	Shenzhen Yishengbang Technology Co., Ltd	1	IPEX	2.98	WiFi, BT

All above information provided by the applicant which is fully responsible for those information.

5.8 Others

The laboratory responsible for all the information provided in the report, except those information provided by the applicant.

The applicant shall fully responsible for the information they provided.

The report would be invalid without a stamp of test laboratory and the signatures of compiler and approver.

The laboratory has not been responsible for the sampling stage; the test report merely corresponds to the test sample received.

Any objection to the test report shall submitted to the test laboratory within 15 days from the date of receipt of the report.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

6 Technical Requirement and Measurement Data

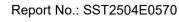
6.1 Generally requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

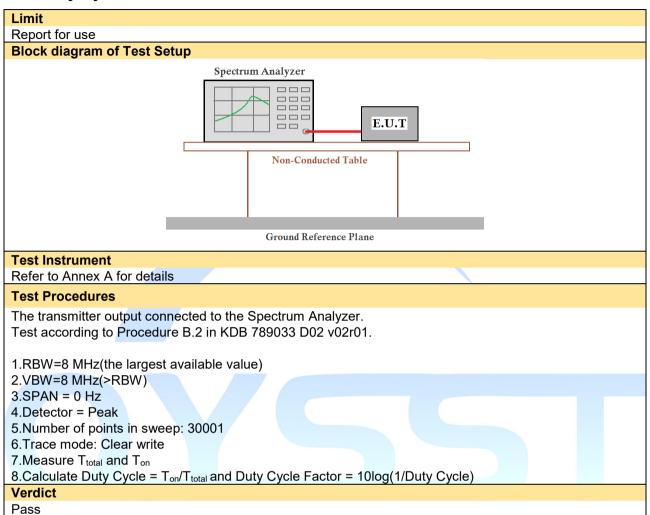
15.407 requirement:

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


EUT Antenna:

Reference to the appendix II for details

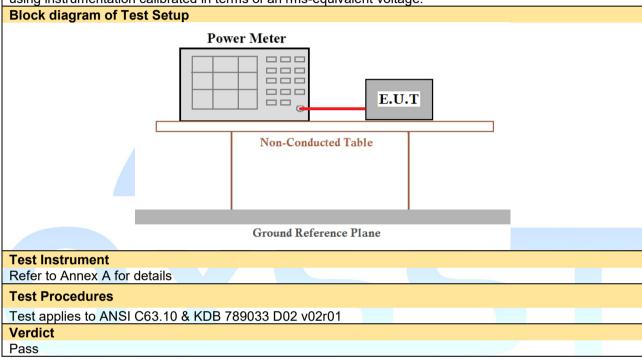
15.407(c) requirement:


The applicant declares that the device (FCC Part 15 Subpart E Section 15.407) shall automatically discontinue transmission in cases of absence of information to transmit, or operational failure.

Tel: (86)-0769-26622875

6.2 Duty Cycle

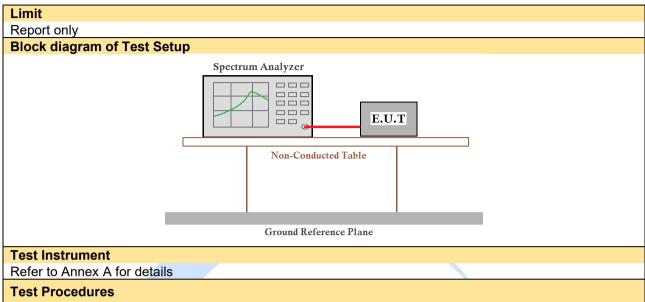
Measurement Data: The detailed test data see Appendix



6.3 Conducted Peak Output Power

Limit	
Frequency band(MHz)	Maximum conducted power
5450 5050	≤1W(30dBm) for master device
5150-5250	≤250Mw(23.98dBm) for client device
5250-5350	≤250Mw(23.98dBm) for client device or 11dBm+10logB*
5470-5725	≤250Mw(23.98dBm) for client device or 11dBm+10logB*

Remark: *Where B is the 26dB emission bandwidth in MHz.


The maximum conducted output power must be measured over any interval of continuous transmission using instrumentation calibrated in terms of an rms-equivalent voltage.

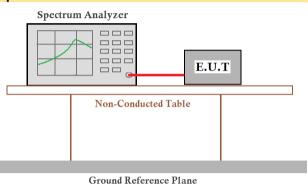
Measurement Data: The detailed test data see Appendix

6.4 Emission Bandwidth

- a) Set RBW = shall be in the range of 1% to 5% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = peak.
- d) Trace mode = max-hold.
- e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is in the range of 1% to 5%.

Verdict

Pass


Measurement Data: The detailed test data see Appendix

6.5 Power Spectral Density

Limit	
Frequency band (MHz)	Maximum power spectral density
E4E0 E2E0	≤17dBm in 1MHz for master device
5150-5250	≤11dBm in 1MHz for client device
5250-5350	≤11dBm in 1MHz for client device
5470-5725	≤11dBm in 1MHz for client device

Block diagram of Test Setup

Test Instrument

Refer to Annex A for details

Test Procedures

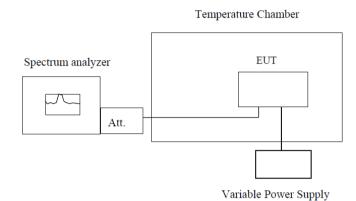
- a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.4.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power...." (This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)
- b) Use the peak search function on the instrument to find the peak of the spectrum.
- c) Make the following corrections to the peak value of the spectrum, if applicable:
- 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.
- 2) If method SA-3A was used and the linear mode was used in step h) of 12.4.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.
- d) The result is the PPSD.
- e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.85 This requirement also permits use of resolution bandwidths less than 1 MHz "provided that the measured power is integrated to show the total power over the measurement bandwidth" (i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:
- 1) Set RBW \geq 1 / T, where T is defined in 12.2 a).
- 2) Set VBW ≥ [3 × RBW].
- 3) Care shall be taken such that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Email: sst@sstesting.cn

Verdict

Pass

Measurement Data: The detailed test data see Appendix



6.6 Frequency Stability

Limit

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified

Block diagram of Test Setup

Note: Measurement setup for testing on Antenna connector

Test Instrument

Refer to Annex A for details

Test Procedures

Test applies to ANSI C63.10:2013, FCC Part 2.1055.

Verdict

Pass

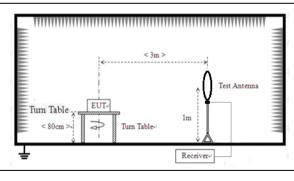
Measurement Data: The detailed test data see Appendix

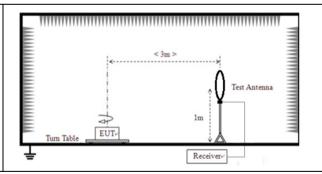
6.7 Radiated Spurious Emission

imit							
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
0.009-0.490	2400/F(kHz)	300					
0.490-1.705	24000/F(kHz)	30					
1.705-30.0	30	30					
30-88	100 **	3					
88-216	150 **	3					
216-960	200 **	3					
Above 960	500	3					

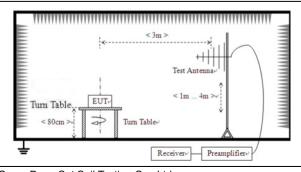
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 MHz, 76–88 MHz, 174–216 MHz or 470–806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

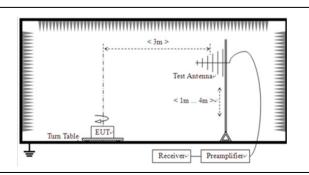
The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.


Undesirable emission limits: the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

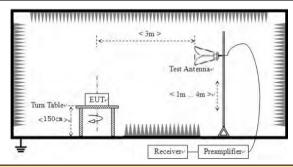

- (1)For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

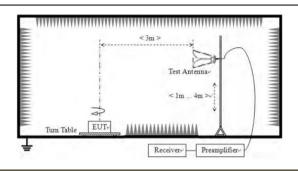
Block diagram of Test Setup


For floor standing equipment


For radiated emissions from 9kHz to 30MHz

For radiated emissions from 30MHz to1GHz





VCCT Report No.: SST2504E0570

For radiated emissions above 1GHz

Test Instrument

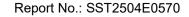
Refer to Annex A for details

Test Procedures

Test applies to ANSI C63.10:2013 & KDB 789033 D02 v02r01

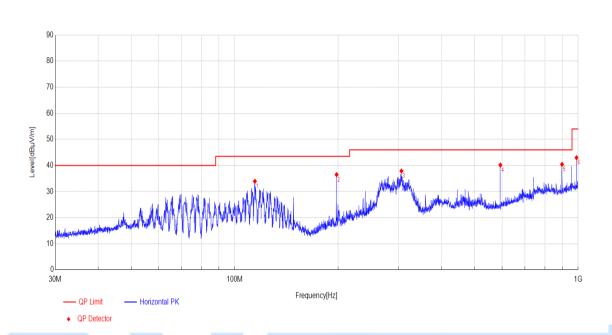
Verdict

Pass

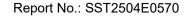

Note:

- 1. The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.
- 2. For those undesirable emission (in the Restricted Bands and out-of-band spurious) above 1GHz, According to KDB 789033 D02 v02r01 section II.G, as an alternative, antenna-port conducted measurements in conjunction with cabinet emissions tests will be permitted to demonstrate compliance.
- 3. The undesirable spurious emission range from 26GHz to 40GHz is as low as the cabinet noise, so there is no report, refer to appendix for details.
- 4. According to KDB 789033 D02 v02r01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

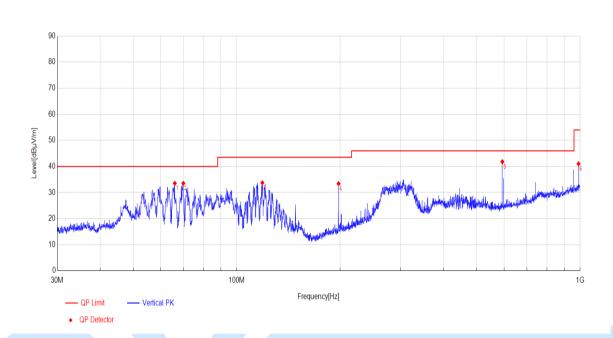
E[dBuV/m] = EIRP[dBm] + 95.2;


For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.



Test Result(30M~1GHz)						
Test mode	Mode 1	Polarity	Horizontal			
Test voltage	AC 120V/60Hz	Temp. /Hum.	25 °C/60%			

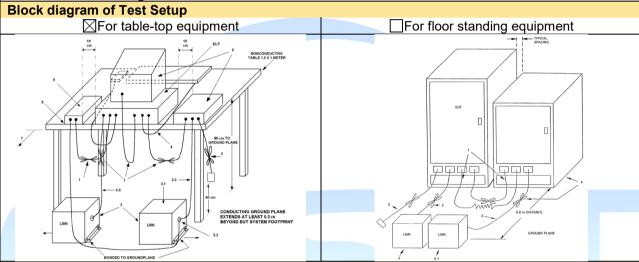

NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit QP Margin [dBµV/m]		Polarity	Verdict
1	114.4763	11.83	33.93 43.50 9.57		9.57	Horizontal	PASS
2	197.973	11.99	36.49	43.50	7.01	Horizontal	PASS
3	305.7705	15.41	37.88	46.00	8.12	Horizontal	PASS
4	593.6472	20.76	40.18	40.18 46.00 5.82		Horizontal	PASS
5	897.8074	25.05	40.44	46.00	5.56	Horizontal	PASS
6	989.5381	25.98	42.97	54.00	11.03	Horizontal	PASS

Note: Final Level =Receiver Read level + Factor Factor= Antenna Factor + Cable Loss – Preamplifier Factor Only the worst case report (802.11ac(HT20) 5190MHz)

Test Result(30M~1GHz)							
Test mode	Mode 1	Polarity	Vertical				
Test voltage	AC 120V/60Hz	Temp. /Hum.	25 °C/60%				

NO.	Freq. [MHz]	Factor [dB]	QP Value [dBµV/m]	QP Limit [dBµV/m]	QP Margin [dB]	Polarity	Verdict
1	66.0212	11.52	33.56	40.00	6.44	Vertical	PASS
2	69.8914	10.24	33.56	40.00	6.44	Vertical	PASS
3	118.7686	11.17	33.75	43.50	9.75	Vertical	PASS
4	197.973	11.99	33.43	43.50	10.07	Vertical	PASS
5	593.6472	20.76	41.82	46.00	4.18	Vertical	PASS
6	989.5381	25.98	41.03	54.00	12.97	Vertical	PASS

Note: Final Level =Receiver Read level + Factor Factor= Antenna Factor + Cable Loss – Preamplifier Factor Only the worst case report (802.11ac(HT20) 5190MHz)


6.8 Conducted Emissions

Limit

Frequency (MHz)	Quasi-peak	Average	
0.15~0.50	66 to 56*	56 to 46*	
0.50~5.0	56	46	
5.0~30	60	50	

^{*}Decreases with the logarithm of the frequency.

If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the equipment under test shall be deemed to meet both limits and the measurement using the receiver with an average detector need not be carried out

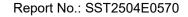
Test Instrument

Refer to Annex A for details

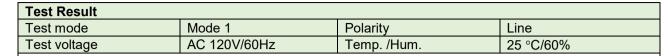
Test Procedures

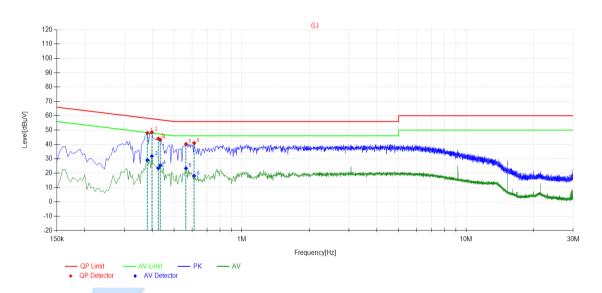
The measurement was performed in a shield room.

Measured levels of ac power-line conducted emission shall be the radio-noise voltage from the voltage probe, where permitted, or across the 50 Ω LISN port (to which the EUT is connected), as terminated into a 50 Ω EMI receiver or spectrum analyzer. All radio-noise voltage and current measurements shall be made on each current-carrying conductor at the plug end of the EUT power cord or calibrated extension cord by the use of mating plugs and receptacles on the EUT and LISN, if used. The manufacturer shall test equipment with power cords that are normally supplied or recommended by the manufacturer and that have electrical and shielding characteristics that are the same as those cords normally supplied or recommended. For measurements using a LISN, the 50 Ω measuring port is terminated into a 50 Ω EMI receiver or spectrum analyzer. All other ports are terminated into 50 Ω loads.

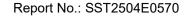

Table top devices shall be placed on a platform of nominal size 1 m by 1.5 m, raised 80 cm above the reference ground plane. The vertical conducting plane or wall of an RF-shielded (screened) room shall be located 40 cm to the rear of the EUT. Floor-standing devices shall be placed either directly on the reference ground-plane or on insulating material as described in ANSI C63.4. All other surfaces of tabletop or floor-standing EUTs shall be at least 80 cm from any other grounded conducting surface, including the case or cases of one or more LISNs.

Email: sst@sstesting.cn

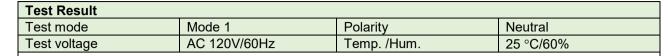

The bandwidth of the test receiver is set at 9 kHz.

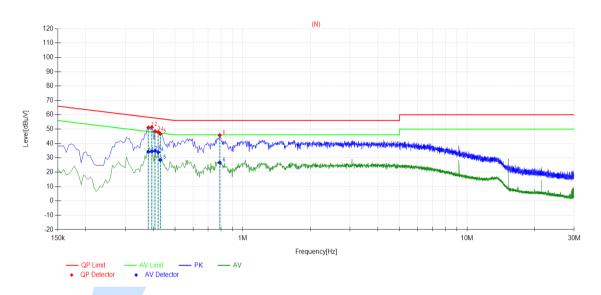

Verdict

Pass



Final Data List								
NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Туре
1	0.3795	48.01	58.29	10.28	29.13	48.29	19.16	الــ
2	0.3975	48.54	57.91	9.37	31.85	47.91	16.06	L
3	0.4245	44.06	57.36	13.30	23.55	47.36	23.81	L
4	0.4335	43.31	57.19	13.88	25.43	47.19	21.76	٦
5	0.564	40.25	56.00	15.75	23.33	46.00	22.67	L
6	0.6135	40.98	56.00	15.02	18.16	46.00	27.84	L


Note: Final Level =Receiver Read level + Factor

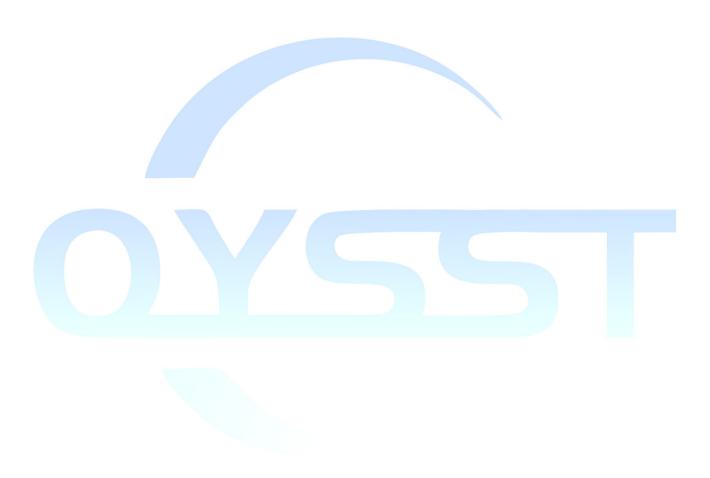

Factor= LISN Factor + Cable Loss

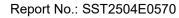
Only the worst case report (802.11a 5180MHz)

Fina	Final Data List								
NO.	Freq. [MHz]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Туре	
1	0.3795	51.08	58.29	7.21	34.15	48.29	14.14	N	
2	0.393	51.32	58.00	6.68	34.37	48.00	13.63	N	
3	0.4065	48.49	57.72	9.23	34.94	47.72	12.78	N	
4	0.42	47.91	57.45	9.54	33.89	47.45	13.56	N	
5	0.429	46.71	57.27	10.56	28.51	47.27	18.76	N	
6	0.789	45.73	56.00	10.27	26.66	46.00	19.34	N	

Note: Final Level =Receiver Read level + Factor

Factor = LISN Factor + Cable Loss

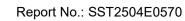

Only the worst case report (802.11a 5180MHz)



Test Setup Photo
Reference to the appendix I for details.

EUT Constructional Details

Reference to the appendix II for details.



Annex A --Test Instruments list

Radiated Emission:									
Test Equipment Manufacturer Model No. Serial No. Cal. cycle Cal. Date									
3m Semi- Anechoic Chamber	BOST	966	1	3 years	2023.01.07				
Control Room	BOST	333	1	3 years	2023.01.07				
Breiband TRILOG Messantenne	Schwarzbeck	VULB 9162	00556	1 year	2025.04.19				
Broad-band Horn Antenna	Schwarzbeck	BBHA 9120 D	02783	1 year	2025.04.19				
EMI Test Receiver	R&S	ESU8	100372	1 year	2025.04.17				
Amplifier (1-18GHz)	TSTPASS	LNA10180G45	TSAM2303003	1 year	2025.04.17				
Spectrum Analyzer	keysight	N9020A	MY51280659	1 year	2025.04.17				
Amplifier (40G)	RFsystem	TRLA- 180400G45B	23060801	1 year	2025.04.18				
Broadband Horn Antenna(40G)	Schwarzbeck	BBHA9170	01306	1 year	2025.04.19				
Spectrum analyzer	R&S	FSV40-N	101791	1 year	2025.04.17				
Loop Antenna	Schwarzbeck	FMZB 1513-60B	1513-60B 044	1 year	2025.04.18				
5W 6dB attenuator	1	DC-6GHz	1	Internal calibration	1				
Thermohygrometer	KTJ	TA218A	879030	1 year	2025.04.21				
EMI Test Software	Tonscend	TS+	V5.0	1	1				

Conducted Emission								
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date			
Shielding Room	BOST	854	/	3 year	2023.01.07			
EMI Test Receiver	R&S	ESR3	103057	1 year	2025.04.17			
LISN	R&S	ENV 216	102832	1 year	2025.04.17			
ISN	Schwarzbeck	NTFM 8158	00347	1 year	2025.04.17			
ISN	Schwarzbeck	CAT3 8158	00279	1 year	2025.04.17			
ISN	Schwarzbeck	CAT5 8158	00524	1 year	2025.04.17			
Sensor probe	TCTEST	CSP 9160A	81837	1 year	2025.04.17			
High impedance capacitive voltage probe	Schwarzbeck	CVP 9222C	00221	1 year	2025.04.22			
Voltage probe	Schwarzbeck	TK 9420	01304	1 year	2025.04.17			
Antenna port test assembly	1	DC-3GHz	1	Internal calibration	1			
Thermohygrometer	KTJ	TA218A	879036	1 year	2025.04.21			
EMI Test Software	Tonscend	TS+	V4.0	1	1			

RF conducted					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. cycle	Cal.Date
Shielding Room	BOST	543	1	3 year	2023.01.07
Spectrum analyzer	keysight	N9020A	MY51280659	1 year	2025.04.17
Analog signal source	Agilent	N5181A	MY48180054	1 year	2025.04.17
Vector signal source	keysight	N5172B	MY57281610	1 year	2025.04.17
Thermohygrometer	KTJ	TA218A	879032	1 year	2025.04.21
Spectrum analyzer	R&S	FSV40-N	1	1 year	2025.04.17
Power meter 1	TST	TST V2	1	1 year	2025.04.17
Test Software	TST PASS	TST PASS	V2.0	1	1
Temperature and humidity chamber	Guangdong fenghe	FH-TH-1000	FH24032017	1 year	2024.04.26

