

■ Report No.: DDT-R15Q819-3E6
■ Issued Date: Nov. 19, 2015

FCC SAR TEST REPORT FOR

Applicant	:	VIEVU, LLC
Address	:	105 W. John St, Seattle WA 98119, USA
Equipment under Test	:	Wearable Video Camera
Model No.	:	LE4 mini
FCC ID	:	2ABBNLE4MIN
Trade Mark	:	VIEVU
Manufacturer	:	VIEVU, LLC
Address	:	105 W. John St, Seattle WA 98119, USA

Issued By: Dongguan Dongdian Testing Service Co., Ltd.

Add: No. 17, Zongbu Road 2, Songshan Lake Sci&Tech, Industry Park, Dongguan City, Guangdong Province, China, 523808

Tel: +86-0769-22891499 [Http://www.dgddt.com](http://www.dgddt.com)

REPORT

TEST REPORT DECLARE

Applicant	:	VIEVU, LLC
Address	:	105 W. John St, Seattle WA 98119, USA
Equipment under Test	:	Wearable Video Camera
Model No.	:	LE4 mini
FCC ID	:	2ABBNLE4MIN
Trade Mark	:	VIEVU
Manufacturer	:	VIEVU, LLC
Address	:	105 W. John St, Seattle WA 98119, USA

We Declare:

The equipment described above is evaluated by Dongguan Dongdian Testing Service Co., Ltd and in the configuration tested the equipment complied with the standards specified above. The test results are contained in this test report and Dongguan Dongdian Testing Service Co., Ltd is assumed of full responsibility for the accuracy and completeness of these tests.

Report No.:	DDT-R15Q819-3E6
Date of Test:	Sep. 17, 2015 --- Nov. 18, 2015

Prepared By:

Damon Hu
Damon Hu/Engineer

Approved By:

Kevin Feng/EMC Manager

Note: This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Dongguan Dongdian Testing Service Co., Ltd.

Contents

<u>1.</u>	<u>TEST STANDARDS/PROCEDURES REFERENCE/FCC KDBS</u>	<u>4</u>
<u>2.</u>	<u>SUMMARY</u>	<u>5</u>
2.1.	General Remarks	5
2.2.	Accessories of EUT	5
2.3.	Short description of the Equipment under Test (EUT)	6
2.4.	TEST Configuration	6
2.5.	EUT operation mode	7
2.6.	EUT configuration	7
<u>3.</u>	<u>TEST ENVIRONMENT</u>	<u>7</u>
3.1.	Address of the test laboratory	7
3.2.	Environmental conditions	7
3.3.	SAR Limits	8
3.4.	Equipments Used during the Test	8
<u>4.</u>	<u>SAR MEASUREMENTS SYSTEM CONFIGURATION</u>	<u>9</u>
4.1.	SAR Measurement Set-up	9
4.2.	DASY5 E-field Probe System	10
4.3.	Phantoms	11
4.4.	Device Holder	11
4.5.	Scanning Procedure	12
4.6.	Data Storage and Evaluation	12
4.7.	SAR Measurement System	14
4.8.	Tissue equivalent liquid properties	14
4.9.	System Check	14
4.10.	SAR measurement procedure	15
<u>5.</u>	<u>TEST CONDITIONS AND RESULTS</u>	<u>18</u>
5.1.	Conducted Power Results	18
5.2.	Test reduction procedure	18
5.3.	SAR Measurement Results	18
5.4.	SAR Measurement Variability	19
5.5.	Measurement Uncertainty(300MHz-3GHz)	19
5.6.	System Check Results	21
5.7.	SAR Test Graph Results	22
<u>6.</u>	<u>CALIBRATION CERTIFICATE</u>	<u>32</u>
6.1.	Probe Calibration Ceriticate	32
6.2.	D2450V2 Dipole Calibration Ceriticate	43
6.3.	DAE4 Calibration Ceriticate	51
<u>7.</u>	<u>TEST SETUP PHOTOS</u>	<u>54</u>

1. TEST STANDARDS/PROCEDURES REFERENCE/FCC KDBs

The tests were performed according to following standards:

[IEEE 1528-2003 \(2003-04\)](#): Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques:

[IEEE 1528-2013 \(2014-06\)](#): Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques

[IEEE Std. C95-3 \(2002\)](#): IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields – RF and Microwave

[ANSI/IEEE Std. C95-1 \(1992\)](#): IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

[KDB941225D07v01r02](#): UMPC Mini Tablet

[KDB248227 D01v02r02](#): SAR Guidance for IEEE 802 11 Wi-Fi SAR v02r01

[KDB 865664D01v01r04](#): SAR Measurement Requirements for 100 MHz to 6 GHz

[KDB 865664D02v01r02](#): RF Exposure Compliance Reporting and Documentation Considerations

[KDB 447498D01v06](#): Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies

2. SUMMARY

2.1. General Remarks

EUT* Name	:	Wearable Video Camera
Model Number	:	LE4 mini
EUTfunction description	:	Please reference user manual of this device
Power supply	:	DC 5V from external power adapter input AC 120V/60Hz and DC 3.7V from built-in battery
Operation frequency range	:	IEEE 802.11b: 2412MHz—2462MHz
Modulation type	:	IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)
Maximum Reported SAR Values	:	Body worn: 0.746W/Kg (100% Duty Cycle)
Antenna Type	:	External non-standard SMA antenna, Maximum Gain: 0.5dBi
Date of Receipt	:	Sep.15,2015
Sample Type	:	production
Exposure category:	:	General population / Uncontrolled environment

Note1: EUT is the ab.of equipment under test.

2.2. Accessories of EUT

Description of Accessories	Manufacturer	Model number or Type	Serial No.	Other
/	/	/	/	/

2.3. Short description of the Equipment under Test (EUT)

The spatial peak SAR values were assessed for systems. Battery and accessories shall be specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

2.4. TEST Configuration

For WiFi SAR testing, a communication link is set up with the testing software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. The RF signal utilized in SAR measurement has 100% duty cycle and its crest factor is 1. The test procedures in KDB 248227D01v02r02 are applied. (Refer to KDB 248227D01v02r02 for more details)

1) Initial Test Position Procedure

For exposure condition with multiple test position, such as handsets operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all position in an exposure condition. The test position with the highest extrapolated(peak) SAR is used as the initial test position. When reported SAR for the initial test position is $\leq 0.4\text{W/kg}$, no additional testing for the remaining test position is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR position until the reported SAR result is $\leq 0.8\text{W/kg}$ or all test position are measured. For all positions/configurations tested using the initial test position and subsequent test positions, when the *reported* SAR is $> 0.8\text{ W/kg}$, SAR is measured for these test positions/configurations on the subsequent next highest measured output power channel(s) until the *reported* SAR is $\leq 1.2\text{ W/kg}$ or all required channels are tested.

2) Initial Test Configuration Procedure

An initial test configuration is determined for OFDM transmission modes according to the channel bandwidth, modulation and data rate combination(s) with the highest maximum output power specified for production units in each standalone and aggregated frequency band. SAR is measured using the highest measured maximum output power channel. For configurations with the same specified or measured maximum output power, additional transmission mode and test channel selection procedures are required (see section 5.3.2 of KDB 248227D01v02r01). SAR test reduction of subsequent highest output test channels is based on the reported SAR of the initial test configuration.

For next to the ear, hotspot mode and UMC mini-tablet exposure configurations where multiple test positions are required, the initial test position procedure is applied to minimize the number of test positions required for SAR measurement using the initial test configuration transmission mode. For fixed exposure conditions that do not have multiple SAR test positions, SAR is measured in the transmission mode determined by the initial test configuration. When the reported SAR of the initial test configuration is $> 0.8\text{ W/kg}$, SAR measurement is required for the subsequent next highest measured output power channel(s) in the initial test configuration until the reported SAR is $\leq 1.2\text{ W/kg}$ or all required channels are tested.

3) Sub Test Configuration Procedure

SAR measurement requirements for the remaining 802.11 transmission mode configurations that have not been tested in the initial test configuration are determined separately for each standalone and aggregated frequency band, in each exposure condition, according to the maximum output power specified for production units.

When the highest reported SAR for the initial test configuration, according to the initial test position or fixed exposure position requirements, is adjusted by the ratio of the subsequent test configuration to initial test configuration specified maximum output power and the adjusted SAR is $\leq 1.2\text{ W/kg}$, SAR is not required for that subsequent test configuration.

4) WiFi 2.4G SAR Test Procedures

Separate SAR procedures are applied to DSSS and OFDM configurations in the 2.4 GHz band to simplify DSSS test requirements. For 802.11b DSSS SAR measurements, DSSS SAR procedure applies to fixed exposure test position and initial test position procedure applies to multiple exposure test positions.

A) 802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel (section 3.1 of of KDB 248227D01v02) for the exposure configuration is $\leq 0.8\text{ W/kg}$, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- When the reported SAR is $> 0.8\text{ W/kg}$, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is $> 1.2\text{ W/kg}$, SAR is required for the third channel; i.e., all channels require testing.

B) 2.4GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied (section 5.3 of of KDB 248227D01v02r01). SAR is not required for the following 2.4 GHz OFDM conditions.

- When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

2.5. EUT operation mode

The EUT has been tested under typical operating condition and The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

2.6. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- - supplied by the manufacturer
- - supplied by the lab

<input type="radio"/>	Power Cable	Length (m) :	/
		Shield :	/
		Detachable :	/
<input type="radio"/>	Multimeter	Manufacturer :	/
		Model No. :	/

Battery1#: Model: KEBT-650
3XAA 4.5V-650mAh

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

The test was subcontracted to The Testing and Technology Center for Industrial Products of Shenzhen Entry-Exit Inspection and Quarantine Bureau
No.289, 8th Industry Road, Nanshan District, Shenzhen, Guangdong, China

The sites are constructed in conformance with the requirements
of ANSI C63.7, ANSI C63.4 (2009) and CISPR Publication 22.

3.2. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	18-25 ° C
Humidity:	40-65 %
Atmospheric pressure:	950-1050mbar

3.3. SAR Limits

FCC Limit (1g Tissue)

EXPOSURE LIMITS	SAR (W/kg)	
	(General Population / Uncontrolled Exposure Environment)	(Occupational / Controlled Exposure Environment)
Spatial Average (averaged over the whole body)	0.08	0.4
Spatial Peak (averaged over any 1 g of tissue)	1.60	8.0
Spatial Peak (hands/wrists/feet/ankles averaged over 10 g)	4.0	20.0

Population/Uncontrolled Environments are defined as locations where there is the exposure of individual who have no knowledge or control of their exposure.

Occupational/Controlled Environments are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure (i.e. as a result of employment or occupation).

3.4. Equipments Used during the Test

Test Equipment	Manufacturer	Type/Model	Serial Number	Calibration	
				Last Calibration	Calibration Interval
Data Acquisition Electronics DAEx	SPEAG	DAE4	1315	2014/11/25	1
E-field Probe	SPEAG	EX3DV4	3962	2014/11/24	1
System Validation Dipole D450V3	SPEAG	D2450V2	860	2014/11/19	1
Network analyzer	Agilent	8753E	US37390562	2014/12/25	1
Dielectric Probe Kit	Agilent	85070E	US44020288	/	/
Power meter	Agilent	E4417A	GB41292254	2014/12/26	1
Power sensor	Agilent	8481H	MY41095360	2014/12/26	1
Universal Radio Communication Tester	ROHDE & SCHWARZ	CMU200	112012	2014/10/23	1

4. SAR Measurements System configuration

4.1. SAR Measurement Set-up

The DASY5 system for performing compliance tests consists of the following items:

A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).

A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.

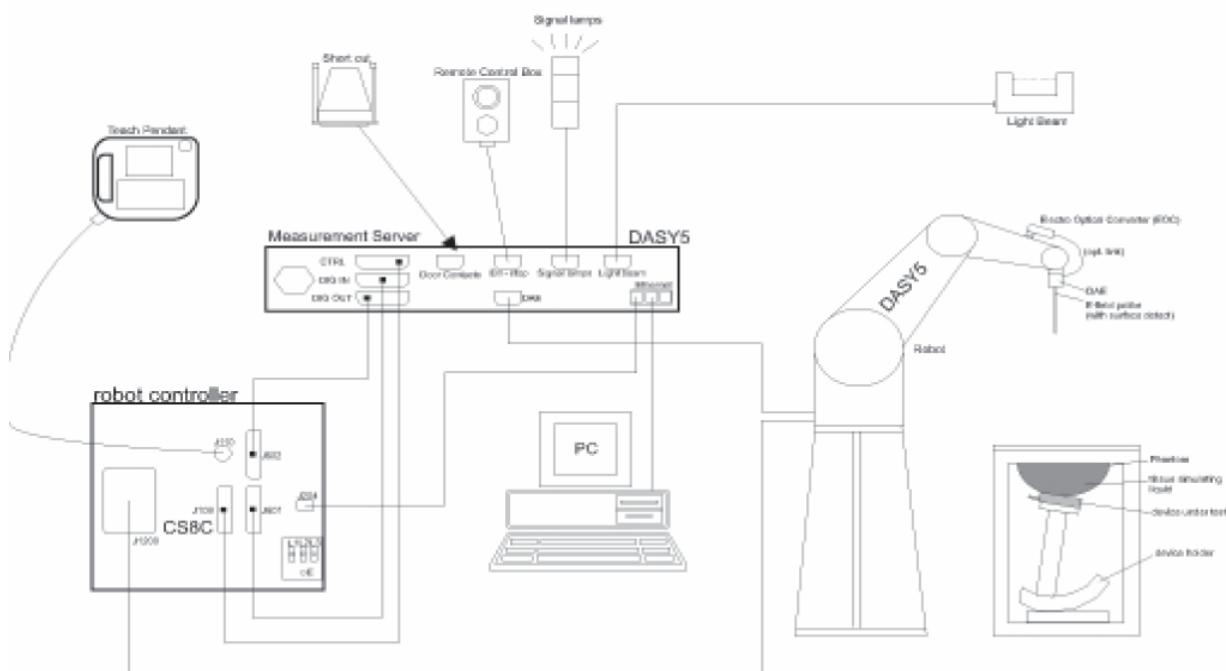
A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.

A unit to operate the optical surface detector which is connected to the EOC.

The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.

The DASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows 2003.

DASY5 software and SEMCAD data evaluation software.


Remote control with teach panel and additional circuitry for robot safety such as warning lamps, etc.

The generic twin phantom enabling the testing of left-hand and right-hand usage.

The device holder for handheld mobile phones.

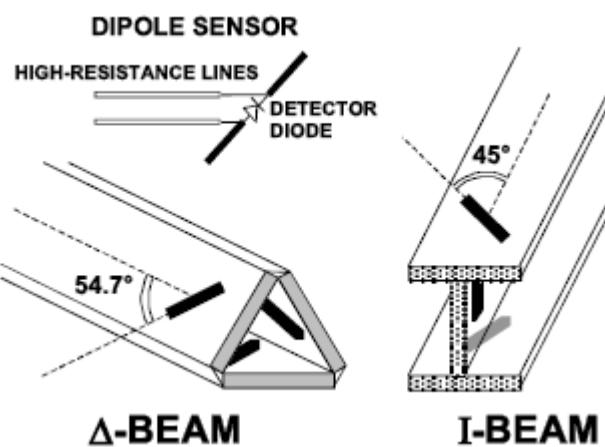
Tissue simulating liquid mixed according to the given recipes.

System validation dipoles allowing to validate the proper functioning of the system.

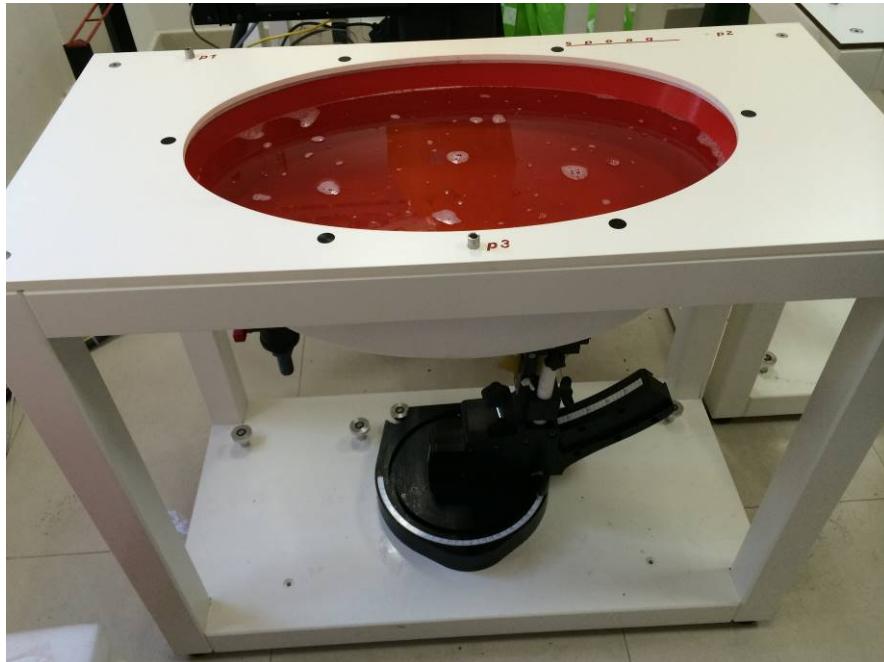
4.2.DASY5 E-field Probe System

The SAR measurements were conducted with the dosimetric probe ES3DV3 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

Probe Specification


Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available.
Frequency	10 MHz to 4 GHz; Linearity: ± 0.2 dB (30 MHz to 4 GHz)
Directivity	± 0.2 dB in HSL (rotation around probe axis) ± 0.3 dB in tissue material (rotation normal to probe axis)
Dynamic Range	5 μ W/g to > 100 mW/g; Linearity: ± 0.2 dB
Dimensions	Overall length: 337 mm (Tip: 20 mm) Tip diameter: 3.9 mm (Body: 12 mm) Distance from probe tip to dipole centers: 2.0 mm
Application	General dosimetry up to 4 GHz Dosimetry in strong gradient fields Compliance tests of mobile phones
Compatibility	DASY3, DASY4, DASY52 SAR and higher, EASY4/MRI

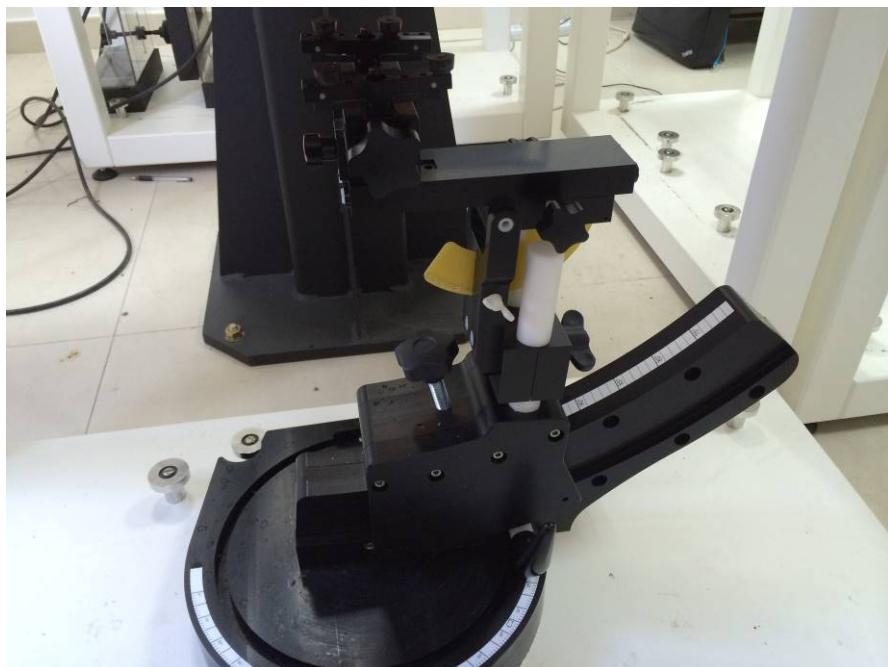
Isotropic E-Field Probe


The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:

4.3. Phantoms

Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue-simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.



ELI4 Phantom

4.4. Device Holder

The device was placed in the device holder (illustrated below) that is supplied by SPEAG as an integral part of the DASY system.

The DASY device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.

Device holder supplied by SPEAG

4.5.Scanning Procedure

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The “reference” and “drift” measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT’s output power and should vary max. $\pm 5\%$.

The “surface check” measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above $\pm 0.1\text{mm}$). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe (It does not depend on the surface reflectivity or the probe angle to the surface within $\pm 30^\circ$.)

Area Scan

The Area Scan is used as a fast scan in two dimensions to find the area of high field values before running a detailed measurement around the hot spot. Before starting the area scan a grid spacing of 15 mm x 15 mm is set. During the scan the distance of the probe to the phantom remains unchanged. After finishing area scan, the field maxima within a range of 2 dB will be ascertained.

Zoom Scan

Zoom Scans are used to estimate the peak spatial SAR values within a cubic averaging volume containing 1 g and 10 g of simulated tissue. The default Zoom Scan is done by 7x7x7 points within a cube whose base is centered around the maxima found in the preceding area scan.

Spatial Peak Detection

The procedure for spatial peak SAR evaluation has been implemented and can determine values of masses of 1g and 10g, as well as for user-specific masses. The DASY5 system allows evaluations that combine measured data and robot positions, such as: • maximum search • extrapolation • boundary correction • peak search for averaged SAR During a maximum search, global and local maxima searches are automatically performed in 2-D after each Area Scan measurement with at least 6 measurement points. It is based on the evaluation of the local SAR gradient calculated by the Quadratic Shepard’s method. The algorithm will find the global maximum and all local maxima within -2 dB of the global maxima for all SAR distributions.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. Several measurements at different distances are necessary for the extrapolation. Extrapolation routines require at least 10 measurement points in 3-D space. They are used in the Zoom Scan to obtain SAR values between the lowest measurement points and the inner phantom surface. The routine uses the modified Quadratic Shepard’s method for extrapolation. For a grid using 7x7x7 measurement points with 5mm resolution amounting to 343 measurement points, the uncertainty of the extrapolation routines is less than 1% for 1g and 10g cubes.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube 7x7x7 scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 5mm steps.

4.6.Data Storage and Evaluation

Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension “.DA4”. The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Data Evaluation

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt

readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters:	- Sensitivity	Normi, ai0, ai1, ai2
	- Conversion factor	ConvFi
	- Diode compression point	Dcp <i>i</i>
Device parameters:	- Frequency	f
	- Crest factor	cf
Media parameters:	- Conductivity	σ
	- Density	ρ

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot \frac{cf}{dcpi}$$

With	V_i = compensated signal of channel i	$(i = x, y, z)$
	U_i = input signal of channel i	$(i = x, y, z)$
	cf = crest factor of exciting field	(DASY parameter)
	dcpi = diode compression point	(DASY parameter)

From the compensated input signals the primary field data for each channel can be evaluated:

$$E - \text{fieldprobes} : \quad E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$

$$H - \text{fieldprobes} : \quad H_i = \sqrt{V_i \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}}$$

With	V_i	= compensated signal of channel i	$(i = x, y, z)$
	Norm <i>i</i>	= sensor sensitivity of channel i	$(i = x, y, z)$
		[mV/(V/m) ²]	for E-field Probes
	ConvF	= sensitivity enhancement in solution	
	aij	= sensor sensitivity factors for H-field probes	
	f	= carrier frequency [GHz]	
	Ei	= electric field strength of channel i in V/m	
	Hi	= magnetic field strength of channel i in A/m	

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1'000}$$

with	SAR	= local specific absorption rate in mW/g
	Etot	= total field strength in V/m
	σ	= conductivity in [mho/m] or [Siemens/m]
	ρ	= equivalent tissue density in g/cm ³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid.

4.7.SAR Measurement System

The SAR measurement system being used is the DASY5 system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

4.7.1 Tissue Dielectric Parameters for Head and Body Phantoms

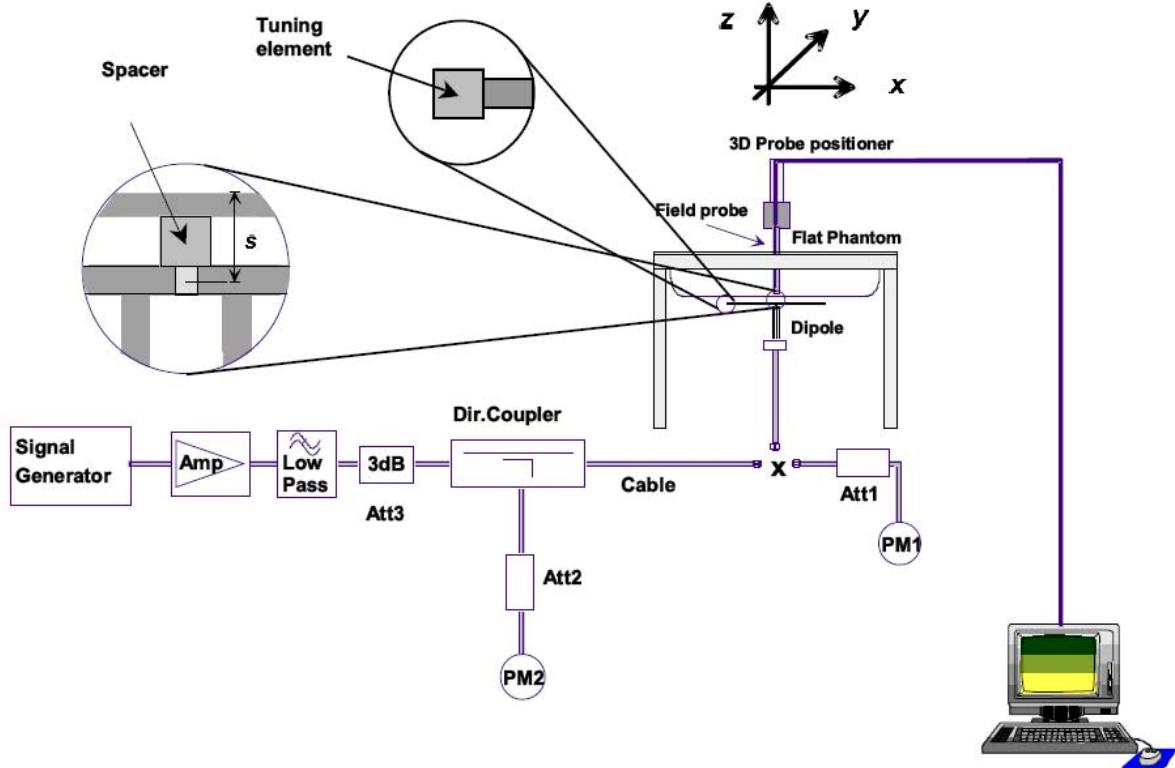
The liquid is consisted of water,salt,Glycol,Sugar,Preventol and Cellulose.The liquid has previously been proven to be suited for worst-case. It's satisfying the latest tissue dielectric parameters requirements proposed by the KDB865664.

Target Frequency (MHz)	Head		Body	
	ϵ_r	σ (S/m)	ϵ_r	σ (S/m)
150	52.3	0.76	61.9	0.80
300	45.3	0.87	58.2	0.92
450	43.5	0.87	56.7	0.94
835	41.5	0.90	55.2	0.97
900	41.5	0.97	55.0	1.05
915	41.5	0.98	55.0	1.06
1450	40.5	1.20	54.0	1.30
1610	40.3	1.29	53.8	1.40
1800-2000	40.0	1.40	53.3	1.52
2450	39.2	1.80	52.7	1.95
3000	38.5	2.40	52.0	2.73
5800	35.3	5.27	48.2	6.00

(ϵ_r = relative permittivity, σ = conductivity and $\rho = 1000 \text{ kg/m}^3$)

4.8.Tissue equivalent liquid properties

Dielectric performance of Body tissue simulating liquid.


Tissue Type	Measured Frequency (MHz)	Target Tissue		Measured Tissue			Liquid Temp.	Test Data
		ϵ_r	σ	ϵ_r	Dev. %	σ		
2450B	2450	52.7	1.95	51.68	-1.9%	1.95	0.0%	22.1 degree 2015-09-17

4.9.System Check

The purpose of the system check is to verify that the system operates within its specifications at the device test frequency. The system check is simple check of repeatability to make sure that the system works correctly at the time of the compliance test;

System check results have to be equal or near the values determined during dipole calibration with the relevant liquids and test system ($\pm 10\%$).

System check is performed regularly on all frequency bands where tests are performed with the DASY5 system.

System Validation of Body

Measurement is made at temperature 22.5 °C and relative humidity 52%.

Tissue temperature 22.1 °C

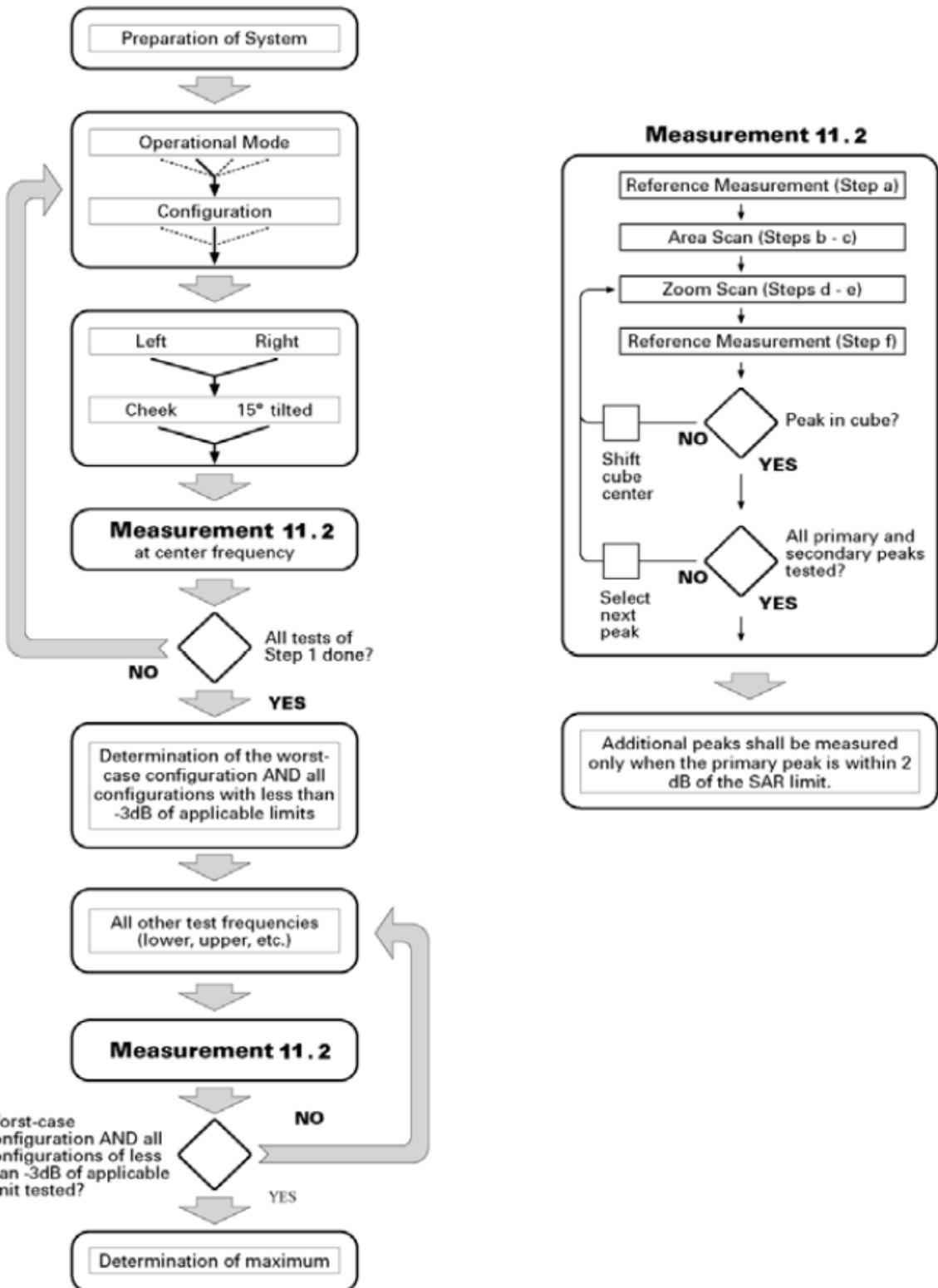
Measurement Date: 2015/09/17

Verification results	Frequency (MHz)	Target value (W/kg)		Measured value (W/kg)		Deviation	
		1 g Average	10 g Average	1 g Average	10 g Average	1 g Average	10 g Average
		2450	13.2	6.06	12.7	5.62	-3.8%

4.10. SAR measurement procedure

4.10.1 Tests to be performed

In order to determine the highest value of the peak spatial-average SAR of a handset, all device positions, configurations and operational modes shall be tested for each frequency band according to steps 1 to 3 below. A flowchart of the test process is shown in Picture 11.1.


Step 1: The tests described in 11.2 shall be performed at the channel that is closest to the centre of the transmit frequency band (f_c) for:

- all device positions (cheek and tilt, for both left and right sides of the SAM phantom);
- all configurations for each device position in a), e.g., antenna extended and retracted, and
- all operational modes, e.g., analogue and digital, for each device position in a) and configuration in b) in each frequency band.

If more than three frequencies need to be tested according to 11.1 (i.e., $N_c > 3$), then all frequencies, configurations and modes shall be tested for all of the above test conditions.

Step 2: For the condition providing highest peak spatial-average SAR determined in Step 1, perform all tests described in 11.2 at all other test frequencies, i.e., lowest and highest frequencies. In addition, for all other conditions (device position, configuration and operational mode) where the peak spatial-average SAR value determined in Step 1 is within 3 dB of the applicable SAR limit, it is recommended that all other test frequencies shall be tested as well.

Step 3: Examine all data to determine the highest value of the peak spatial-average SAR found in Steps 1 to 2.

Picture 10.1 Block diagram of the tests to be performed

4.10.2 General Measurement Procedure

The area and zoom scan resolutions specified in the table below must be applied to the SAR measurements and fully documented in SAR reports to qualify for TCB approval. Probe boundary effect error compensation is required for measurements with the probe tip closer than half a probe tip diameter to the phantom surface. Both the probe tip diameter and sensor offset distance must satisfy measurement protocols; to ensure probe boundary effect errors are minimized and the higher fields closest to the phantom surface can be correctly measured and extrapolated to the phantom surface for computing 1-g SAR. Tolerances of the post-processing algorithms must be verified by the test laboratory for the scan resolutions used in the SAR measurements, according to the reference distribution functions specified in IEEE Std 1528-2003. The results should be documented as part of the system validation records and may be requested to support test results when all the measurement parameters in the following table are not satisfied.

		≤ 3 GHz	> 3 GHz
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface		5 ± 1 mm	$\frac{1}{2}\delta \cdot \ln(2) \pm 0.5$ mm
Maximum probe angle from probe axis to phantom surface normal at the measurement location		$30^\circ \pm 1^\circ$	$20^\circ \pm 1^\circ$
		≤ 2 GHz: ≤ 15 mm $2 - 3$ GHz: ≤ 12 mm	$3 - 4$ GHz: ≤ 12 mm $4 - 6$ GHz: ≤ 10 mm
Maximum area scan spatial resolution: $\Delta x_{\text{Area}}, \Delta y_{\text{Area}}$		When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.	
Maximum zoom scan spatial resolution: $\Delta x_{\text{Zoom}}, \Delta y_{\text{Zoom}}$		≤ 2 GHz: ≤ 8 mm $2 - 3$ GHz: ≤ 5 mm*	$3 - 4$ GHz: ≤ 5 mm* $4 - 6$ GHz: ≤ 4 mm*
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{\text{Zoom}}(n)$		$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm
	graded grid	$\Delta z_{\text{Zoom}}(1)$: between 1 st two points closest to phantom surface	≤ 4 mm
		$\Delta z_{\text{Zoom}}(n > 1)$: between subsequent points	$\leq 1.5 \cdot \Delta z_{\text{Zoom}}(n-1)$
Minimum zoom scan volume	x, y, z	≥ 30 mm	$3 - 4$ GHz: ≥ 28 mm $4 - 5$ GHz: ≥ 25 mm $5 - 6$ GHz: ≥ 22 mm

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

* When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is ≤ 1.4 W/kg, ≤ 8 mm, ≤ 7 mm and ≤ 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

4.10.3 Power Drift

To control the output power stability during the SAR test, DASY5 system calculates the power drift by measuring the E-field at the same location at the beginning and at the end of the measurement for each test position. These drift values can be found in Table 14.1 to Table 14.11 labeled as: (Power Drift [dB]). This ensures that the power drift during one measurement is within 5%.

4.10.4 Area Scan Based 1-g SAR

4.10.4.1 Requirement of KDB

According to the KDB447498 D01 v06, when the implementation is based the specific polynomial fit algorithm as presented at the 29th Bioelectromagnetics Society meeting (2007) and the estimated 1-g SAR is ≤ 1.2 W/kg, a zoom scan measurement is not required provided it is also not needed for any other purpose; for example, if the peak SAR location required for simultaneous transmission SAR test exclusion can be determined accurately by the SAR system or manually to discriminate between distinctive peaks and scattered noisy SAR distributions from area scans.

There must not be any warning or alert messages due to various measurement concerns identified by the SAR system; for example, noise in measurements, peaks too close to scan boundary, peaks are too sharp, spatial resolution and uncertainty issues etc. The SAR system verification must also demonstrate that the area scan estimated 1-g SAR is within 3% of the zoom scan 1-g SAR (See Annex B). When all the SAR results for each exposure condition in a frequency band and wireless mode are based on estimated 1-g SAR, the 1-g SAR for the highest SAR configuration must be determined by a zoom scan.

5. TEST CONDITIONS AND RESULTS

5.1. Conducted Power Results

According KDB 447498 D01 General RF Exposure Guidance v06 Section 4.1.2) states that “Unless it is specified differently in the published RF exposure KDB procedures, these requirements also apply to test reduction and test exclusion considerations. Time-averaged maximum conducted output power applies to SAR and, as required by § 2.1091(c), time-averaged ERP applies to MPE. When an antenna port is not available on the device to support conducted power measurement

Mode: 11b		
CH	Type	Result (dBm)
CH1	PK	17.58
	Average	13.12
CH6	PK	18.56
	Average	14.41
CH11	PK	19.54
	Average	15.68

Manufacturing tolerance

802.11b			
Test Frequency(MHz)	2412	2437	2462
Target (dBm)	14.0(ERP)	14.0(ERP)	14.0(ERP)
Tolerance \pm (dB)	± 2.00	± 2.00	± 2.00

5.2. Test reduction procedure

The maximum power level, $P_{max,m}$, that can be transmitted by a device before the SAR averaged over a mass, m, exceeds a given limit, SAR_{lim} , can be defined. Any device transmitting at power levels below $P_{max,m}$ can then be excluded from SAR testing. The lowest possible value for $P_{max,m}$ is: $P_{max,m} = SAR_{lim} \cdot m$.

5.3. SAR Measurement Results

SAR Values –Body worn with the metal clip

Test Frequency		Mode/ Band	Maximum Allowed Power (dBm)	Conducted power (dBm)	Test Config.	Measurement SAR over 1g(W/kg)	Power drift	Scaling Factor	Reported SAR over1g (W/kg)	SAR limit 1g (W/kg)	Ref. Plot #
Chann.	MHz					100% Duty Cycle			100% Duty Cycle		
11	2462	802.11b	16	15.68	front	0.661	0.13	1.076	0.707	1.60	1
11	2462	802.11b	16	15.68	back	0.409	0.15	1.076	0.443	1.60	2
11	2462	802.11b	16	15.68	Left	0.059	0.18	1.076	0.066	1.60	3
11	2462	802.11b	16	15.68	Right	0.415	0.12	1.076	0.445	1.60	4
11	2462	802.11b	16	15.68	bottom	0.087	0.18	1.076	0.099	1.60	5

SAR Values –Body worn without the metal clip

Test Frequency		Mode/ Band	Maximum Allowed Power (dBm)	Conducted power (dBm)	Test Config.	Measurement SAR over 1g(W/kg)	Power drift	Scaling Factor	Reported SAR over1g (W/kg)	SAR limit 1g (W/kg)	Ref. Plot #
Chann.	MHz					100% Duty Cycle			100% Duty Cycle		
11	2462	802.11b	16	15.68	front	0.652	0.15	1.076	0.702	1.60	6
11	2462	802.11b	16	15.68	back	0.693	0.10	1.076	0.746	1.60	7
11	2462	802.11b	16	15.68	Left	0.061	0.09	1.076	0.066	1.60	8
11	2462	802.11b	16	15.68	Right	0.413	0.13	1.076	0.445	1.60	9
11	2462	802.11b	16	15.68	bottom	0.092	0.19	1.076	0.099	1.60	10

5.4. SAR Measurement Variability

SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg ($\sim 10\%$ from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20 .

5.5.Measurement Uncertainty(300MHz-3GHz)

18	Phantom uncertainty	B	4.00%	R	$\sqrt{3}$	1	1	2.30%	2.30%	∞
19	Liquid conductivity (target)	B	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
20	Liquid conductivity (meas.)	A	0.50%	N	1	0.64	0.43	0.32%	0.26%	∞
21	Liquid permittivity (target)	B	5.00%	R	$\sqrt{3}$	0.64	0.43	1.80%	1.20%	∞
22	Liquid cpermittivity (meas.)	A	0.16%	N	1	0.64	0.43	0.10%	0.07%	∞
Combined standard uncertainty	$u_c = \sqrt{\sum_{i=1}^{22} c_i^2 u_i^2}$		/	/	/	/	/	10.20%	10.00%	∞
Expanded uncertainty (confidence interval of 95 %)	$u_e = 2u_c$		/	R	K=2	/	/	20.40%	20.00%	∞

5.6. System Check Results

System Performance Check at 2450 MHz Body TSL

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 860

Date/Time: 09/17/2015 09:15:17 AM

Communication System: WI-FI(2.4GHz); Frequency: 2450 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): $f = 2450$ MHz; $\sigma = 1.951$ S/m; $\epsilon_r = 51.68$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47,7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

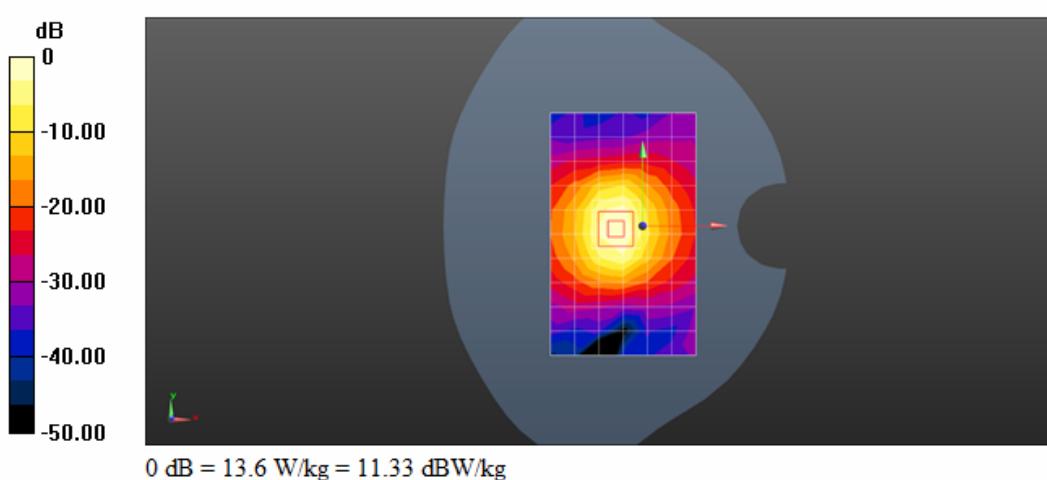
Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (12x15x1): Measurement grid: dx=12.00 mm, dy=12.00 mm

Maximum value of SAR (interpolated) = 13.6 W/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.42 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 29.11 mW/g

SAR(1 g) = 12.7 mW/g; SAR(10 g) = 5.62 mW/ g

Maximum value of SAR (measured) = 14.7 W/kg

System Performance Check 2450MHz 250mW

5.7.SAR Test Graph Results

Front towards Phantom 2462 MHz with metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: dx=12.00 mm, dy=12.00 mm

Maximum value of SAR (interpolated) = 0.745/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.965 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 2.15 W/kg

SAR(1 g) = 0.661 mW/g; SAR(10 g) = 0.248mW/g

Maximum value of SAR (measured) = 0.847 W/kg

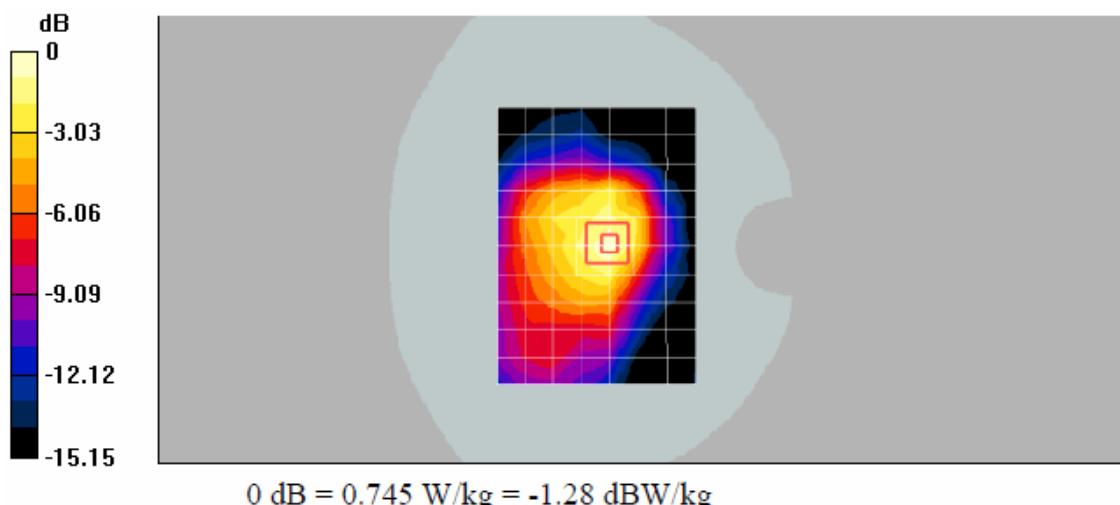


Figure 1: Front towards Phantom 2462MHz

Back towards Phantom 2462 MHz with metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: $dx=12.00 \text{ mm}$, $dy=12.00 \text{ mm}$

Maximum value of SAR (interpolated) = 0.492/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 5.872 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 1.83W/kg

SAR(1 g) = 0.409mW/g; SAR(10 g) = 0.153mW/g

Maximum value of SAR (measured) = 0.487 W/kg

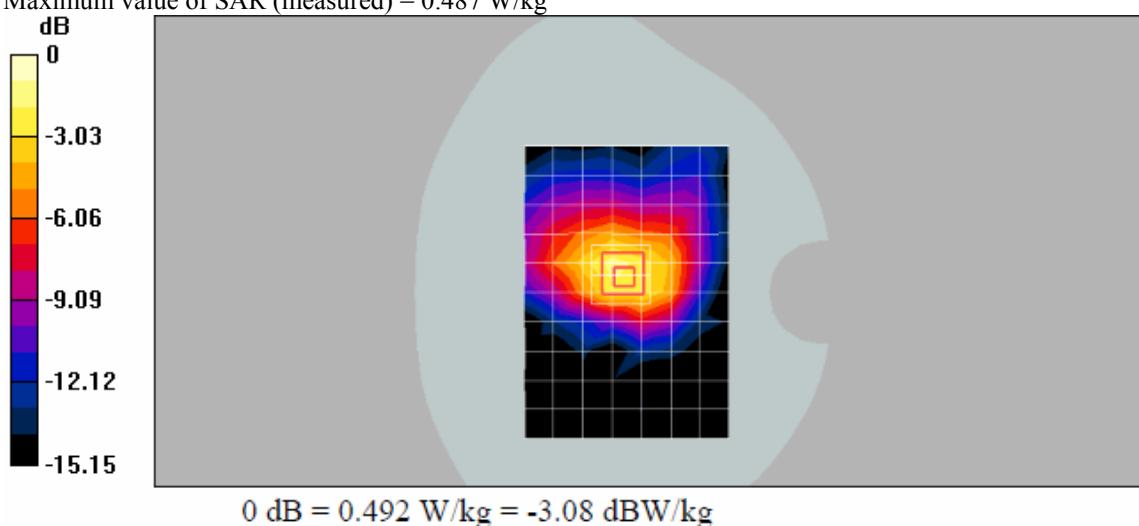


Figure 2: Back towards Phantom 2462MHz

Left towards Phantom 2462 MHz with metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

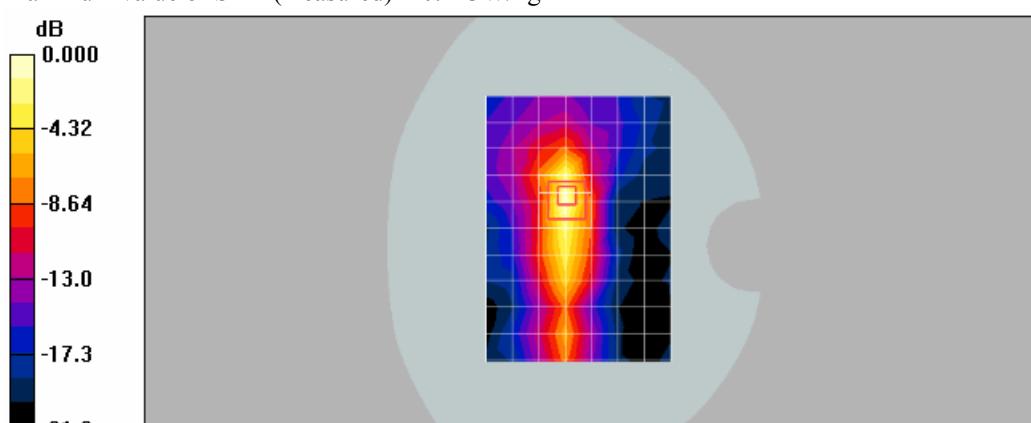
Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: $dx=12.00 \text{ mm}$, $dy=12.00 \text{ mm}$

Maximum value of SAR (interpolated) = 0.162/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 0.968 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.23W/kg

SAR(1 g) = 0.059mW/g; SAR(10 g) = 0.032mW/g

Maximum value of SAR (measured) = 0.143W/kg

0 dB = 0.162 W/kg = -7.90 dBW/kg

Figure 3: Left towards Phantom 2462MHz

Right towards Phantom 2462 MHz with metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

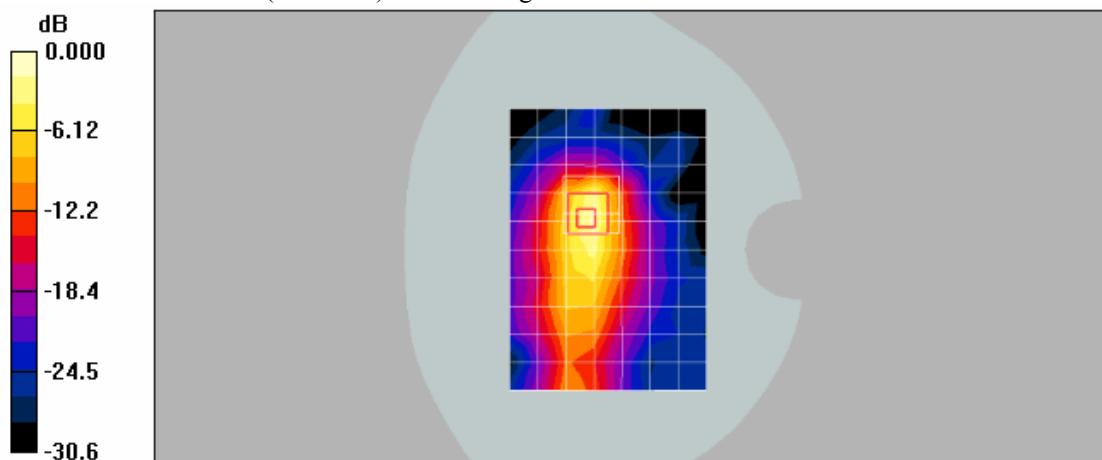
Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: $dx=12.00 \text{ mm}$, $dy=12.00 \text{ mm}$

Maximum value of SAR (interpolated) = 0.579/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 6.12 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.82W/kg

SAR(1 g) = 0.415mW/g; SAR(10 g) = 0.148mW/g

Maximum value of SAR (measured) = 0.432W/kg

$$0 \text{ dB} = 0.579 \text{ W/kg} = -2.37 \text{ dBW/kg}$$

Figure 4: Right towards Phantom 2462MHz

Bottom towards Phantom 2462 MHz with metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: $dx=12.00 \text{ mm}$, $dy=12.00 \text{ mm}$

Maximum value of SAR (interpolated) = 0.093/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 1.12 V/m; Power Drift = 0.18 dB

Peak SAR (extrapolated) = 0.163W/kg

SAR(1 g) = 0.087mW/g; SAR(10 g) = 0.028mW/g

Maximum value of SAR (measured) = 0.089W/kg

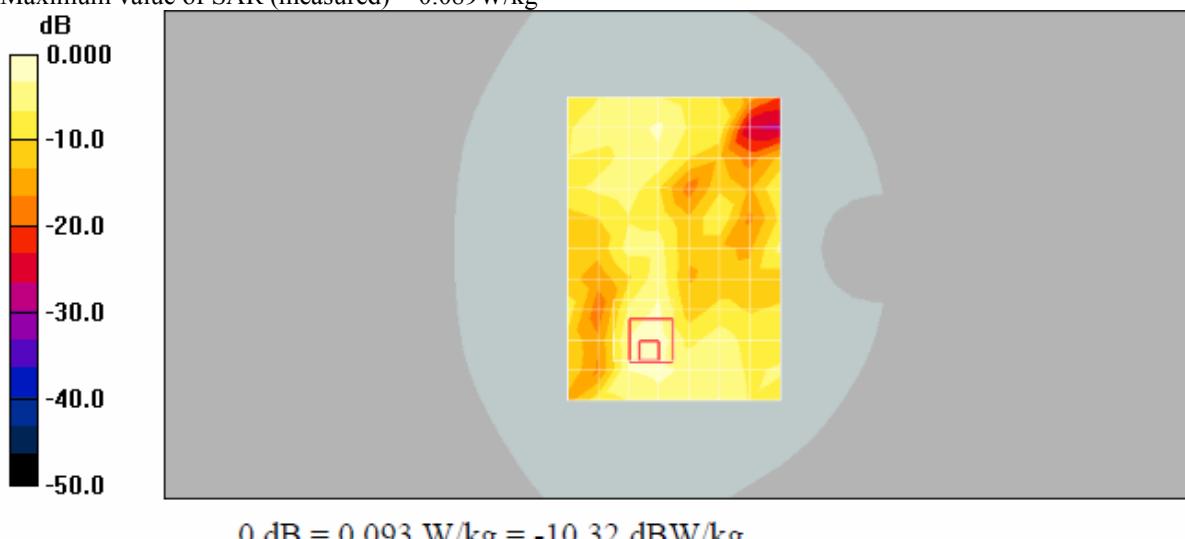


Figure 5: Bottom towards Phantom 2462MHz

Front towards Phantom 2462 MHz without metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: $dx=12.00 \text{ mm}$, $dy=12.00 \text{ mm}$

Maximum value of SAR (interpolated) = 0.732/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 7.135 V/m; Power Drift = 0.15 dB

Peak SAR (extrapolated) = 2.21 W/kg

SAR(1 g) = 0.652 mW/g; SAR(10 g) = 0.241mW/g

Maximum value of SAR (measured) = 0.835 W/kg

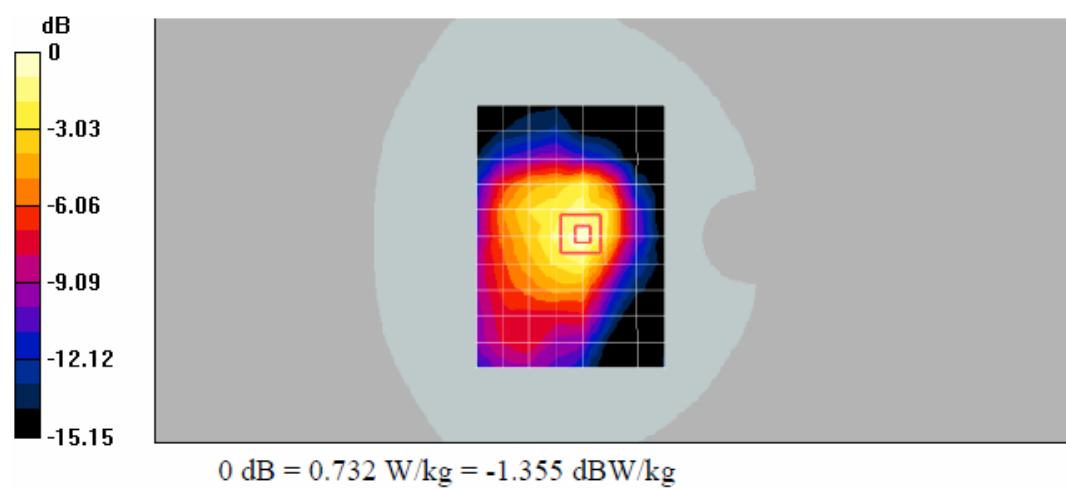


Figure 6: Front towards Phantom 2462MHz

Back towards Phantom 2462 MHz without metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: $dx=12.00 \text{ mm}$, $dy=12.00 \text{ mm}$

Maximum value of SAR (interpolated) = 0.794/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 7.272 V/m; Power Drift = -0.10 dB

Peak SAR (extrapolated) = 2.43W/kg

SAR(1 g) = 0.693mW/g; SAR(10 g) = 0.258mW/g

Maximum value of SAR (measured) = 0.886 W/kg

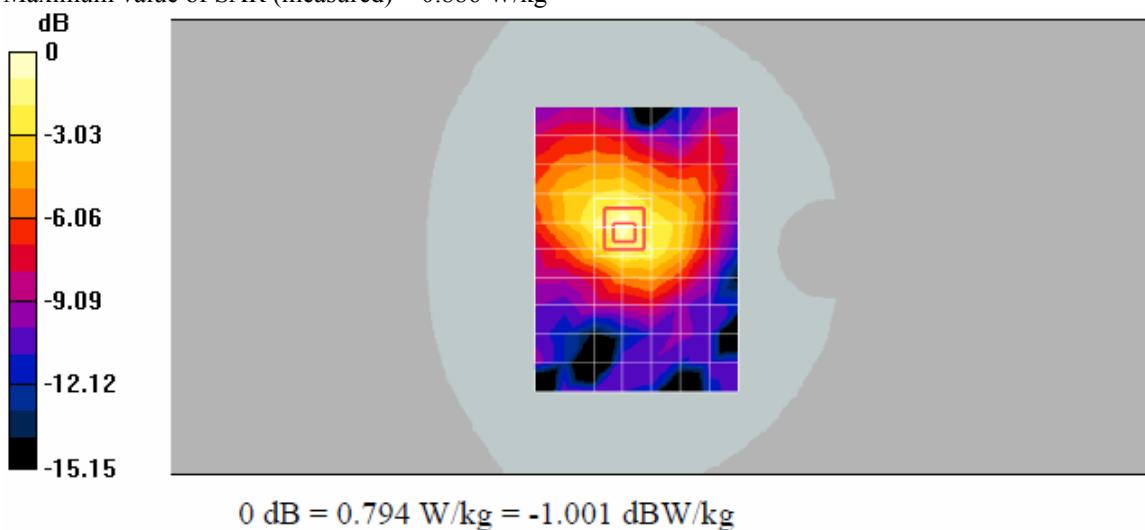


Figure 7: Back towards Phantom 2462MHz

Left towards Phantom 2462 MHz without metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

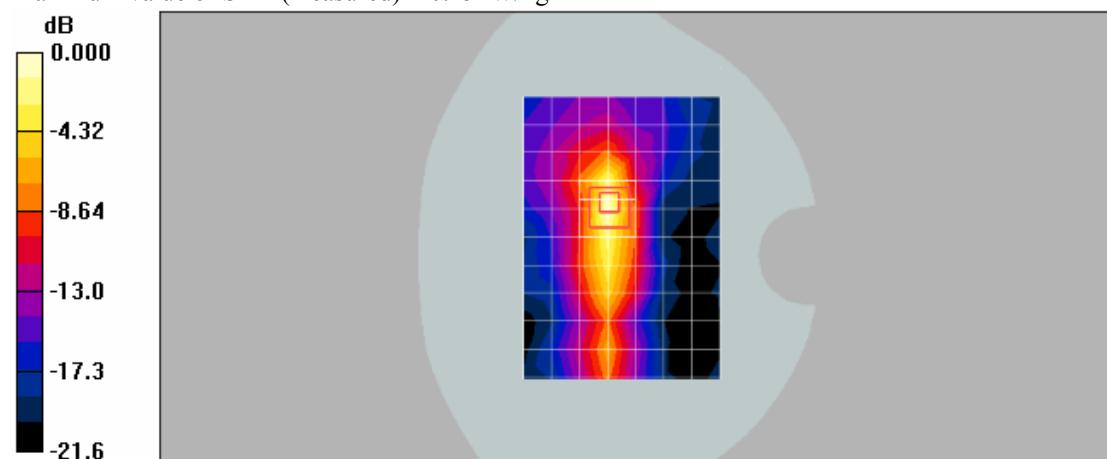
Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: $dx=12.00 \text{ mm}$, $dy=12.00 \text{ mm}$

Maximum value of SAR (interpolated) = 0.178/kg


Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 0.968 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.28W/kg

SAR(1 g) = 0.061mW/g; SAR(10 g) = 0.037mW/g

Maximum value of SAR (measured) = 0.152W/kg

0 dB = 0.178 W/kg = -7.496 dBW/kg

Figure 8: Left towards Phantom 2462MHz

Right towards Phantom 2462 MHz without metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: $dx=12.00 \text{ mm}$, $dy=12.00 \text{ mm}$

Maximum value of SAR (interpolated) = 0.582/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 6.21 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 1.87W/kg

SAR(1 g) = 0.413mW/g; SAR(10 g) = 0.145mW/g

Maximum value of SAR (measured) = 0.446W/kg

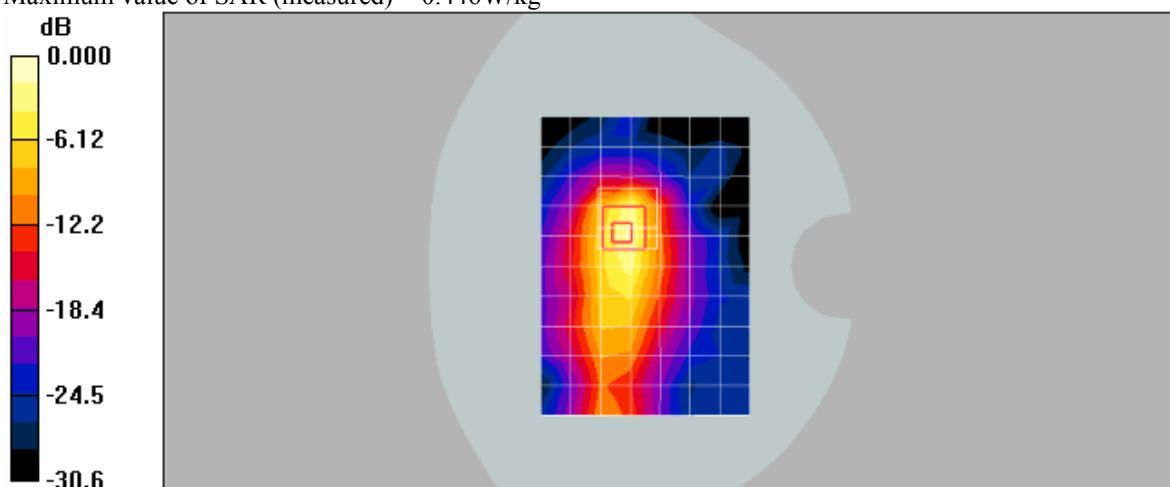


Figure 9: Right towards Phantom 2462MHz

Bottom towards Phantom 2462 MHz without metal clip

Communication System: WI-FI(2.4GHz); Frequency: 2462 MHz; Duty Cycle: 1:1

Medium parameters used (interpolated): 2462MHz; $\sigma = 1.962 \text{ S/m}$; $\epsilon_r = 51.528$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY5 Configuration:

Probe: EX3DV4 - SN3962; ConvF(7.47, 7.47, 7.47); Calibrated: 11/24/2014;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1315; Calibrated: 25/11/2014

Phantom: SAM; Type: Triple Modular;

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

Area Scan (8x11x1): Measurement grid: $dx=12.00 \text{ mm}$, $dy=12.00 \text{ mm}$

Maximum value of SAR (interpolated) = 0.102/kg

Zoom Scan (7x7x7)/Cube 0: Measurement grid: $dx=5 \text{ mm}$, $dy=5 \text{ mm}$, $dz=5 \text{ mm}$

Reference Value = 1.31 V/m; Power Drift = 0.19 dB

Peak SAR (extrapolated) = 0.213W/kg

SAR(1 g) = 0.092mW/g; SAR(10 g) = 0.034mW/g

Maximum value of SAR (measured) = 0.119W/kg

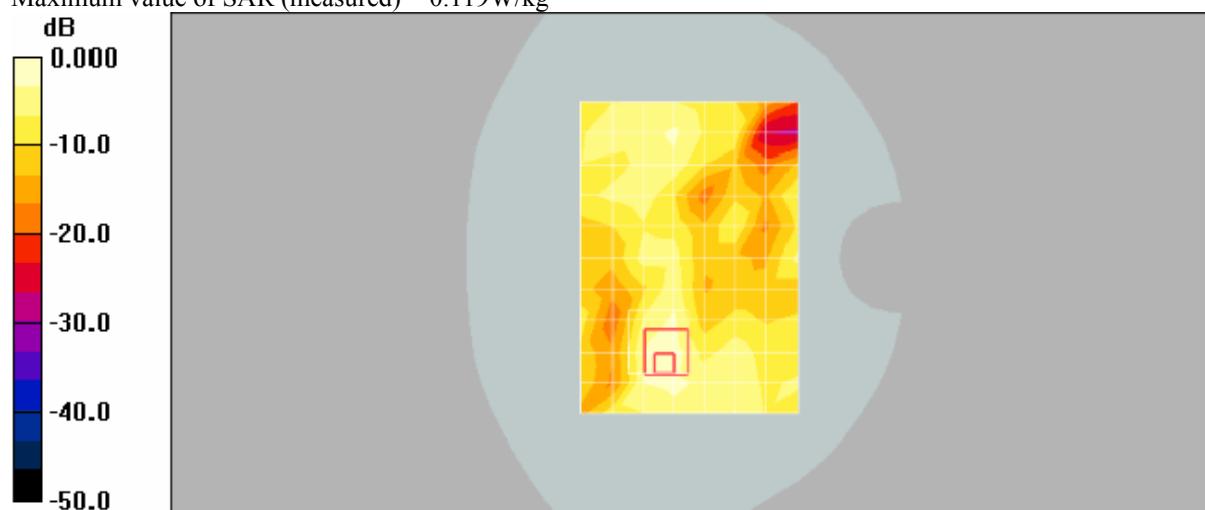


Figure 10: Bottom towards Phantom 2462MHz

6. Calibration Certificate

6.1 Probe Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Client **Auden**

Certificate No: EX3-3962_Nov14

CALIBRATION CERTIFICATE

Object **EX3DV4 - SN:3962**

Calibration procedure(s) **QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v4, QA CAL-23.v5,
QA CAL-25.v6
Calibration procedure for dosimetric E-field probes**

Calibration date: **November 24, 2014**

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI).
The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^\circ\text{C}$ and humidity $< 70\%$.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID	Cal Date (Certificate No.)	Scheduled Calibration
Power meter E4419B	GB41293874	03-Apr-14 (No. 217-01911)	Apr-15
Power sensor E4412A	MY41498087	03-Apr-14 (No. 217-01911)	Apr-15
Reference 3 dB Attenuator	SN: S6054 (3c)	03-Apr-14 (No. 217-01915)	Apr-15
Reference 20 dB Attenuator	SN: S6277 (20x)	03-Apr-14 (No. 217-01919)	Apr-15
Reference 30 dB Attenuator	SN: S6129 (30b)	03-Apr-14 (No. 217-01920)	Apr-15
Reference Probe ES3DV2	SN: 3013	30-Dec-13 (No. ES3-3013, Dec13)	Dec-14
DAE4	SN: 660	13-Dec-13 (No. DAE4-660, Dec13)	Dec-14
Secondary Standards	ID	Check Date (in house)	Scheduled Check
RF generator HP 8848C	US3642U01700	4-Aug-99 (in house check Apr-13)	In house check: Apr-16
Network Analyzer HP 8753E	US37390585	18-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:	Name: Jeton Kastnali	Function: Laboratory Technician	Signature:
Approved by:	Name: Katja Pokovic	Function: Technical Manager	Signature:

Issued: November 24, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
 The Swiss Accreditation Service is one of the signatories to the EA
 Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: **SCS 108**

Glossary:

TSL	tissue simulating liquid
NORM _{x,y,z}	sensitivity in free space
ConvF	sensitivity in TSL / NORM _{x,y,z}
DCP	diode compression point
CF	crest factor (1/duty_cycle) of the RF signal
A, B, C, D	modulation dependent linearization parameters
Polarization φ	φ rotation around probe axis
Polarization θ	θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\theta = 0$ is normal to probe axis
Connector Angle	information used in DASY system to align probe sensor X to the robot coordinate system

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORM_{x,y,z}: Assessed for E-field polarization $\theta = 0$ ($f \leq 900$ MHz in TEM-cell; $f > 1800$ MHz: R22 waveguide). NORM_{x,y,z} are only intermediate values, i.e., the uncertainties of NORM_{x,y,z} does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORM_{x,y,z} * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCP_{x,y,z}: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- A_{x,y,z}; B_{x,y,z}; C_{x,y,z}; D_{x,y,z}; VR_{x,y,z}; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \leq 800$ MHz) and inside waveguide using analytical field distributions based on power measurements for $f > 800$ MHz. The same setups are used for assessment of the parameters applied for boundary compensation (α/α_0 , depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORM_{x,y,z} * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORM_x (no uncertainty required).

Probe EX3DV4

SN:3962

Manufactured: September 30, 2013
Calibrated: November 24, 2014

Calibrated for DASY/EASY Systems
(Note: non-compatible with DASY2 system!)

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962**Basic Calibration Parameters**

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm ($\mu\text{V}/(\text{V}/\text{m})^2$) ^A	0.38	0.47	0.43	$\pm 10.1\%$
DCP (mV) ^B	99.0	98.6	91.3	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dB $\sqrt{\mu\text{V}}$	C	D dB	VR mV	Unc ^C (k=2)
0	CW	X	0.0	0.0	1.0	0.00	157.1	$\pm 3.0\%$
		Y	0.0	0.0	1.0		153.4	
		Z	0.0	0.0	1.0		140.1	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962**Calibration Parameter Determined in Head Tissue Simulating Media**

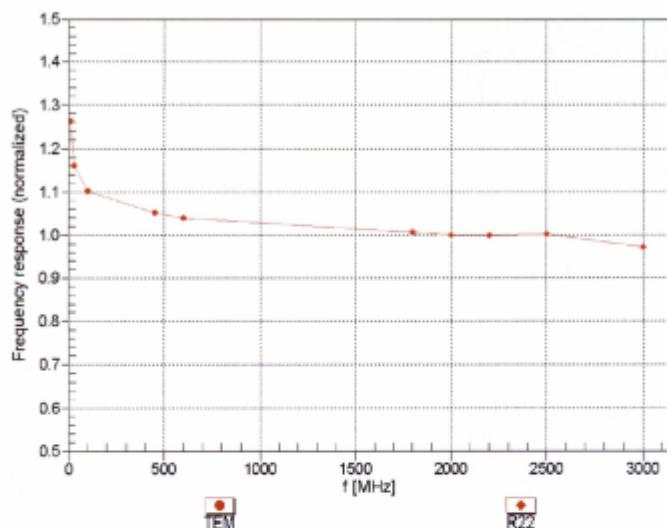
f (MHz) ^c	Relative Permittivity ^e	Conductivity (S/m) ^f	ConvF X	ConvF Y	ConvF Z	Alpha ^g	Depth ^h (mm)	Unct. (k=2)
450	43.5	0.87	10.94	10.94	10.94	0.20	1.40	± 13.3 %
850	41.5	0.92	9.89	9.89	9.89	0.80	0.50	± 12.0 %
1810	40.0	1.40	8.28	8.28	8.28	0.58	0.71	± 12.0 %
1900	40.0	1.40	8.14	8.14	8.14	0.63	0.67	± 12.0 %
2000	40.0	1.40	8.11	8.11	8.11	0.80	0.58	± 12.0 %
2450	39.2	1.80	7.32	7.32	7.32	0.63	0.68	± 12.0 %
5200	36.0	4.66	5.22	5.22	5.22	0.35	1.80	± 13.1 %
5300	35.9	4.76	5.03	5.03	5.03	0.35	1.80	± 13.1 %
5500	35.8	4.96	4.75	4.75	4.75	0.40	1.80	± 13.1 %
5600	35.5	5.07	4.66	4.66	4.66	0.40	1.80	± 13.1 %
5800	35.3	5.27	4.68	4.68	4.68	0.45	1.80	± 13.1 %

^c Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

^e At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^g Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

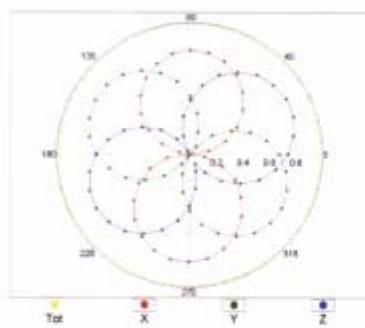
DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962**Calibration Parameter Determined in Body Tissue Simulating Media**

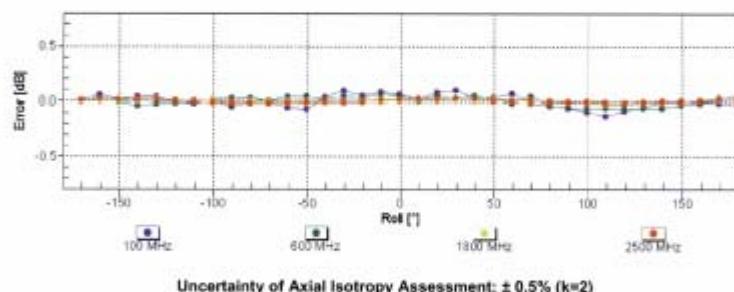
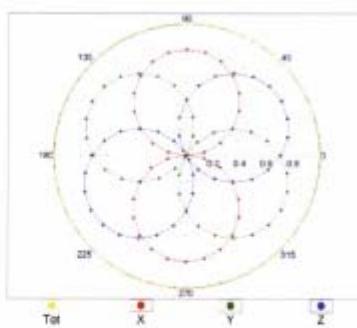

f (MHz) ^a	Relative Permittivity ^b	Conductivity (S/m) ^b	ConvF X	ConvF Y	ConvF Z	Alpha ^c	Depth ^c (mm)	Uncrt. (k=2)
450	56.7	0.94	11.11	11.11	11.11	0.12	1.20	± 13.3 %
850	55.2	0.99	10.07	10.07	10.07	0.80	0.50	± 12.0 %
1810	53.3	1.52	8.34	8.34	8.34	0.61	0.71	± 12.0 %
1900	53.3	1.52	8.07	8.07	8.07	0.44	0.77	± 12.0 %
2450	52.7	1.95	7.47	7.47	7.47	0.80	0.56	± 12.0 %
5200	49.0	5.30	4.27	4.27	4.27	0.50	1.90	± 13.1 %
5300	48.9	5.42	4.08	4.08	4.08	0.50	1.90	± 13.1 %
5500	48.6	5.65	3.85	3.85	3.85	0.55	1.90	± 13.1 %
5600	48.5	5.77	3.69	3.69	3.69	0.55	1.90	± 13.1 %
5800	48.2	6.00	3.89	3.89	3.89	0.55	1.90	± 13.1 %

^a Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz.

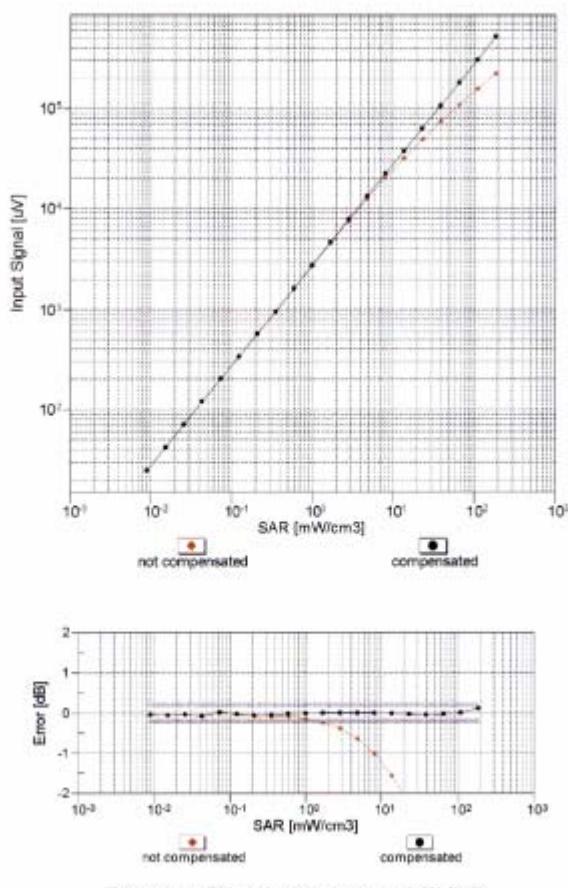
^b At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

^c Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

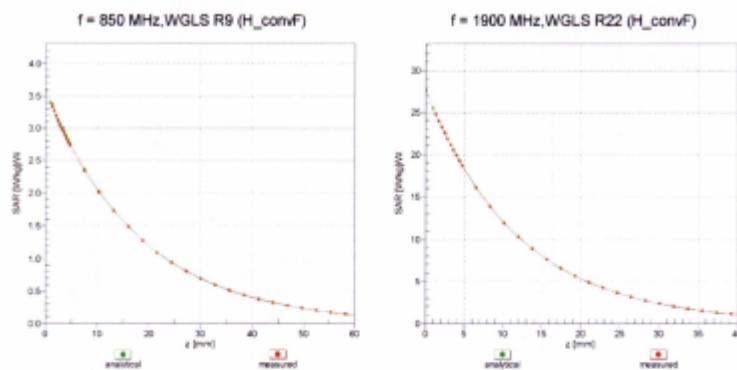

Frequency Response of E-Field
(TEM-Cell:ifi110 EXX, Waveguide: R22)



Uncertainty of Frequency Response of E-field: $\pm 6.3\%$ ($k=2$)

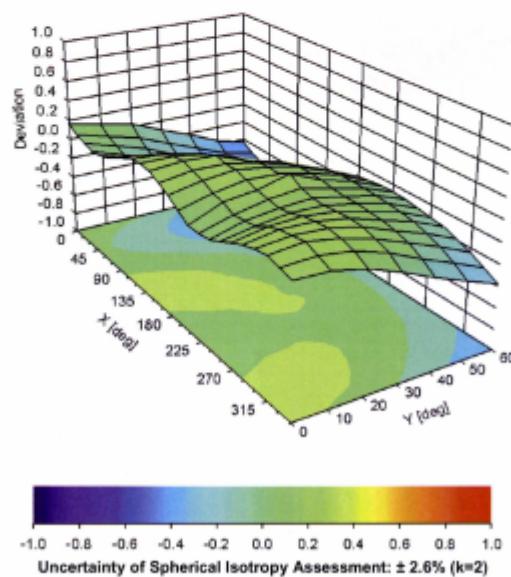
Receiving Pattern (ϕ), $\theta = 0^\circ$


f=600 MHz, TEM

f=1800 MHz, R22



Dynamic Range $f(\text{SAR}_{\text{head}})$
(TEM cell, $f_{\text{eval}} = 1900 \text{ MHz}$)


Uncertainty of Linearity Assessment: $\pm 0.6\%$ ($k=2$)

Conversion Factor Assessment

Deviation from Isotropy in Liquid

Error (ϕ, θ), $f = 900 \text{ MHz}$

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3962**Other Probe Parameters**

Sensor Arrangement	Triangular
Connector Angle (°)	-30.7
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

6.2.D2450V2 Dipole Calibration Certificate

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 108

Client: Auden

Certificate No: D2450V2-860_Nov14

CALIBRATION CERTIFICATE

Object: D2450V2 - SN: 860

Calibration procedure(s): QA CAL-05.v9
Calibration procedure for dipole validation kits above 700 MHz

Calibration date: November 19, 2014

This calibration certificate documents the traceability to national standards, which makes the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration):

Primary Standards	ID #	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB07480704	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	US37292789	07-Oct-14 (No. 217-02020)	Oct-15
Power sensor HP 8481A	MY410982317	07-Oct-14 (No. 217-02021)	Oct-15
Reference 20 dB Attenuator	SN: 5088 (20k)	08-Apr-14 (No. 217-01918)	Apr-15
Type N mismatch combination	SN: 5047.2 / 05027	09-Apr-14 (No. 217-01921)	Apr-15
Reference Probe ES3DV3	SN: 3205	30-Dec-13 (No. ES3-3205_0013)	Dec-14
DAE4	SN: 601	16-Aug-14 (No. DAE4-601_Aug14)	Aug-15

Secondary Standards	ID #	Check Date (in house)	Scheduled Check
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-13)	In house check: Oct-16
Network Analyzer HP 8753E	US37390586 54206	19-Oct-01 (in house check Oct-14)	In house check: Oct-15

Calibrated by:	Name	Function	Signature
	Michael Weber	Laboratory Technician	

Approved by:	Name	Function	Signature
	Katja Pokovic	Technical Manager	

Issued: November 19, 2014

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of
Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS).
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates.

Accreditation No.: SCS 108

Glossary:

TSL	tissue simulating liquid
ConvF	sensitivity in TSL / NORM x,y,z
N/A	not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

- DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions:** Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL:** The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss:** These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay:** One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured:** SAR measured at the stated antenna input power.
- SAR normalized:** SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters:** The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor $k=2$, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Measurement Conditions

DASY system configuration, as far as not given on page 1:

DASY Version	DASY5	V52.6.8
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	$dx, dy, dz = 5 \text{ mm}$	
Frequency	2450 MHz $\pm 1 \text{ MHz}$	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 $\pm 6 \text{ \%}$	1.86 mho/m $\pm 6 \text{ \%}$
Head TSL temperature change during test	< 0.5 °C	—	—

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg $\pm 17.0 \text{ \% (k=2)}$
SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.18 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg $\pm 16.5 \text{ \% (k=2)}$

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	50.9 $\pm 6 \text{ \%}$	2.03 mho/m $\pm 6 \text{ \%}$
Body TSL temperature change during test	< 0.5 °C	—	—

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.2 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	51.4 W/kg $\pm 17.0 \text{ \% (k=2)}$
SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.06 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.9 W/kg $\pm 16.5 \text{ \% (k=2)}$

Appendix (Additional assessments outside the scope of SCS108)**Antenna Parameters with Head TSL**

Impedance, transformed to feed point	54.4 Ω + 2.5 $\text{j}\Omega$
Return Loss	- 26.3 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.8 Ω + 3.7 $\text{j}\Omega$
Return Loss	- 28.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1,164 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	April 23, 2010

DASY5 Validation Report for Head TSL

Date: 18.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 860

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $f = 2450$ MHz; $\sigma = 1.86$ S/m; $\epsilon_r = 39$; $\rho = 1000$ kg/m³

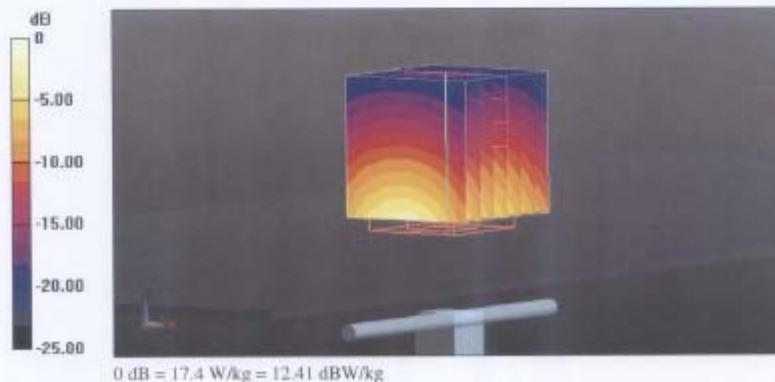
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

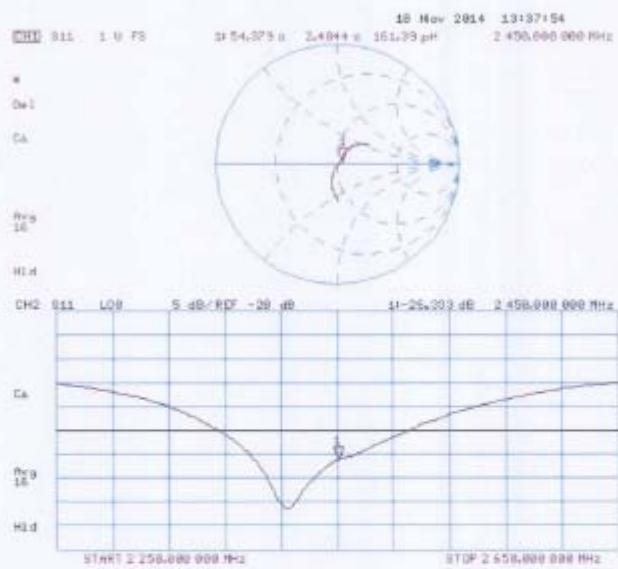
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.53, 4.53, 4.53); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50A/A; Serial: 1001
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 100.6 V/m; Power Drift = 0.03 dB


Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.18 W/kg

Maximum value of SAR (measured) = 17.4 W/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.11.2014

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 860

Communication System: UID 0 - CW; Frequency: 2450 MHz

Medium parameters used: $\epsilon = 2.03 \text{ S/m}$; $\epsilon_r = 50.9$; $\rho = 1000 \text{ kg/m}^3$

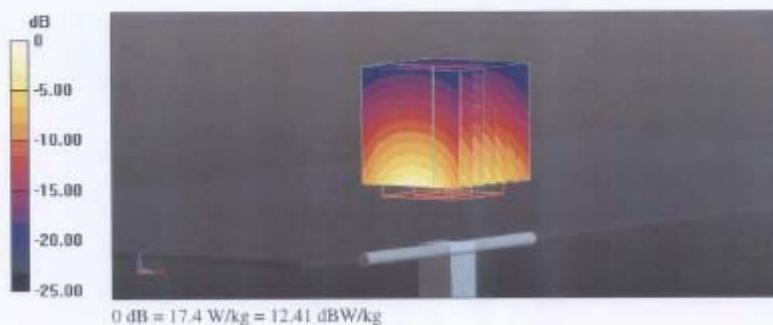
Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

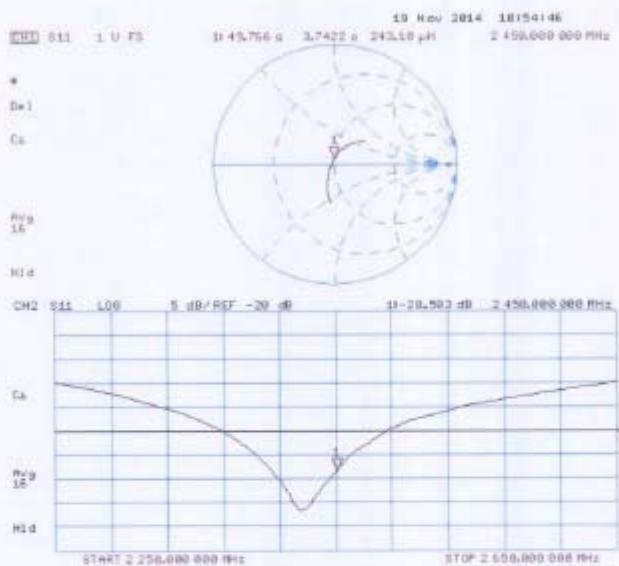
DASY52 Configuration:

- Probe: ES3DV3 - SN3205; ConvF(4.35, 4.35, 4.35); Calibrated: 30.12.2013;
- Sensor-Surface: 3mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 18.08.2014
- Phantom: Flat Phantom 5.0 (buck); Type: QD000P50AA; Serial: 1002
- DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331)

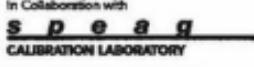
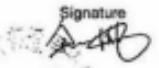
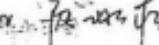
Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.14 V/m; Power Drift = 0.01 dB


Peak SAR (extrapolated) = 27.8 W/kg

SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.06 W/kg




Maximum value of SAR (measured) = 17.4 W/kg

Impedance Measurement Plot for Body TSL

6.3.DAE4 Calibration Ceriticate

 TMC speag CALIBRATION LABORATORY	In Collaboration with Add: No.52 Huaqunbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304631-2029 Fax: +86-10-62304633-2504 E-mail: info@tmcite.com http://www.tmcite.com	 CNAS L0442
Client : CIQ SZ (Auden)	Certificate No: J14-2-3048	
CALIBRATION CERTIFICATE		
Object	DAE4 - SN: 1315	
Calibration Procedure(s)	TMC-CS-E-01-198 Calibration Procedure for the Data Acquisition Electronics (DAEx)	
Calibration date:	November 25, 2014	
<p>This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.</p> <p>All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.</p>		
Calibration Equipment used (M&TE critical for calibration)		
Primary Standards	ID #	Cal Date(Calibrated by, Certificate No.)
Documenting Process Calibrator 753	1971018	01-July-14 (TMC, No:JW14-049)
Scheduled Calibration		
Calibrated by:	Name	Function
	Yu zongying	SAR Test Engineer
Reviewed by:	Qi Dianyuan	SAR Project Leader
Approved by:	Lu Bingsong	Deputy Director of the laboratory
Issued: November 25, 2014		
This calibration certificate shall not be reproduced except in full without written approval of the laboratory.		

Glossary:

DAE	data acquisition electronics
Connector angle	information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- *Connector angle:* The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

DC Voltage Measurement

A/D - Converter Resolution nominal
High Range: 1LSB = $6.1\mu V$, full range = $-100...+300\text{ mV}$
Low Range: 1LSB = 61 mV , full range = $-1...+3\text{ mV}$
DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Y	Z
High Range	$403.915 \pm 0.15\% \text{ (k=2)}$	$405.171 \pm 0.15\% \text{ (k=2)}$	$404.667 \pm 0.15\% \text{ (k=2)}$
Low Range	$3.98903 \pm 0.7\% \text{ (k=2)}$	$3.94180 \pm 0.7\% \text{ (k=2)}$	$3.93862 \pm 0.7\% \text{ (k=2)}$

Connector Angle

Connector Angle to be used in DASY system	$182.5^\circ \pm 1^\circ$
---	---------------------------

7. Test Setup Photos

Photograph of the depth in the Head Phantom (2450MHz)

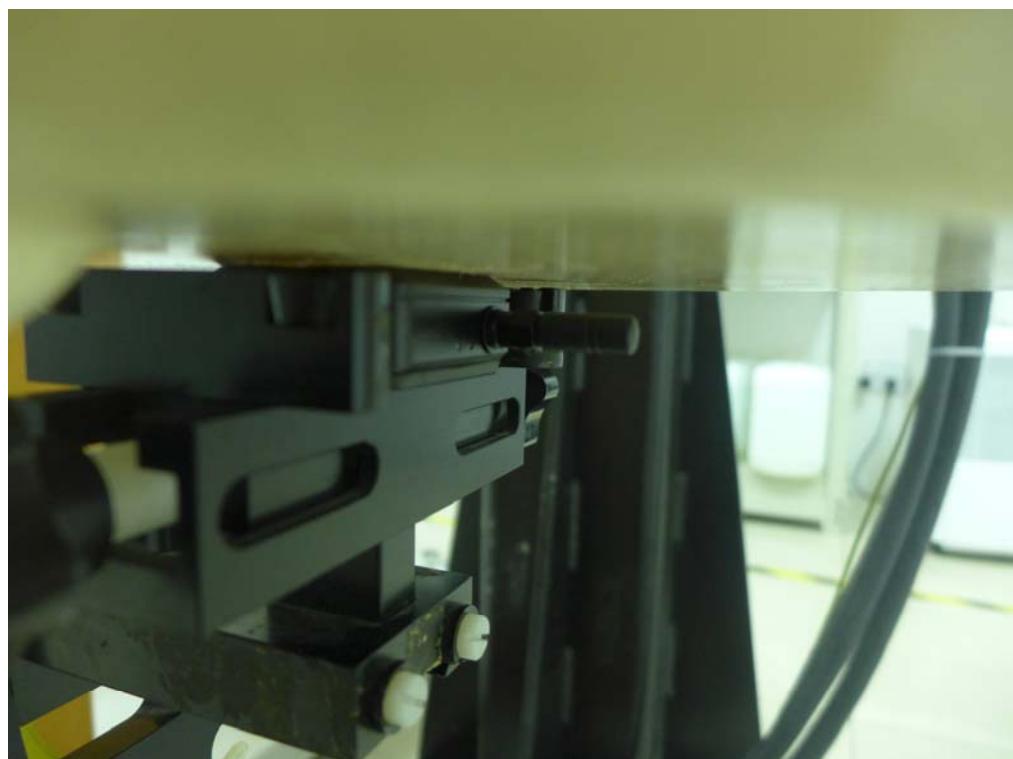
With the metal clip:

the front of the EUT towards phantom (The distance was 0mm)

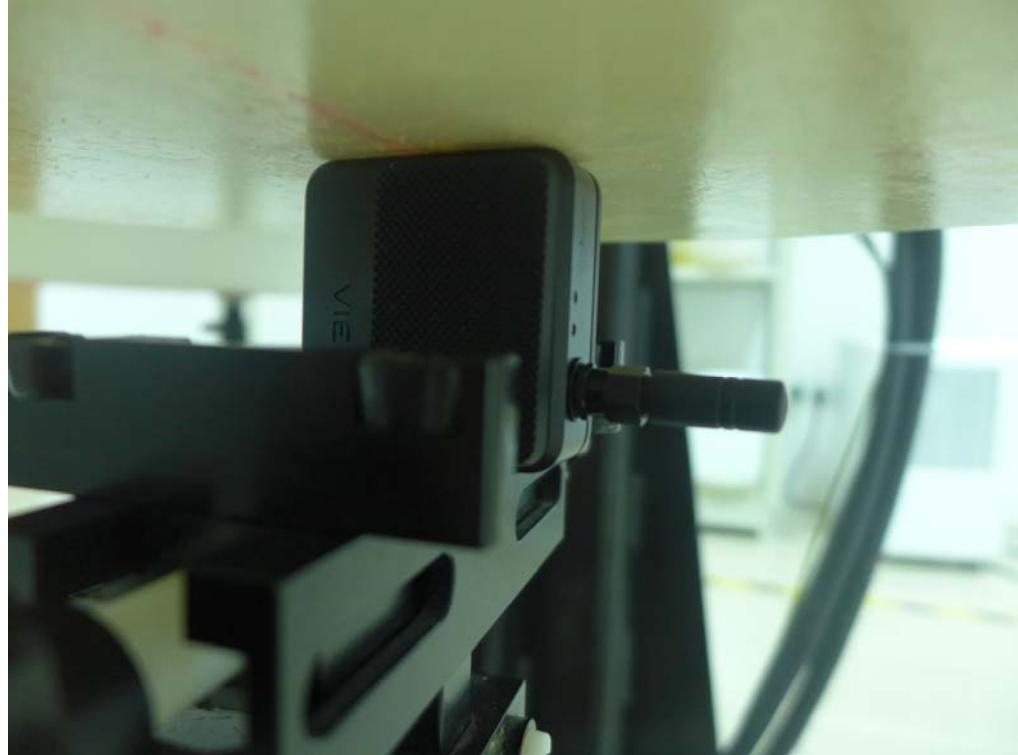
the Back of the EUT towards phantom (The distance was 0mm)

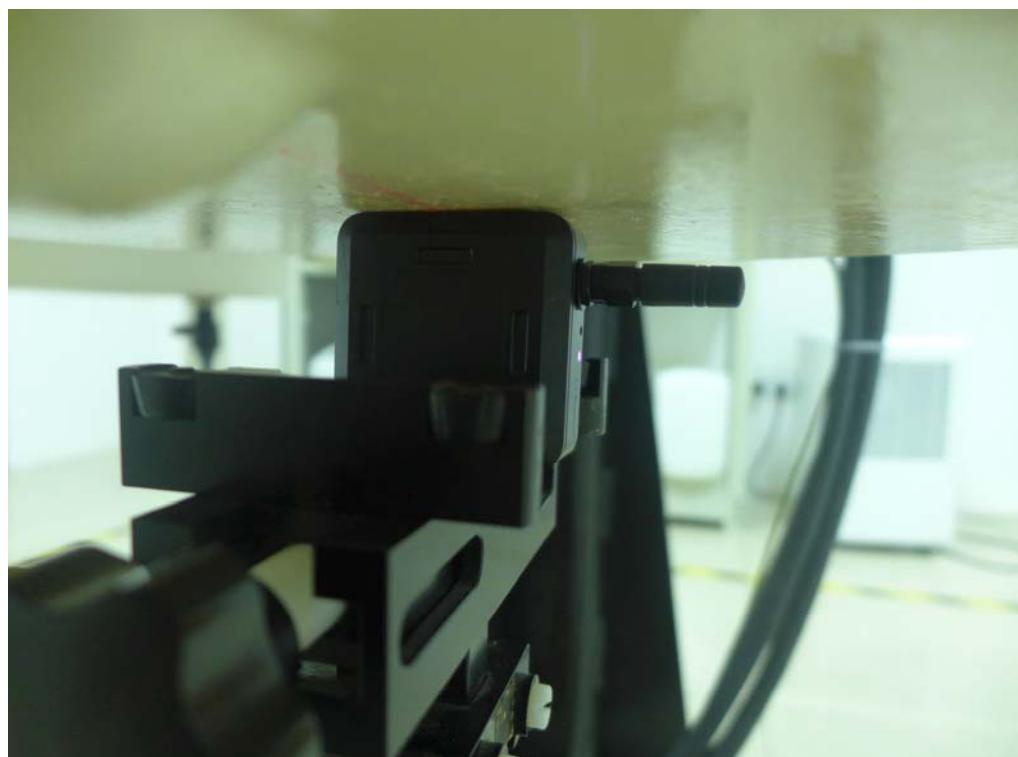
the Left of the EUT towards phantom (The distance was 0mm)

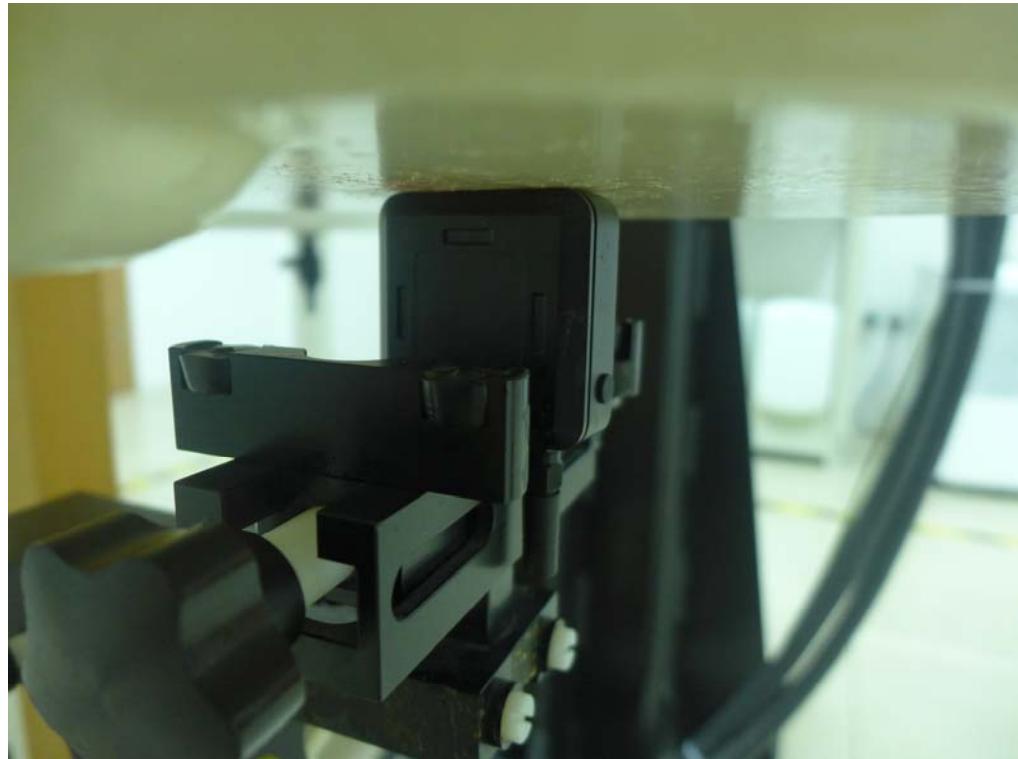
the Right of the EUT towards phantom (The distance was 0mm)



the Bottom of the EUT towards phantom (The distance was 0mm)


Without the metal clip:


the front of the EUT towards phantom (The distance was 0mm)


the Back of the EUT towards phantom (The distance was 0mm)

the Left of the EUT towards phantom (The distance was 0mm)

the Right of the EUT towards phantom (The distance was 0mm)

the Bottom of the EUT towards phantom (The distance was 0mm)

.....**End of Report**.....