



# FCC SAR TEST REPORT

**Report No.:** SET2015-09927

**Product:** 4G LTE Smart Phone

**Model No.:** N501

**FCC ID:** 2AB8PM5023

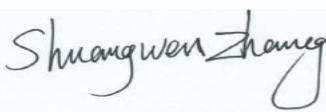
**Applicant:** Maysun Info Technology Co., Ltd

**Address:** 10th floor,B10 Building,Lilang Industrial Zone,Buji Town,Longgang District,Shenzhen

**Issued by:** CCIC-SET

**Lab Location:** Electronic Testing Building, Shahe Road, Xili, Nanshan District, Shenzhen, 518055, P. R. China

**Tel:** 86 755 26627338      **Fax:** 86 755 26627238


**Mail:** manager@ccic-set.com      **Website:** <http://www.ccic-set.com>

This test report consists of **169** pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by CCIC-SET. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to CCIC-SET within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit.

## Test Report

**Product** ..... 4G LTE Smart Phone  
**Model No.** ..... N501  
**Brand Name** ..... NOBLEX  
**FCC ID** ..... 2AB8PM5023  
**Applicant** ..... Maysun Info Technology Co., Ltd  
10th floor,B10 Building,Lilang Industrial Zone,Buji  
**Applicant Address** ..... Town,Longgang District,Shenzhen  
**Manufacturer** ..... Maysun Info Technology Co., Ltd  
**Manufacturer Address** ..... 10th floor,B10 Building,Lilang Industrial Zone,Buji  
Town,Longgang District,Shenzhen  
**Test Standards** ..... 47CFR § 2.1093- Radiofrequency Radiation Exposure Evaluation: Portable Devices;  
ANSI C95.1-1992: Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.( IEEE Std C95.1-1991)  
IEEE 1528-2013: IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques  
**Test Result** ..... Pass

**Tested by** .....  2015-07-21  
Chun Mei, Test Engineer

**Reviewed by** .....  2015-07-21  
Shuangwen Zhang, Senior Engineer

**Approved by** .....  2015-07-21  
Wu Li'an, Manager

## Contents

|                                                                 |           |
|-----------------------------------------------------------------|-----------|
| <b>1. GENERAL CONDITIONS-----</b>                               | <b>4</b>  |
| <b>2. ADMINISTRATIVE DATA-----</b>                              | <b>5</b>  |
| 2.1. Identification of the Responsible Testing Laboratory-----  | 5         |
| 2.2. Identification of the Responsible Testing Location(s)----- | 5         |
| 2.3. Organization Item-----                                     | 5         |
| 2.4. Identification of Applicant-----                           | 5         |
| 2.5. Identification of Manufacture-----                         | 5         |
| <b>3. EQUIPMENT UNDER TEST (EUT)-----</b>                       | <b>6</b>  |
| <b>4. SAR SUMMARY-----</b>                                      | <b>7</b>  |
| <b>5. Specific Absorption Rate(SAR)-----</b>                    | <b>8</b>  |
| 5.1. Introduction-----                                          | 8         |
| 5.2. SAR Definition-----                                        | 8         |
| 5.3. Phantoms-----                                              | 9         |
| 5.4. Device Holder-----                                         | 9         |
| 5.5. Probe Specification-----                                   | 10        |
| <b>6. OPERATIONAL CONDITIONS DURING TEST-----</b>               | <b>11</b> |
| 6.1. Schematic Test Configuration-----                          | 11        |
| 6.2. SAR Measurement System-----                                | 11        |
| 6.3. Equipments and results of validation testing-----          | 14        |
| 6.4. SAR measurement procedure-----                             | 15        |
| 6.5. Antennas position and test position-----                   | 17        |
| <b>7. CHARACTERISTICS OF THE TEST-----</b>                      | <b>18</b> |
| 7.1. Applicable Limit Regulations-----                          | 18        |
| 7.2. Applicable Measurement Standards-----                      | 18        |
| <b>8. LABORATORY ENVIRONMENT-----</b>                           | <b>19</b> |
| <b>9. CONDUCTED RF OUTPUT POWER-----</b>                        | <b>19</b> |
| <b>10. TEST RESULTS-----</b>                                    | <b>33</b> |
| <b>11. MEASUREMENT UNCERTAINTY-----</b>                         | <b>39</b> |
| <b>12. MAIN TEST INSTRUMENTS-----</b>                           | <b>42</b> |

This Test Report consists of the following Annexes:

|                                                                          |           |
|--------------------------------------------------------------------------|-----------|
| <b>Annex A: Test Layout -----</b>                                        | <b>43</b> |
| <b>Annex B: Sample Photographs-----</b>                                  | <b>51</b> |
| <b>Annex C: System Performance Check Data and Highest SAR Plots-----</b> | <b>53</b> |
| <b>Annex D: Calibration Certificate of Probe and Dipoles-----</b>        | <b>96</b> |

## 1. GENERAL CONDITIONS

**1.1 This report only refers to the item that has undergone the test.**

**1.2 This report standalone does not constitute or imply by its own an approval of the product by the certification Bodies or competent Authorities.**

**1.3 This document is only valid if complete; no partial reproduction can be made without written approval of CCIC-SET**

**1.4 This report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of CCIC-SET and the Accreditation Bodies, if it applies.**

## 2. Administrative Date

### 2.1. Identification of the Responsible Testing Laboratory

**Company Name:** CCIC-SET

**Department:** EMC & RF Department

**Address:** Electronic Testing Building, Shahe Road, Nanshan District, Shenzhen, P. R. China

**Telephone:** +86-755-26629676

**Fax:** +86-755-26627238

**Responsible Test Lab Managers:** Mr. Wu Li'an

### 2.2. Identification of the Responsible Testing Location(s)

**Company Name:** CCIC-SET

**Address:** Electronic Testing Building, Shahe Road, Nanshan District, Shenzhen, P. R. China

### 2.3. Organization Item

**CCIC-SET Report No.:** SET2015-09927

**CCIC-SET Project Leader:** Mr. Li Sixiong

**CCIC-SET Responsible for accreditation scope:** Mr. Wu Li'an

**Start of Testing:** 2015-07-13

**End of Testing:** 2015-07-19

### 2.4. Identification of Applicant

**Company Name:** Maysun Info Technology Co., Ltd

**Address:** 10th floor,B10 Building,Lilang Industrial Zone,Buji Town,Longgang District,Shenzhen

### 2.5. Identification of Manufacture

**Company Name:** Maysun Info Technology Co., Ltd

**Address:** 10th floor,B10 Building,Lilang Industrial Zone,Buji Town,Longgang District,Shenzhen

**Notes:** This data is based on the information by the applicant.

### 3. Equipment Under Test (EUT)

#### 3.1. Identification of the Equipment under Test

**Sample Name:** 4G LTE Smart Phone

**Type Name:** N501

**Brand Name:** NOBLEX

|                             |                   |                                                                                           |
|-----------------------------|-------------------|-------------------------------------------------------------------------------------------|
| <b>General description:</b> | Support Band      | GSM850MHz/1900MHz<br>WCDMA 850MHz/1900MHz<br>LTE Band 4/17<br>WIFI 802.11b/g/n-20/n-40,BT |
|                             | Test Band         | GSM 850MHz/ GSM 1900MHz,<br>WCDMA 850MHz/ WCDMA 1900MHz<br>LTE Band 4/17; WIFI 802.11b    |
|                             | Multislot Class   | GPRS: Class 12; EGPRS: Class 12                                                           |
|                             | (E)GPRS Class     | Class B                                                                                   |
|                             | Development Stage | Identical Prototype                                                                       |
|                             | Accessories       | Power Supply                                                                              |
|                             | Battery type      | 3.8V 2200mAh                                                                              |
|                             | Antenna type      | PIFI Antenna                                                                              |
|                             | Operation mode    | GSM / GPRS/EDGE/WCDMA                                                                     |
|                             | Modulation mode   | GMSK, QPSK                                                                                |
|                             | Max. RF Power     | 32.87dBm                                                                                  |
|                             | Max. SAR Value    | Head: 0.095 W/kg; Body: 0.356 W/kg;<br>Hotspot: 0.512W/Kg                                 |

#### NOTE:

- a. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- b. This device supports GPRS and EDGE operation up to class12(max.uplink:4, max.downlink:4, total timeslots:5)

## 4 SAR SUMMARY

### Highest Standalone SAR Summary

| Exposure Position              | Frequency Band | Scaled 1g-SAR(W/kg) | Highest Scaled 1g-SAR(W/kg) |
|--------------------------------|----------------|---------------------|-----------------------------|
| Head                           | GSM850         | 0.014               | 0.095                       |
|                                | GSM1900        | 0.058               |                             |
|                                | WCDMA Band II  | 0.095               |                             |
|                                | WCDMA Band V   | 0.020               |                             |
|                                | LTE Band 4     | 0.087               |                             |
|                                | LTE Band 17    | 0.029               |                             |
|                                | WIFI           | 0.056               |                             |
| Body-worn Accessory (10mm Gap) | GSM850         | 0.016               | 0.356                       |
|                                | GSM1900        | 0.119               |                             |
|                                | WCDMA Band II  | 0.328               |                             |
|                                | WCDMA Band V   | 0.034               |                             |
|                                | LTE Band 4     | 0.356               |                             |
|                                | LTE Band 17    | 0.052               |                             |
|                                | WIFI           | 0.057               |                             |
| Hotspot Accessory (10mm Gap)   | GSM850         | 0.025               | 0.512                       |
|                                | GSM1900        | 0.157               |                             |
|                                | WCDMA Band II  | 0.512               |                             |
|                                | WCDMA Band V   | 0.034               |                             |
|                                | LTE Band 4     | 0.511               |                             |
|                                | LTE Band 17    | 0.052               |                             |
|                                | WIFI           | 0.057               |                             |

### Highest Simultaneous SAR Summary

| Exposure Position              | Frequency Band      | Scaled 1g-SAR(W/kg) | Highest Scaled 1g-SAR(W/kg) |
|--------------------------------|---------------------|---------------------|-----------------------------|
| Head                           | GSM850&WIFI         | 0.013+0.056         | 0.151                       |
|                                | GSM1900&WIFI        | 0.058+0.050         |                             |
|                                | WCDMA Band II &WIFI | 0.095+0.056         |                             |
|                                | WCDMA Band V &WIFI  | 0.019+0.056         |                             |
|                                | LTE Band 4&WIFI     | 0.087+0.056         |                             |
|                                | LTE Band 17&WIFI    | 0.025+0.056         |                             |
| Body-worn Accessory (10mm Gap) | GSM850&WIFI         | 0.016+0.057         | 0.413                       |
|                                | GSM1900&WIFI        | 0.119+0.057         |                             |
|                                | WCDMA Band II &WIFI | 0.328+0.057         |                             |
|                                | WCDMA Band V &WIFI  | 0.034+0.057         |                             |
|                                | LTE Band 4&WIFI     | 0.356+0.057         |                             |
|                                | LTE Band 17&WIFI    | 0.052+0.057         |                             |

| Exposure Position  | Frequency Band      | Scaled 1g-SAR(W/kg) | Highest Scaled 1g-SAR(W/kg) |
|--------------------|---------------------|---------------------|-----------------------------|
| Hotspot (10mm Gap) | GSM850&WIFI         | 0.025+0.057         | 0.512                       |
|                    | GSM1900&WIFI        | 0.137+0.057         |                             |
|                    | WCDMA Band II &WIFI | 0.512+0             |                             |
|                    | WCDMA Band V &WIFI  | 0.034+0.057         |                             |
|                    | LTE Band 4          | 0.511+0             |                             |
|                    | LTE Band 17         | 0.052+0.057         |                             |

## 5 Specific Absorption Rate (SAR)

### 5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

### 5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$\text{SAR} = \frac{d}{dt} \left( \frac{dW}{dm} \right) = \frac{d}{dt} \left( \frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\text{SAR} = C \frac{\delta T}{\delta t}$$

where C is the specific heat capacity, δT is the temperature rise and δt the exposure duration, or related to the electrical field in the tissue by

$$\text{SAR} = \frac{\sigma |E|^2}{\rho}$$

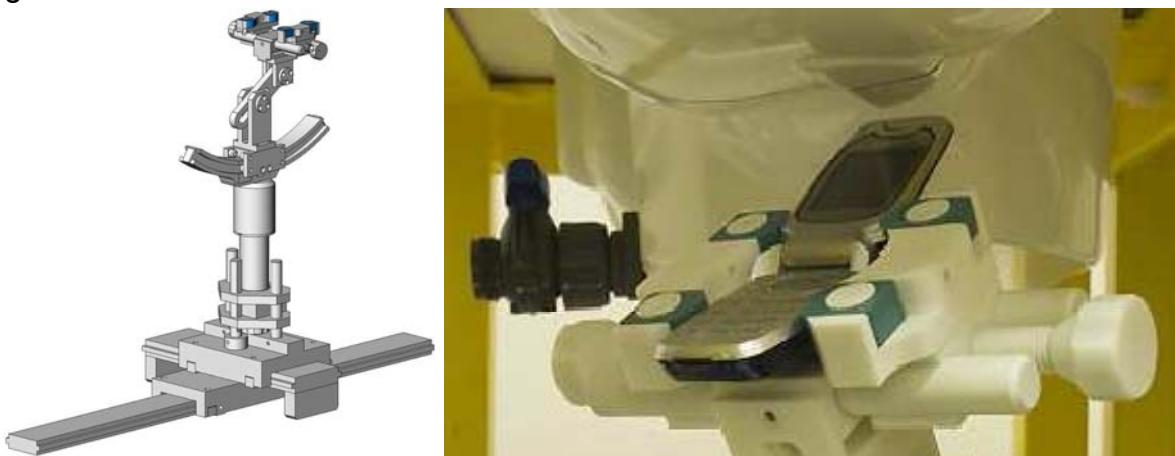
where σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

### 5.3 Phantoms

The phantom used for all tests i.e. for both system checks and device testing, was the twin-headed "SAM Phantom", manufactured by SATIMO. The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region, where shell thickness increases to 6mm).

System checking was performed using the flat section, whilst Head SAR tests used the left and right head profile sections. Body SAR testing also used the flat section between the head profiles.




SAM Twin Phantom

### 5.4 Device Holder

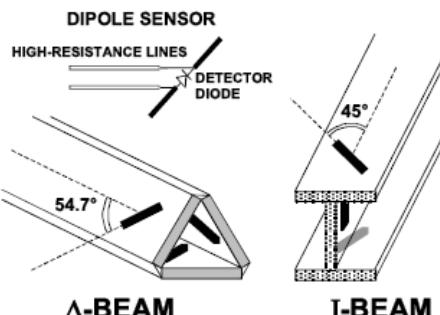
The device was placed in the device holder (illustrated below) that is supplied by SATIMO as an integral part of the COMOSAR test system.

The device holder is designed to cope with the different positions given in the standard. It has two scales for device rotation (with respect to the body axis) and device inclination (with respect to the line between the ear reference points). The rotation centers for both scales is the ear reference point (ERP). Thus the device needs no repositioning when changing the angles.



Device holder

## 5.5 Probe Specification




|               |                                                                                                                                                                                    |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Construction  | Symmetrical design with triangular core<br>Interleaved sensors<br>Built-in shielding against static charges<br>PEEK enclosure material (resistant to organic solvents, e.g., DGBE) |
| Calibration   | ISO/IEC 17025 calibration service available.                                                                                                                                       |
| Frequency     | 700 MHz to 3 GHz;<br>Linearity: $\pm 0.5$ dB (700 MHz to 3 GHz)                                                                                                                    |
| Directivity   | $\pm 0.25$ dB in HSL (rotation around probe axis)<br>$\pm 0.5$ dB in tissue material (rotation normal to probe axis)                                                               |
| Dynamic Range | 1.5 $\mu$ W/g to 100 mW/g;<br>Linearity: $\pm 0.5$ dB                                                                                                                              |
| Dimensions    | Overall length: 330 mm (Tip: 20 mm)<br>Tip diameter: 5 mm<br>Distance from probe tip to dipole centers: <2.7 mm                                                                    |
| Application   | General dosimetry up to 3 GHz<br>Dosimetry in strong gradient fields<br>Compliance tests of mobile phones                                                                          |
| Compatibility | COMOSAR                                                                                                                                                                            |

### Isotropic E-Field Probe

The isotropic E-Field probe has been fully calibrated and assessed for isotropicity, and boundary effect within a controlled environment. Depending on the frequency for which the probe is calibrated the method utilized for calibration will change.

The E-Field probe utilizes a triangular sensor arrangement as detailed in the diagram below:



## 6 OPERATIONAL CONDITIONS DURING TEST

### 6.1 Schematic Test Configuration

During SAR test, EUT was operating in Traffic Mode (Channel Allocated) at Normal Voltage Condition. A communication link is set up with a System Simulator (SS) by air link, and a call is established.

The Absolute Radio Frequency Channel Number (ARFCN) was allocated to 128, 189 and 251 respectively in the case of GSM 850MHz, or to 512, 661 and 810 respectively in the case of PCS 1900MHz, or to 4132, 4182 and 4233 respectively in the case of WCDMA 850MHz, or to 9262, 9400 and 9538 respectively in the case of WCDMA 1900MHz, LTE Band 4, LTE Band 17 and WIFI 802.11b. The EUT was commanded to operate at maximum transmitting power.

The EUT should use its internal transmitter. The antenna(s), battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output. If a wireless link was used, the antenna connected to the output of the base station simulator shall be placed at least 50 cm away from the handset.

The signal transmitted by the simulator to the antenna feeding point should be lower than the output power level of the handset by at least 35 dB

### 6.2 SAR Measurement System

The SAR measurement system being used is the SATIMO system, the system is controlled remotely from a PC, which contains the software to control the robot and data acquisition equipment. The software also displays the data obtained from test scans.

In operation, the system first does an area (2D) scan at a fixed depth within the liquid from the inside wall of the phantom. When the maximum SAR point has been found, the system will then carry out a 3D scan centred at that point to determine volume averaged SAR level.

#### 6.2.1 Tissue Dielectric Parameters for Head and Body Phantoms

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness Power drifts in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated

according to the head parameters specified in P1528.

Table 1: Recommended Dielectric Performance of Tissue

| Ingredients<br>(% by weight ) | Frequency (MHz) |       |       |      |       |       |       |      |      |      |
|-------------------------------|-----------------|-------|-------|------|-------|-------|-------|------|------|------|
|                               | 450             |       | 835   |      | 915   |       | 1900  |      | 2450 |      |
| Tissue Type                   | Head            | Body  | Head  | Body | Head  | Body  | Head  | Body | Head | Body |
| Water                         | 38.56           | 51.16 | 41.46 | 52.4 | 41.05 | 56.0  | 54.9  | 40.4 | 62.7 | 73.2 |
| Salt (NaCl)                   | 3.95            | 1.49  | 1.45  | 1.4  | 1.35  | 0.76  | 0.18  | 0.5  | 0.5  | 0.04 |
| Sugar                         | 56.32           | 46.78 | 56.0  | 45.0 | 56.5  | 41.76 | 0.0   | 58.0 | 0.0  | 0.0  |
| HEC                           | 0.98            | 0.52  | 1.0   | 1.0  | 1.0   | 1.21  | 0.0   | 1.0  | 0.0  | 0.0  |
| Bactericide                   | 0.19            | 0.05  | 0.1   | 0.1  | 0.1   | 0.27  | 0.0   | 0.1  | 0.0  | 0.0  |
| Triton x-100                  | 0.0             | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 0.0   | 0.0  | 36.8 | 0.0  |
| DGBE                          | 0.0             | 0.0   | 0.0   | 0.0  | 0.0   | 0.0   | 44.92 | 0.0  | 0.0  | 26.7 |
| Dielectric Constant           | 43.42           | 58.0  | 42.54 | 56.1 | 42.0  | 56.8  | 39.9  | 54.0 | 39.8 | 52.5 |
| Conductivity (s/m)            | 0.85            | 0.83  | 0.91  | 0.95 | 1.0   | 1.07  | 1.42  | 1.45 | 1.88 | 1.78 |

MSL/HSL750 (Body and Head liquids for 700 – 800 MHz)

|                        |                                                                                                                                                    |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                   | Head Tissue Simulation Liquids HSL750<br>Muscle(body)Tissue Simulation Liquids MSL750                                                              |
| H2O                    | Water, 35 – 58%                                                                                                                                    |
| Sucrose                | Sugar, white, refined, 40-60%                                                                                                                      |
| NaCl                   | Sodium Chloride, 0-6%                                                                                                                              |
| Hydroxyethyl-cellulsoe | Medium Viscosity (CAS# 9004-62-0), <0.3%                                                                                                           |
| Preventol-D7           | Preservative: aqueous preparation, (CAS# 55965-84-9), containing 5-chloro-2-methyl-3(2H)-isothiazolone and 2-methyyl-3(2H)-isothiazolone, 0.1-0.7% |

Table 2 Recommended Tissue Dielectric Parameters

| Frequency (MHz) | Head Tissue  |                | Body Tissue  |                |
|-----------------|--------------|----------------|--------------|----------------|
|                 | $\epsilon_r$ | $\sigma$ (S/m) | $\epsilon_r$ | $\sigma$ (S/m) |
| 150             | 52.3         | 0.76           | 61.9         | 0.80           |
| 300             | 45.3         | 0.87           | 58.2         | 0.92           |
| 450             | 43.5         | 0.87           | 56.7         | 0.94           |
| 835             | 41.5         | 0.90           | 55.2         | 0.97           |
| 900             | 41.5         | 0.97           | 55.0         | 1.05           |
| 915             | 41.5         | 0.98           | 55.0         | 1.06           |
| 1450            | 40.5         | 1.20           | 54.0         | 1.30           |
| 1610            | 40.3         | 1.29           | 53.8         | 1.40           |
| 1800-2000       | 40.0         | 1.40           | 53.3         | 1.52           |
| 2450            | 39.2         | 1.80           | 52.7         | 1.95           |
| 3000            | 38.5         | 2.40           | 52.0         | 2.73           |
| 5800            | 35.3         | 5.27           | 48.2         | 6.00           |

| Frequency (MHz) | Head Tissue  |                | Body Tissue  |                |
|-----------------|--------------|----------------|--------------|----------------|
|                 | $\epsilon_r$ | $\sigma$ (S/m) | $\epsilon_r$ | $\sigma$ (S/m) |
| 750             | 41.9         | 0.89           | 55.2         | 0.97           |

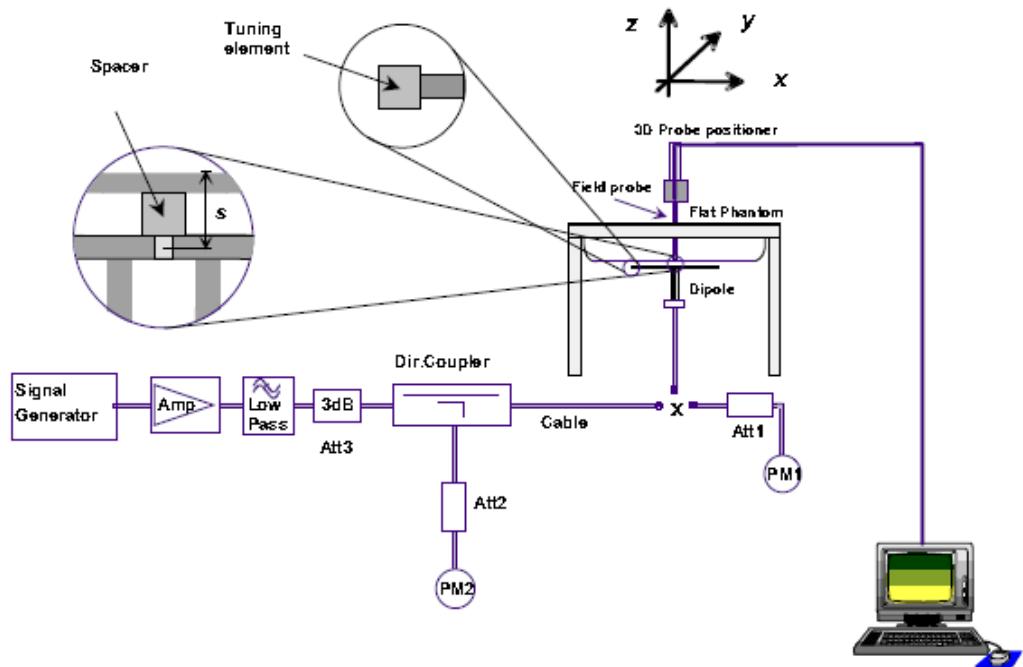
### 6.2.2 Simulant liquids

For measurements against the phantom head, the “cheek” and “tilt” position on both the left hand and the right hand sides of the phantom. For body-worn measurements, the EUT was tested against flat phantom representing the user body. The EUT was put on in the belt holder. Simulant liquids that are used for testing at frequencies of GSM 850MHz/1900MHz, WCDMA850MHz/1900MHz , LTE Band 4/7 and Wi-Fi 2.4GHz, which are made mainly of sugar, salt and water solutions may be left in the phantoms.

Table 3: Dielectric Performance of Head Tissue Simulating Liquid

| Temperature: 23.2°C; Humidity: 64%;   |           |                         |                             |
|---------------------------------------|-----------|-------------------------|-----------------------------|
| /                                     | Frequency | Permittivity $\epsilon$ | Conductivity $\sigma$ (S/m) |
| Target value                          | 750MHz    | $41.9 \pm 5\%$          | $0.89 \pm 5\%$              |
| Validation value<br>(July 19th, 2015) | 750MHz    | 41.62                   | 0.88                        |
| Target value                          | 835MHz    | $41.5 \pm 5\%$          | $0.90 \pm 5\%$              |
| Validation value<br>(July 13th, 2015) | 835MHz    | 41.24                   | 0.88                        |

|                                       |          |               |               |
|---------------------------------------|----------|---------------|---------------|
| Target value                          | 1750 MHz | 40.0 $\pm$ 5% | 1.40 $\pm$ 5% |
| Validation value<br>(July 17th, 2015) | 1750 MHz | 39.72         | 1.39          |
| Target value                          | 1900MHz  | 40.0 $\pm$ 5% | 1.40 $\pm$ 5% |
| Validation value<br>(July 15th, 2015) | 1900MHz  | 39.81         | 1.39          |
| Target value                          | 2450MHz  | 39.2 $\pm$ 5% | 1.80 $\pm$ 5% |
| Validation value<br>(July 18th, 2015) | 2450MHz  | 38.73         | 1.77          |


Table 4: Dielectric Performance of Body Tissue Simulating Liquid

| Temperature: 23.2°C; Humidity: 64%;   |           |                         |                             |
|---------------------------------------|-----------|-------------------------|-----------------------------|
| /                                     | Frequency | Permittivity $\epsilon$ | Conductivity $\sigma$ (S/m) |
| Target value                          | 750MHz    | 55.2 $\pm$ 5%           | 0.97 $\pm$ 5%               |
| Validation value<br>(July 19th, 2015) | 750MHz    | 54.82                   | 0.96                        |
| Target value                          | 835MHz    | 55.2 $\pm$ 5%           | 0.97 $\pm$ 5%               |
| Validation value<br>(July 14th, 2015) | 835MHz    | 54.75                   | 0.95                        |
| Target value                          | 1750 MHz  | 53.3 $\pm$ 5%           | 1.52 $\pm$ 5%               |
| Validation value<br>(July 17th, 2015) | 1750 MHz  | 53.44                   | 1.53                        |
| Target value                          | 1900MHz   | 53.3 $\pm$ 5%           | 1.52 $\pm$ 5%               |
| Validation value<br>(July 16th, 2015) | 1900MHz   | 52.68                   | 1.50                        |
| Target value                          | 2450MHz   | 52.7 $\pm$ 5%           | 1.95 $\pm$ 5%               |
| Validation value<br>(July 18th, 2015) | 2450MHz   | 52.31                   | 1.94                        |

### 6.3 Results of validation testing

Prior to the assessment, the system validation kit was used to test whether the system was operating within its specifications of  $\pm 10\%$ . The validation results are tabulated below. And also the corresponding SAR plot is attached as well in the SAR plots files.

The following procedure, recommended for performing validation tests using box phantoms is based on the procedures described in the IEEE standard P1528. Setup according to the setup diagram below :



With the SG and Amp and with directional coupler in place, set up the source signal at the relevant frequency and use a power meter to measure the power at the end of the SMA cable that you intend to connect to the balanced dipole. Adjust the SG to make this, say, 0.25W (24 dBm). If this level is too high to read directly with the power meter sensor, insert a calibrated attenuator (e.g. 10 or 20 dB) and make a suitable correction to the power meter reading.

Note 1: In this method, the directional coupler is used for monitoring rather than setting the exact feed power level. If, however, the directional coupler is used for power measurement, you should check the frequency range and power rating of the coupler and measure the coupling factor (referred to output) at the test frequency using a VNA.

Note 2: Remember that the use of a 3dB attenuator (as shown in Figure 8.1 of P1528) means that you need an RF amplifier of 2 times greater power for the same feed power. The other issue is the cable length. You might get up to 1dB of loss per meter of cable, so the cable length after the coupler needs to be quite short.

Note 3: For the validation testing done using CW signals, most power meters are suitable. However, if you are measuring the output of a modulated signal from either a signal generator or a handset, you must ensure that the power meter correctly reads the modulated signals.

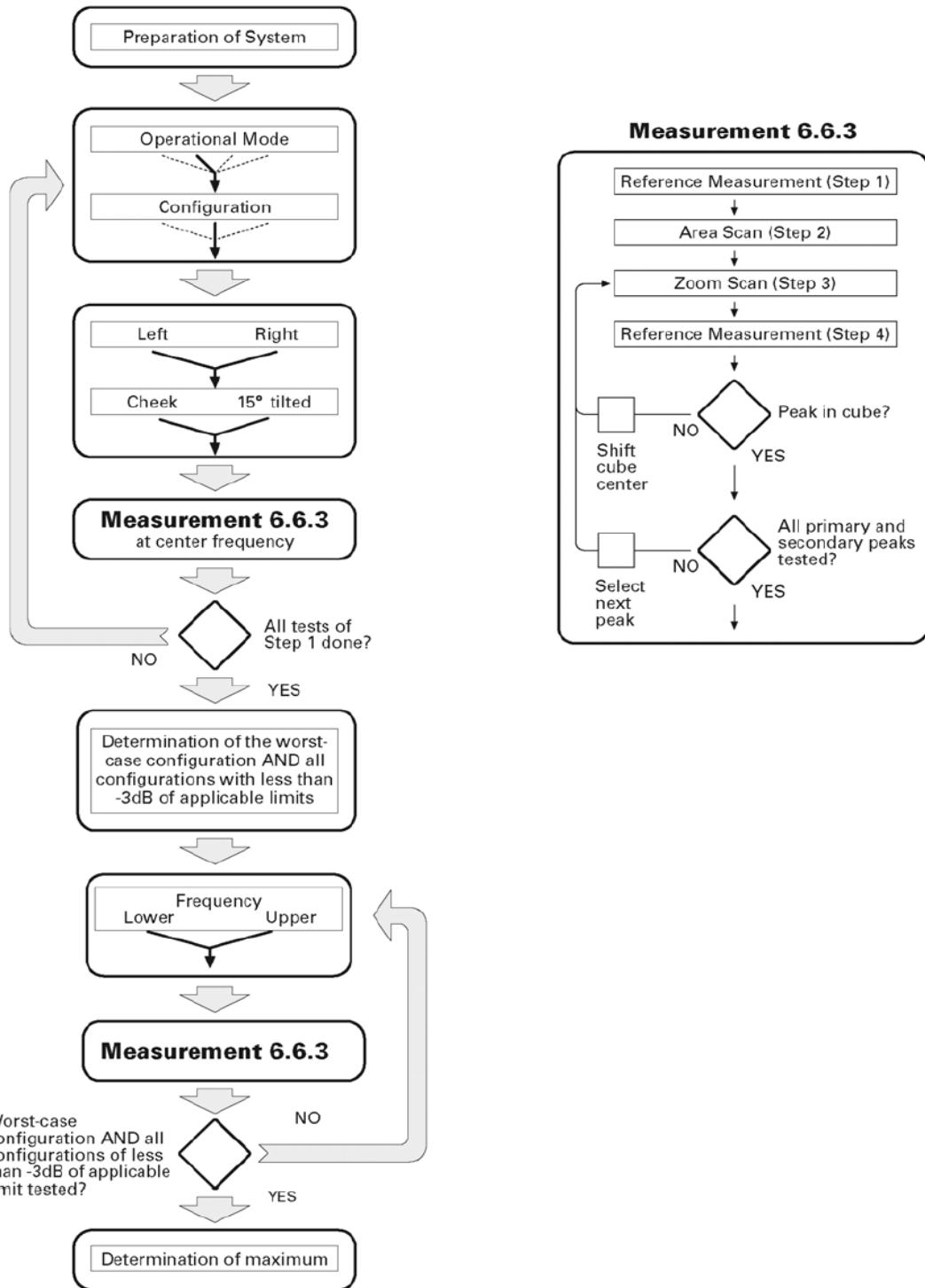
The measured 1-gram averaged SAR values of the device against the phantom are provided in Tables 5 and Table 6. The humidity and ambient temperature of test facility were 64% and 23.2°C respectively. The body phantom were full of the body tissue simulating liquid. The EUT was supplied with full-charged battery for each measurement.

The distance between the back of the EUT and the bottom of the flat phantom is 10 mm (taking into account of the IEEE 1528 and the place of the antenna).

Table 5: Head SAR system validation (1g)

| Frequency                | Duty cycle | Target value<br>(W/kg) | Test value (W/kg) |       |
|--------------------------|------------|------------------------|-------------------|-------|
|                          |            |                        | 250 mW            | 1W    |
| 750MHz(July 19th, 2015)  | 1:1        | 8.19±10%               | 1.98              | 7.92  |
| 835MHz(July 13th, 2015)  | 1:1        | 9.77±10%               | 2.42              | 9.68  |
| 1750MHz(July 17th, 2015) | 1:1        | 38.67±10%              | 9.48              | 37.92 |
| 1900MHz(July 15th, 2015) | 1:1        | 40.37±10%              | 9.81              | 39.24 |
| 2450MHz(July 18th, 2015) | 1:1        | 53.60±10%              | 12.82             | 51.28 |

Table 6: Body SAR system validation (1g)


| Frequency                | Duty cycle | Target value<br>(W/kg) | Test value (W/kg) |       |
|--------------------------|------------|------------------------|-------------------|-------|
|                          |            |                        | 250 mW            | 1W    |
| 750MHz(July 19th, 2015)  | 1:1        | 8.21±10%               | 1.99              | 7.96  |
| 835MHz(July 14th, 2015)  | 1:1        | 10.31±10%              | 2.51              | 10.04 |
| 1750MHz(July 17th, 2015) | 1:1        | 40.07±10%              | 9.85              | 39.40 |
| 1900MHz(July 16th, 2015) | 1:1        | 40.81±10%              | 10.04             | 40.16 |
| 2450MHz(July 18th, 2015) | 1:1        | 52.66±10%              | 12.93             | 51.72 |

\* Note: Target value was referring to the measured value in the calibration certificate of reference dipole.

Note: All SAR values are normalized to 1W forward power.

## 6.4 SAR measurement procedure

The SAR test against the head phantom was carried out as follow:



Establish a call with the maximum output power with a base station simulator, the connection between the EUT and the base station simulator is established via air interface.

After an area scan has been done at a fixed distance of 2mm from the surface of the phantom on the source side, a 3D scan is set up around the location of the maximum spot SAR. First, a point within the scan area is visited by the probe and a SAR reading taken at the start of testing. At the end of testing, the probe is returned to the same point and a

second reading is taken. Comparison between these start and end readings enables the power drift during measurement to be assessed.

Above is the scanning procedure flow chart and table from the IEEEp1528 standard. This is the procedure for which all compliant testing should be carried out to ensure that all variations of the device position and transmission behaviour are tested.

For body-worn measurement, the EUT was tested under two position: face upward and back upward.

## 6.5 Transmitting antenna information

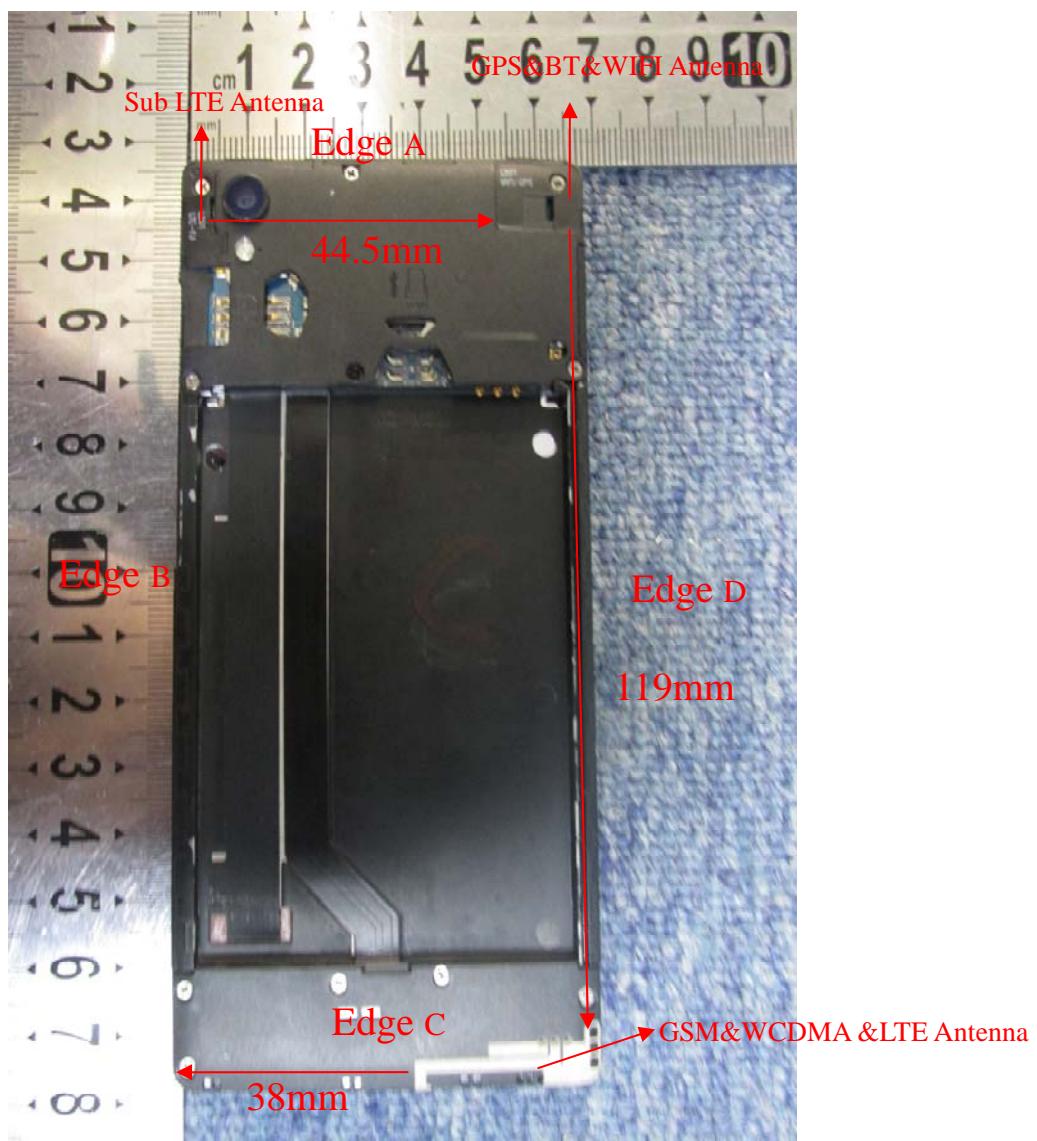



Fig. 3 Position of the antennas

The Body SAR measurement positions of each band are as below:

| Antenna                          | Front | Back | Edge A | Edge B | Edge C | Edge D |
|----------------------------------|-------|------|--------|--------|--------|--------|
| 2G 3G 4G<br>Antenna<br>Body-worn | Yes   | Yes  | No     | No     | No     | No     |
| 2G 3G 4G<br>Antenna<br>hotspot   | Yes   | Yes  | No     | No     | Yes    | Yes    |
| WIFI Antenna<br>Body-worn        | Yes   | Yes  | No     | No     | No     | No     |
| WIFI Antenna<br>hotspot          | Yes   | Yes  | Yes    | No     | No     | Yes    |

Note: According to KDB941225 antenna-to-edge>2.5cm, SAR is not required.

## 7 CHARACTERISTICS OF THE TEST

### 7.1 Applicable Limit Regulations

**47CFR § 2.1093-** Radiofrequency Radiation Exposure Evaluation: Portable Devices;

**ANSI C95.1–1992:** Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz – 300 GHz.( IEEE Std C95.1-1991)

**IEEE 1528–2013:** IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques;

It specifies the maximum exposure limit of **1.6 W/kg** as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.

### 7.2 Applicable Measurement Standards

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this is in accordance with the following standards:

FCC 47 CFR Part2 (2.1093)

ANSI/IEEE C95.1-1992

IEEE 1528-2013

FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r01

FCC KDB 447498 D01 v05r02 General RF Exposure Guidance

FCC KDB 648474 D04 v01r02 Handset SAR

FCC KDB 865664 D01 v01r03 SAR Measurement 100MHz to 6GHz

FCC KDB 865664 D02 v01r01 SAR Exposure Reporting

FCC KDB 941225 D01 v03 3G SAR Procedures

FCC KDB 941225 D05 v02r03 SAR for LTE Devices

FCC KDB 941225 D06 v02 Hotspot Mode

## 8 LABORATORY ENVIRONMENT

Table 9: The Ambient Conditions during SAR Test

|                          |                              |
|--------------------------|------------------------------|
| Temperature              | Min. = 22 ° C, Max. = 25 ° C |
| Atmospheric pressure     | Min.=86 kPa, Max.=106 kPa    |
| Relative humidity        | Min. = 45%, Max. = 75%       |
| Ground system resistance | < 0.5 Ω                      |

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

## 9. Conducted RF Output Power

### 9.1 GSM Conducted Power

Table 10: GSM Conducted Power

| Band    |                | Burst Average Power (dBm) |       |              | Frame-Average Power (dBm) |              |              |
|---------|----------------|---------------------------|-------|--------------|---------------------------|--------------|--------------|
| GSM850  | TX Channel     | 128                       | 190   | 251          | 128                       | 190          | 251          |
|         | Frequency(MHz) | 824.2                     | 836.4 | 848.8        | 824.2                     | 836.4        | 848.8        |
|         | GSM            | 32.71                     | 32.69 | <b>32.87</b> | 23.52                     | 23.50        | 23.68        |
|         | GPRS (Slot 1)  | 32.69                     | 32.67 | 32.81        | 23.50                     | 23.48        | 23.62        |
|         | GPRS (Slot 2)  | 29.74                     | 29.78 | 29.76        | <b>23.61</b>              | <b>23.65</b> | <b>23.63</b> |
|         | GPRS (Slot 3)  | 27.66                     | 27.71 | 27.67        | 23.24                     | 23.29        | 23.25        |
|         | GPRS (Slot 4)  | 25.34                     | 25.39 | 25.35        | 22.16                     | 22.21        | 22.17        |
|         | EDGE (Slot 1)  | 32.46                     | 32.51 | 32.44        | 23.27                     | 23.32        | 23.25        |
|         | EDGE (Slot 2)  | 29.54                     | 29.43 | 29.42        | 23.41                     | 23.30        | 23.29        |
|         | EDGE (Slot 3)  | 26.47                     | 26.39 | 26.45        | 22.05                     | 21.97        | 22.03        |
| GSM1900 | TX Channel     | 512                       | 661   | 810          | 512                       | 661          | 810          |
|         | Frequency(MHz) | 1850.2                    | 1880  | 1909.8       | 1850.2                    | 1880         | 1909.8       |
|         | GSM            | <b>28.93</b>              | 28.89 | 28.84        | 19.74                     | 19.70        | 19.65        |
|         | GPRS (Slot 1)  | 28.87                     | 28.79 | 28.75        | 19.68                     | 19.60        | 19.56        |
|         | GPRS (Slot 2)  | 27.51                     | 27.43 | 27.36        | <b>21.38</b>              | <b>21.30</b> | <b>21.23</b> |
|         | GPRS (Slot 3)  | 25.56                     | 25.5  | 25.38        | 21.14                     | 21.08        | 20.96        |
|         | GPRS (Slot 4)  | 23.83                     | 23.71 | 23.79        | 20.65                     | 20.53        | 20.61        |
|         | EDGE (Slot 1)  | 28.67                     | 28.7  | 28.65        | 19.48                     | 19.51        | 19.46        |
|         | EDGE (Slot 2)  | 27.24                     | 27.24 | 27.16        | 21.11                     | 21.11        | 21.03        |
|         | EDGE (Slot 3)  | 25.49                     | 25.33 | 25.37        | 21.07                     | 20.91        | 20.95        |
|         | EDGE (Slot 4)  | 23.24                     | 23.23 | 23.17        | 20.06                     | 20.05        | 19.99        |

**Note:** Per KDB 447498 D01 v05r02, the maximum output power channel is used for SAR testing and for further SAR test reduction.

For Head SAR testing, GSM should be evaluated, therefore the EUT was set in GSM Voice for GSM850 and GSM1900 due to its highest frame-average power.

For Body worn SAR testing, GSM should be evaluated, therefore the EUT was set in GSM Voice for GSM850 and GSM 1900 due to its highest frame-average power.

For hotspot mode SAR testing, GPRS and EDGE should be evaluated, therefore the EUT was set in GPRS850 (2Tx slots) and GPRS1900 (2Tx slots) due to its highest frame-average power.

Table 11: Timeslot consignations

| No. Of Slots      | Slot 1   | Slot 2   | Slot 3   | Slot 4   |
|-------------------|----------|----------|----------|----------|
| Slot Consignation | 1Up4Down | 2Up3Down | 3Up2Down | 4Up1Down |
| Duty Cycle        | 1:8      | 1:4      | 1:267    | 1:2      |
| Crest Factor      | -9.03dB  | -6.02dB  | -4.26dB  | -3.01dB  |

## 9.2 WCDMA Conducted peak output Power

Table 12: WCDMA conducted peak output power

| Item         | band                                                                                  | WCDMA 850    |       |       | WCDMA 1900   |       |       |
|--------------|---------------------------------------------------------------------------------------|--------------|-------|-------|--------------|-------|-------|
|              | ARFCN                                                                                 | 4132         | 4183  | 4233  | 9262         | 9400  | 9538  |
|              | subtest                                                                               | dBm          |       |       | dBm          |       |       |
| RMC 12.2kbps | non                                                                                   | <b>22.83</b> | 22.75 | 22.69 | <b>22.85</b> | 22.80 | 22.74 |
| AMR          | non                                                                                   | 22.32        | 22.28 | 22.34 | 22.35        | 22.20 | 22.27 |
| HSDPA        | 1                                                                                     | 22.33        | 22.22 | 22.31 | 22.27        | 22.31 | 22.25 |
|              | 2                                                                                     | 22.18        | 22.12 | 22.26 | 22.14        | 22.09 | 22.21 |
|              | 3                                                                                     | 21.91        | 21.85 | 21.86 | 21.87        | 21.89 | 21.95 |
|              | 4                                                                                     | 21.88        | 21.76 | 21.78 | 21.89        | 21.87 | 21.90 |
| HSUPA        | 1                                                                                     | 22.31        | 22.25 | 22.32 | 22.24        | 22.31 | 22.35 |
|              | 2                                                                                     | 22.21        | 22.30 | 22.23 | 22.19        | 22.14 | 22.21 |
|              | 3                                                                                     | 22.16        | 22.05 | 22.10 | 22.02        | 22.09 | 22.11 |
|              | 4                                                                                     | 22.05        | 22.04 | 22.13 | 22.12        | 22.10 | 22.05 |
|              | 5                                                                                     | 22.83        | 22.75 | 22.69 | 22.85        | 22.80 | 22.74 |
| Note:        | The Conducted RF Output Power test of WCDMA /HSDPA /HSUPA were tested by power meter. |              |       |       |              |       |       |

### HSUPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting \*:
  - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK
  - Set the Gain Factors ( $\beta_c$  and  $\beta_d$ ) and parameters (AG Index) were set according to each specific sub-test in the following table, C11.1.3, quoted from the TS 34.121
  - Set Cell Power = -86 dBm
  - Set Channel Type = 12.2k+ HSPA
  - Set UE Target Power
  - Power Ctrl Mode= Alternating bits
  - Set and observe the E-TFCI
  - Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI
- The transmitted maximum output power was recorded.

Table C.11.1.3:  $\beta$  values for transmitter characteristics tests with HS-DPCCH and E-DCH

| Sub-test | $\beta_c$         | $\beta_d$         | $\beta_d$<br>(SF) | $\beta_c/\beta_d$ | $\beta_{HS}$<br>(Note 1) | $\beta_{ec}$ | $\beta_{ed}$<br>(Note 5)<br>(Note 6)         | $\beta_{ed}$<br>(SF) | $\beta_{ed}$<br>(Codes) | CM<br>(dB)<br>(Note 2) | MPR<br>(dB)<br>(Note 2) | AG<br>Index<br>(Note 6) | E-TFCI |
|----------|-------------------|-------------------|-------------------|-------------------|--------------------------|--------------|----------------------------------------------|----------------------|-------------------------|------------------------|-------------------------|-------------------------|--------|
| 1        | 11/15<br>(Note 3) | 15/15<br>(Note 3) | 64                | 11/15<br>(Note 3) | 22/15                    | 209/25       | 1309/225                                     | 4                    | 1                       | 1.0                    | 0.0                     | 20                      | 75     |
| 2        | 6/15              | 15/15             | 64                | 6/15              | 12/15                    | 12/15        | 94/75                                        | 4                    | 1                       | 3.0                    | 2.0                     | 12                      | 67     |
| 3        | 15/15             | 9/15              | 64                | 15/9              | 30/15                    | 30/15        | $\beta_{ed1}: 47/15$<br>$\beta_{ed2}: 47/15$ | 4                    | 2                       | 2.0                    | 1.0                     | 15                      | 92     |
| 4        | 2/15              | 15/15             | 64                | 2/15              | 4/15                     | 2/15         | 56/75                                        | 4                    | 1                       | 3.0                    | 2.0                     | 17                      | 71     |
| 5        | 15/15<br>(Note 4) | 15/15<br>(Note 4) | 64                | 15/15<br>(Note 4) | 30/15                    | 24/15        | 134/15                                       | 4                    | 1                       | 1.0                    | 0.0                     | 21                      | 81     |

Note 1:  $\Delta_{ACK}, \Delta_{NACK}$  and  $\Delta_{CQI} = 30/15$  with  $\beta_{HS} = 30/15 * \beta_c$ .

Note 2: CM = 1 for  $\beta_c/\beta_d = 12/15$ ,  $\beta_{HS}/\beta_c = 24/15$ . For all other combinations of DPDCH, DPCCH, HS-DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference.

Note 3: For subtest 1 the  $\beta_c/\beta_d$  ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 10/15$  and  $\beta_d = 15/15$ .

Note 4: For subtest 5 the  $\beta_c/\beta_d$  ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 14/15$  and  $\beta_d = 15/15$ .

Note 5: In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to TS25.306 Table 5.1g.

Note 6:  $\beta_{ed}$  can not be set directly, it is set by Absolute Grant Value.

### Setup Configuration

#### HSDPA Setup Configuration:

- The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration.
- The RF path losses were compensated into the measurements.
- A call was established between EUT and Base Station with following setting:
  - Set Gain Factors ( $\beta_c$  and  $\beta_d$ ) and parameters were set according to each
  - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121
  - Set RMC 12.2Kbps + HSDPA mode.
  - Set Cell Power = -86 dBm
  - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK)
  - Select HSDPA Uplink Parameters
  - Set Delta ACK, Delta NACK and Delta CQI = 8
  - Set Ack-Nack Repetition Factor to 3
  - Set CQI Feedback Cycle (k) to 4 ms
  - Set CQI Repetition Factor to 2
  - Power Ctrl Mode = All Up bits
- The transmitted maximum output power was recorded.

Table C.10.1.4:  $\beta$  values for transmitter characteristics tests with HS-DPCCH

| Sub-test | $\beta_c$         | $\beta_d$         | $\beta_d$<br>(SF) | $\beta_c/\beta_d$ | $\beta_{HS}$<br>(Note 1,<br>Note 2) | CM (dB)<br>(Note 3) | MPR (dB)<br>(Note 3) |
|----------|-------------------|-------------------|-------------------|-------------------|-------------------------------------|---------------------|----------------------|
| 1        | 2/15              | 15/15             | 64                | 2/15              | 4/15                                | 0.0                 | 0.0                  |
| 2        | 12/15<br>(Note 4) | 15/15<br>(Note 4) | 64                | 12/15<br>(Note 4) | 24/15                               | 1.0                 | 0.0                  |
| 3        | 15/15             | 8/15              | 64                | 15/8              | 30/15                               | 1.5                 | 0.5                  |
| 4        | 15/15             | 4/15              | 64                | 15/4              | 30/15                               | 1.5                 | 0.5                  |

Note 1:  $\Delta_{ACK}, \Delta_{NACK}$  and  $\Delta_{CQI} = 30/15$  with  $\beta_{hs} = 30/15 * \beta_c$ .  
 Note 2: For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA,  $\Delta_{ACK}$  and  $\Delta_{NACK} = 30/15$  with  $\beta_{hs} = 30/15 * \beta_c$ , and  $\Delta_{CQI} = 24/15$  with  $\beta_{hs} = 24/15 * \beta_c$ .  
 Note 3: CM = 1 for  $\beta_c/\beta_d = 12/15$ ,  $\beta_{hs}/\beta_c = 24/15$ . For all other combinations of DPDCH, DPCCH and HS-DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases.  
 Note 4: For subtest 2 the  $\beta_c/\beta_d$  ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to  $\beta_c = 11/15$  and  $\beta_d = 15/15$ .

## Note:

1. WCDMA SAR was tested under PMC 12.2kbps with HSPA Inactive per KDB Publication 941225 D01. HSPA SAR was not required since the average output power of the HSPA subtests was not more than 0.25dB higher than the RMC level and SAR was less than 1.2W/kg.
2. It is expected by the manufacturer that MPR for some HSPA subtests may be up to 2dB more than specified by 3GPP, but also as low as 0dB according to the chipset implementation in this model.

## 9.3 LTE Conducted peak output Power

### LTE Test Configurations

The CMW500 WideBand Radio Communication Tester was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR test were performed with the same number of RB and RB offsets transmitting on all frames.

#### 1) Spectrum Plots for RB configurations

A properly configured base station simulator was used for LTE output power measurements and SAR testing. Therefore, spectrum plots for RB configurations were not required to be included in this report.

#### 2) MPR

When MPR is implemented permanently within the UE, regardless of network requirements, only those RB configurations allowed by 3GPP for the channel bandwidth and modulation combinations may be tested with MPR active. Configurations with RB allocations less than the RB thresholds required by 3GPP must be tested without MPR.

The allowed Maximum Power Reduction(MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3-1 of the 3GPP TS36.101:

**Table 6.2.3-1: Maximum Power Reduction (MPR) for Power Class 3**

| <b>Modulation</b> | <b>Channel bandwidth / Transmission bandwidth configuration [RB]</b> |                |              |               |               |               | <b>MPR (dB)</b> |
|-------------------|----------------------------------------------------------------------|----------------|--------------|---------------|---------------|---------------|-----------------|
|                   | <b>1.4 MHz</b>                                                       | <b>3.0 MHz</b> | <b>5 MHz</b> | <b>10 MHz</b> | <b>15 MHz</b> | <b>20 MHz</b> |                 |
| QPSK              | > 5                                                                  | > 4            | > 8          | > 12          | > 16          | > 18          | ≤ 1             |
| 16 QAM            | ≤ 5                                                                  | ≤ 4            | ≤ 8          | ≤ 12          | ≤ 16          | ≤ 18          | ≤ 1             |
| 32 QAM            | > 5                                                                  | > 4            | > 8          | > 12          | > 16          | > 18          | ≤ 2             |

### 3)A-MPR LTE procedures for SAR testing

A-MPR(Additional MPR) has been disabled for all SAR tests by using Network Signalling Value of “NS\_01” on the base station simulator.

#### 4)LTE procedures for SAR testing

##### A) Largest channel bandwidth standalone SAR test

###### requirements i) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

###### ii) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in i) are applied to measure the SAR for QPSK with 50% RB allocation.

###### iii) QPSK with 100 % RB allocation

For QPSK with 100 % RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in i) and ii) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

###### iv) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

##### B) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > ½ dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

## LTE Band 4 Conducted Power Test Verdict:

| BW(MHz)        | Modulation | RB Size | RB Offset | Power(dBm)<br>Low Ch./Freq. | Power(dBm)<br>Middle Ch./Freq. | Power(dBm)<br>High Ch./Freq. |
|----------------|------------|---------|-----------|-----------------------------|--------------------------------|------------------------------|
| Channel        |            |         |           | 20050                       | 20175                          | 20300                        |
| Frequency(MHz) |            |         |           | 1720                        | 1732.5                         | 1745                         |
| 20             | QPSK       | 1       | 0         | <b>23.71</b>                | 23.68                          | 23.65                        |
| 20             | QPSK       | 1       | 49        | 23.64                       | 23.59                          | 23.57                        |
| 20             | QPSK       | 1       | 99        | 23.51                       | 23.57                          | 23.59                        |
| 20             | QPSK       | 50      | 0         | <b>22.86</b>                | 22.77                          | 22.83                        |
| 20             | QPSK       | 50      | 24        | 22.74                       | 22.71                          | 22.79                        |
| 20             | QPSK       | 50      | 49        | 22.78                       | 22.75                          | 22.80                        |
| 20             | QPSK       | 100     | 0         | 22.61                       | 22.55                          | 22.64                        |
| 20             | 16QAM      | 1       | 0         | 22.28                       | 22.33                          | 22.31                        |
| 20             | 16QAM      | 1       | 49        | 22.37                       | 22.30                          | 22.35                        |
| 20             | 16QAM      | 1       | 99        | 22.29                       | 22.34                          | 22.27                        |
| 20             | 16QAM      | 50      | 0         | 21.87                       | 21.79                          | 21.75                        |
| 20             | 16QAM      | 50      | 24        | 21.69                       | 21.61                          | 21.72                        |
| 20             | 16QAM      | 50      | 49        | 21.71                       | 21.77                          | 21.69                        |
| 20             | 16QAM      | 100     | 0         | 21.57                       | 21.64                          | 21.61                        |
| Channel        |            |         |           | 20025                       | 20175                          | 20325                        |
| Frequency(MHz) |            |         |           | 1717.5                      | 1732.5                         | 1747.5                       |
| 15             | QPSK       | 1       | 0         | 23.66                       | 23.64                          | 23.59                        |
| 15             | QPSK       | 1       | 37        | 23.48                       | 23.51                          | 23.54                        |
| 15             | QPSK       | 1       | 74        | 23.41                       | 23.45                          | 23.51                        |
| 15             | QPSK       | 36      | 0         | 22.82                       | 22.91                          | 22.92                        |
| 15             | QPSK       | 36      | 18        | 22.82                       | 22.84                          | 22.75                        |
| 15             | QPSK       | 36      | 37        | 22.82                       | 22.88                          | 22.83                        |
| 15             | QPSK       | 75      | 0         | 22.71                       | 22.75                          | 22.67                        |
| 15             | 16QAM      | 1       | 0         | 22.46                       | 22.39                          | 22.38                        |
| 15             | 16QAM      | 1       | 37        | 22.18                       | 22.21                          | 22.27                        |
| 15             | 16QAM      | 1       | 74        | 22.14                       | 22.21                          | 22.18                        |
| 15             | 16QAM      | 36      | 0         | 21.70                       | 21.73                          | 21.64                        |
| 15             | 16QAM      | 36      | 18        | 21.69                       | 21.73                          | 21.67                        |
| 15             | 16QAM      | 36      | 37        | 21.72                       | 21.78                          | 21.83                        |
| 15             | 16QAM      | 75      | 0         | 21.68                       | 21.71                          | 21.77                        |

| BW(MHz)        | Modulation | RB Size | RB Offset | Power(dBm)<br>Low Ch./Freq. | Power(dBm)<br>Middle Ch./Freq. | Power(dBm)<br>High Ch./Freq. |
|----------------|------------|---------|-----------|-----------------------------|--------------------------------|------------------------------|
| Channel        |            |         |           | 20000                       | 20175                          | 20350                        |
| Frequency(MHz) |            |         |           | 1715                        | 1732.5                         | 1750                         |
| 10             | QPSK       | 1       | 0         | 23.67                       | 23.58                          | 23.62                        |
| 10             | QPSK       | 1       | 24        | 23.49                       | 23.52                          | 23.48                        |
| 10             | QPSK       | 1       | 49        | 23.35                       | 23.39                          | 23.40                        |
| 10             | QPSK       | 25      | 0         | 22.74                       | 22.71                          | 22.80                        |
| 10             | QPSK       | 25      | 12        | 22.82                       | 22.69                          | 22.75                        |
| 10             | QPSK       | 25      | 24        | 22.71                       | 22.83                          | 22.77                        |
| 10             | QPSK       | 50      | 0         | 22.76                       | 22.82                          | 22.71                        |
| 10             | 16QAM      | 1       | 0         | 22.47                       | 22.45                          | 22.41                        |
| 10             | 16QAM      | 1       | 24        | 22.41                       | 22.38                          | 22.35                        |
| 10             | 16QAM      | 1       | 49        | 22.38                       | 22.41                          | 22.29                        |
| 10             | 16QAM      | 25      | 0         | 21.89                       | 21.93                          | 21.92                        |
| 10             | 16QAM      | 25      | 12        | 21.81                       | 21.85                          | 21.76                        |
| 10             | 16QAM      | 25      | 24        | 21.72                       | 21.81                          | 21.74                        |
| 10             | 16QAM      | 50      | 0         | 21.78                       | 21.74                          | 21.75                        |
| Channel        |            |         |           | 19975                       | 20175                          | 20375                        |
| Frequency(MHz) |            |         |           | 1712.5                      | 1732.5                         | 1752.5                       |
| 5              | QPSK       | 1       | 0         | 23.57                       | 23.55                          | 23.52                        |
| 5              | QPSK       | 1       | 12        | 23.45                       | 23.48                          | 23.42                        |
| 5              | QPSK       | 1       | 24        | 23.45                       | 23.43                          | 23.48                        |
| 5              | QPSK       | 12      | 0         | 22.79                       | 22.77                          | 22.82                        |
| 5              | QPSK       | 12      | 6         | 22.71                       | 22.80                          | 22.78                        |
| 5              | QPSK       | 12      | 11        | 22.77                       | 22.73                          | 22.77                        |
| 5              | QPSK       | 25      | 0         | 22.65                       | 22.72                          | 22.68                        |
| 5              | 16QAM      | 1       | 0         | 22.47                       | 22.39                          | 22.40                        |
| 5              | 16QAM      | 1       | 12        | 22.31                       | 22.27                          | 22.29                        |
| 5              | 16QAM      | 1       | 24        | 22.29                       | 22.31                          | 22.25                        |
| 5              | 16QAM      | 12      | 0         | 21.81                       | 21.78                          | 21.86                        |
| 5              | 16QAM      | 12      | 6         | 21.76                       | 21.72                          | 21.69                        |
| 5              | 16QAM      | 12      | 11        | 21.64                       | 21.75                          | 21.72                        |
| 5              | 16QAM      | 25      | 0         | 21.63                       | 21.59                          | 21.60                        |

| BW(MHz)        | Modulation | RB Size | RB Offset | Power(dBm)<br>Low Ch./Freq. | Power(dBm)<br>Middle Ch./Freq. | Power(dBm)<br>High Ch./Freq. |
|----------------|------------|---------|-----------|-----------------------------|--------------------------------|------------------------------|
| Channel        |            |         |           | 19965                       | 20175                          | 20385                        |
| Frequency(MHz) |            |         |           | 1711.5                      | 1732.5                         | 1753.5                       |
| 3              | QPSK       | 1       | 0         | 23.56                       | 23.52                          | 23.55                        |
| 3              | QPSK       | 1       | 7         | 23.53                       | 23.60                          | 23.54                        |
| 3              | QPSK       | 1       | 14        | 23.52                       | 23.56                          | 23.58                        |
| 3              | QPSK       | 8       | 0         | 22.70                       | 22.65                          | 22.72                        |
| 3              | QPSK       | 8       | 4         | 22.65                       | 22.72                          | 22.68                        |
| 3              | QPSK       | 8       | 7         | 22.69                       | 22.74                          | 22.75                        |
| 3              | QPSK       | 15      | 0         | 22.67                       | 22.70                          | 22.68                        |
| 3              | 16QAM      | 1       | 0         | 22.38                       | 22.45                          | 22.44                        |
| 3              | 16QAM      | 1       | 7         | 22.41                       | 22.48                          | 22.43                        |
| 3              | 16QAM      | 1       | 14        | 22.38                       | 22.30                          | 22.36                        |
| 3              | 16QAM      | 8       | 0         | 21.68                       | 21.70                          | 21.75                        |
| 3              | 16QAM      | 8       | 4         | 21.64                       | 21.61                          | 21.65                        |
| 3              | 16QAM      | 8       | 7         | 21.69                       | 21.72                          | 21.65                        |
| 3              | 16QAM      | 15      | 0         | 21.52                       | 21.56                          | 21.51                        |
| Channel        |            |         |           | 19957                       | 20175                          | 20393                        |
| Frequency(MHz) |            |         |           | 1710.7                      | 1732.5                         | 1754.3                       |
| 1.4            | QPSK       | 1       | 0         | 23.55                       | 23.54                          | 23.49                        |
| 1.4            | QPSK       | 1       | 2         | 23.59                       | 23.52                          | 23.51                        |
| 1.4            | QPSK       | 1       | 5         | 23.42                       | 23.47                          | 23.45                        |
| 1.4            | QPSK       | 3       | 0         | 22.78                       | 22.67                          | 22.72                        |
| 1.4            | QPSK       | 3       | 1         | 22.67                       | 22.77                          | 22.72                        |
| 1.4            | QPSK       | 3       | 2         | 22.56                       | 22.67                          | 22.71                        |
| 1.4            | QPSK       | 6       | 0         | 22.57                       | 22.46                          | 22.53                        |
| 1.4            | 16QAM      | 1       | 0         | 22.72                       | 22.77                          | 22.61                        |
| 1.4            | 16QAM      | 1       | 2         | 22.63                       | 22.74                          | 22.71                        |
| 1.4            | 16QAM      | 1       | 5         | 22.85                       | 22.91                          | 22.94                        |
| 1.4            | 16QAM      | 3       | 0         | 22.79                       | 22.74                          | 22.85                        |
| 1.4            | 16QAM      | 3       | 1         | 22.32                       | 22.35                          | 22.41                        |
| 1.4            | 16QAM      | 3       | 2         | 22.50                       | 22.55                          | 22.47                        |
| 1.4            | 16QAM      | 6       | 0         | 22.49                       | 22.55                          | 22.56                        |

## LTE Band 17 Conducted Power Test Verdict:

| BW(MHz)        | Modulation | RB Size | RB Offset | Power(dBm)<br>Low Ch./Freq. | Power(dBm)<br>Middle Ch./Freq. | Power(dBm)<br>High Ch./Freq. |
|----------------|------------|---------|-----------|-----------------------------|--------------------------------|------------------------------|
| Channel        |            |         |           | 23780                       | 23790                          | 23800                        |
| Frequency(MHz) |            |         |           | 709                         | 710                            | 711                          |
| 10             | QPSK       | 1       | 0         | 23.50                       | 23.48                          | 23.51                        |
| 10             | QPSK       | 1       | 24        | 23.49                       | 23.40                          | 23.45                        |
| 10             | QPSK       | 1       | 49        | 23.53                       | <b>23.57</b>                   | 23.54                        |
| 10             | QPSK       | 25      | 0         | 22.71                       | <b>22.76</b>                   | 22.72                        |
| 10             | QPSK       | 25      | 12        | 22.67                       | 22.61                          | 22.64                        |
| 10             | QPSK       | 25      | 24        | 22.61                       | 22.65                          | 22.62                        |
| 10             | QPSK       | 50      | 0         | 22.70                       | 22.69                          | 22.67                        |
| 10             | 16QAM      | 1       | 0         | 22.35                       | 22.30                          | 22.27                        |
| 10             | 16QAM      | 1       | 24        | 22.22                       | 22.11                          | 22.13                        |
| 10             | 16QAM      | 1       | 49        | 22.08                       | 22.11                          | 22.05                        |
| 10             | 16QAM      | 25      | 0         | 21.41                       | 21.46                          | 21.48                        |
| 10             | 16QAM      | 25      | 12        | 21.64                       | 21.75                          | 21.61                        |
| 10             | 16QAM      | 25      | 24        | 21.51                       | 21.54                          | 21.56                        |
| 10             | 16QAM      | 50      | 0         | 21.53                       | 21.46                          | 21.51                        |
| Channel        |            |         |           | 23755                       | 23790                          | 23825                        |
| Frequency(MHz) |            |         |           | 706.5                       | 710                            | 713.5                        |
| 5              | QPSK       | 1       | 0         | 23.42                       | 23.54                          | 23.47                        |
| 5              | QPSK       | 1       | 12        | 23.29                       | 23.33                          | 23.36                        |
| 5              | QPSK       | 1       | 24        | 23.28                       | 23.20                          | 23.31                        |
| 5              | QPSK       | 12      | 0         | 22.60                       | 22.63                          | 22.67                        |
| 5              | QPSK       | 12      | 6         | 22.56                       | 22.52                          | 22.50                        |
| 5              | QPSK       | 12      | 11        | 22.56                       | 22.51                          | 22.59                        |
| 5              | QPSK       | 25      | 0         | 22.56                       | 22.53                          | 22.52                        |
| 5              | 16QAM      | 1       | 0         | 22.54                       | 22.49                          | 22.44                        |
| 5              | 16QAM      | 1       | 12        | 22.25                       | 22.18                          | 22.26                        |
| 5              | 16QAM      | 1       | 24        | 22.33                       | 22.42                          | 22.37                        |
| 5              | 16QAM      | 12      | 0         | 21.40                       | 21.45                          | 21.48                        |
| 5              | 16QAM      | 12      | 6         | 21.62                       | 21.55                          | 21.49                        |
| 5              | 16QAM      | 12      | 11        | 21.51                       | 21.54                          | 21.48                        |
| 5              | 16QAM      | 25      | 0         | 21.41                       | 21.40                          | 21.44                        |

## WLAN 2.4GHz Band Conducted Power

For the 802.11b/g SAR tests, a communication link is set up with the test mode software for WiFi mode test. The Absolute Radio Frequency Channel Number(ARFCN) is allocated to 1 ,6 and 11 respectively in the case of 2450 MHz. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. Each channel should be tested at the lowest data rate.

802.11b/g operating modes are tested independently according to the service requirements in each frequency band. 802.11b/g modes are tested on channel 1, 6, 11; however, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11g/n channels when the maximum average output power is less than 0.25dB higher than that measured on the corresponding 802.11b channels.

| Wi-Fi<br>2450MHz  | Channel/F<br>req.(MHz) | Average Power (dBm) for Data Rates (Mbps) |       |       |       |       |       |       |       |
|-------------------|------------------------|-------------------------------------------|-------|-------|-------|-------|-------|-------|-------|
|                   |                        | 1                                         | 2     | 5.5   | 11    | /     | /     | /     | /     |
| 802.11b           | 1(2412)                | 15.54                                     | 15.45 | 15.51 | 15.49 | /     | /     | /     | /     |
|                   | 6(2437)                | 15.49                                     | 15.39 | 15.40 | 15.45 | /     | /     | /     | /     |
|                   | 11(2462)               | 15.38                                     | 15.29 | 15.35 | 15.33 | /     | /     | /     | /     |
| 802.11g           | Channel                | 6                                         | 9     | 12    | 18    | 24    | 36    | 48    | 54    |
|                   | 1(2412)                | 14.38                                     | 14.35 | 14.29 | 14.33 | 14.30 | 14.25 | 14.27 | 14.34 |
|                   | 6(2437)                | 14.46                                     | 14.42 | 14.45 | 14.38 | 14.40 | 14.35 | 14.42 | 14.44 |
|                   | 11(2462)               | 14.51                                     | 14.49 | 14.43 | 14.45 | 14.50 | 14.49 | 14.47 | 14.46 |
| 802.11n<br>(HT20) | Channel                | 0                                         | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|                   | 1(2412)                | 13.74                                     | 13.72 | 13.69 | 13.64 | 13.62 | 13.67 | 13.73 | 13.64 |
|                   | 6(2437)                | 13.89                                     | 13.88 | 13.84 | 13.79 | 13.83 | 13.82 | 13.81 | 13.86 |
|                   | 11(2462)               | 13.72                                     | 13.69 | 13.70 | 13.66 | 13.64 | 13.67 | 13.71 | 13.68 |
| 802.11n<br>(HT40) | Channel                | 0                                         | 1     | 2     | 3     | 4     | 5     | 6     | 7     |
|                   | 3                      | 12.61                                     | 12.56 | 12.59 | 12.60 | 12.54 | 12.55 | 12.58 | 12.59 |
|                   | 6                      | 12.74                                     | 12.72 | 12.71 | 12.69 | 12.67 | 12.68 | 12.68 | 12.61 |
|                   | 9                      | 12.69                                     | 12.62 | 12.59 | 12.63 | 12.61 | 12.66 | 12.62 | 12.64 |

**Note:**

1. Per KDB 248227 D01 v02r01, choose the highest output power channel to test SAR and determine further SAR exclusion
2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at lowest data rate
3. Per KDB 248227 D01 v02r01, 802.11g /11n-HT20/11n-HT40 is not required. . When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is  $\leq 1.2\text{W/Kg}$ . Thus the SAR can be excluded.

### Bluetooth Conducted Power

| Channel | Frequency<br>(MHz) | BT3.0 Output Power(dBm) |                |        |
|---------|--------------------|-------------------------|----------------|--------|
|         |                    | GFSK                    | $\pi/4$ -DQPSK | 8-DPSK |
| CH 0    | 2402               | -3.09                   | -4.34          | -4.43  |
| CH 39   | 2441               | -3.49                   | -4.39          | -4.39  |
| CH 78   | 2480               | -1.79                   | -2.12          | -2.21  |

| Channel | Frequency(MHz) | BT 4.0 |
|---------|----------------|--------|
| CH 0    | 2402           | -9.89  |
| CH 20   | 2442           | -9.81  |
| CH 39   | 2480           | -7.63  |

**Note:**

1. Per KDB 447498 D01v05r02, the 1-g and 10-g SAR test exclusion thresholds for 100MHz to 6GHz at test separation distances  $\leq 50\text{mm}$  are determined by:  $[(\text{max. power of channel, including tune-up tolerance, mW})/(\text{min. test separation distance, mm})] \cdot [\sqrt{f} \text{ (GHz)}] \leq 3.0$  for 1-g SAR and  $\leq 7.5$  for 10-g extremity SAR
  - (1)  $f(\text{GHz})$  is the RF channel transmit frequency in GHz
  - (2) Power and distance are round to the nearest mW and mm before calculation
  - (3) The result is rounded to one decimal place for comparison
  - (4) If the test separation distance(antenna-user) is  $< 5\text{mm}$ , 5mm is used for excluded SAR calculation

| Bluetooth Max Power (dBm) | mW    | Test Distance (mm) | Frequency(Ghz) | Exclusion Thresholds |
|---------------------------|-------|--------------------|----------------|----------------------|
| -1                        | 0.794 | 5                  | 2.4            | 0.246                |

Per KDB 447498 D01v05r02 exclusion thresholds is 0.246<3, RF exposure evaluation is not required.  
 BT estimated SAR value=Exclusion Thresholds/7.5=0.246/7.5=0.033W/Kg

| Bluetooth Max Power (dBm) | mW    | Test Distance (mm) | Frequency(Ghz) | Exclusion Thresholds |
|---------------------------|-------|--------------------|----------------|----------------------|
| -1                        | 0.794 | 10                 | 2.4            | 0.123                |

Per KDB 447498 D01v05r02 exclusion thresholds is 0.123<3, RF exposure evaluation is not required.  
 BT estimated SAR value=Exclusion Thresholds/7.5=0.123/7.5=0.016W/Kg

The estimated SAR value is used for simultaneous transmission analysis.

## General Note:

1. Per KDB 447498 D01v05r02, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
2. Per KDB447498 D01v05r02, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is:  $\leq 0.8 \text{ W/kg}$  or  $2.0 \text{ W/kg}$ , for 1-g or 10-g respectively, when the transmission band is  $\leq 100 \text{ MHz}$ . When the maximum output power variation across the required test channels is  $> \frac{1}{2} \text{ dB}$ , instead of the middle channel, the highest output power channel must be used.
3. Per KDB941225 D06v02, the DUT Dimension is bigger than  $9 \text{ cm} \times 5 \text{ cm}$ , so 10mm is chosen as the test separation distance for Hotspot mode. When the antenna-to-edge distance is greater than 2.5cm, such position does not need to be tested. As the manufacturer required, the separation distance use 5mm for Hotspot mode.
4. Per KDB 865664 D01v01r03, for each frequency band, repeated SAR measurement is required only when the measured SAR is  $\geq 0.8 \text{ W/Kg}$ ; if the deviation among the repeated measurement is  $\leq 20\%$ , and the measured SAR  $< 1.45 \text{ W/Kg}$ , only one repeated measurement is required.
5. Per KDB865664 D02v01r01, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is  $> 1.5 \text{ W/kg}$ , or  $> 7.0 \text{ W/kg}$  for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing (Refer to appendix D for details).
6. Per KDB941225 D01v03, when multiple slots can be used, the GPRS/EDGE slot configuration with the highest frame-averaged output power was selected for SAR testing.
7. Per KDB941225 D01v03, when the maximum output power and tune-up tolerance specified for production units in a secondary mode is  $\leq \frac{1}{4} \text{ dB}$  higher than the primary mode or when the highest reported SAR of the primary mode is scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode and the adjusted SAR is  $\leq 1.2 \text{ W/kg}$ , SAR measurement is not required for the secondary mode.
8. Per KDB 248227 D01 v02r01, 802.11g /11n-HT20/11n-HT40 is not required. When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is  $\leq 1.2 \text{ W/Kg}$ . Thus the SAR can be excluded.

### 9.3. Scaling Factor calculation

| Operation Mode | Channel | Output Power(dBm) | Tune up Power in tolerance(dBm) | Scaling Factor |
|----------------|---------|-------------------|---------------------------------|----------------|
| GSM 850        | 128     | 32.71             | 32.00 ± 1                       | 1.069          |
|                | 190     | 32.69             | 32.00 ± 1                       | 1.074          |
|                | 251     | 32.87             | 32.00 ± 1                       | 1.030          |
| GPRS 850(2Tx)  | 128     | 29.74             | 29.00± 1                        | 1.062          |
|                | 190     | 29.78             | 29.00± 1                        | 1.052          |
|                | 251     | 29.76             | 29.00± 1                        | 1.057          |
| GSM1900        | 512     | 28.93             | 28.00± 1                        | 1.016          |
|                | 661     | 28.89             | 28.00± 1                        | 1.026          |
|                | 810     | 28.84             | 28.00± 1                        | 1.038          |
| GPRS1900(2Tx)  | 512     | 27.51             | 27.50± 0.5                      | 1.119          |
|                | 661     | 27.43             | 27.50± 0.5                      | 1.140          |
|                | 810     | 27.36             | 27.50± 0.5                      | 1.159          |
| WCDMA850       | 4132    | 22.83             | 22.50 ± 0.5                     | 1.040          |
|                | 4183    | 22.75             | 22.50 ± 0.5                     | 1.059          |
|                | 4233    | 22.69             | 22.50 ± 0.5                     | 1.074          |
| WCDMA1900      | 9262    | 22.85             | 22.50 ± 0.5                     | 1.035          |
|                | 9400    | 22.80             | 22.50 ± 0.5                     | 1.047          |
|                | 9538    | 22.74             | 22.50 ± 0.5                     | 1.062          |
| LTE B4 1RB#0   | 20050   | 23.71             | 23.00 ± 1                       | 1.069          |
|                | 20175   | 23.68             | 23.00 ± 1                       | 1.076          |
|                | 20300   | 23.65             | 23.00 ± 1                       | 1.084          |
| LTE B4 50RB#0  | 20050   | 22.86             | 22.00 ± 1                       | 1.033          |
|                | 20175   | 22.77             | 22.00 ± 1                       | 1.054          |
|                | 20300   | 22.83             | 22.00 ± 1                       | 1.040          |
| LTE B17 1RB#49 | 23780   | 23.53             | 23.00 ± 1                       | 1.114          |
|                | 23790   | 23.57             | 23.00 ± 1                       | 1.104          |
|                | 23800   | 23.54             | 23.00 ± 1                       | 1.112          |
| LTE B17 25RB#0 | 23780   | 22.71             | 22.00 ± 1                       | 1.069          |
|                | 23790   | 22.76             | 22.00 ± 1                       | 1.057          |
|                | 23800   | 22.72             | 22.00 ± 1                       | 1.067          |
| WIFI 802.11b   | 1       | 15.54             | 15.50± 0.5                      | 1.112          |
|                | 6       | 15.49             | 15.50± 0.5                      | 1.125          |
|                | 11      | 15.38             | 15.50± 0.5                      | 1.153          |
| BT             | 78      | -1.79             | -2.5± 1.5                       | 1.199          |

## Simultaneous SAR

| No. | Transmitter Combinations               | Scenario Supported or not | Supported for Mobile Hotspot or not |
|-----|----------------------------------------|---------------------------|-------------------------------------|
| 1   | GSM(Voice)+GSM(Data)                   | No                        | No                                  |
| 2   | WCDMA(Voice)+WCDMA(Data)               | Yes                       | No                                  |
| 3   | GSM(Voice)+ WCDMA(Data)                | No                        | No                                  |
| 4   | WCDMA(Voice)+GSM(Data)                 | No                        | No                                  |
| 5   | GSM(Voice)+ WCDMA(Voice)               | No                        | No                                  |
| 6   | GSM(Voice)+Wifi(/BT)                   | Yes                       | Yes                                 |
| 7   | WCDMA(Voice) +Wifi(/BT)                | Yes                       | Yes                                 |
| 8   | WCDMA(Voice)+WCDMA(Data)+<br>Wifi(/BT) | Yes                       | Yes                                 |
| 9   | GSM(Data)+wifi                         | Yes                       | Yes                                 |
| 10  | WCDMA(Data) +wifi                      | Yes                       | Yes                                 |
| 12  | LTE(Data)+GSM(Voice/Data)              | No                        | No                                  |
| 13  | LTE(Data)+WCDMA(Voice/Data)            | No                        | No                                  |
| 14  | LTE(Data)+WIFI(/BT)                    | Yes                       | Yes                                 |

## 10 TEST RESULTS

### 10.1 Summary of SAR Measurement Results

Table 7: SAR Values of GSM 850MHz Band

| Test Positions         |                    |              | Channel /Frequency (MHz) | SAR(W/Kg), 1.6 (1g average) |       |
|------------------------|--------------------|--------------|--------------------------|-----------------------------|-------|
|                        |                    | SAR(W/Kg),1g |                          | Scaled SAR(W/Kg),1g         |       |
| Right Side of Head     | Cheek              | 251/848.8    | 0.013                    | 0.013                       |       |
|                        | Tilt 15 degrees    | 251/848.8    | 0.011                    | 0.011                       |       |
| Left Side of Head      | Cheek              | 251/848.8    | <b>0.014</b>             | 0.014                       |       |
|                        | Tilt 15 degrees    | 251/848.8    | 0.009                    | 0.009                       |       |
| Body (10mm Separation) | GSM Body-worn      | Face Upward  | 251/848.8                | 0.013                       | 0.013 |
|                        |                    | Back Upward  | 251/848.8                | <b>0.016</b>                | 0.016 |
|                        | GPRS (2Tx) hotspot | Face Upward  | 190/836.4                | 0.016                       | 0.017 |
|                        |                    | Back Upward  | 190/836.4                | <b>0.024</b>                | 0.025 |
|                        |                    | Edge C       | 190/836.4                | 0.009                       | 0.009 |
|                        |                    | Edge D       | 190/836.4                | 0.009                       | 0.009 |

Table 8: SAR Values of GSM1900 MHz Band

| Test Positions         |                    |              | Channel /Frequency (MHz) | SAR(W/Kg), 1.6 (1g average) |       |
|------------------------|--------------------|--------------|--------------------------|-----------------------------|-------|
|                        |                    | SAR(W/Kg),1g |                          | Scaled SAR(W/Kg),1g         |       |
| Right Side of Head     | Cheek              | 512/1850.2   | 0.045                    | 0.046                       |       |
|                        | Tilt 15 degrees    | 512/1850.2   | 0.025                    | 0.025                       |       |
| Left Side of Head      | Cheek              | 512/1850.2   | <b>0.057</b>             | 0.058                       |       |
|                        | Tilt 15 degrees    | 512/1850.2   | 0.027                    | 0.027                       |       |
| Body (10mm Separation) | GSM Body-worn      | Face Upward  | 512/1850.2               | 0.111                       | 0.113 |
|                        |                    | Back Upward  | 512/1850.2               | <b>0.117</b>                | 0.119 |
|                        | GPRS (2Tx) hotspot | Face Upward  | 512/1850.2               | 0.116                       | 0.130 |
|                        |                    | Back Upward  | 512/1850.2               | 0.122                       | 0.137 |
|                        |                    | Edge C       | 512/1850.2               | <b>0.140</b>                | 0.157 |
|                        |                    | Edge D       | 512/1850.2               | 0.037                       | 0.041 |

Table 9: SAR Values of WCDMA850

| Temperature: 23.0~23.5°C, humidity: 62~64%. |                 |                          |                             |                     |
|---------------------------------------------|-----------------|--------------------------|-----------------------------|---------------------|
| Test Positions                              |                 | Channel /Frequency (MHz) | SAR(W/Kg), 1.6 (1g average) |                     |
|                                             |                 |                          | SAR(W/Kg),1g                | Scaled SAR(W/Kg),1g |
| Right Side of Head                          | Cheek           | 4132/826.4               | 0.018                       | 0.019               |
|                                             | Tilt 15 degrees | 4132/826.4               | 0.014                       | 0.015               |
| Left Side of Head                           | Cheek           | 4132/826.4               | <b>0.019</b>                | 0.020               |
|                                             | Tilt 15 degrees | 4132/826.4               | 0.015                       | 0.016               |
| Body (10mm Separation)<br>Body-worn         | Face Upward     | 4132/826.4               | 0.023                       | 0.024               |
|                                             | Back Upward     | 4132/826.4               | <b>0.033</b>                | 0.034               |
| Body (10mm Separation)<br>Hotspot           | Face Upward     | 4132/826.4               | 0.023                       | 0.024               |
|                                             | Back Upward     | 4132/826.4               | <b>0.033</b>                | 0.034               |
|                                             | Edge C          | 4132/826.4               | 0.016                       | 0.017               |
|                                             | Edge D          | 4132/826.4               | 0.016                       | 0.017               |

Table 10: SAR Values of WCDMA1900

| Temperature: 23.0~23.5°C, humidity: 62~64%. |                 |                          |                             |                     |
|---------------------------------------------|-----------------|--------------------------|-----------------------------|---------------------|
| Test Positions                              |                 | Channel /Frequency (MHz) | SAR(W/Kg), 1.6 (1g average) |                     |
|                                             |                 |                          | SAR(W/Kg1g Peak)            | Scaled SAR(W/Kg),1g |
| Right Side of Head                          | Cheek           | 9262/1852.4              | <b>0.092</b>                | 0.095               |
|                                             | Tilt 15 degrees | 9262/1852.4              | 0.038                       | 0.039               |
| Left Side of Head                           | Cheek           | 9262/1852.4              | 0.085                       | 0.088               |
|                                             | Tilt 15 degrees | 9262/1852.4              | 0.037                       | 0.038               |
| Body (10mm Separation)<br>Body-worn         | Face Upward     | 9262/1852.4              | 0.193                       | 0.200               |
|                                             | Back Upward     | 9262/1852.4              | 0.317                       | 0.328               |
| Body (10mm Separation)<br>Hotspot           | Face Upward     | 9262/1852.4              | 0.193                       | 0.200               |
|                                             | Back Upward     | 9262/1852.4              | 0.317                       | 0.328               |
|                                             | Edge C          | 9262/1852.4              | <b>0.495</b>                | 0.512               |
|                                             | Edge D          | 9262/1852.4              | 0.010                       | 0.010               |

Table 11: SAR Values of LTE Band 4 , 20MHz

| Test Positions                      |                 | Channel /Frequency<br>(MHz) | SAR(W/Kg), 1.6 (1g average) |                     |
|-------------------------------------|-----------------|-----------------------------|-----------------------------|---------------------|
|                                     |                 |                             | SAR(W/Kg),1g                | Scaled SAR(W/Kg),1g |
| 1RB                                 |                 |                             |                             |                     |
| Right Side of Head                  | Cheek           | 20050/1720                  | <b>0.081</b>                | 0.087               |
|                                     | Tilt 15 degrees | 20050/1720                  | 0.026                       | 0.028               |
| Left Side of Head                   | Cheek           | 20050/1720                  | 0.071                       | 0.076               |
|                                     | Tilt 15 degrees | 20050/1720                  | 0.022                       | 0.024               |
| Body (10mm Separation)<br>Body-worn | Face Upward     | 20050/1720                  | 0.281                       | 0.300               |
|                                     | Back Upward     | 20050/1720                  | 0.333                       | 0.356               |
| Body (10mm Separation)<br>Hotspot   | Face Upward     | 20050/1720                  | 0.281                       | 0.300               |
|                                     | Back Upward     | 20050/1720                  | 0.333                       | 0.356               |
|                                     | Edge C          | 20050/1720                  | <b>0.478</b>                | 0.511               |
|                                     | Edge D          | 20050/1720                  | 0.077                       | 0.082               |
| 50%RB                               |                 |                             |                             |                     |
| Right Side of Head                  | Cheek           | 20050/1720                  | 0.080                       | 0.083               |
|                                     | Tilt 15 degrees | 20050/1720                  | 0.020                       | 0.021               |
| Left Side of Head                   | Cheek           | 20050/1720                  | 0.070                       | 0.072               |
|                                     | Tilt 15 degrees | 20050/1720                  | 0.022                       | 0.023               |
| Body (10mm Separation)<br>Body-worn | Face Upward     | 20050/1720                  | 0.278                       | 0.287               |
|                                     | Back Upward     | 20050/1720                  | 0.332                       | 0.343               |
| Body (10mm Separation)<br>Hotspot   | Face Upward     | 20050/1720                  | 0.278                       | 0.287               |
|                                     | Back Upward     | 20050/1720                  | 0.332                       | 0.343               |
|                                     | Edge C          | 20050/1720                  | 0.470                       | 0.486               |
|                                     | Edge D          | 20050/1720                  | 0.076                       | 0.079               |

Table 12: SAR Values of LTE Band 17,10MHz

| Test Positions                      |                 | Channel /Frequency<br>(MHz) | SAR(W/Kg), 1.6 (1g average) |                     |
|-------------------------------------|-----------------|-----------------------------|-----------------------------|---------------------|
|                                     |                 |                             | SAR(W/Kg),1g                | Scaled SAR(W/Kg),1g |
| 1RB                                 |                 |                             |                             |                     |
| Right Side of Head                  | Cheek           | 23790/710                   | 0.023                       | 0.025               |
|                                     | Tilt 15 degrees | 23790/710                   | 0.018                       | 0.020               |
| Left Side of Head                   | Cheek           | 23790/710                   | <b>0.026</b>                | 0.029               |
|                                     | Tilt 15 degrees | 23790/710                   | 0.021                       | 0.023               |
| Body (10mm Separation)<br>Body-worn | Face Upward     | 23790/710                   | 0.033                       | 0.036               |
|                                     | Back Upward     | 23790/710                   | <b>0.047</b>                | 0.052               |
| Body (10mm Separation)<br>Hotspot   | Face Upward     | 23790/710                   | 0.033                       | 0.036               |
|                                     | Back Upward     | 23790/710                   | <b>0.047</b>                | 0.052               |
|                                     | Edge C          | 23790/710                   | 0.021                       | 0.023               |
|                                     | Edge D          | 23790/710                   | 0.027                       | 0.030               |

| 50%RB                               |                 |           |       |       |
|-------------------------------------|-----------------|-----------|-------|-------|
| Right Side of Head                  | Cheek           | 23790/710 | 0.023 | 0.024 |
|                                     | Tilt 15 degrees | 23790/710 | 0.017 | 0.018 |
| Left Side of Head                   | Cheek           | 23790/710 | 0.026 | 0.027 |
|                                     | Tilt 15 degrees | 23790/710 | 0.021 | 0.022 |
| Body (10mm Separation)<br>Body-worn | Face Upward     | 23790/710 | 0.032 | 0.034 |
|                                     | Back Upward     | 23790/710 | 0.035 | 0.037 |
| Body (10mm Separation)<br>Hotspot   | Face Upward     | 23790/710 | 0.032 | 0.034 |
|                                     | Back Upward     | 23790/710 | 0.035 | 0.037 |
|                                     | Edge C          | 23790/710 | 0.021 | 0.022 |
|                                     | Edge D          | 23790/710 | 0.027 | 0.029 |

Table 13: SAR Values of Wi-Fi 802.11b

| Temperature: 23.0~23.5°C, humidity: 62~64%. |                 |                          |                             |                      |
|---------------------------------------------|-----------------|--------------------------|-----------------------------|----------------------|
| Test Positions                              |                 | Channel /Frequency (MHz) | SAR(W/Kg), 1.6 (1g average) |                      |
|                                             |                 |                          | SAR(W/Kg 1g Peak)           | Scaled SAR(W/Kg), 1g |
| Right Side of Head                          | Cheek           | 1/2412                   | <b>0.050</b>                | 0.056                |
|                                             | Tilt 15 degrees | 1/2412                   | 0.027                       | 0.030                |
| Left Side of Head                           | Cheek           | 1/2412                   | 0.045                       | 0.050                |
|                                             | Tilt 15 degrees | 1/2412                   | 0.022                       | 0.024                |
| Body (10mm Separation)<br>Body-worn         | Face Upward     | 1/2412                   | 0.006                       | 0.007                |
|                                             | Back Upward     | 1/2412                   | <b>0.051</b>                | 0.057                |
| Body (10mm Separation)<br>Hotspot           | Face Upward     | 1/2412                   | 0.006                       | 0.007                |
|                                             | Back Upward     | 1/2412                   | <b>0.051</b>                | 0.057                |
|                                             | Edge A          | 1/2412                   | 0.026                       | 0.029                |
|                                             | Edge D          | 1/2412                   | 0.012                       | 0.013                |

Note:

a) According to KDB 941225 D01, since the maximum average output of each RF channel with HSDPA/HSUPA active is less than that measured without HSDPA/HSUPA using 12.2 kbps RMC and the maximum SAR for 12.2 kbps RMC is less 1.2 W/kg, the measurement against HSDPA and HSUPA were ignored in this report.

b) When the 1-g SAR for the mid-band channel or the channel with the Highest output power satisfy the following conditions, testing of the other channels in the band is not required.(Per KDB 447498 D01 General RF Exposure Guidance v05r02)

- $\leq 0.8 \text{ W/kg}$ , when the transmission band is  $\leq 100 \text{ MHz}$
- $\leq 0.6 \text{ W/kg}$ , when the transmission band is between  $100 \text{ MHz}$  and  $200 \text{ MHz}$
- $\leq 0.4 \text{ W/kg}$ , when the transmission band is  $\geq 200 \text{ MHz}$

## 10.2 Conclusion

Localized Specific Absorption Rate (SAR) of this portable wireless device has been measured in all cases requested by the relevant standards cited in Clause 6 of this report. Maximum localized SAR is **below** exposure limits specified in the relevant standards.

## SIMULTANEOUS TRANSMISSION ANALYSIS

| Test Position                            |              | Right Cheek  | Right Title | Left Cheek | Left Tilt |
|------------------------------------------|--------------|--------------|-------------|------------|-----------|
| Head<br>MAX 1-g<br>SAR(W/Kg)             | GSM850       | 0.013        | 0.011       | 0.014      | 0.009     |
|                                          | GSM1900      | 0.046        | 0.025       | 0.058      | 0.027     |
|                                          | WCDMA850     | 0.019        | 0.015       | 0.020      | 0.016     |
|                                          | WCDMA1900    | 0.095        | 0.039       | 0.088      | 0.038     |
|                                          | LTE Band 4   | 0.087        | 0.028       | 0.076      | 0.024     |
|                                          | LTE Band 17  | 0.025        | 0.020       | 0.029      | 0.023     |
|                                          | WIFI 802.11b | 0.056        | 0.030       | 0.050      | 0.024     |
|                                          | BT           | *0.033       | *0.033      | *0.033     | *0.033    |
| BT Simultaneous $\Sigma$ 1-g SAR(W/Kg)   |              | 0.128        | 0.072       | 0.121      | 0.071     |
| WiFi Simultaneous $\Sigma$ 1-g SAR(W/Kg) |              | <b>0.151</b> | 0.069       | 0.138      | 0.062     |

Simultaneous Tx Combination of GSM/WCDMA and BT/WIFI (Head).

| Test Position                                           |              | Face   | Back         | Edge A | Edge B | Edge C | Edge D |
|---------------------------------------------------------|--------------|--------|--------------|--------|--------|--------|--------|
| Body-worn<br>10mm<br>separation<br>MAX 1-g<br>SAR(W/Kg) | GSMS850      | 0.013  | 0.016        | --     | --     | --     | --     |
|                                                         | GSM1900      | 0.113  | 0.119        | --     | --     | --     | --     |
|                                                         | WCDMA850     | 0.024  | 0.034        | --     | --     | --     | --     |
|                                                         | WCDMA1900    | 0.200  | 0.328        | --     | --     | --     | --     |
|                                                         | LTE Band 4   | 0.300  | 0.356        | --     | --     | --     | --     |
|                                                         | LTE Band 17  | 0.036  | 0.052        | --     | --     | --     | --     |
|                                                         | WIFI 802.11b | 0.007  | 0.057        | --     | --     | --     | --     |
|                                                         | BT           | *0.016 | *0.016       | --     | --     | --     | --     |
| BT Simultaneous $\Sigma$ 1-g SAR(W/Kg)                  |              | 0.316  | 0.372        | --     | --     | --     | --     |
| WiFi Simultaneous $\Sigma$ 1-g SAR(W/Kg)                |              | 0.307  | <b>0.413</b> | --     | --     | --     | --     |

Simultaneous Tx Combination of GSM/WCDMA and BT/WIFI (Body).

| Test Position                                         |             | Face  | Back         | Edge A | Edge B | Edge C | Edge D |
|-------------------------------------------------------|-------------|-------|--------------|--------|--------|--------|--------|
| Hotspot<br>10mm<br>separation<br>MAX 1-g<br>SAR(W/Kg) | GPRS850     | 0.017 | 0.025        | --     | --     | 0.009  | 0.009  |
|                                                       | GPRS1900    | 0.130 | 0.137        | --     | --     | 0.157  | 0.041  |
|                                                       | WCDMA 850   | 0.024 | 0.034        | --     | --     | 0.017  | 0.017  |
|                                                       | WCDMA 1900  | 0.200 | 0.328        | --     | --     | 0.512  | 0.010  |
|                                                       | LTE Band 4  | 0.300 | 0.356        | --     | --     | 0.511  | 0.082  |
|                                                       | LTE Band 17 | 0.036 | 0.052        | --     | --     | 0.023  | 0.030  |
|                                                       | WiFi        | 0.007 | <b>0.057</b> | 0.029  | --     | --     | 0.013  |
| WiFi Simultaneous $\Sigma$ 1-g SAR(W/Kg)              |             | 0.307 | <b>0.413</b> | 0.029  | --     | 0.512  | 0.095  |

Simultaneous Tx Combination of GSM/WCDMA and WIFI (Body).

The estimated SAR value with \* Signal

**SAR to Peak Location Separation Ratio (SPLSR)**

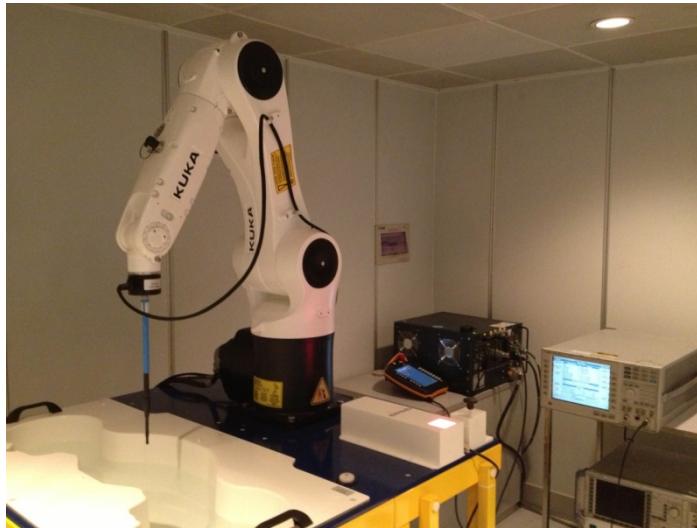
As the Sum of the SAR is not greater than 1.6 W/kg SPLSR assessment is not required

## 11 Measurement Uncertainty

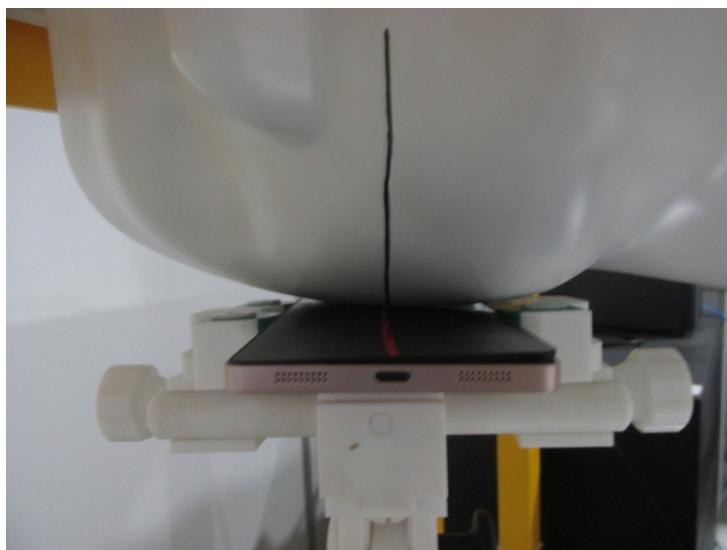
| No.                             | Uncertainty Component                                                            | Type | Uncertainty Value (%) | Probability Distribution | k          | ci  | Standard Uncertainty (%) ui(%) | Degree of freedom Veff or vi |
|---------------------------------|----------------------------------------------------------------------------------|------|-----------------------|--------------------------|------------|-----|--------------------------------|------------------------------|
| <b>Measurement System</b>       |                                                                                  |      |                       |                          |            |     |                                |                              |
| 1                               | —Probe Calibration                                                               | B    | 5.8                   | N                        | 1          | 1   | 5.8                            | $\infty$                     |
| 2                               | —Axial isotropy                                                                  | B    | 3.5                   | R                        | $\sqrt{3}$ | 0.5 | 1.43                           | $\infty$                     |
| 3                               | —Hemispherical Isotropy                                                          | B    | 5.9                   | R                        | $\sqrt{3}$ | 0.5 | 2.41                           | $\infty$                     |
| 4                               | —Boundary Effect                                                                 | B    | 1                     | R                        | $\sqrt{3}$ | 1   | 0.58                           | $\infty$                     |
| 5                               | —Linearity                                                                       | B    | 4.7                   | R                        | $\sqrt{3}$ | 1   | 2.71                           | $\infty$                     |
| 6                               | —System Detection Limits                                                         | B    | 1.0                   | R                        | $\sqrt{3}$ | 1   | 0.58                           | $\infty$                     |
| 7                               | Modulation response                                                              | B    | 3                     | N                        | 1          | 1   | 3.00                           |                              |
| 8                               | —Readout Electronics                                                             | B    | 0.5                   | N                        | 1          | 1   | 0.50                           | $\infty$                     |
| 9                               | —Response Time                                                                   | B    | 1.4                   | R                        | $\sqrt{3}$ | 1   | 0.81                           | $\infty$                     |
| 10                              | —Integration Time                                                                | B    | 3.0                   | R                        | $\sqrt{3}$ | 1   | 1.73                           | $\infty$                     |
| 11                              | —RF Ambient Conditions                                                           | B    | 3.0                   | R                        | $\sqrt{3}$ | 1   | 1.73                           | $\infty$                     |
| 12                              | —Probe Position Mechanical tolerance                                             | B    | 1.4                   | R                        | $\sqrt{3}$ | 1   | 0.81                           | $\infty$                     |
| 13                              | —Probe Position with respect to Phantom Shell                                    | B    | 1.4                   | R                        | $\sqrt{3}$ | 1   | 0.81                           | $\infty$                     |
| 14                              | —Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation | B    | 2.3                   | R                        | $\sqrt{3}$ | 1   | 1.33                           | $\infty$                     |
| <b>Uncertainties of the DUT</b> |                                                                                  |      |                       |                          |            |     |                                |                              |
| 15                              | —Position of the DUT                                                             | A    | 2.6                   | N                        | $\sqrt{3}$ | 1   | 2.6                            | 5                            |
| 16                              | —Holder of the DUT                                                               | A    | 3                     | N                        | $\sqrt{3}$ | 1   | 3.0                            | 5                            |

|                                                              |                                                                                     |   |     |     |            |     |       |          |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------|---|-----|-----|------------|-----|-------|----------|
| 17                                                           | —Output Power Variation<br>—SAR drift measurement                                   | B | 5.0 | R   | $\sqrt{3}$ | 1   | 2.89  | $\infty$ |
| <b>Phantom and Tissue Parameters</b>                         |                                                                                     |   |     |     |            |     |       |          |
| 18                                                           | —Phantom<br>Uncertainty(shape and<br>thickness tolerances)                          | B | 4   | R   | $\sqrt{3}$ | 1   | 2.31  | $\infty$ |
| 19                                                           | Uncertainty in SAR<br>correction for deviation(in<br>permittivity and conductivity) | B | 2   | N   | 1          | 1   | 2.00  |          |
| 20                                                           | —Liquid Conductivity Target<br>—tolerance                                           | B | 2.5 | R   | $\sqrt{3}$ | 0.6 | 1.95  | $\infty$ |
| 21                                                           | —Liquid Conductivity<br>—measurement Uncertainty)                                   | B | 4   | N   | $\sqrt{3}$ | 1   | 0.92  | 9        |
| 22                                                           | —Liquid Permittivity Target<br>tolerance                                            | B | 2.5 | R   | $\sqrt{3}$ | 0.6 | 1.95  | $\infty$ |
| 23                                                           | —Liquid Permittivity<br>—measurement uncertainty                                    | B | 5   | N   | $\sqrt{3}$ | 1   | 1.15  | $\infty$ |
| <b>Combined Standard Uncertainty</b>                         |                                                                                     |   |     | RSS |            |     | 10.63 |          |
| <b>Expanded uncertainty</b><br>(Confidence interval of 95 %) |                                                                                     |   |     | K=2 |            |     | 21.26 |          |

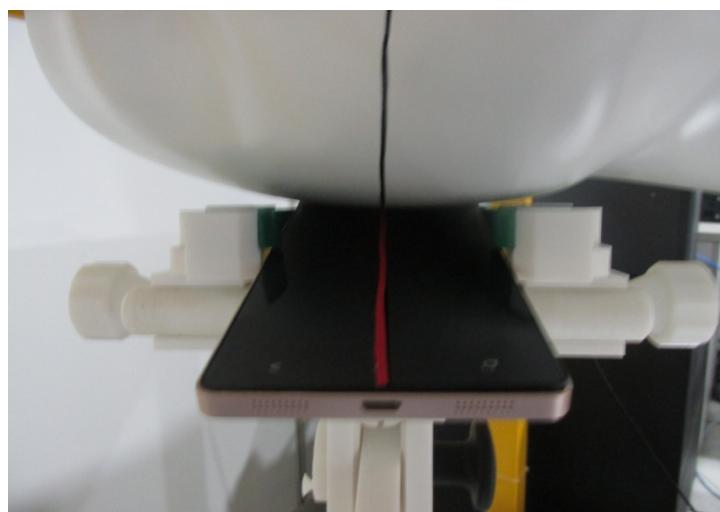
### System Check Uncertainty


| No.                       | Uncertainty Component    | Type | Uncertainty Value (%) | Probability Distribution | k          | ci  | Standard Uncertainty (%) ui(%) | Degree of freedom Veff or vi |
|---------------------------|--------------------------|------|-----------------------|--------------------------|------------|-----|--------------------------------|------------------------------|
| <b>Measurement System</b> |                          |      |                       |                          |            |     |                                |                              |
| 1                         | —Probe Calibration       | B    | 5.8                   | N                        | 1          | 1   | 5.8                            | $\infty$                     |
| 2                         | —Axial isotropy          | B    | 3.5                   | R                        | $\sqrt{3}$ | 0.5 | 1.43                           | $\infty$                     |
| 3                         | —Hemispherical Isotropy  | B    | 5.9                   | R                        | $\sqrt{3}$ | 0.5 | 2.41                           | $\infty$                     |
| 4                         | —Boundary Effect         | B    | 1                     | R                        | $\sqrt{3}$ | 1   | 0.58                           | $\infty$                     |
| 5                         | —Linearity               | B    | 4.7                   | R                        | $\sqrt{3}$ | 1   | 2.71                           | $\infty$                     |
| 6                         | —System Detection Limits | B    | 1                     | R                        | $\sqrt{3}$ | 1   | 0.58                           | $\infty$                     |
| 7                         | Modulation response      | B    | 0                     | N                        | 1          | 1   | 0.00                           |                              |

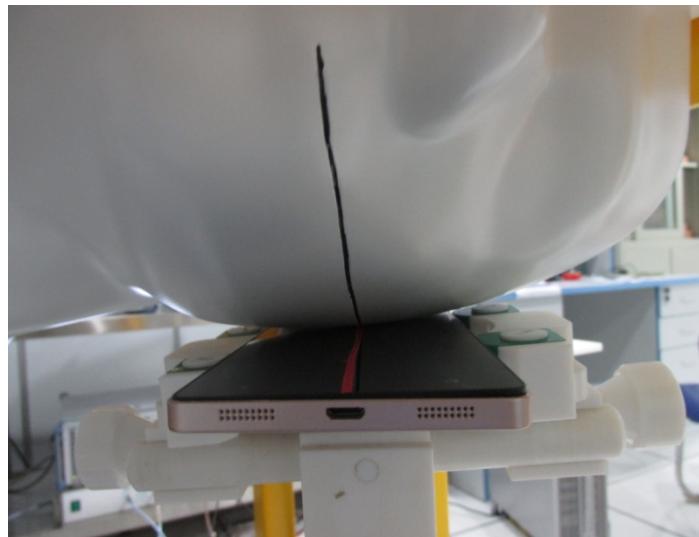
|                                                              |                                                                                  |   |      |     |            |     |       |          |
|--------------------------------------------------------------|----------------------------------------------------------------------------------|---|------|-----|------------|-----|-------|----------|
| 8                                                            | —Readout Electronics                                                             | B | 0.5  | N   | 1          | 1   | 0.50  | $\infty$ |
| 9                                                            | —Response Time                                                                   | B | 0.00 | R   | $\sqrt{3}$ | 1   | 0.00  | $\infty$ |
| 10                                                           | —Integration Time                                                                | B | 1.4  | R   | $\sqrt{3}$ | 1   | 0.81  | $\infty$ |
| 11                                                           | —RF Ambient Conditions                                                           | B | 3.0  | R   | $\sqrt{3}$ | 1   | 1.73  | $\infty$ |
| 12                                                           | —Probe Position Mechanical tolerance                                             | B | 1.4  | R   | $\sqrt{3}$ | 1   | 0.81  | $\infty$ |
| 13                                                           | —Probe Position with respect to Phantom Shell                                    | B | 1.4  | R   | $\sqrt{3}$ | 1   | 0.81  | $\infty$ |
| 14                                                           | —Extrapolation, Interpolation and Integration Algorithms for Max. SAR evaluation | B | 2.3  | R   | $\sqrt{3}$ | 1   | 1.33  | $\infty$ |
| Uncertainties of the DUT                                     |                                                                                  |   |      |     |            |     |       |          |
| 15                                                           | Deviation of experimental source from numerical source                           | A | 4    | N   | 1          | 1   | 4.00  | 5        |
| 16                                                           | Input Power and SAR drift measurement                                            | A | 5    | R   | $\sqrt{3}$ | 1   | 2.89  | 5        |
| 17                                                           | Dipole Axis to Liquid Distance                                                   | B | 2    | R   | $\sqrt{3}$ | 1   | 1.2   | $\infty$ |
| Phantom and Tissue Parameters                                |                                                                                  |   |      |     |            |     |       |          |
| 18                                                           | —Phantom Uncertainty(shape and thickness tolerances)                             | B | 4    | R   | $\sqrt{3}$ | 1   | 2.31  | $\infty$ |
| 19                                                           | Uncertainty in SAR correction for deviation(in permittivity and conductivity)    | B | 2    | N   | 1          | 1   | 2.00  |          |
| 20                                                           | —Liquid Conductivity Target —tolerance                                           | B | 2.5  | R   | $\sqrt{3}$ | 0.6 | 1.95  | $\infty$ |
| 21                                                           | —Liquid Conductivity —measurement Uncertainty)                                   | B | 4    | N   | $\sqrt{3}$ | 1   | 0.92  | 9        |
| 22                                                           | —Liquid Permittivity Target tolerance                                            | B | 2.5  | R   | $\sqrt{3}$ | 0.6 | 1.95  | $\infty$ |
| 23                                                           | —Liquid Permittivity —measurement uncertainty                                    | B | 5    | N   | $\sqrt{3}$ | 1   | 1.15  | $\infty$ |
| <b>Combined Standard Uncertainty</b>                         |                                                                                  |   |      | RSS |            |     | 10.15 |          |
| <b>Expanded uncertainty</b><br>(Confidence interval of 95 %) |                                                                                  |   |      | K=2 |            |     | 20.29 |          |


## 12 MAIN TEST INSTRUMENTS

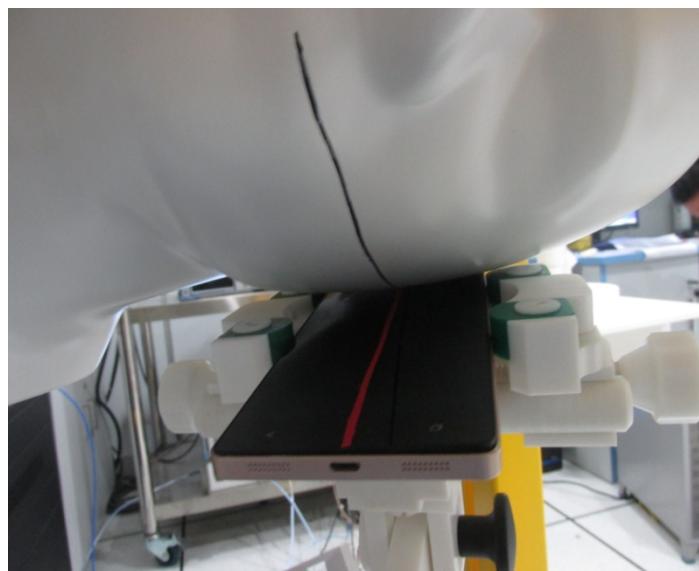
| No. | EQUIPMENT               | TYPE          | Series No.             | Due Date   |
|-----|-------------------------|---------------|------------------------|------------|
| 1   | System Simulator        | E5515C        | GB 47200710            | 2015/09/15 |
| 2   | System Simulator        | CMW500        | 130805                 | 2016/06/02 |
| 3   | SAR Probe               | SATIMO        | SN_0413_EP166          | 2015/08/14 |
| 4   | SAR Probe               | SATIMO        | SN09/13 EP169          | 2016/05/04 |
| 5   | Dipole                  | SATIMO        | SN 25/13DIP0G750-253   | 2015/08/16 |
| 6   | Dipole                  | SID835        | SN09/13 DIP0G835-217   | 2015/08/27 |
| 7   | Dipole                  | SID1800       | SN09/13 DIP1G800-216   | 2015/08/27 |
| 8   | Dipole                  | SID1900       | SN09/13 DIP1G900-218   | 2015/08/27 |
| 9   | Dipole                  | SID2450       | SN09/13 DIP2G450-220   | 2015/08/27 |
| 10  | Vector Network Analyzer | ZVB8          | A0802530               | 2016/06/08 |
| 11  | Signal Generator        | SMR27         | A0304219               | 2016/06/08 |
| 12  | Power Meter             | NRP2          | A140401673             | 2016/03/27 |
| 15  | Power Sensor            | NPR-Z11       | 1138.3004.02-114072-nq | 2016/03/27 |
| 16  | Amplifier               | Nuclitudes    | 143060                 | 2016/03/27 |
| 17  | Directional Coupler     | DC6180A       | 305827                 | 2016/03/27 |
| 18  | Power Meter             | NRVS          | A0802531               | 2016/03/27 |
| 19  | Power Sensor            | NRV-Z4        | 100069                 | 2016/03/27 |
| 20  | Multimeter              | Keithley-2000 | 4014020                | 2016/03/27 |


**ANNEX A****of****CCIC-SET****CONFORMANCE TEST REPORT FOR  
HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS****SET2015-09927****Maysun Info Technology Co., Ltd****4G LTE Smart Phone****Type Name: N501****Hardware Version: B501 MB P2****Software Version: ALPS.L1.MP3.V2\_~\_GIONEE6735.65C.L1\_P15****TEST LAYOUT****This Annex consists of 8 pages****Date of Report: 2015-07-21**




**Fig.1 COMO SAR Test System**




**Fig.2 Right\_Cheek**



**Fig.3 Right\_Tilt**



**Fig.4 Left Cheek**



**Fig.5 Left\_Tilt**



**Fig.6 Body (Back upside,10mm separation)**



**Fig.7 Body (Face upside,10mm separation)**



**Fig.8 Body Edge A(UP,10mm separation)**



**Fig.9 Body Edge C(Down,10mm separation)**



**Fig.10 Body Edge D(Left upside,10mm separation)**



**Fig.11 Head Liquid of 750MHz(15cm)**



**Fig.12 Body Liquid of 750MHz(15cm)**



**Fig.13 Head Liquid of 835MHz(15cm)**



**Fig.14 Body Liquid of 835MHz(15cm)**



**Fig.15 Body Liquid of 835MHz(15cm)**



**Fig.16 Body Liquid of 1800MHz(15cm)**



**Fig.17 Head Liquid of 1900MHz(15cm)**



**Fig.18 Body Liquid of 1900MHz(15cm)**



**Fig.19 Head Liquid of 2450MHz(15cm)**



**Fig.20 Body Liquid of 2450MHz(15cm)**

**ANNEX B****of****CCIC-SET****CONFORMANCE TEST REPORT FOR  
HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS****SET2015-09927****4G LTE Smart Phone****Type Name: N501****Hardware Version: B501 MB P2****Software Version: ALPS.L1.MP3.V2\_GIONEE6735.65C.L1\_P15****Sample Photographs****This Annex consists of 2 pages****Date of Report: 2015-07-21**

### 1. Appearance



Appearance and size (obverse)



Appearance and size (reverse)



## **ANNEX C**

**of**

**CCIC-SET**

### **CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS**

**SET2015-09927**

**4G LTE Smart Phone**

**Type Name: N501**

**Hardware Version: B501 MB P2**

**Software Version: ALPS.L1.MP3.V2\_GIONEE6735.65C.L1\_P15**

### **System Performance Check Data and Highest SAR Plots**

**This Annex consists of 44 pages**

**Date of Report: 2015-07-21**

## System Performance Check (Head, 750MHz)

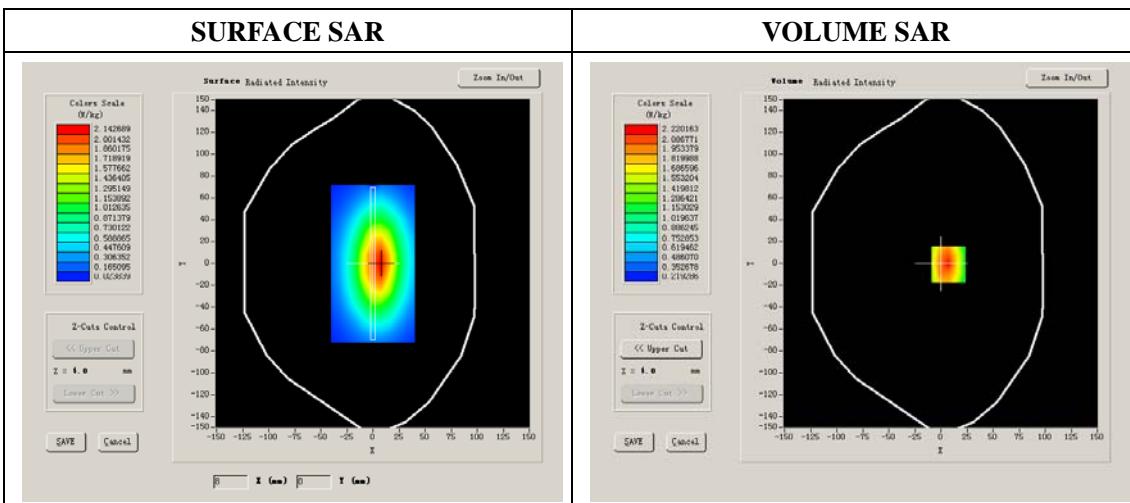
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 16/06/2015

Measurement duration: 21 minutes 24 seconds


### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm dy=8mm              |
| <b>Phantom</b>         | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Device Position</b> |                            |
| <b>Band</b>            | 750MHz                     |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

Band SAR

|                                          |            |
|------------------------------------------|------------|
| <b>Frequency (MHz)</b>                   | 750.000000 |
| <b>Relative permittivity (real part)</b> | 41.62      |
| <b>Relative permittivity</b>             | 21.12      |
| <b>Conductivity (S/m)</b>                | 0.88       |
| <b>Power drift (%)</b>                   | 1.23       |
| <b>Ambient Temperature:</b>              | 23.2°C     |
| <b>Liquid Temperature:</b>               | 23.5°C     |
| <b>ConvF:</b>                            | 5.26       |
| <b>Duty factor:</b>                      | 1:1        |



Maximum location: X=7.00, Y=-1.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 1.032462 |
| <b>SAR 1g (W/Kg)</b>  | 1.984371 |

## System Performance Check (Head, 835MHz)

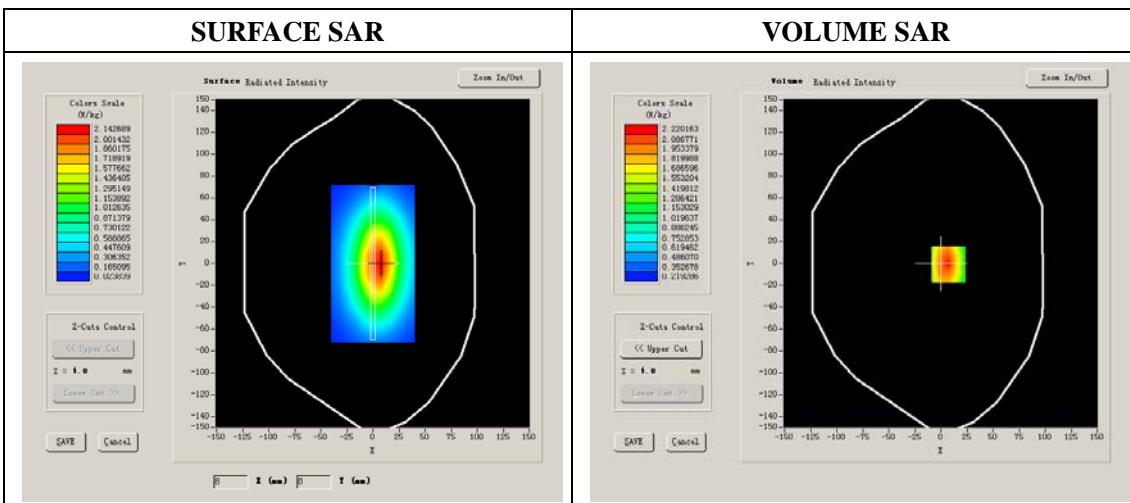
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 13/07/2015

Measurement duration: 21 minutes 24 seconds


### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm dy=8mm              |
| <b>Phantom</b>         | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Device Position</b> |                            |
| <b>Band</b>            | 835MHz                     |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

Band SAR

|                                          |            |
|------------------------------------------|------------|
| <b>Frequency (MHz)</b>                   | 835.000000 |
| <b>Relative permittivity (real part)</b> | 41.24      |
| <b>Relative permittivity</b>             | 18.97      |
| <b>Conductivity (S/m)</b>                | 0.88       |
| <b>Power drift (%)</b>                   | 0.85       |
| <b>Ambient Temperature:</b>              | 23.2°C     |
| <b>Liquid Temperature:</b>               | 23.5°C     |
| <b>ConvF:</b>                            | 5.68       |
| <b>Duty factor:</b>                      | 1:1        |



Maximum location: X=7.00, Y=-1.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 1.821240 |
| <b>SAR 1g (W/Kg)</b>  | 2.424137 |

## System Performance Check (Head, 1750MHz)

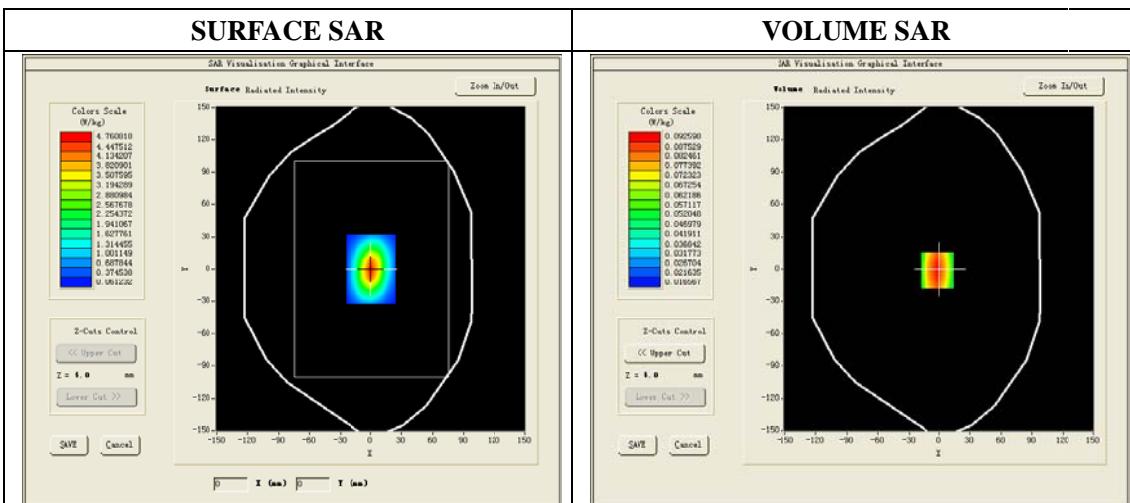
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/07/2015

Measurement duration: 20 minutes 52seconds


### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm dy=8mm              |
| <b>Phantom</b>         | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Device Position</b> |                            |
| <b>Band</b>            | 1750MHz                    |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

#### Band SAR

|                                          |             |
|------------------------------------------|-------------|
| <b>Frequency (MHz)</b>                   | 1750.000000 |
| <b>Relative permittivity (real part)</b> | 39.72       |
| <b>Relative permittivity</b>             | 13.90       |
| <b>Conductivity (S/m)</b>                | 1.39        |
| <b>Power drift (%)</b>                   | 0.24        |
| <b>Ambient Temperature:</b>              | 22.2°C      |
| <b>Liquid Temperature:</b>               | 22.5°C      |
| <b>ConvF:</b>                            | 4.75        |
| <b>Duty factor:</b>                      | 1:1         |



Maximum location: X=6.00, Y=0.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 4.982071 |
| <b>SAR 1g (W/Kg)</b>  | 9.477623 |

## System Performance Check (Head, 1900MHz)

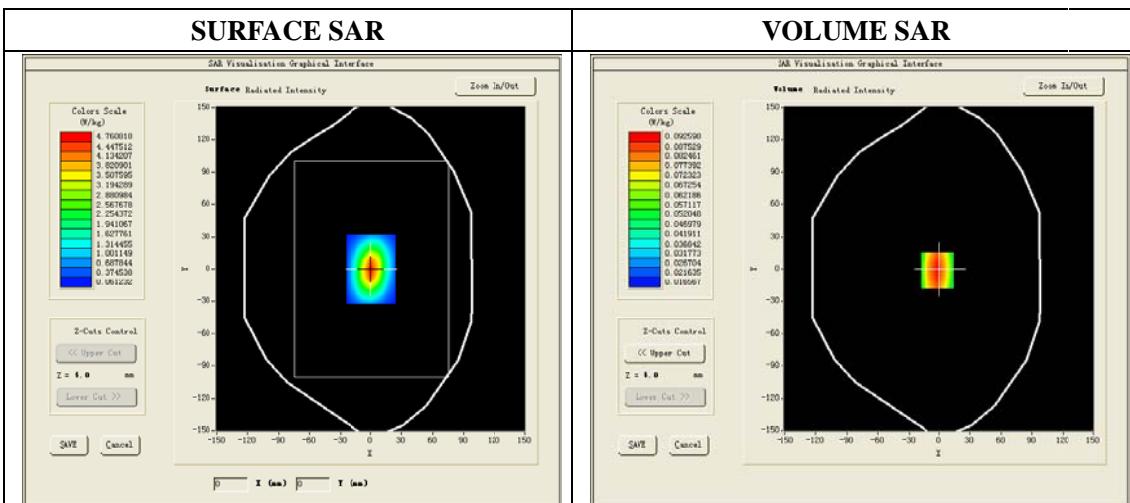
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 15/07/2015

Measurement duration: 20 minutes 57 seconds


### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm dy=8mm              |
| <b>Phantom</b>         | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Device Position</b> |                            |
| <b>Band</b>            | 1900MHz                    |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

#### Band SAR

|                                          |             |
|------------------------------------------|-------------|
| <b>Frequency (MHz)</b>                   | 1900.000000 |
| <b>Relative permittivity (real part)</b> | 39.81       |
| <b>Relative permittivity</b>             | 13.17       |
| <b>Conductivity (S/m)</b>                | 1.39        |
| <b>Power drift (%)</b>                   | 1.47        |
| <b>Ambient Temperature:</b>              | 22.2°C      |
| <b>Liquid Temperature:</b>               | 22.5°C      |
| <b>ConvF:</b>                            | 5.25        |
| <b>Duty factor:</b>                      | 1:1         |



Maximum location: X=6.00, Y=0.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 5.113742 |
| <b>SAR 1g (W/Kg)</b>  | 9.812706 |

## System Performance Check (Head, 2450MHz)

Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 18/07/2015

Measurement duration: 21 minutes 08 seconds

### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm,dy=8mm              |
| <b>Phantom</b>         | 7x7x8,dx=5mm dy=5mm dz=4mm |
| <b>Device Position</b> | Dipole                     |
| <b>Band</b>            | 2450MHz                    |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

Band SAR

|                                          |       |
|------------------------------------------|-------|
| <b>Frequency (MHz)</b>                   | 2450  |
| <b>Relative permittivity (real part)</b> | 38.73 |
| <b>Relative permittivity</b>             | 13.00 |
| <b>Conductivity (S/m)</b>                | 1.77  |
| <b>Power Drift (%)</b>                   | -1.02 |
| <b>ConvF:</b>                            | 4.93  |
| <b>Duty factor:</b>                      | 1:1   |



Maximum location: X=0.00, Y=7.00

|                       |           |
|-----------------------|-----------|
| <b>SAR 10g (W/Kg)</b> | 5.637142  |
| <b>SAR 1g (W/Kg)</b>  | 12.824105 |

## System Performance Check (Body, 750MHz)

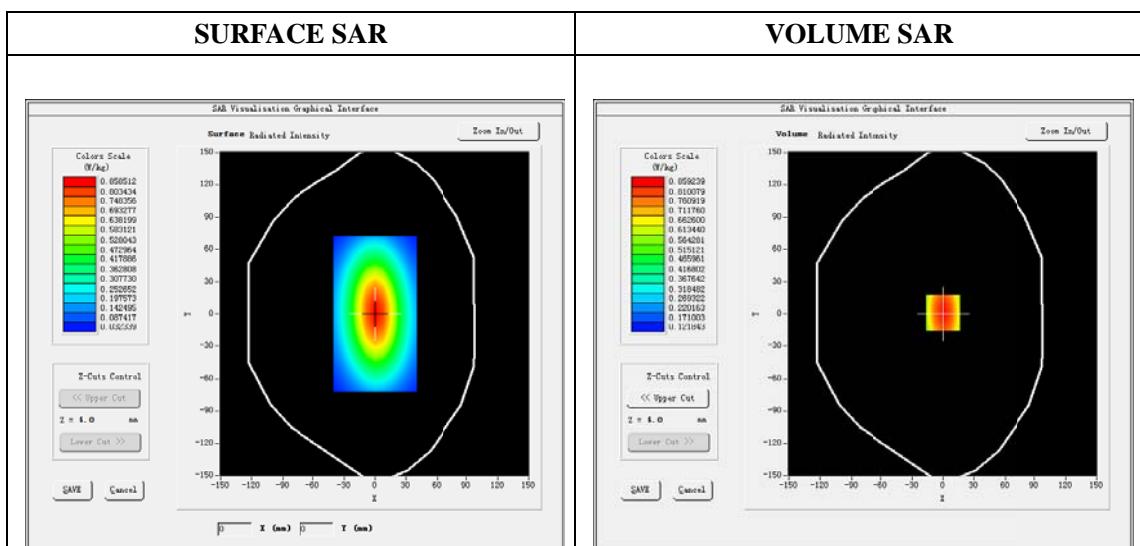
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 19/07/2015

Measurement duration: 20 minutes 12 seconds


### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm dy=8mm              |
| <b>Phantom</b>         | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Device Position</b> | Dipole                     |
| <b>Band</b>            | 750MHz                     |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

Band SAR

|                                          |        |
|------------------------------------------|--------|
| <b>Frequency (MHz)</b>                   | 750    |
| <b>Relative permittivity (real part)</b> | 54.82  |
| <b>Relative permittivity</b>             | 23.04  |
| <b>Conductivity (S/m)</b>                | 0.96   |
| <b>Power drift (%)</b>                   | -0.14  |
| <b>Ambient Temperature:</b>              | 22.2°C |
| <b>Liquid Temperature:</b>               | 22.5°C |
| <b>ConvF:</b>                            | 5.41   |
| <b>Duty factor:</b>                      | 1:1    |



Maximum location: X=0.00, Y=1.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 0.965604 |
| <b>SAR 1g (W/Kg)</b>  | 1.988657 |

## System Performance Check (Body, 835MHz)

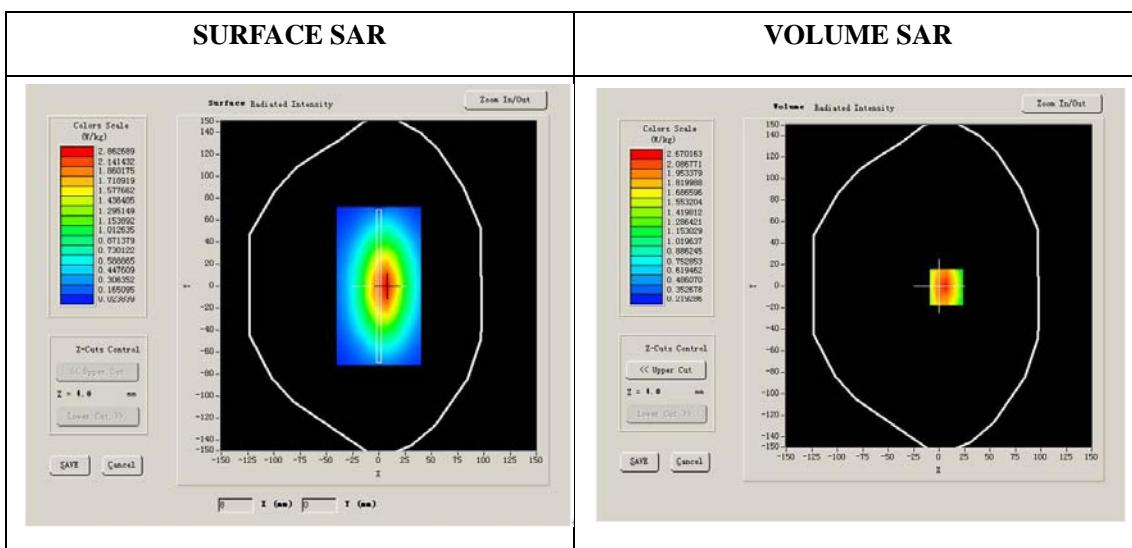
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 14/07/2015

Measurement duration: 20 minutes 12 seconds


### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm dy=8mm              |
| <b>Phantom</b>         | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Device Position</b> | Dipole                     |
| <b>Band</b>            | 835MHz                     |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

Band SAR

|                                          |        |
|------------------------------------------|--------|
| <b>Frequency (MHz)</b>                   | 835    |
| <b>Relative permittivity (real part)</b> | 54.75  |
| <b>Relative permittivity</b>             | 20.12  |
| <b>Conductivity (S/m)</b>                | 0.95   |
| <b>Power drift (%)</b>                   | -2.01  |
| <b>Ambient Temperature:</b>              | 22.2°C |
| <b>Liquid Temperature:</b>               | 22.5°C |
| <b>ConvF:</b>                            | 5.84   |
| <b>Duty factor:</b>                      | 1:1    |



Maximum location: X=7.00, Y=-1.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 1.602024 |
| <b>SAR 1g (W/Kg)</b>  | 2.510243 |

## System Performance Check (Body, 1750MHz)

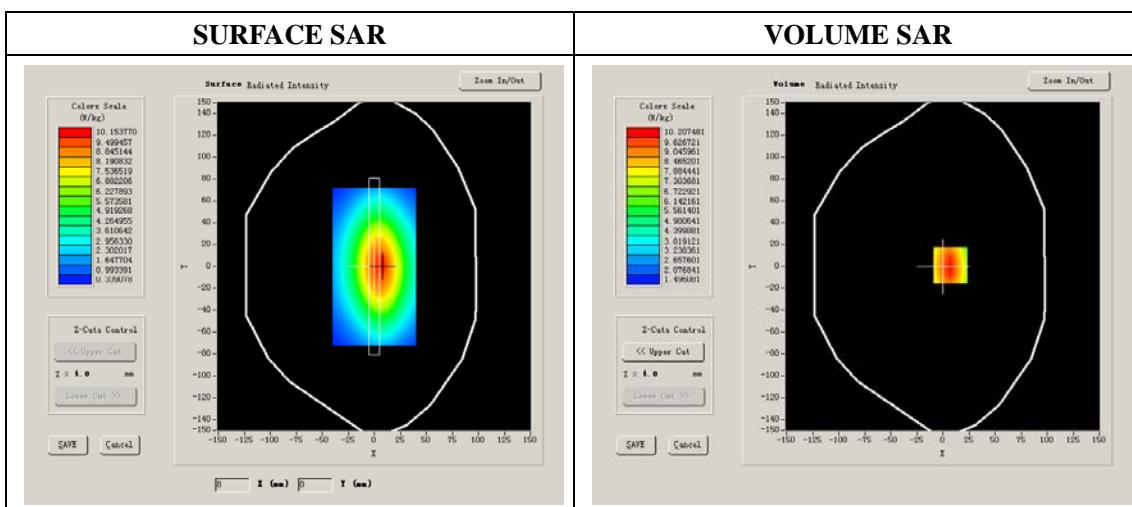
Type: Phone measurement (Complete)

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 17/07/2015

Measurement duration: 20 minutes 06 seconds


### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm dy=8mm              |
| <b>Phantom</b>         | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Device Position</b> | Dipole                     |
| <b>Band</b>            | 1750MHz                    |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

#### Band SAR

|                                          |        |
|------------------------------------------|--------|
| <b>Frequency (MHz)</b>                   | 1750   |
| <b>Relative permittivity (real part)</b> | 53.44  |
| <b>Relative permittivity</b>             | 15.30  |
| <b>Conductivity (S/m)</b>                | 1.53   |
| <b>Power drift (%)</b>                   | 0.68   |
| <b>Ambient Temperature:</b>              | 22.2°C |
| <b>Liquid Temperature:</b>               | 22.6°C |
| <b>ConvF:</b>                            | 4.93   |
| <b>Crest factor:</b>                     | 1:1    |



Maximum location: X=7.00, Y=1.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 5.024137 |
| <b>SAR 1g (W/Kg)</b>  | 9.854762 |

## System Performance Check (Body, 1900MHz)

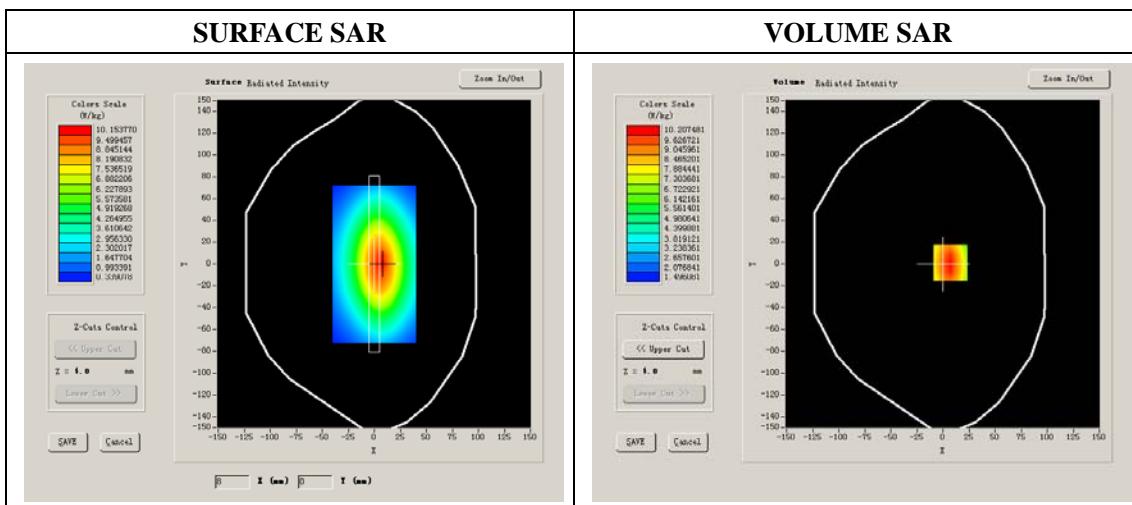
Type: Validation measurement

Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 16/07/2015

Measurement duration: 21 minutes 34 seconds


### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm dy=8mm              |
| <b>Phantom</b>         | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Device Position</b> | Dipole                     |
| <b>Band</b>            | 1900MHz                    |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

#### Band SAR

|                                          |        |
|------------------------------------------|--------|
| <b>Frequency (MHz)</b>                   | 1900   |
| <b>Relative permittivity (real part)</b> | 52.68  |
| <b>Relative permittivity</b>             | 14.21  |
| <b>Conductivity (S/m)</b>                | 1.50   |
| <b>Power Drift (%)</b>                   | -1.73  |
| <b>Ambient Temperature:</b>              | 22.1°C |
| <b>Liquid Temperature:</b>               | 22.6°C |
| <b>ConvF:</b>                            | 5.42   |
| <b>Duty factor:</b>                      | 1:1    |



Maximum location: X=1.00, Y=6.00

|                       |           |
|-----------------------|-----------|
| <b>SAR 10g (W/Kg)</b> | 5.134572  |
| <b>SAR 1g (W/Kg)</b>  | 10.042513 |

## System Performance Check (Body, 2450MHz)

Type: Validation measurement

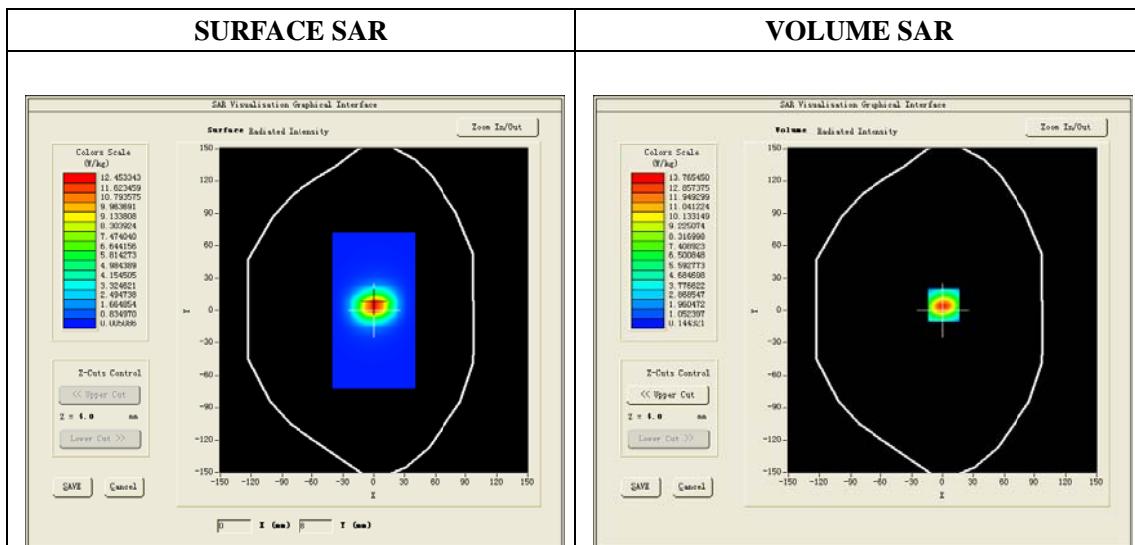
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=5mm, dy=5mm, dz=4mm

Date of measurement: 18/07/2015

Measurement duration: 22 minutes 08 seconds

Mobile Phone IMEI number: --


### A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Phantom File</b>    | dx=8mm,dy=8mm              |
| <b>Phantom</b>         | 7x7x8,dx=5mm dy=5mm dz=4mm |
| <b>Device Position</b> | Dipole                     |
| <b>Band</b>            | 2450MHz                    |
| <b>Channels</b>        |                            |
| <b>Signal</b>          | CW                         |

### B. SAR Measurement Results

#### Band SAR

|                                          |        |
|------------------------------------------|--------|
| <b>Frequency (MHz)</b>                   | 2450   |
| <b>Relative permittivity (real part)</b> | 52.31  |
| <b>Relative permittivity</b>             | 14.25  |
| <b>Conductivity (S/m)</b>                | 1.94   |
| <b>Power Drift (%)</b>                   | -0.38  |
| <b>Ambient Temperature:</b>              | 22.1°C |
| <b>Liquid Temperature:</b>               | 22.6°C |
| <b>Duty factor:</b>                      | 1:1    |
| <b>ConvF:</b>                            | 5.07   |



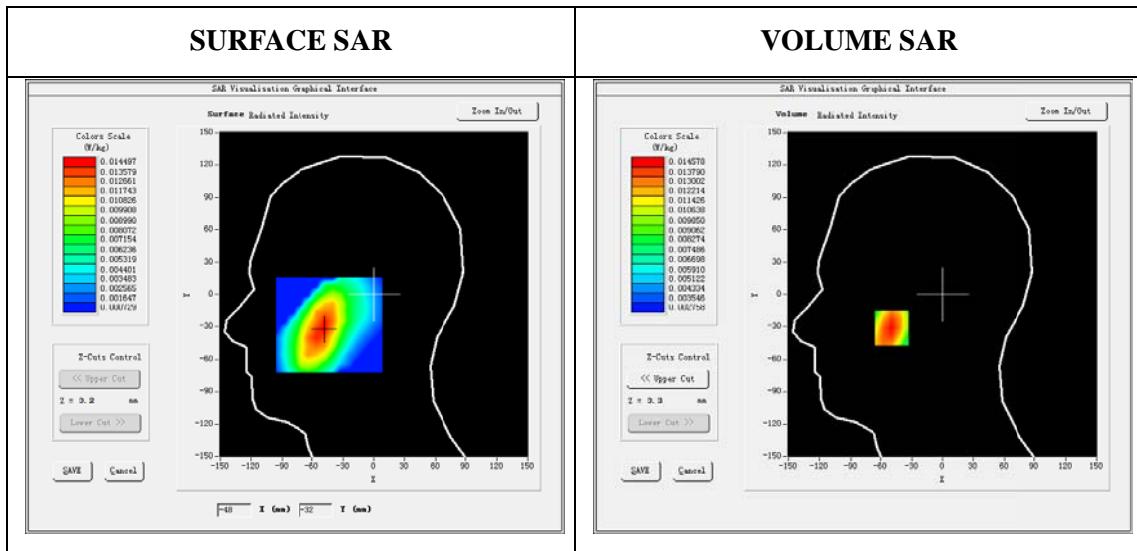
|                       |           |
|-----------------------|-----------|
| <b>SAR 10g (W/Kg)</b> | 6.157423  |
| <b>SAR 1g (W/Kg)</b>  | 12.930241 |

# GSM850, Left Cheek, High

Type: Phone measurement

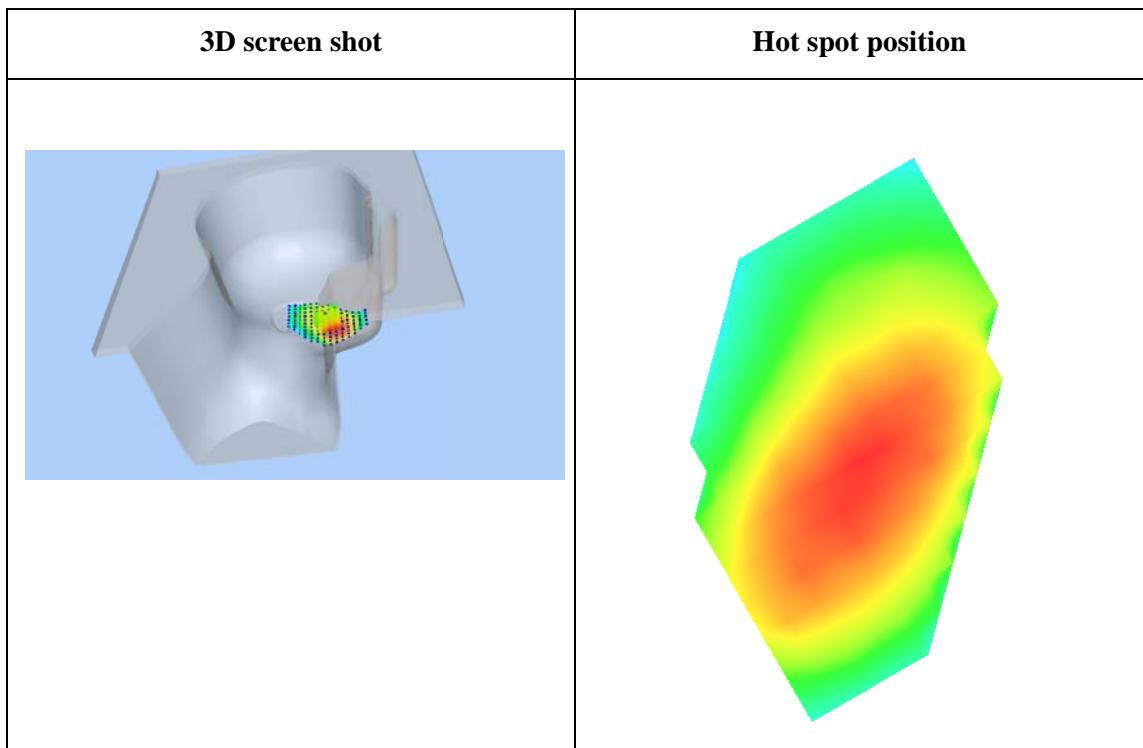
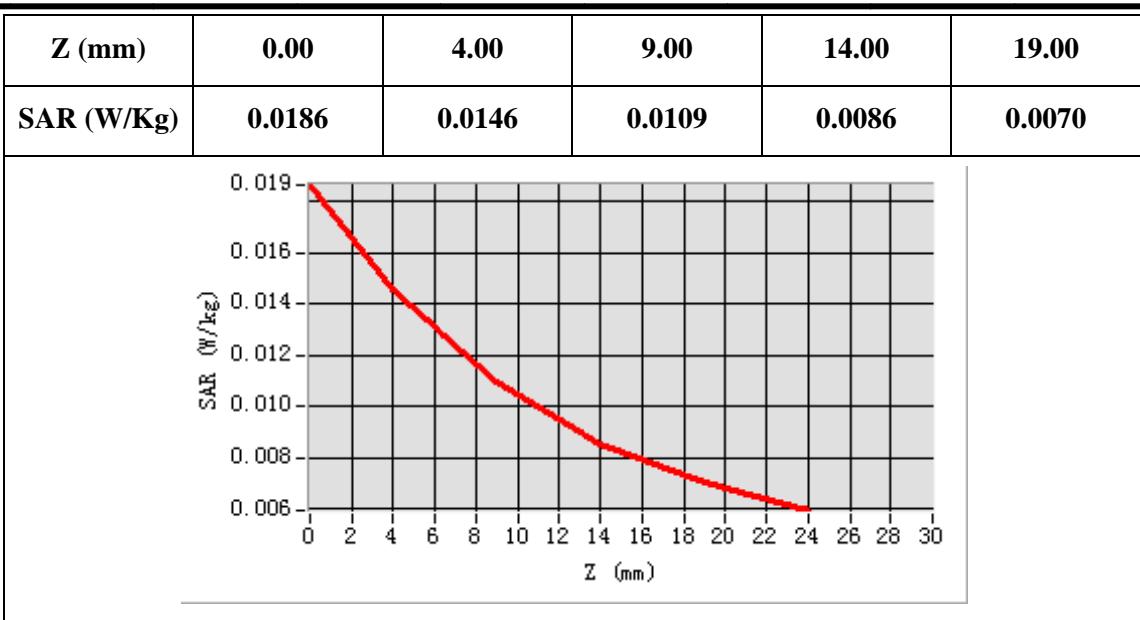
Date of measurement: 13/07/2015

Measurement duration: 6 minutes 35 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Area Scan</b>       | dx=8mm dy=8mm              |
| <b>ZoomScan</b>        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Phantom</b>         | Left head                  |
| <b>Device Position</b> | Cheek                      |
| <b>Band</b>            | GSM850                     |
| <b>Channels</b>        | 251                        |
| <b>Signal</b>          | GSM (Duty cycle: 1:8)      |



## B. SAR Measurement Results

|                                               |       |
|-----------------------------------------------|-------|
| <b>Frequency (MHz)</b>                        | 848.8 |
| <b>Relative permittivity (real part)</b>      | 41.24 |
| <b>Relative permittivity (imaginary part)</b> | 18.97 |
| <b>Conductivity (S/m)</b>                     | 0.88  |
| <b>Variation (%)</b>                          | -2.27 |
| <b>ConvF:</b>                                 | 5.68  |



Maximum location: X=-49.00, Y=-31.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 0.010181 |
| <b>SAR 1g (W/Kg)</b>  | 0.013992 |

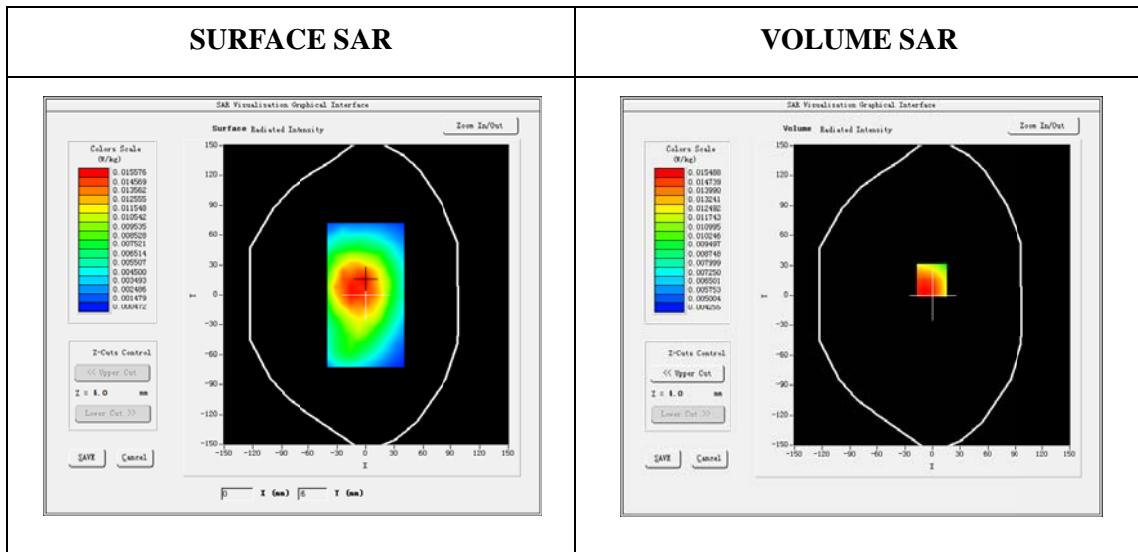


# GSM850, Back, High

Type: Phone measurement

Date of measurement: 14/07/2015

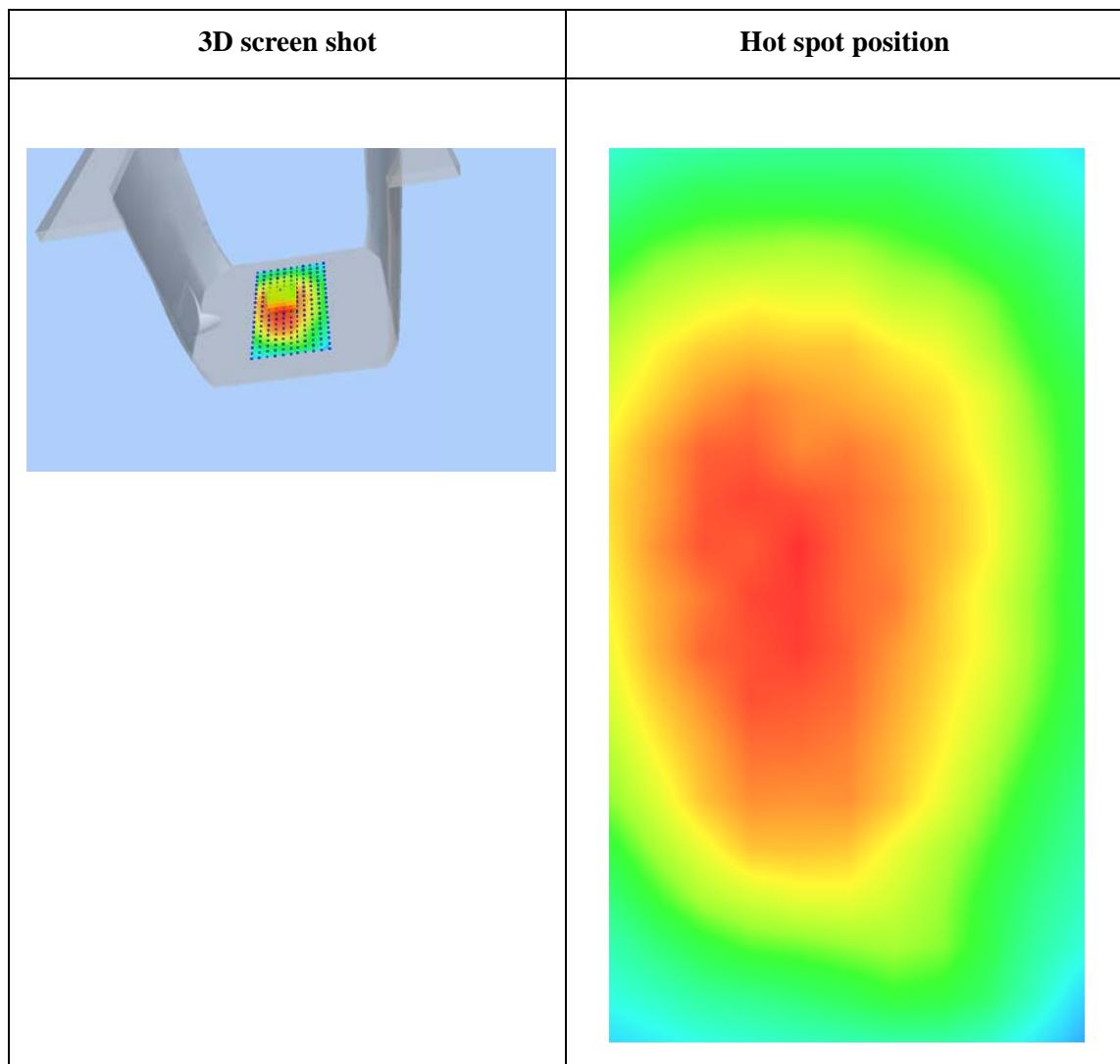
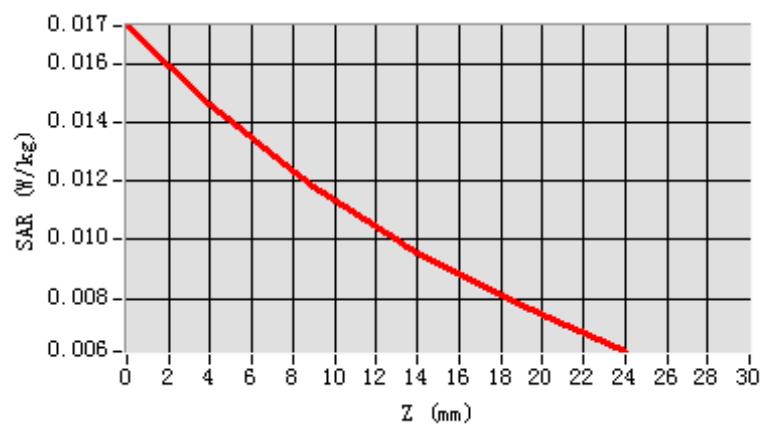
Measurement duration: 7 minutes 32 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Area Scan</b>       | dx=8mm dy=8mm              |
| <b>ZoomScan</b>        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Phantom</b>         | Validation plane           |
| <b>Device Position</b> | Back                       |
| <b>Band</b>            | GSM850                     |
| <b>Channels</b>        | 251                        |
| <b>Signal</b>          | GSM(Duty cycle: 1:8)       |

## B. SAR Measurement Results



|                                               |       |
|-----------------------------------------------|-------|
| <b>Frequency (MHz)</b>                        | 848.8 |
| <b>Relative permittivity (real part)</b>      | 54.75 |
| <b>Relative permittivity (imaginary part)</b> | 20.12 |
| <b>Conductivity (S/m)</b>                     | 0.95  |
| <b>Variation (%)</b>                          | 1.90  |
| <b>ConvF:</b>                                 | 5.84  |



Maximum location: X=-8.00, Y=7.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 0.012771 |
| <b>SAR 1g (W/Kg)</b>  | 0.016443 |

|                   |                 |                 |                 |                 |                 |
|-------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| <b>Z (mm)</b>     | <b>0.00</b>     | <b>4.00</b>     | <b>9.00</b>     | <b>14.00</b>    | <b>19.00</b>    |
| <b>SAR (W/Kg)</b> | <b>0.017273</b> | <b>0.014598</b> | <b>0.011810</b> | <b>0.009562</b> | <b>0.007741</b> |

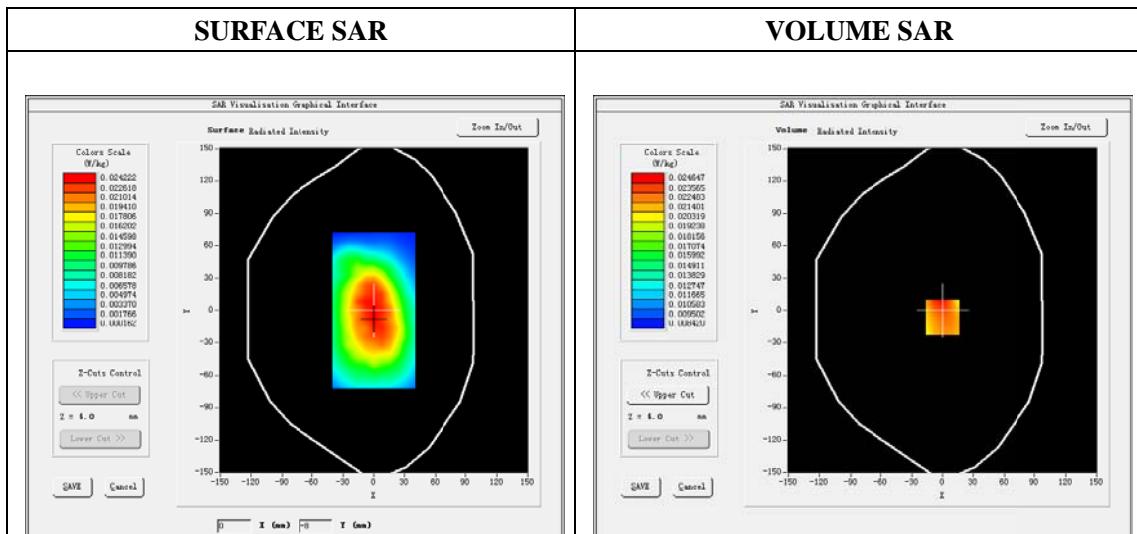


# GPRS 850, Back, Middle

Type: Phone measurement

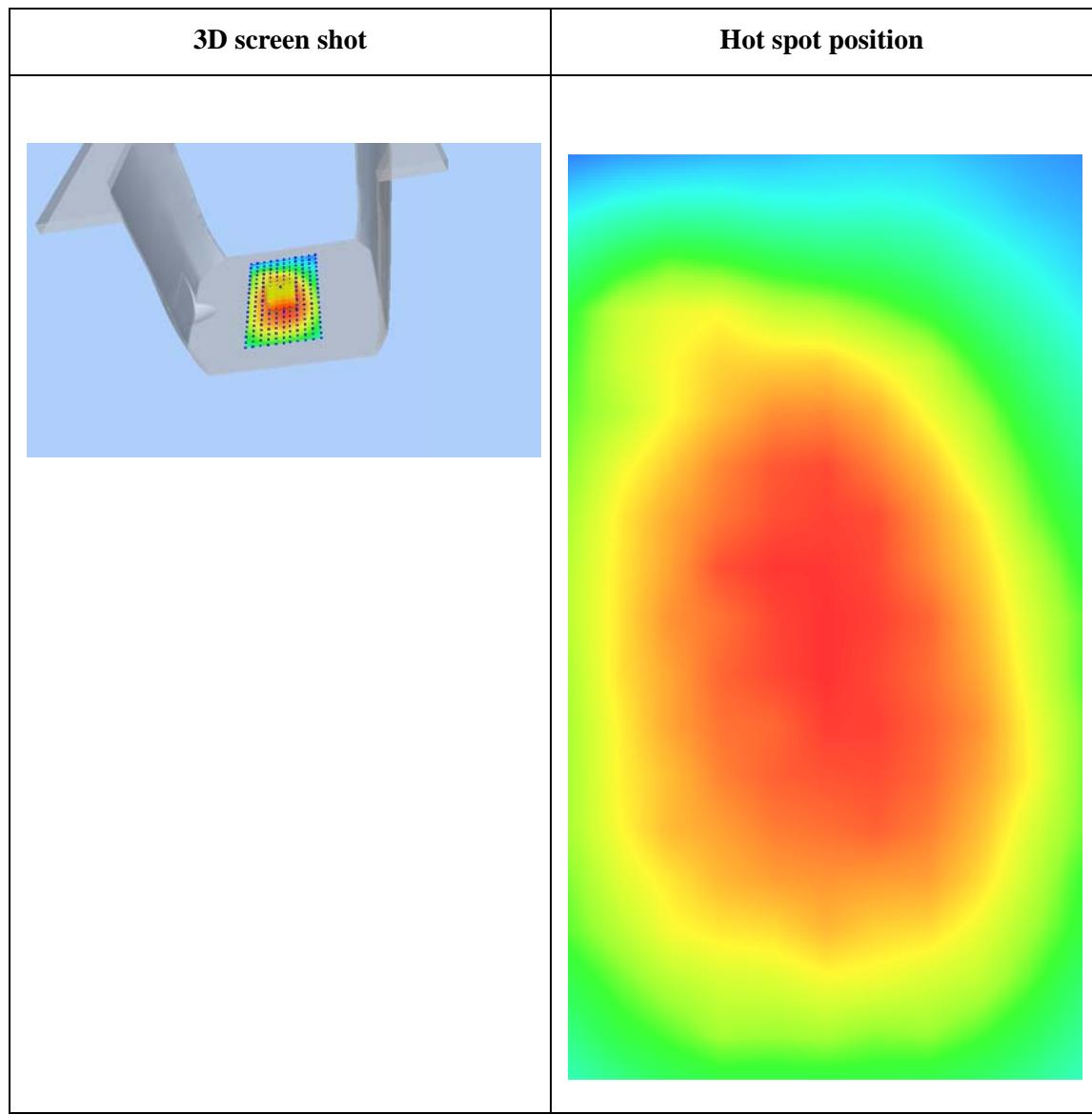
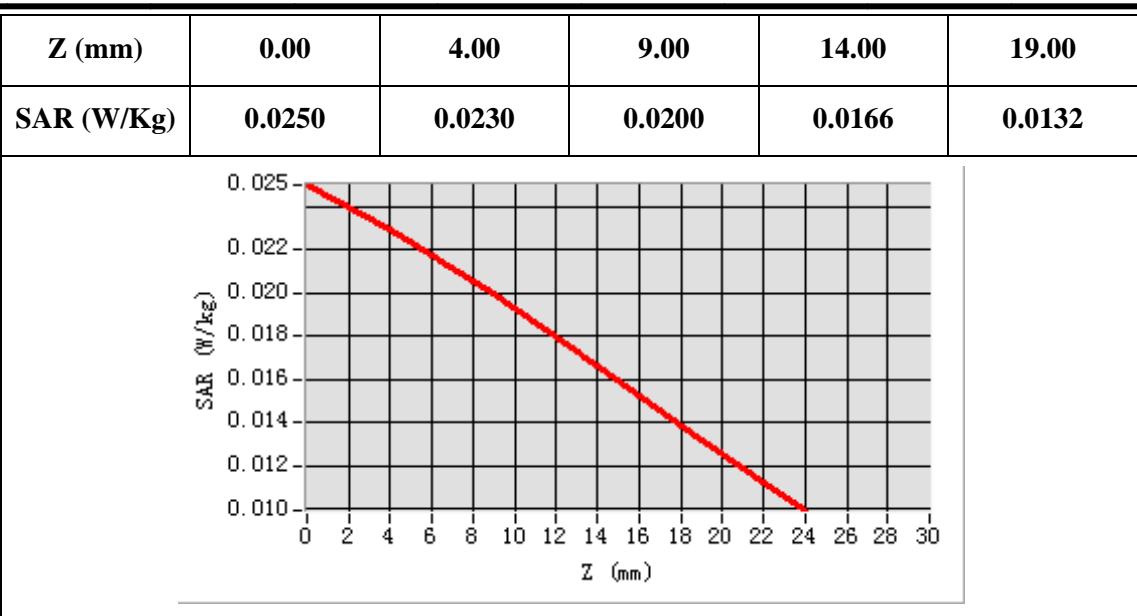
Date of measurement: 14/07/2014

Measurement duration: 8 minutes 8 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Area Scan</b>       | dx=8mm dy=8mm              |
| <b>ZoomScan</b>        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Phantom</b>         | Validation plane           |
| <b>Device Position</b> | Back                       |
| <b>Band</b>            | CUSTOM (GPRS850_2Tx)       |
| <b>Channels</b>        | 190                        |
| <b>Signal</b>          | GPRS(Duty cycle: 1:4)      |



## B. SAR Measurement Results

|                                               |       |
|-----------------------------------------------|-------|
| <b>Frequency (MHz)</b>                        | 836.4 |
| <b>Relative permittivity (real part)</b>      | 54.75 |
| <b>Relative permittivity (imaginary part)</b> | 20.12 |
| <b>Conductivity (S/m)</b>                     | 0.95  |
| <b>Variation (%)</b>                          | -3.13 |
| <b>ConvF:</b>                                 | 5.84  |



Maximum location: X=0.00, Y=-6.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 0.018420 |
| <b>SAR 1g (W/Kg)</b>  | 0.023557 |

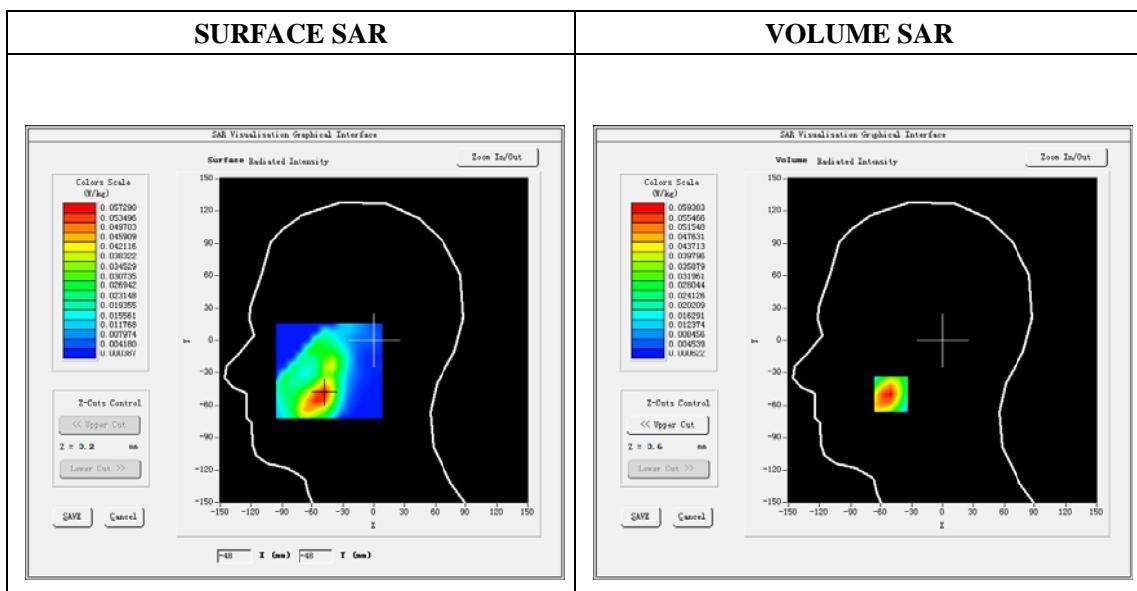


# GSM1900, Left Cheek, Low

Type: Phone measurement

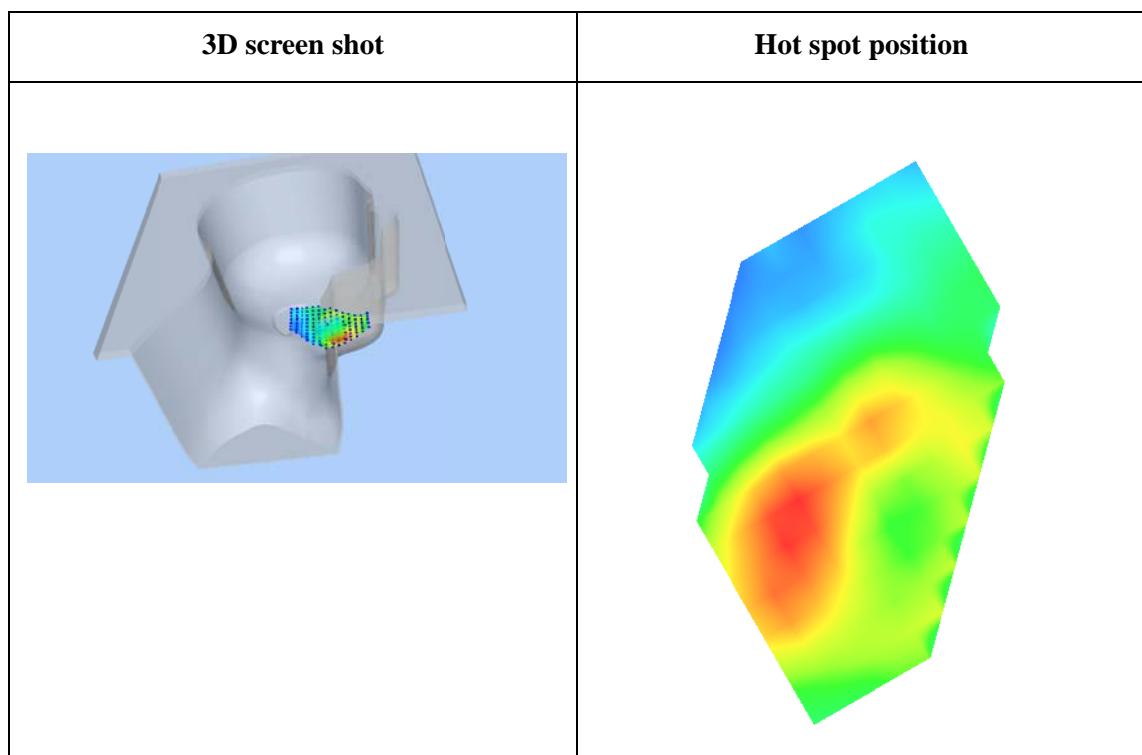
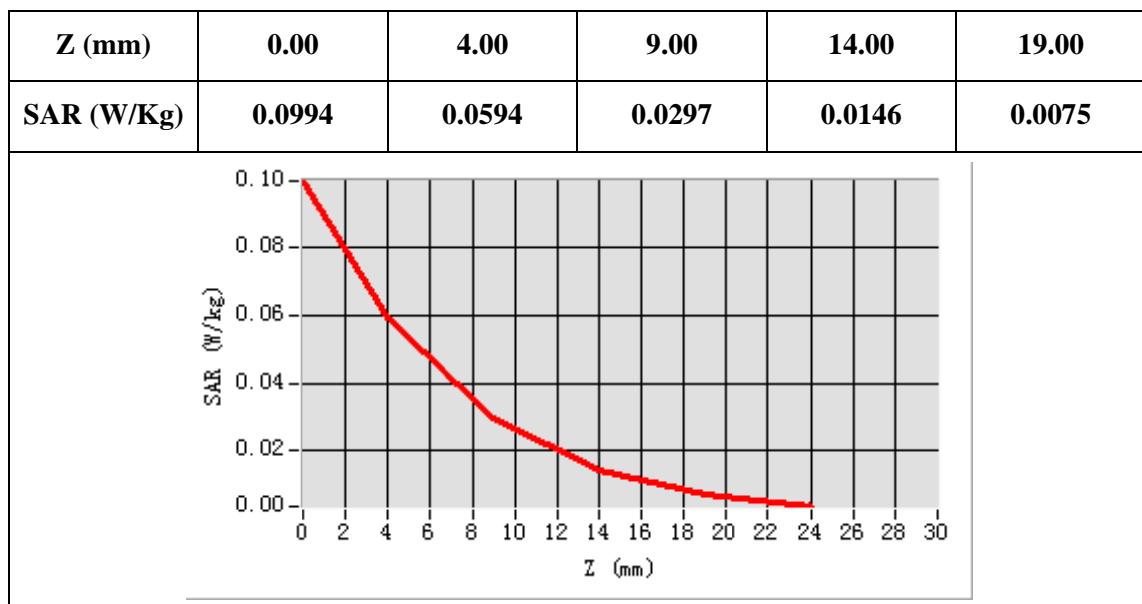
Date of measurement: 15/7/2015

Measurement duration: 7 minutes 03 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Area Scan</b>       | dx=8mm dy=8mm              |
| <b>ZoomScan</b>        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Phantom</b>         | Validation plane           |
| <b>Device Position</b> | Back                       |
| <b>Band</b>            | GSM1900                    |
| <b>Channels</b>        | 512                        |
| <b>Signal</b>          | GSM (Duty cycle: 1:8)      |



## B. SAR Measurement Results

|                                               |        |
|-----------------------------------------------|--------|
| <b>Frequency (MHz)</b>                        | 1850.2 |
| <b>Relative permittivity (real part)</b>      | 39.81  |
| <b>Relative permittivity (imaginary part)</b> | 13.17  |
| <b>Conductivity (S/m)</b>                     | 1.39   |
| <b>Variation (%)</b>                          | -1.58  |
| <b>ConvF:</b>                                 | 5.25   |



Maximum location: X=-50.00, Y=-50.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 0.028544 |
| <b>SAR 1g (W/Kg)</b>  | 0.056642 |

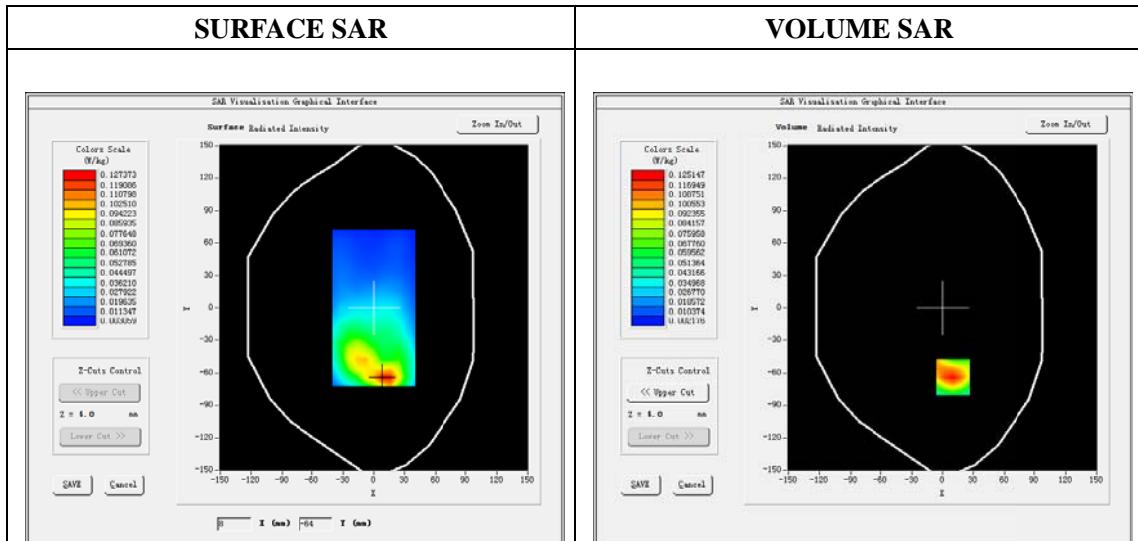


# GSM1900, Back, Low

Type: Phone measurement

Date of measurement: 16/7/2015

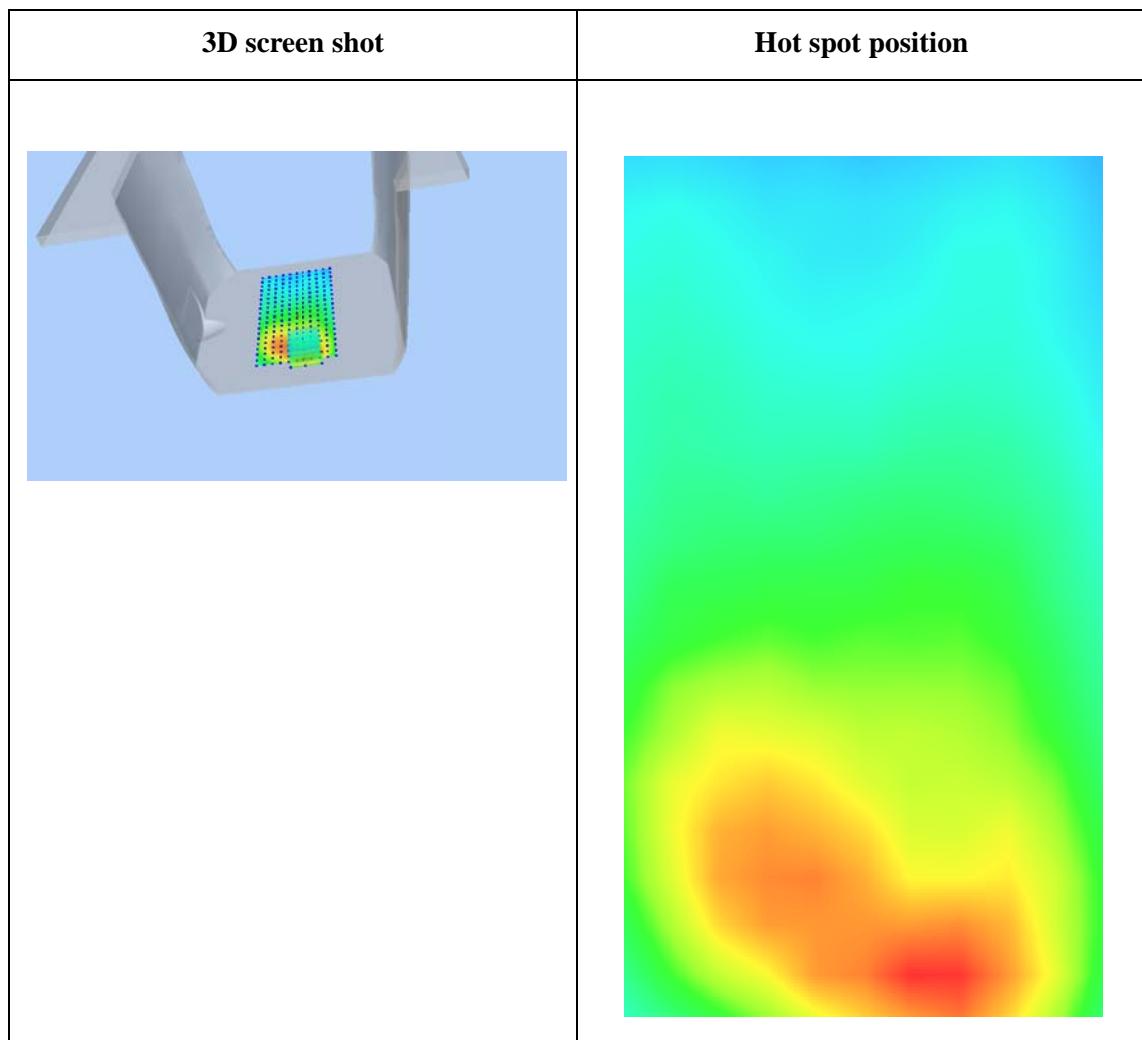
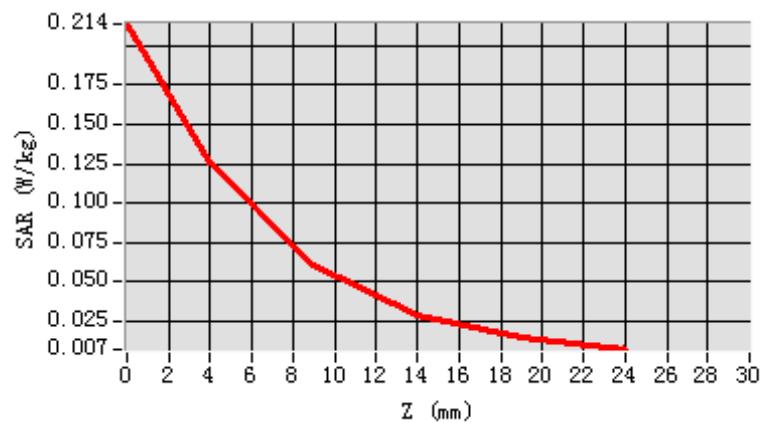
Measurement duration: 6 minutes 52 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Area Scan</b>       | dx=8mm dy=8mm              |
| <b>ZoomScan</b>        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Phantom</b>         | Validation plane           |
| <b>Device Position</b> | Back                       |
| <b>Band</b>            | GSM1900                    |
| <b>Channels</b>        | 512                        |
| <b>Signal</b>          | GSM (Duty cycle: 1:8)      |

## B. SAR Measurement Results



|                                               |        |
|-----------------------------------------------|--------|
| <b>Frequency (MHz)</b>                        | 1850.2 |
| <b>Relative permittivity (real part)</b>      | 52.68  |
| <b>Relative permittivity (imaginary part)</b> | 14.21  |
| <b>Conductivity (S/m)</b>                     | 1.50   |
| <b>Variation (%)</b>                          | -1.62  |
| <b>ConvF:</b>                                 | 5.42   |



Maximum location: X=10.00, Y=-64.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 0.056379 |
| <b>SAR 1g (W/Kg)</b>  | 0.116901 |

|                   |               |               |               |               |               |
|-------------------|---------------|---------------|---------------|---------------|---------------|
| <b>Z (mm)</b>     | <b>0.00</b>   | <b>4.00</b>   | <b>9.00</b>   | <b>14.00</b>  | <b>19.00</b>  |
| <b>SAR (W/Kg)</b> | <b>0.2135</b> | <b>0.1251</b> | <b>0.0608</b> | <b>0.0291</b> | <b>0.0147</b> |

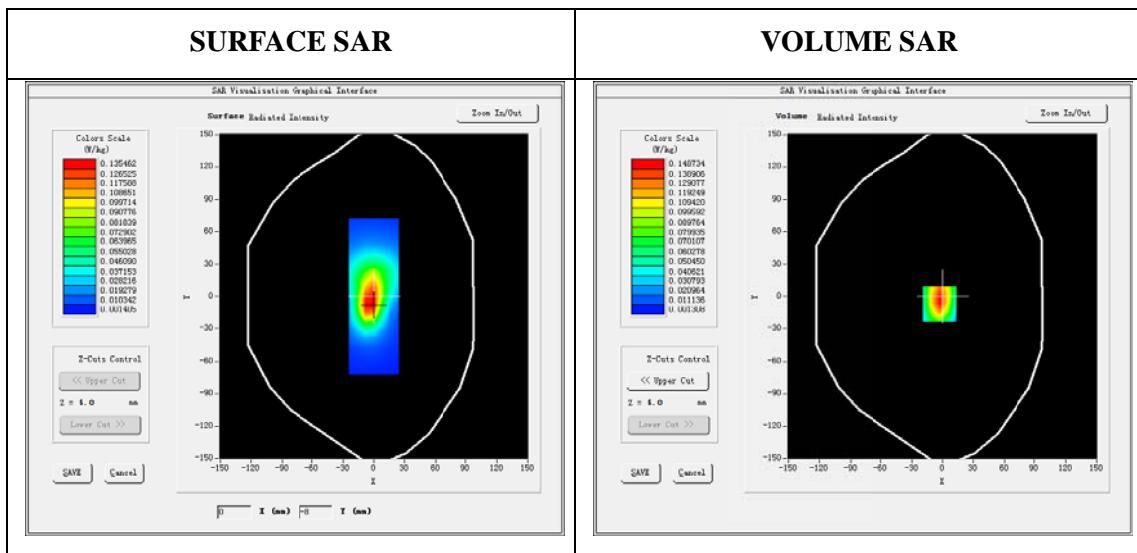


# GPRS1900, BACK, Low

Type: Phone measurement

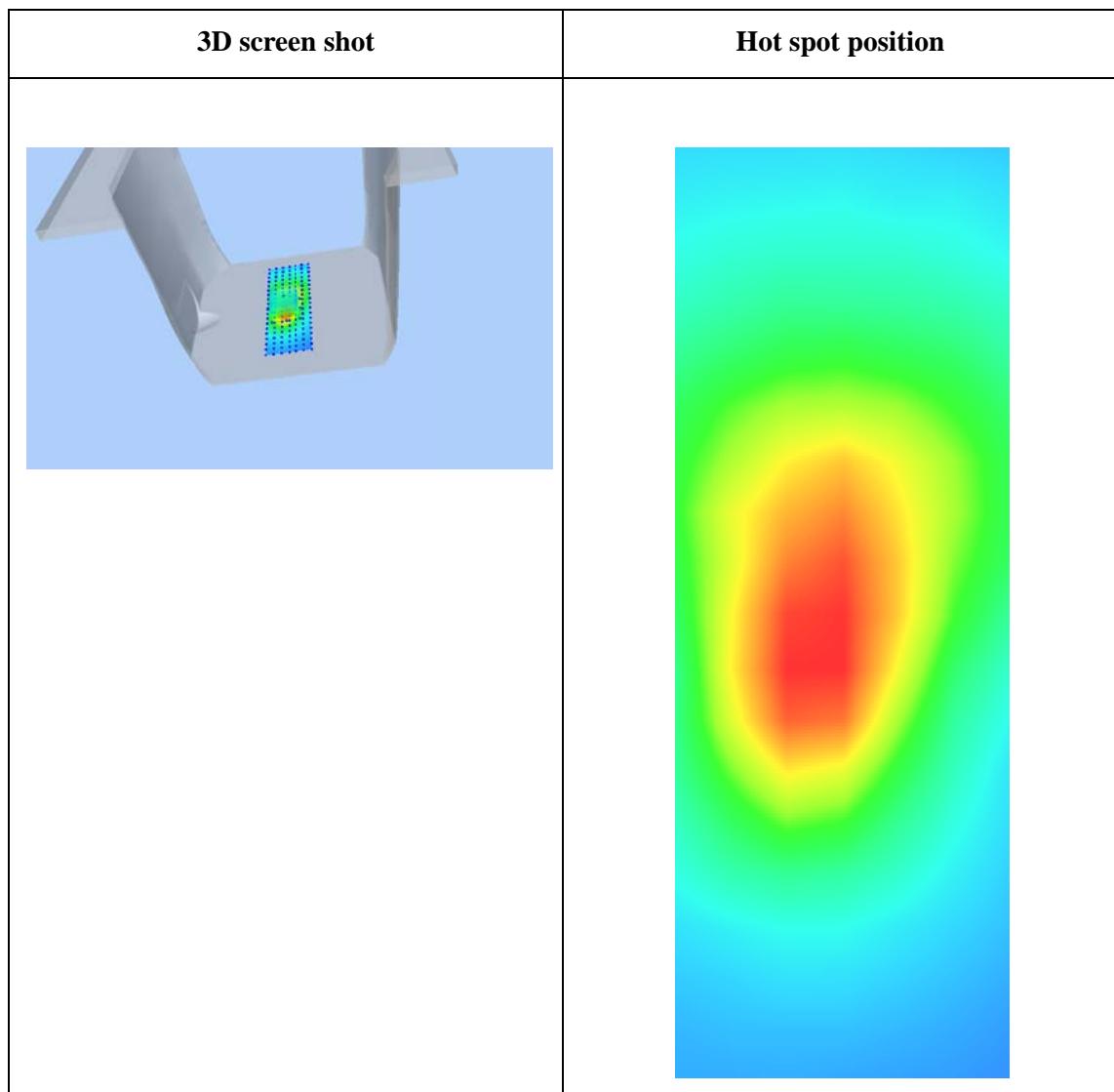
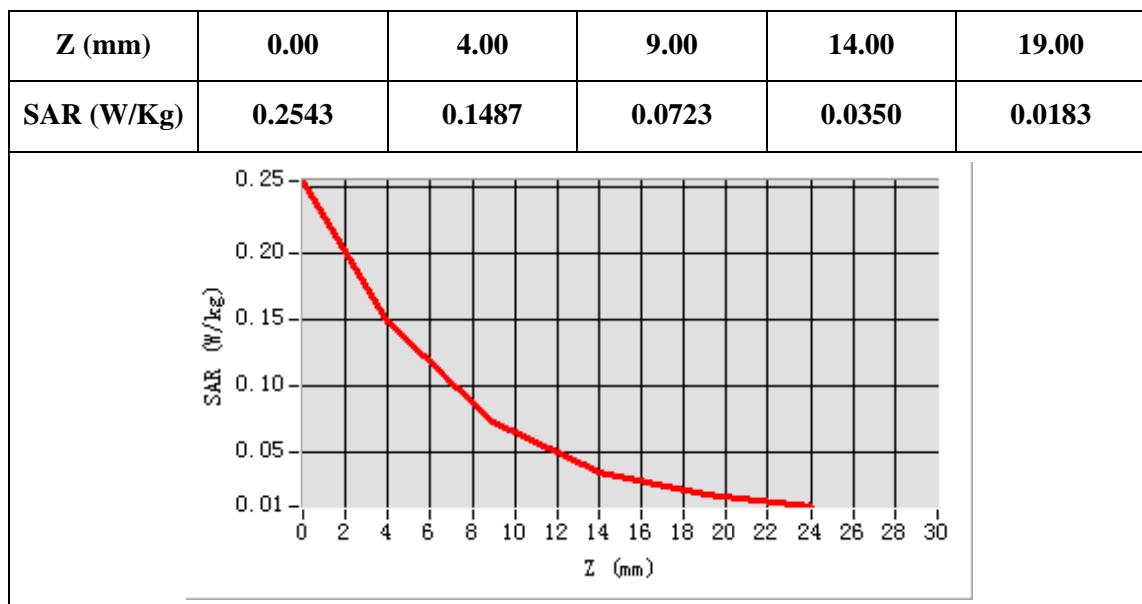
Date of measurement: 16/7/2015

Measurement duration: 7 minutes 31 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                 |                            |
|-----------------|----------------------------|
| Area Scan       | dx=8mm dy=8mm              |
| ZoomScan        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| Phantom         | Validation plane           |
| Device Position | Body                       |
| Band            | CUSTOM (GPRS1900_2Tx)      |
| Channels        | 512                        |
| Signal          | GPRS (Duty cycle: 1:4)     |



## B. SAR Measurement Results

|                                        |        |
|----------------------------------------|--------|
| Frequency (MHz)                        | 1850.2 |
| Relative permittivity (real part)      | 52.68  |
| Relative permittivity (imaginary part) | 14.21  |
| Conductivity (S/m)                     | 1.50   |
| Variation (%)                          | -1.74  |
| ConvF:                                 | 5.42   |



Maximum location: X=-3.00, Y=-7.00

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.068808 |
| SAR 1g (W/Kg)  | 0.140338 |

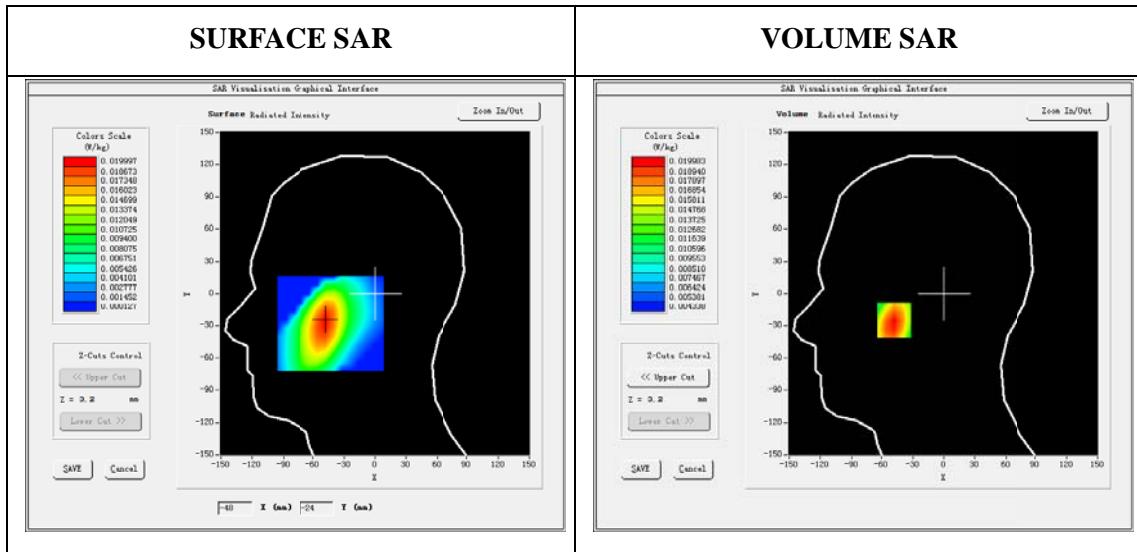


# WCDMA850, Left Cheek, Low

Type: Phone measurement

Date of measurement: 13/7/2015

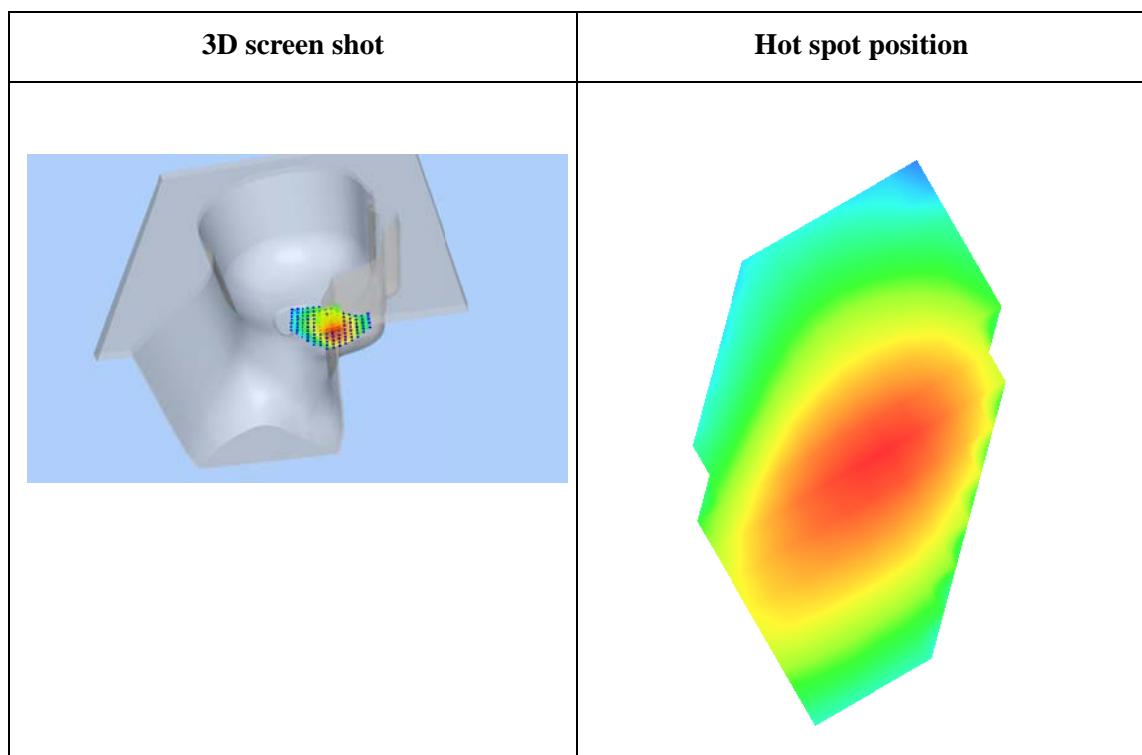
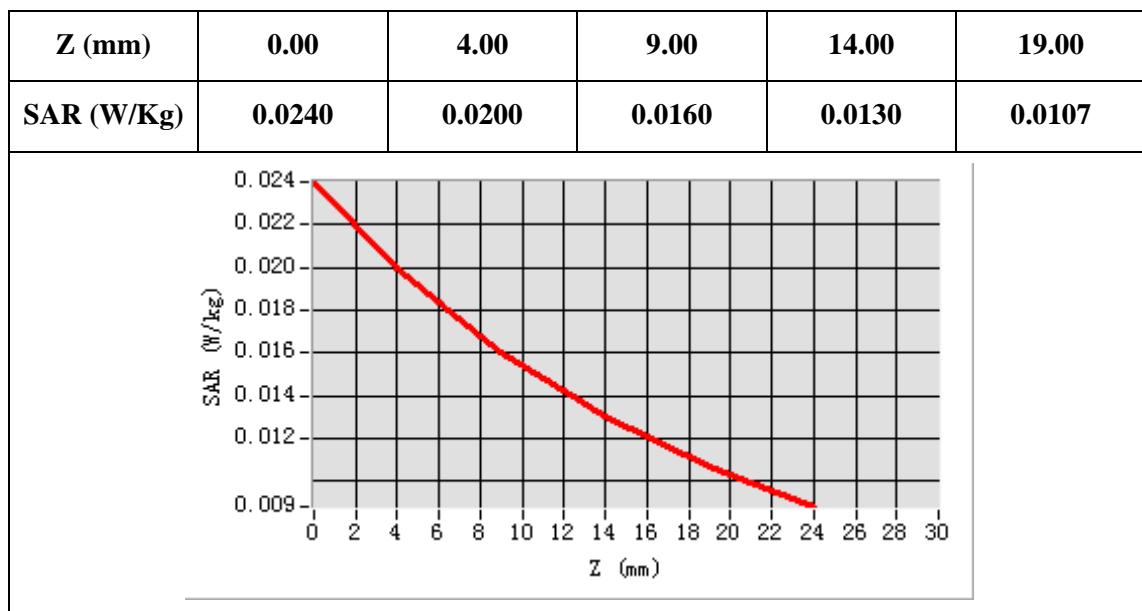
Measurement duration: 6 minutes 53 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                 |                            |
|-----------------|----------------------------|
| Area Scan       | dx=8mm dy=8mm              |
| ZoomScan        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| Phantom         | Left head                  |
| Device Position | Cheek                      |
| Band            | Band5_WCDMA850             |
| Channels        | 4132                       |
| Signal          | WCDMA (Duty cycle: 1:1)    |

## B. SAR Measurement Results



|                                        |       |
|----------------------------------------|-------|
| Frequency (MHz)                        | 826.4 |
| Relative permittivity (real part)      | 41.24 |
| Relative permittivity (imaginary part) | 18.97 |
| Conductivity (S/m)                     | 0.88  |
| Variation (%)                          | -0.02 |
| ConvF:                                 | 5.68  |



Maximum location: X=-48.00, Y=-25.00

SAR Peak: 0.29 W/kg

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.014478 |
| SAR 1g (W/Kg)  | 0.019270 |



# WCDMA850, Back, Low

Type: Phone measurement

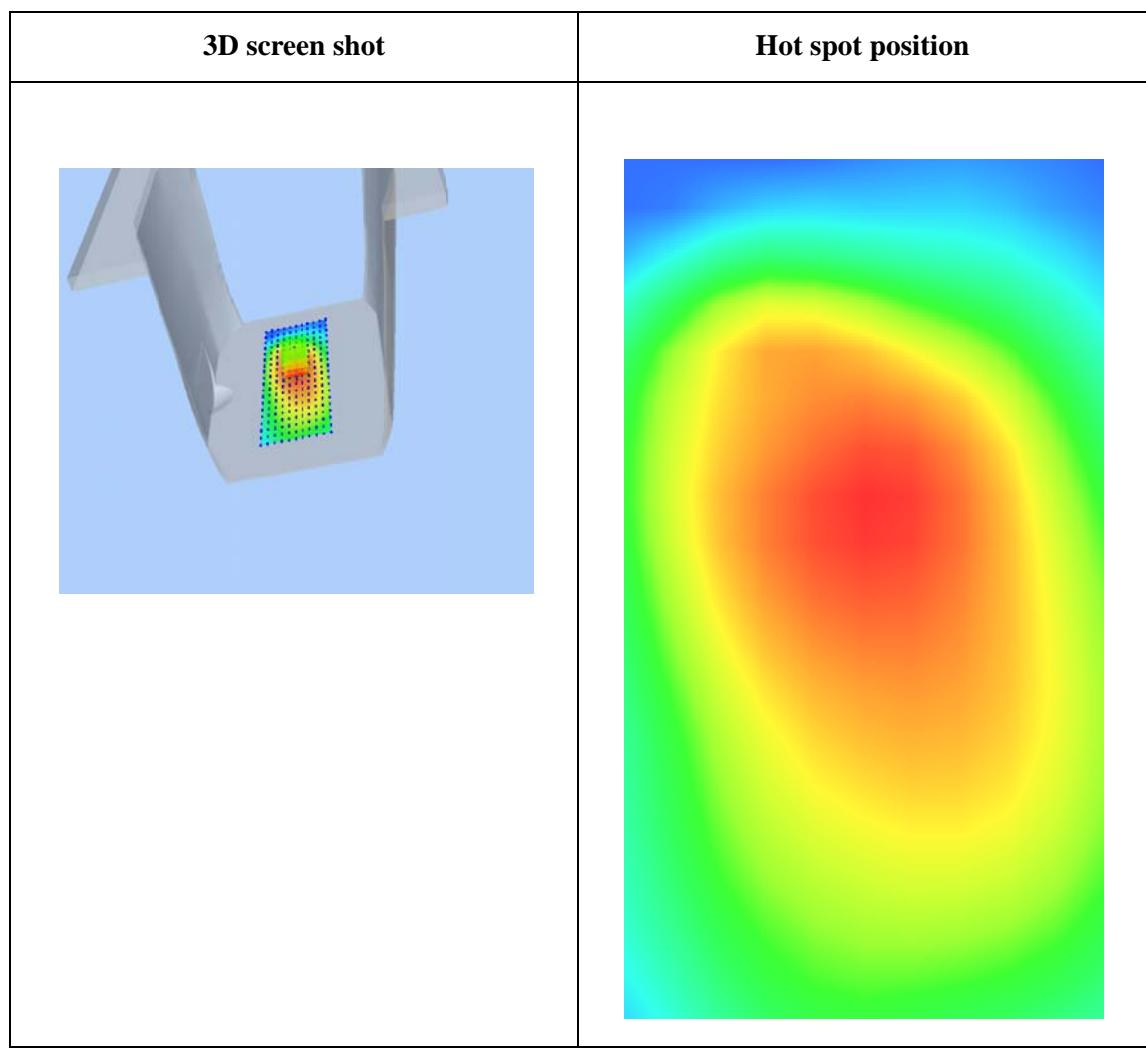
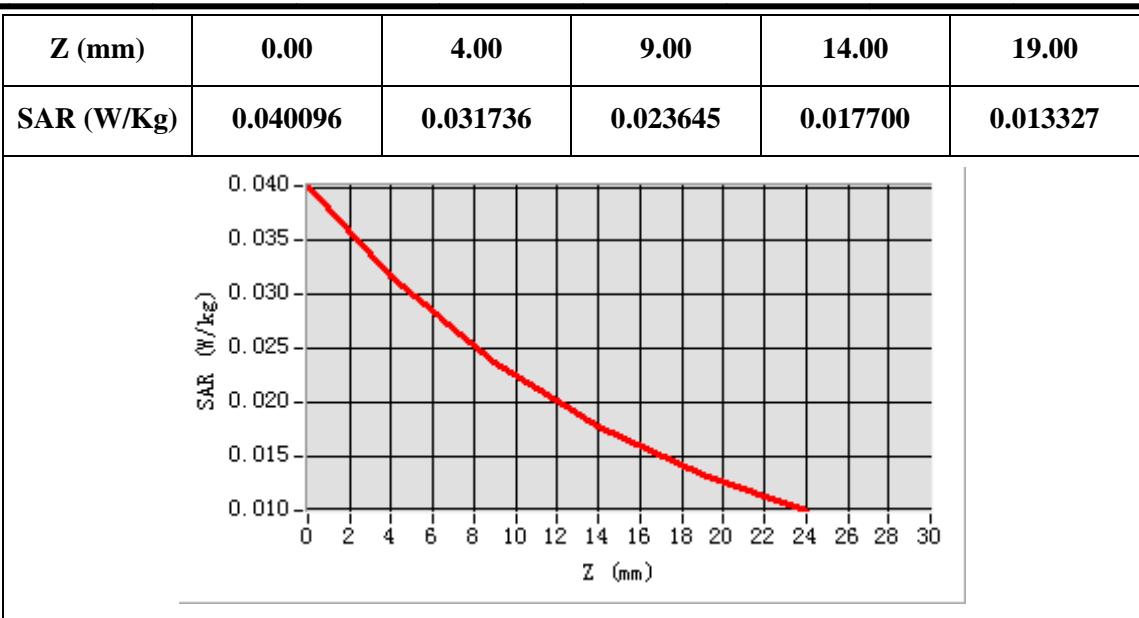
Date of measurement: 14/7/2015

Measurement duration: 7 minutes 29 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                 |                            |
|-----------------|----------------------------|
| Area Scan       | dx=8mm dy=8mm              |
| ZoomScan        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| Phantom         | Validation plane           |
| Device Position | Back                       |
| Band            | Band5_WCDMA850             |
| Channels        | 4132                       |
| Signal          | WCDMA (Duty cycle: 1:1)    |



## B. SAR Measurement Results

|                                        |       |
|----------------------------------------|-------|
| Frequency (MHz)                        | 826.4 |
| Relative permittivity (real part)      | 54.75 |
| Relative permittivity (imaginary part) | 20.12 |
| Conductivity (S/m)                     | 0.95  |
| Variation (%)                          | -1.1  |
| ConvF:                                 | 5.84  |



Maximum location: X=1.00, Y=10.00

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.023749 |
| SAR 1g (W/Kg)  | 0.033491 |

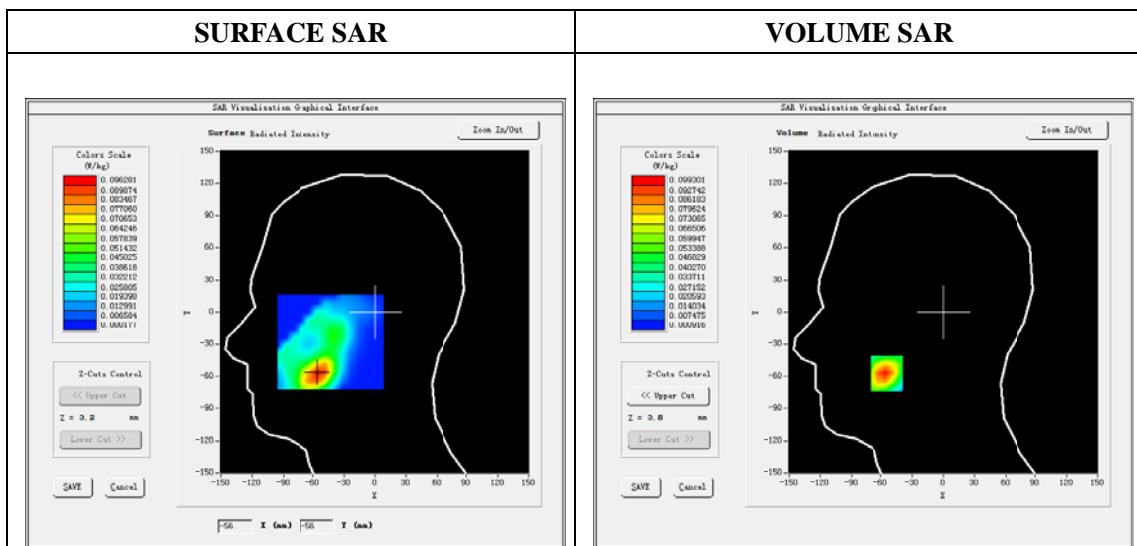


# WCDMA1900, Left Cheek, Low

Type: Phone measurement

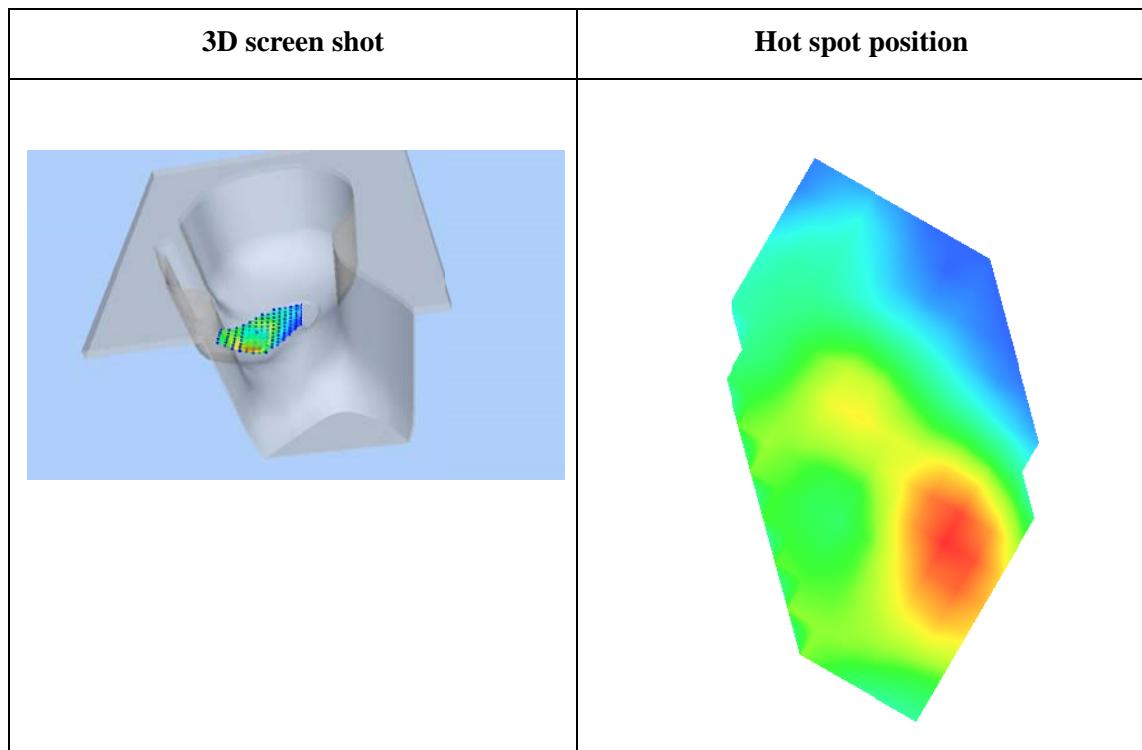
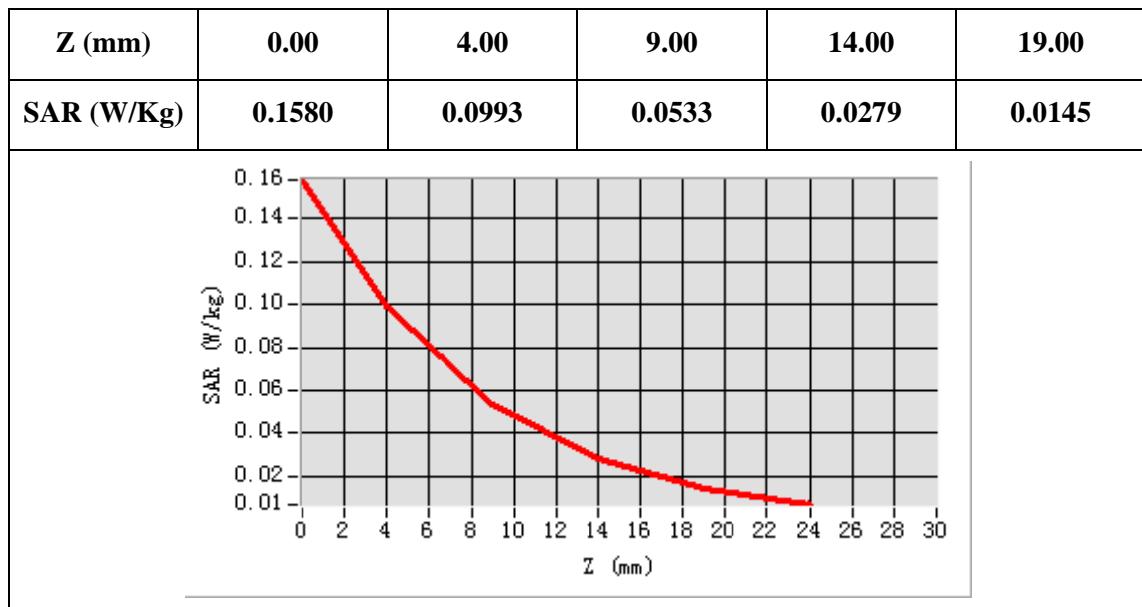
Date of measurement: 15/7/2015

Measurement duration: 7 minutes 31 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                 |                            |
|-----------------|----------------------------|
| Area Scan       | dx=8mm dy=8mm              |
| ZoomScan        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| Phantom         | Left head                  |
| Device Position | Cheek                      |
| Band            | Band2_WCDMA1900            |
| Channels        | 9262                       |
| Signal          | WCDMA (Duty cycle: 1:1)    |



## B. SAR Measurement Results

|                                   |        |
|-----------------------------------|--------|
| Frequency (MHz)                   | 1852.4 |
| Relative permittivity (real part) | 39.81  |
| Relative permittivity (imaginary) | 13.17  |
| Conductivity (S/m)                | 1.39   |
| Variation (%)                     | -1.48  |
| ConvF:                            | 5.25   |



Maximum location: X=-55.00, Y=-57.00

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.046902 |
| SAR 1g (W/Kg)  | 0.092044 |

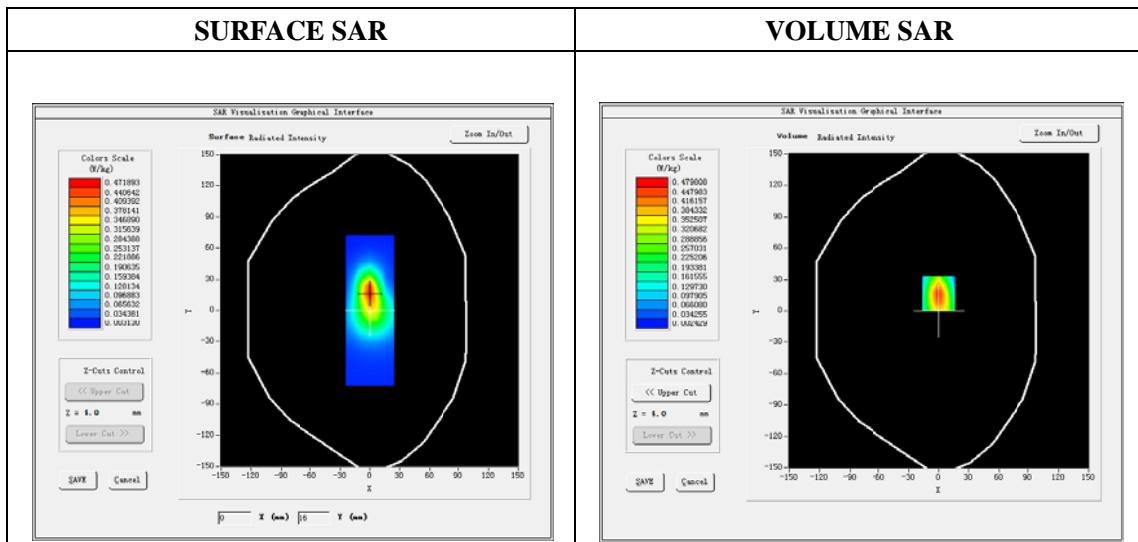


# WCDMA1900, Edge C, Low

Type: Phone measurement

Date of measurement: 16/7/2015

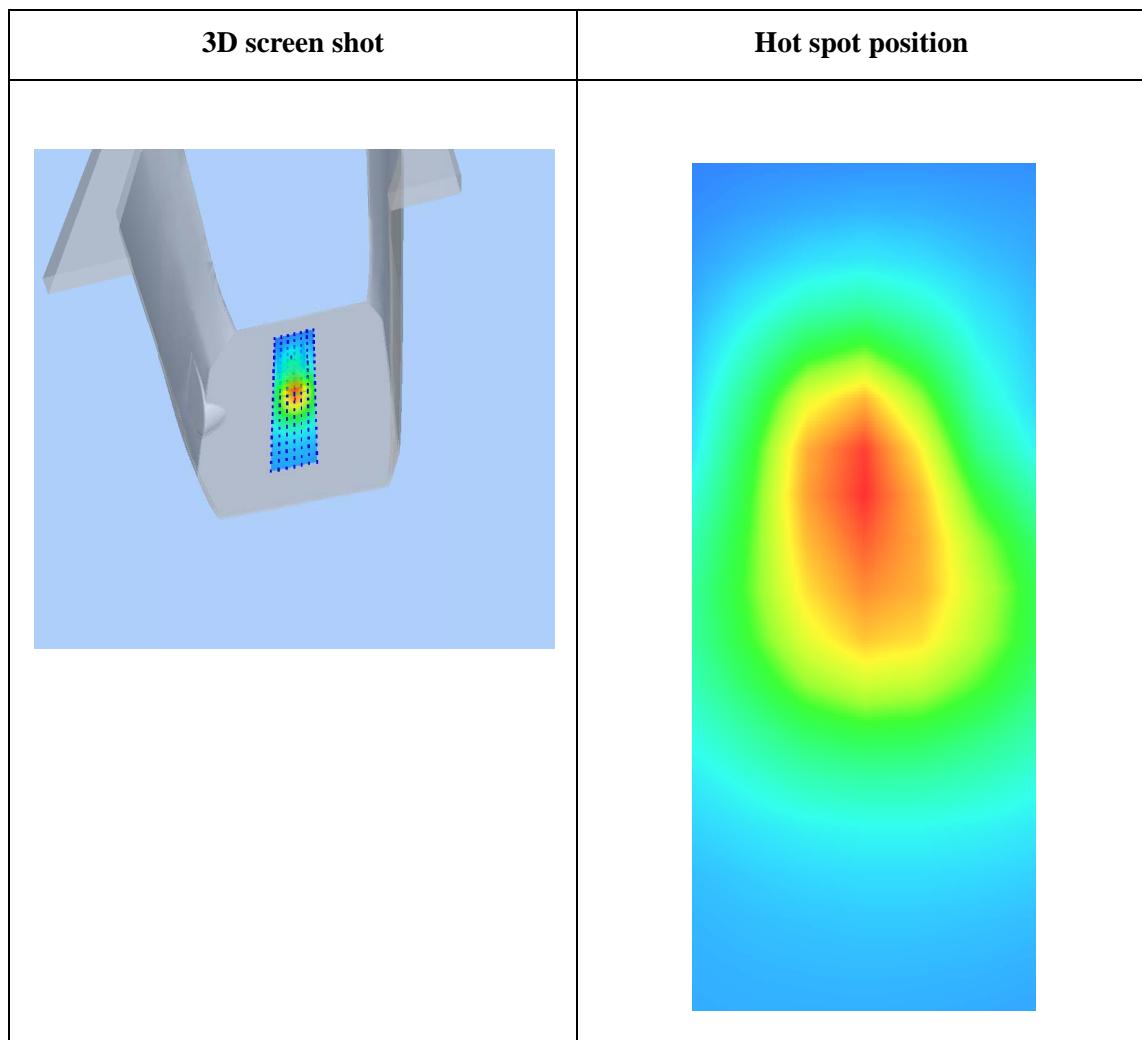
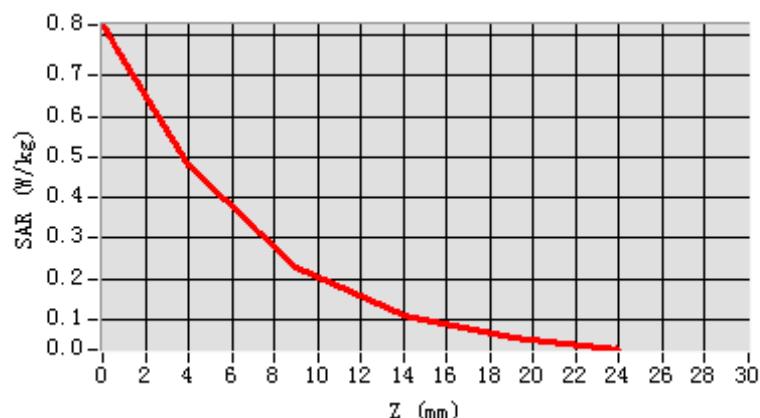
Measurement duration: 7 minutes 37 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                 |                            |
|-----------------|----------------------------|
| Area Scan       | dx=8mm dy=8mm              |
| ZoomScan        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| Phantom         | Validation plane           |
| Device Position | Back                       |
| Band            | Band2_WCDMA1900            |
| Channels        | 9262                       |
| Signal          | WCDMA (Duty cycle: 1:1)    |

## B. SAR Measurement Results



|                                   |        |
|-----------------------------------|--------|
| Frequency (MHz)                   | 1852.4 |
| Relative permittivity (real part) | 52.68  |
| Relative permittivity (imaginary) | 14.21  |
| Conductivity (S/m)                | 1.50   |
| Variation (%)                     | -2.05  |
| ConvF:                            | 5.42   |



Maximum location: X=-11.00, Y=1.00

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.234605 |
| SAR 1g (W/Kg)  | 0.494634 |

|                   |               |               |               |               |               |
|-------------------|---------------|---------------|---------------|---------------|---------------|
| <b>Z (mm)</b>     | <b>0.00</b>   | <b>4.00</b>   | <b>9.00</b>   | <b>14.00</b>  | <b>19.00</b>  |
| <b>SAR (W/Kg)</b> | <b>1.0055</b> | <b>0.5607</b> | <b>0.2510</b> | <b>0.1091</b> | <b>0.0509</b> |

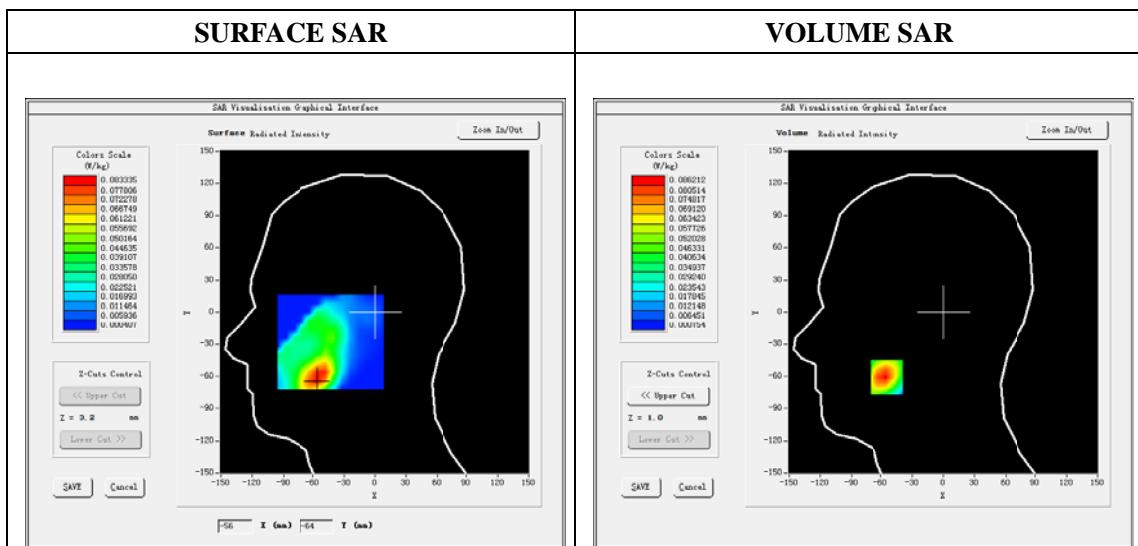


# LTE Band4, 20MHz, Right Cheek, Low

Type: Phone measurement

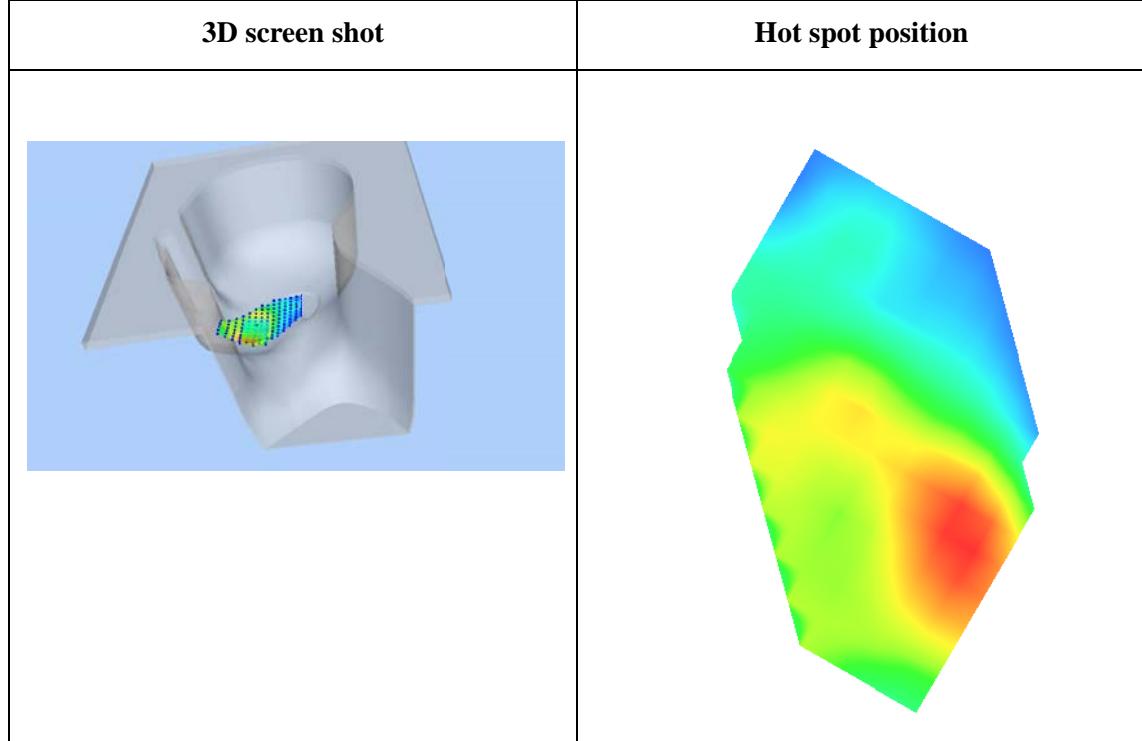
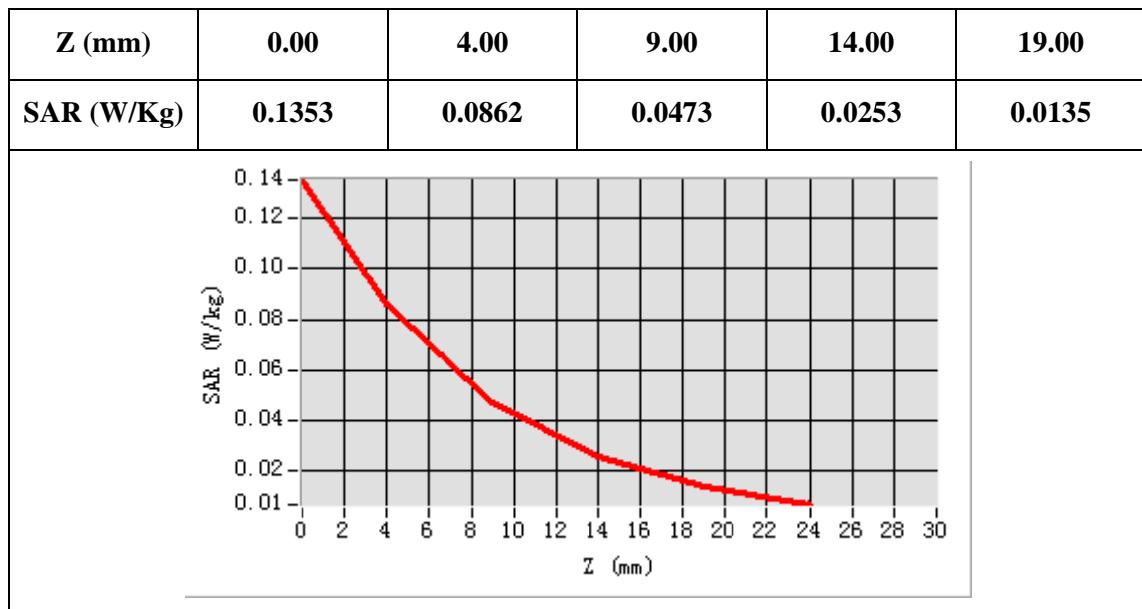
Date of measurement: 17/7/2015

Measurement duration: 7 minutes 31 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                 |                            |
|-----------------|----------------------------|
| Area Scan       | dx=8mm dy=8mm              |
| ZoomScan        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| Phantom         | Validation plane           |
| Device Position | Right head                 |
| Band            | Cheek                      |
| Channels        | 20050                      |
| Signal          | LTE (Duty cycle: 1:1)      |



## B. SAR Measurement Results

|                                   |       |
|-----------------------------------|-------|
| Frequency (MHz)                   | 1720  |
| Relative permittivity (real part) | 39.72 |
| Relative permittivity (imaginary) | 13.90 |
| Conductivity (S/m)                | 1.39  |
| Variation (%)                     | -1.38 |
| ConvF:                            | 4.75  |



Maximum location: X=-55.00, Y=-61.00

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.042789 |
| SAR 1g (W/Kg)  | 0.081384 |

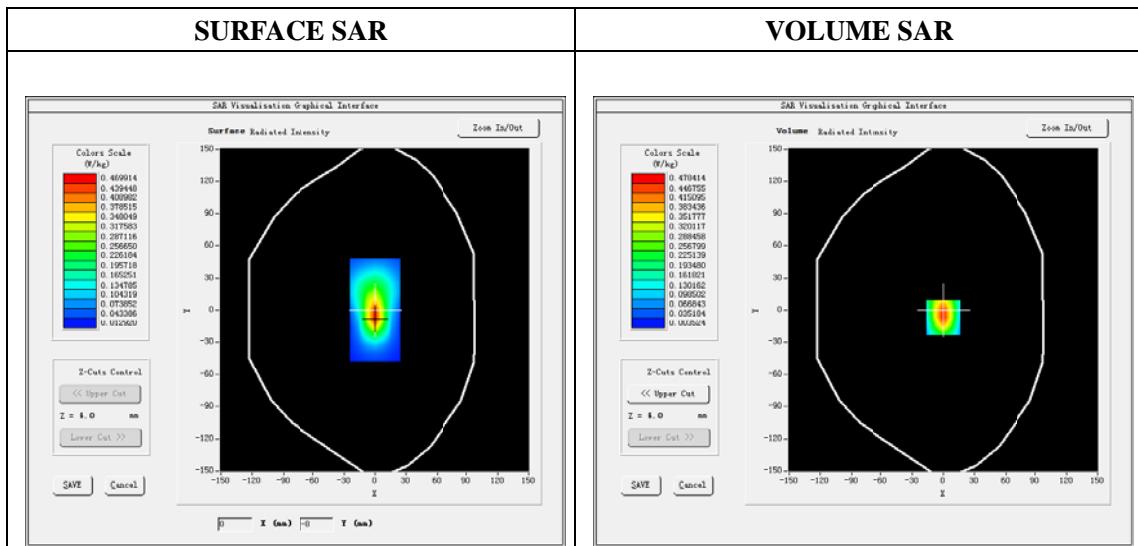


# LTE Band4, 20MHz, Edge C, Low

Type: Phone measurement

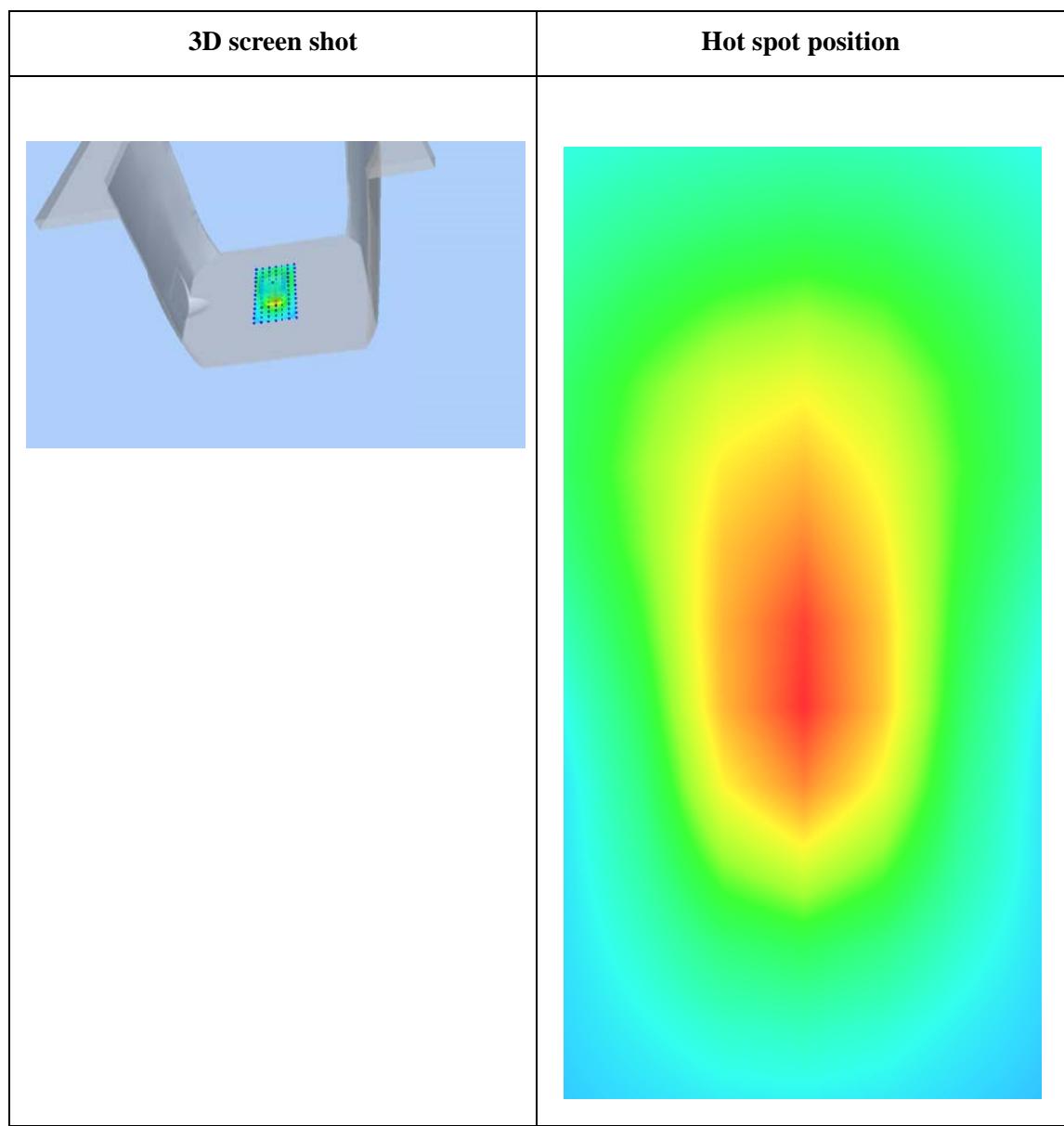
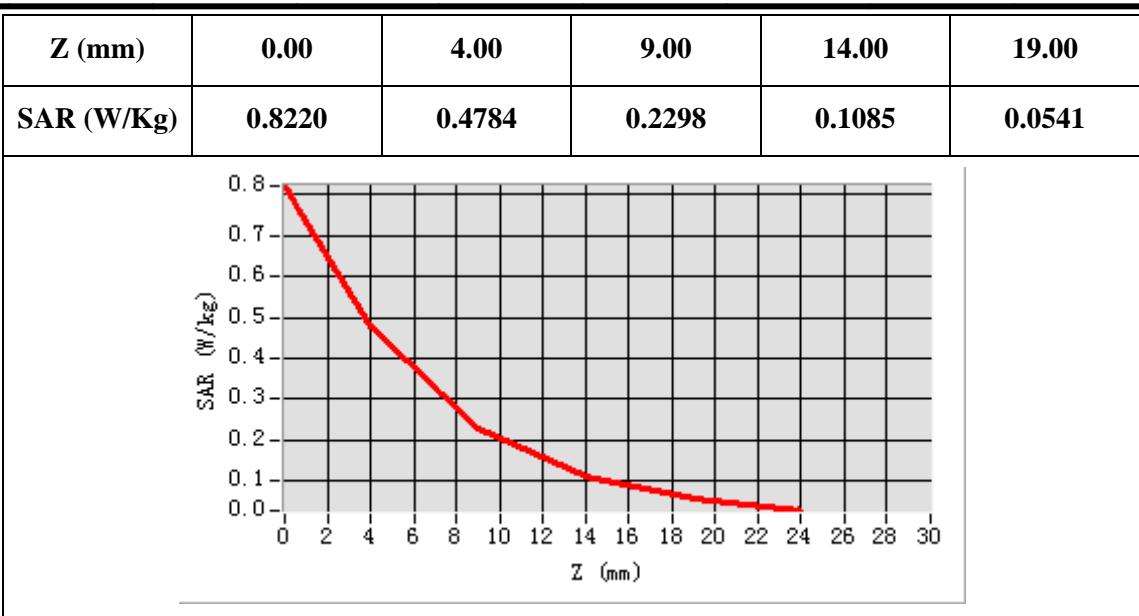
Date of measurement: 17/7/2015

Measurement duration: 7 minutes 37 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                 |                            |
|-----------------|----------------------------|
| Area Scan       | dx=8mm dy=8mm              |
| ZoomScan        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| Phantom         | Validation plane           |
| Device Position | Edge C                     |
| Band            | LTE Band 4                 |
| Channels        | 20050                      |
| Signal          | LTE (Duty cycle: 1:1)      |



## B. SAR Measurement Results

|                                   |       |
|-----------------------------------|-------|
| Frequency (MHz)                   | 1720  |
| Relative permittivity (real part) | 53.44 |
| Relative permittivity (imaginary) | 15.30 |
| Conductivity (S/m)                | 1.53  |
| Variation (%)                     | 0.80  |
| ConvF:                            | 4.93  |



Maximum location: X=0.00, Y=-7.00

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.223342 |
| SAR 1g (W/Kg)  | 0.478001 |

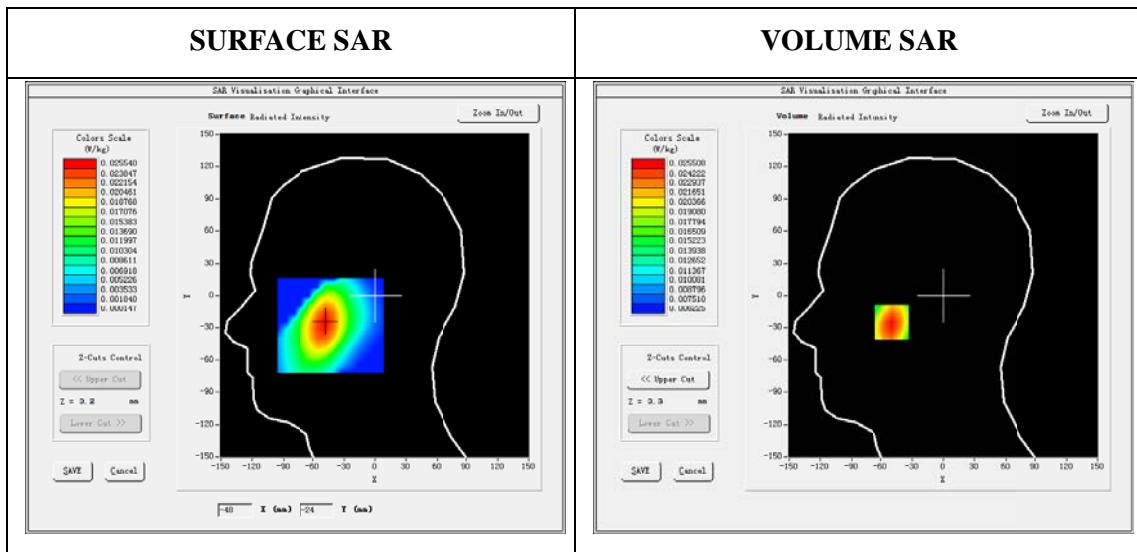


# LTE Band 17, Left Cheek, Middle

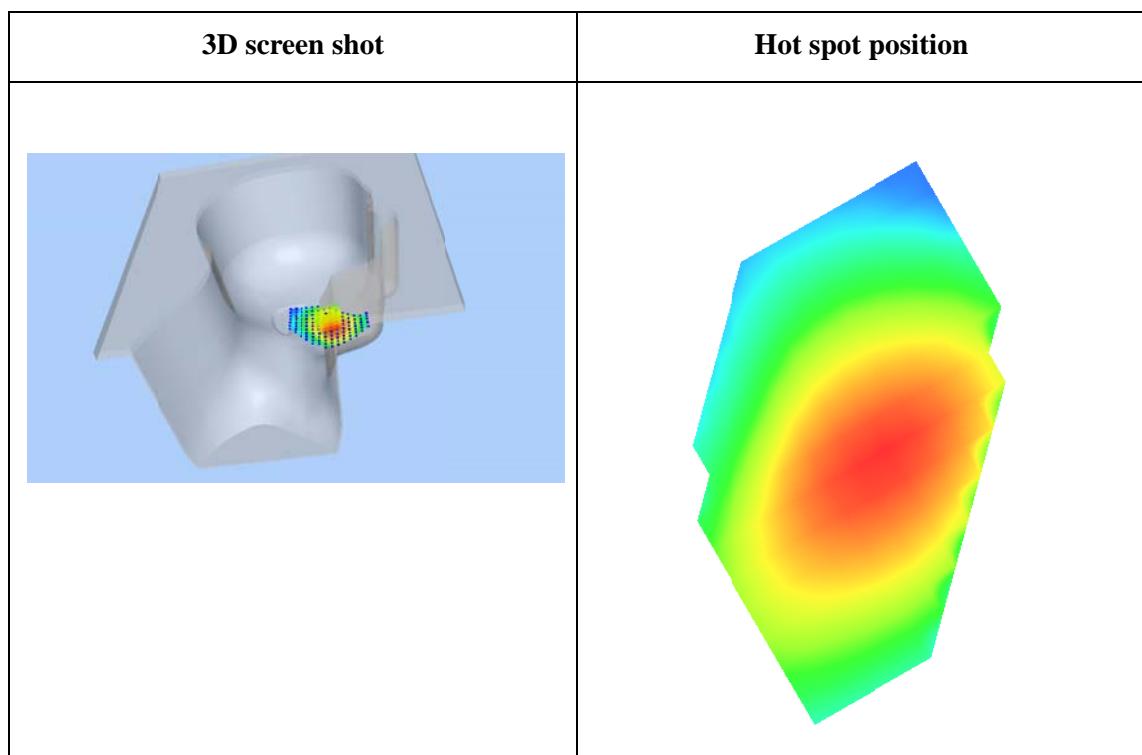
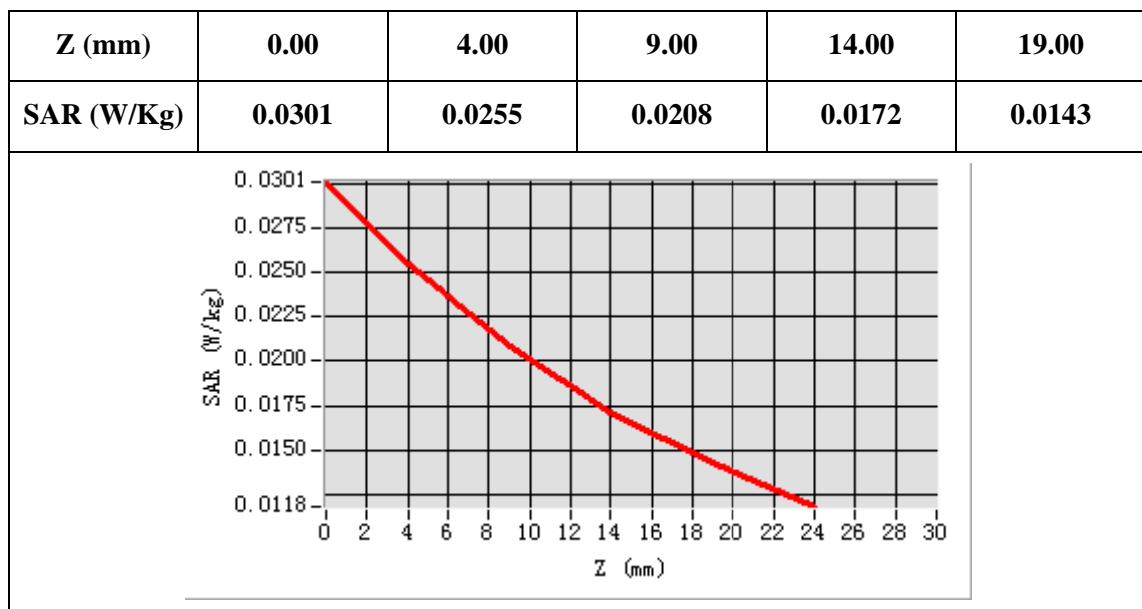
Type: Phone measurement

Date of measurement: 19/7/2015

Measurement duration: 6 minutes 53 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.



|                 |                            |
|-----------------|----------------------------|
| Area Scan       | dx=8mm dy=8mm              |
| ZoomScan        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| Phantom         | Left head                  |
| Device Position | Cheek                      |
| Band            | LTE Band 17                |
| Channels        | 23790                      |
| Signal          | LTE(Duty cycle: 1:1)       |

## B. SAR Measurement Results

|                                        |       |
|----------------------------------------|-------|
| Frequency (MHz)                        | 710   |
| Relative permittivity (real part)      | 41.62 |
| Relative permittivity (imaginary part) | 21.12 |
| Conductivity (S/m)                     | 0.88  |
| Variation (%)                          | 0.32  |
| ConvF:                                 | 5.26  |



|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.019836 |
| SAR 1g (W/Kg)  | 0.026001 |

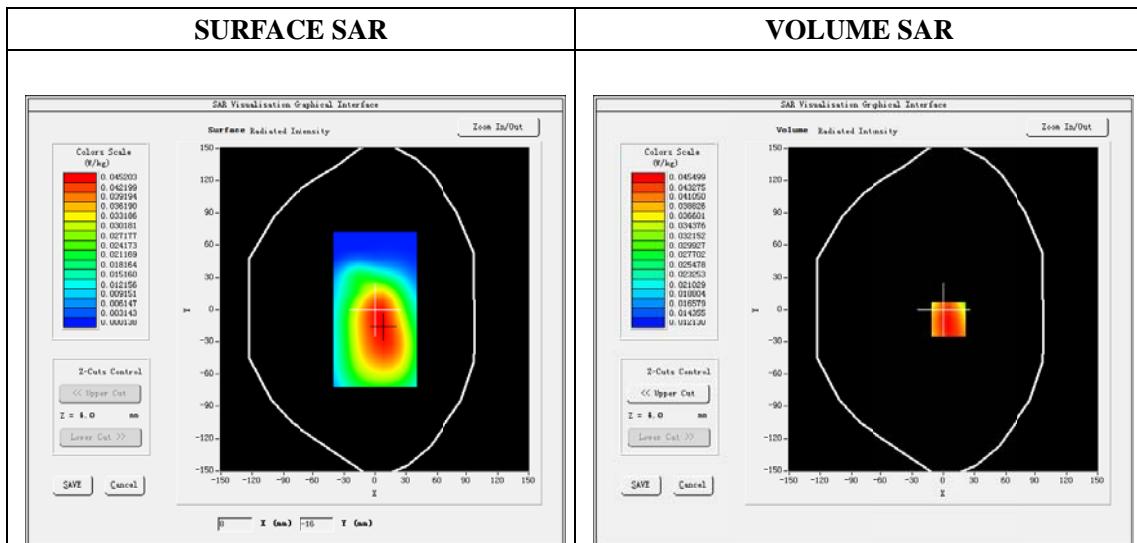


# LTE Band 17, Back, Middle

Type: Phone measurement

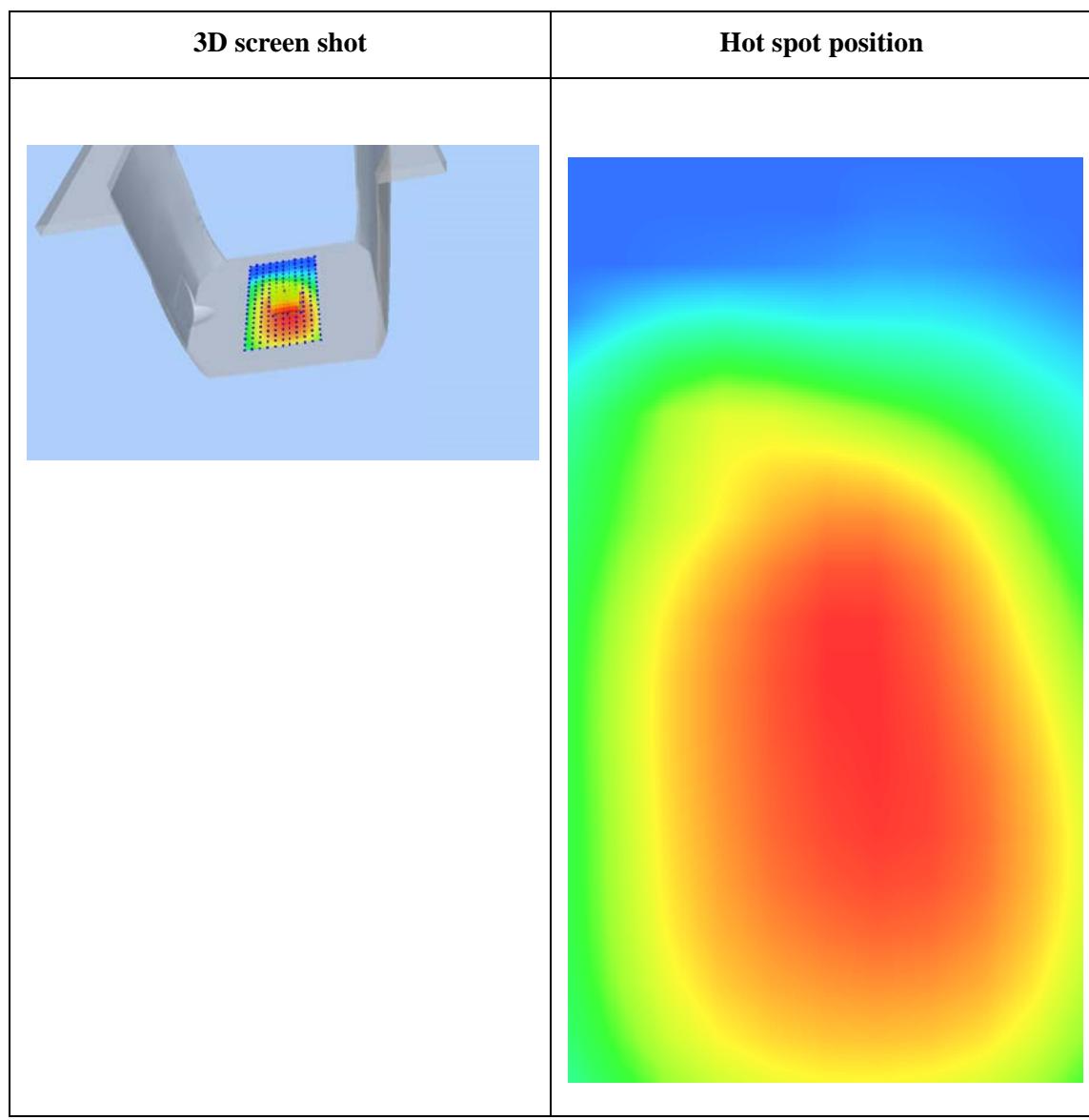
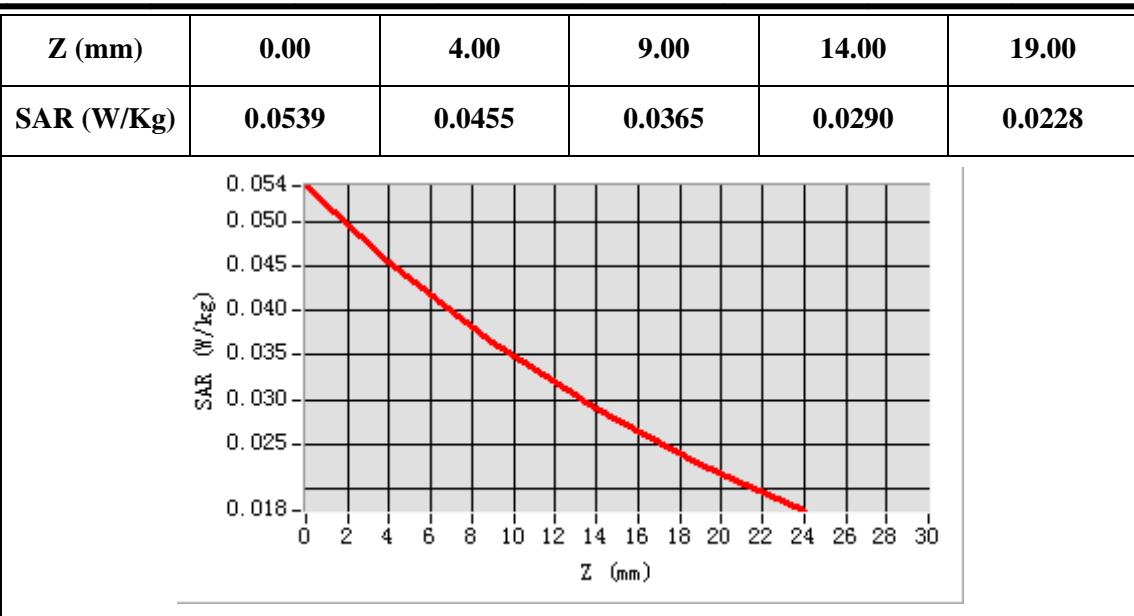
Date of measurement: 19/7/2015

Measurement duration: 7 minutes 29 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                        |                            |
|------------------------|----------------------------|
| <b>Area Scan</b>       | dx=8mm dy=8mm              |
| <b>ZoomScan</b>        | 5x5x7,dx=8mm dy=8mm dz=5mm |
| <b>Phantom</b>         | Validation plane           |
| <b>Device Position</b> | Back                       |
| <b>Band</b>            | LTE Band 17                |
| <b>Channels</b>        | 23790                      |
| <b>Signal</b>          | LTE (Duty cycle: 1:1)      |



## B. SAR Measurement Results

|                                               |       |
|-----------------------------------------------|-------|
| <b>Frequency (MHz)</b>                        | 710   |
| <b>Relative permittivity (real part)</b>      | 54.82 |
| <b>Relative permittivity (imaginary part)</b> | 23.04 |
| <b>Conductivity (S/m)</b>                     | 0.96  |
| <b>Variation (%)</b>                          | -0.41 |
| <b>ConvF:</b>                                 | 5.41  |



Maximum location: X=5.00, Y=-9.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 0.035226 |
| <b>SAR 1g (W/Kg)</b>  | 0.046680 |

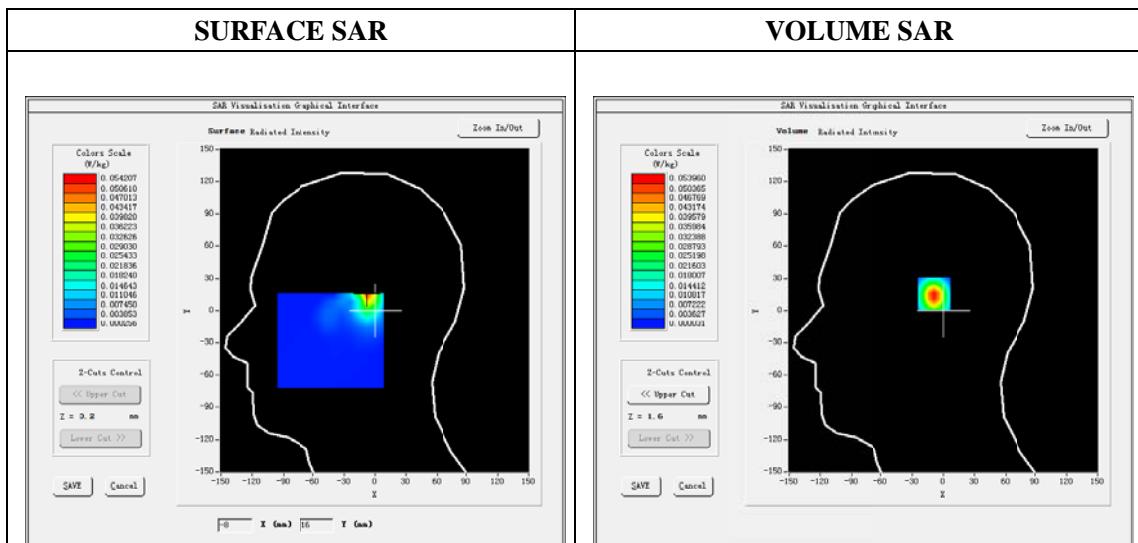


# Wi-Fi 802.11b ,Right Cheek, Low

Type: Phone measurement ( 11 points in the volume)

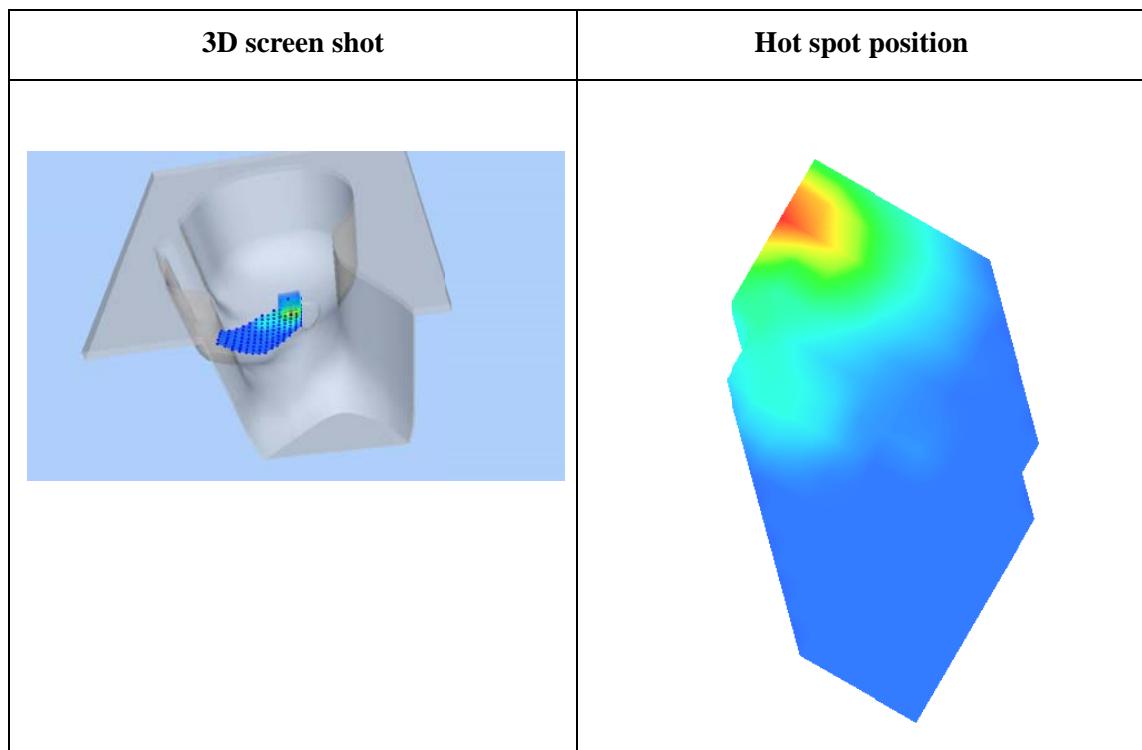
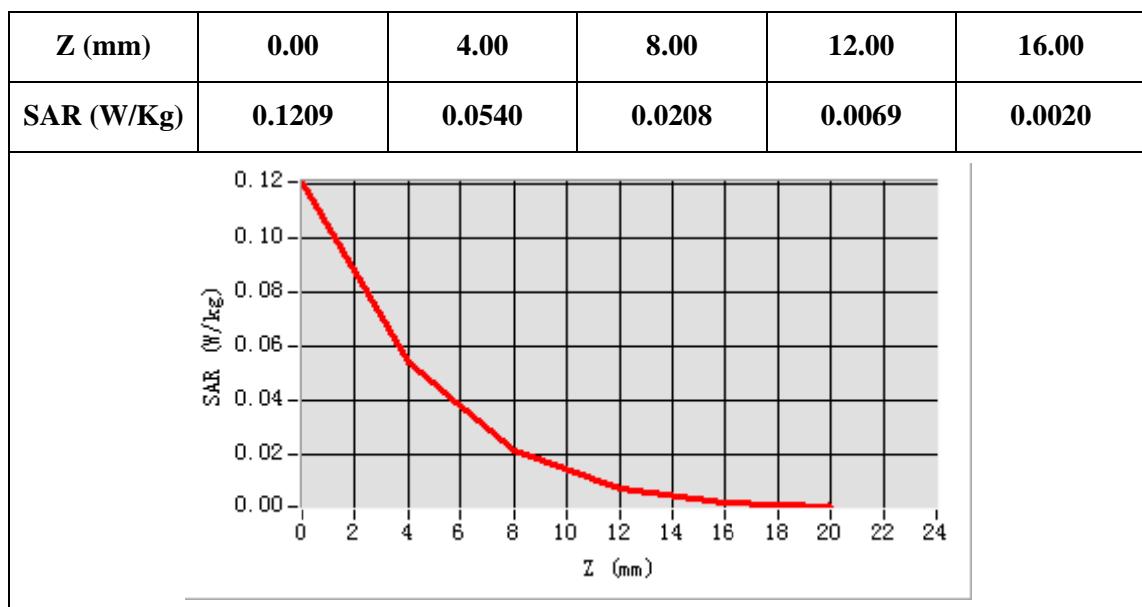
Date of measurement: 18/07/2015

Measurement duration: 7 minutes 21 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                 |                            |
|-----------------|----------------------------|
| Area Scan       | dx=8mm dy=8mm              |
| ZoomScan        | 7x7x8,dx=5mm dy=5mm dz=4mm |
| Phantom         | Right head                 |
| Device Position | Cheek                      |
| Band            | IEEE 802.11b ISM           |
| Channels        | 1                          |
| Signal          | DSSS (Crest factor: 1:1)   |



## B. SAR Measurement Results

|                                        |       |
|----------------------------------------|-------|
| Frequency (MHz)                        | 2412  |
| Relative permittivity (real part)      | 38.73 |
| Relative permittivity (imaginary part) | 13.00 |
| Conductivity (S/m)                     | 1.77  |
| Variation (%)                          | 0.77  |
| ConvF:                                 | 4.93  |



Maximum location: X=-7.00, Y=16.00

|                |          |
|----------------|----------|
| SAR 10g (W/Kg) | 0.018708 |
| SAR 1g (W/Kg)  | 0.049571 |

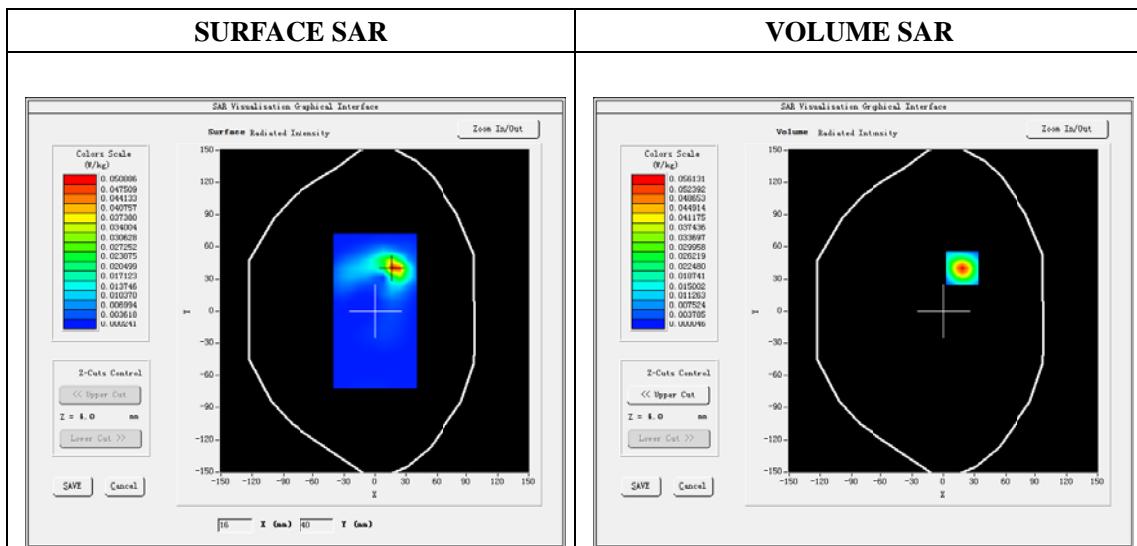


# Wi-Fi 802.11b , Back, Low

Type: Phone measurement

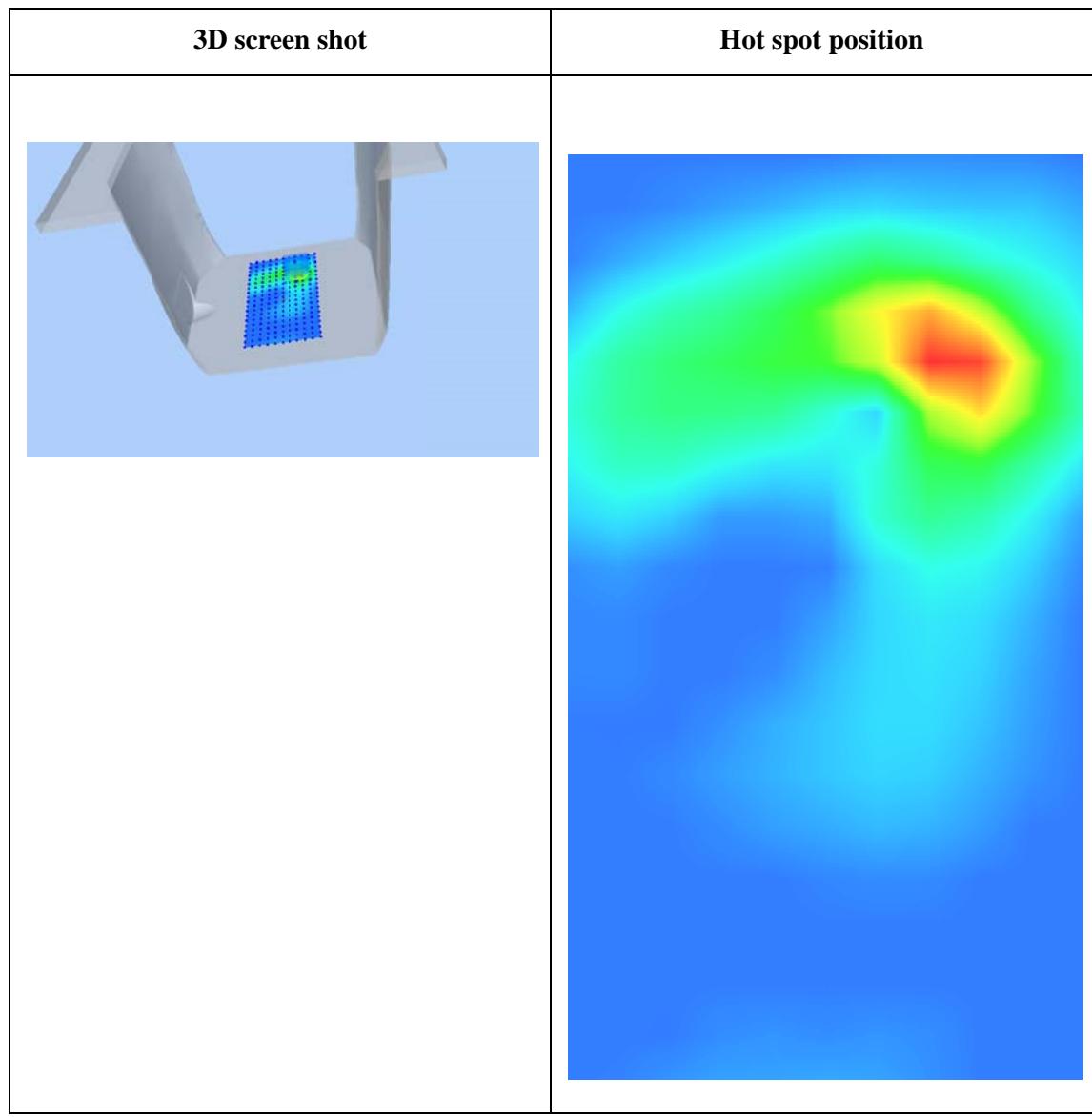
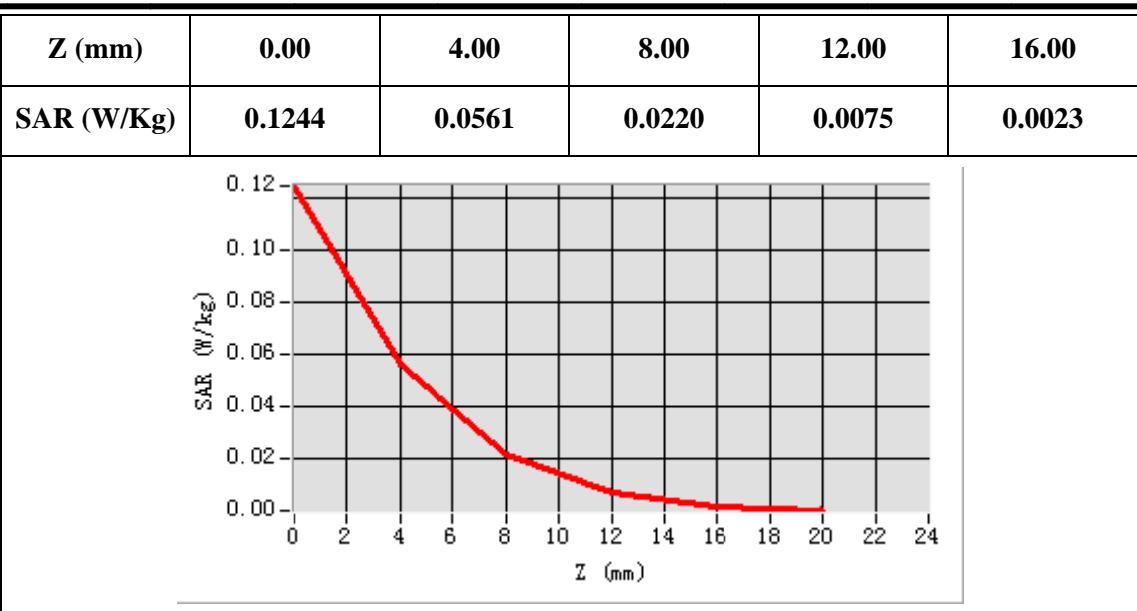
Date of measurement: 18/07/2015

Measurement duration: 20 minutes 24 seconds


Mobile Phone IMEI number: --

## A. Experimental conditions.

|                        |                             |
|------------------------|-----------------------------|
| <b>Area Scan</b>       | dx=8mm dy=8mm               |
| <b>ZoomScan</b>        | 7x7x8, dx=5mm dy=5mm dz=4mm |
| <b>Phantom</b>         | Validation plane            |
| <b>Device Position</b> | Body                        |
| <b>Band</b>            | IEEE 802.11b                |
| <b>Channels</b>        | 1                           |
| <b>Signal</b>          | DSSS (Crest factor: 1:1)    |



## B. SAR Measurement Results

|                                               |       |
|-----------------------------------------------|-------|
| <b>Frequency (MHz)</b>                        | 2412  |
| <b>Relative permittivity (real part)</b>      | 52.31 |
| <b>Relative permittivity (imaginary part)</b> | 14.25 |
| <b>Conductivity (S/m)</b>                     | 1.94  |
| <b>Variation (%)</b>                          | -2.1  |
| <b>ConvF:</b>                                 | 5.07  |



Maximum location: X=18.00, Y=40.00

|                       |          |
|-----------------------|----------|
| <b>SAR 10g (W/Kg)</b> | 0.018680 |
| <b>SAR 1g (W/Kg)</b>  | 0.050989 |





## ANNEX E

of

**CCIC-SET**

### **CONFORMANCE TEST REPORT FOR HUMAN EXPOSURE TO ELECTROMAGNETIC FIELDS**

**SET2015-09927**

**4G LTE Smart Phone**

**Type Name: N501**

**Hardware Version: B501 MB P2**

**Software Version: ALPS.L1.MP3.V2\_GIONEE6735.65C.L1\_P15**

### **Calibration Certificate of Probe and Dipoles**

**This Annex consists of 62 pages**

**Date of Report: 2015-07-21**

## Probe Calibration Cerificate

**COMOSAR E-Field Probe Calibration Report**

Ref : ACR.227.15.14.SATU.A

**CCIC SOUTHERN ELECTRONIC PRODUCT  
TESTING (SHENZHEN) CO., LTD  
ELECTRONIC TESTING BUILDING, SHAHE ROAD, XILI  
TOWN  
SHENZHEN, P.R. CHINA (POST CODE:518055)  
SATIMO COMOSAR DOSIMETRIC E-FIELD PROBE  
SERIAL NO.: SN 04/13 EP166**

Calibrated at SATIMO US  
2105 Barrett Park Dr. - Kennesaw, GA 30144



08/14/2014

**Summary:**

This document presents the method and results from an accredited COMOSAR Dosimetric E-Field Probe calibration performed in SATIMO USA using the CALISAR / CALIBAIR test bench, for use with a SATIMO COMOSAR system only. All calibration results are traceable to national metrology institutions.



## COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR.227.15.14.SATU.A

|               | Name          | Function        | Date      | Signature                                                                           |
|---------------|---------------|-----------------|-----------|-------------------------------------------------------------------------------------|
| Prepared by : | Jérôme LUC    | Product Manager | 8/15/2014 |  |
| Checked by :  | Jérôme LUC    | Product Manager | 8/15/2014 |  |
| Approved by : | Kim RUTKOWSKI | Quality Manager | 8/15/2014 |  |

|                | Customer Name                                                               |
|----------------|-----------------------------------------------------------------------------|
| Distribution : | CCIC SOUTHERN<br>ELECTRONIC<br>PRODUCT<br>TESTING<br>(SHENZHEN) Co.,<br>Ltd |

| Issue | Date      | Modifications   |
|-------|-----------|-----------------|
| A     | 8/15/2014 | Initial release |
|       |           |                 |
|       |           |                 |
|       |           |                 |

Page: 2/9

This document shall not be reproduced, except in full or in part, without the written approval of SATIMO.  
The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of SATIMO.