

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZE201000201

FCC REPORT

Applicant: Protop International Inc.

Address of Applicant: 10F-8, No.237, Sec.,1 Datong Rd., Xizhi Dist., 22161New

Taipei City, Taiwan

Equipment Under Test (EUT)

Product Name: UVC-LED Personal Valet BOX

Model No.: 607002, 607002-xxx(x=A-Z), UVCxx-10W(x=0-9), x Indicate

for enclosure different color

Trade mark: TIDIE

FCC ID: 2AAYX607002

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.209

Date of sample receipt: 09 Oct., 2020

Date of Test: 10 Oct., to 29 Oct., 2020

Date of report issue: 30 Oct., 2020

Test Result: PASS*

In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery orfalsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	30 Oct., 2020	Original

Tested By:	11 lang	Date:	30 Oct., 2020	
	Test Engineer			

Reviewed By:

| Winner Thang | Date: 30 Oct., 2020 |

3 Contents

			Page
1	COV	VER PAGE	1
2	VER	RSION	2
3	100	NTENTS	3
4		ST SUMMARY	
5	GEN	NERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	
	5.6	LABORATORY FACILITY	6
	5.7	LABORATORY LOCATION	6
	5.8	TEST INSTRUMENTSLIST	7
6	TES	ST RESULTS ANDMEASUREMENT DATA	8
	6.1	Antenna requirement	Q
	6.2	RADIATED E MISSION	
	6.3	CONDUCTED EMISSION	
	6.4	20DB BANDWIDTH	
7	TES	ST SETUP PHOTOS	21
Q		T CONSTRUCTIONAL PHOTOS	73

4 Test Summary

Test Item	Section in CFR 47	Result	
Spurious emissions	15.209	Pass	
20dB Bandwidth	15.215(c)	Pass	
Conducted Emission	15.207	Pass	

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method:	ANSI C63.4-2014		
	ANSI C63.10-2013		

5 General Information

5.1 Client Information

Applicant:	Protop International Inc.
Address:	10F-8, No.237, Sec.,1, Datong Rd., Xizhi Dist., 22161New Taipei City, Taiwan
Manufacturer:	DONGGUAN KETAIHONG ELECTRONICS CO., LTD
Address:	Second Industrial Zone, Shujiu Village, Changping Town, 523569 Dongguan, Guangdong, PEOPLE'S REPUBLIC OF CHINA
Factory 1:	DONGGUAN KETAIHONG ELECTRONICS CO., LTD
Address:	Second Industrial Zone, Shujiu Village, Changping Town, 523569 Dongguan, Guangdong, PEOPLE'S REPUBLIC OF CHINA
Factory 2:	SUNG JIN VIETNAM ELECTRONIC CO., LTD.
Address:	Lot FJ-05, The south of Song Khe – Noi Hoang Industrial park, Tien Phong Commune, Yen Dung District, Bac Giang Province, Viet Nam.

5.2 General Description of E.U.T.

3.2 General Description	0. 2.0
Product Name:	UVC-LED Personal Valet BOX
Model No.:	607002, 607002-xxx(x=A-Z), UVCxx-10W(x=0-9), x Indicate for enclosure different color
Operation Frequency:	110kHz~205kHz
Modulation type:	ASK
Antenna Type:	Coil Antenna
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Power supply:	Wireless charger: Input: DC 5V, 3A

5.3 Test mode and test samples plans

Transmitting mode:	Keep the EUT in transmitting mode with modulation
--------------------	---

5.4 Description of Support Units

Manufacturer	Description	Model	S/N	FCC ID/DoC
BJX	Wireless charging match load	N/A	N/A	N/A

5.5 Measurement Uncertainty

Parameter	Expanded Uncertainty (Confidence of 95%)
Conducted Emission (9kHz ~ 30MHz)	±1.60 dB
Radiated Emission (9kHz ~ 30MHz)	±3.12 dB
Radiated Emission (30MHz ~ 1000MHz)	±4.32 dB
Radiated Emission (1GHz ~ 18GHz)	±5.16 dB
Radiated Emission (18GHz ~ 26.5GHz)	±3.20 dB

5.6 Additions to, deviations, or exclusions from the method

No

5.7 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.8 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.110~116, Building B, Jinyuan Business Building, Xixiang Road, Bao'an District,

Shenzhen, Guangdong, China

Tel: +86-755-23118282, Fax:+86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.9 Test Instrumentslist

Radiated Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2020	07-21-2021
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-07-2020	03-06-2021
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-07-2020	03-06-2021
Loop Antenna	SCHWARZBECK	FMZB 1519 B	00044	03-07-2020	03-06-2021
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A
Pre-amplifier	HP	8447D	2944A09358	03-07-2020	03-06-2021
Pre-amplifier	CD	PAP-1G18	11804	03-07-2020	03-06-2021
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-05-2020	03-04-2021
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-05-2020	03-04-2021
Simulated Station	Anritsu	MT8820C	6201026545	03-07-2020	03-06-2021
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2020	03-06-2021
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2020	03-06-2021
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2020	03-06-2021

Conducted Emission:					
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-05-2020	03-04-2021
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-05-2020	03-04-2021
LISN	CHASE	MN2050D	1447	03-05-2020	03-04-2021
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2020	07-20-2021
Cable	HP	10503A	N/A	03-05-2020	03-04-2021
EMI Test Software	AUDIX	E3	6.110919b	N/A	N/A

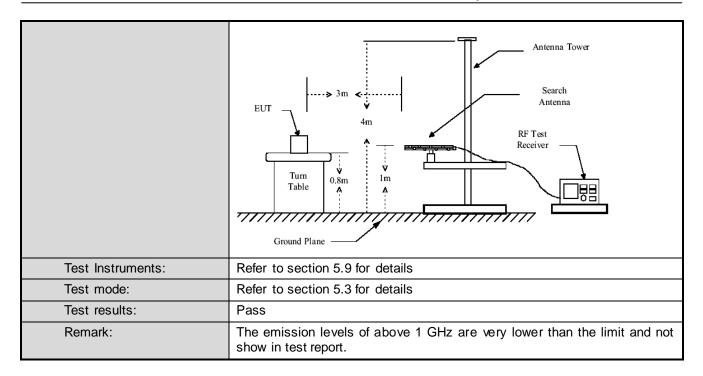
6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

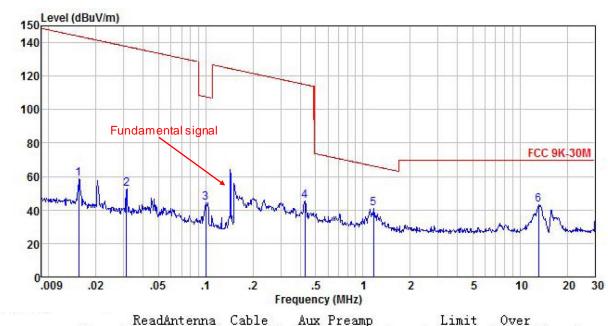

E.U.T Antenna: Coil Antenna

6.2 Radiated Emission

Z Radiated Emission									
Test Requirement:	FCC Part15 C Section 15.209								
Test Frequency Range:	9kHz to 1000MH	Z							
Test site:	Measurement Di	stance:	3m(Serr	ni-Anechoic	Cham	ber)			
Receiver setup:	Frequency Detecto			RBW	VB'	W	Remark		
	9kHz-150kHz	Quasi	-peak	200Hz	600	Hz	Quasi-peak Value		
	150kHz- 30MHz Quas		-peak	9kHz	30k	Hz Quasi-peak Valu			
	30MHz-1GHz	Quasi	-peak	120kHz	300k	κHz	Quasi-peak Value		
	Above 1GHz	Pe	ak	1MHz	3MI	Hz	Peak Value		
Limit:	Frequency (M	lHz)	Limi	t (uV/m @3	m)		Distance (m)		
	0.009-0.490	0	2	400/F(kHz)			300		
	0.490-1.70	5	24	1000/F(kHz)			30		
	1.705-30			30			30		
	30-88			100			3		
	88-216			150			3		
	216-960			200			3		
Test Procedure:	Above 1GH			500			3		
Took actions	 a. The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter semi-anechoic camber. The table was rotated 360 degrees toetermine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the grour to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit pecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method a specified andthen reported in a data sheet. 						eceiving antenna, nna tower. ers above the ground oth horizontal and measurement. its worst case and meters and the es to find the on and Specified Blower than the limits ues of the EUT have 10dB margin		
Test setup:	9kHz-30MHz Turn Table Ground Plane -	3m 💠	 			Sear Anter			

Measurement Data:

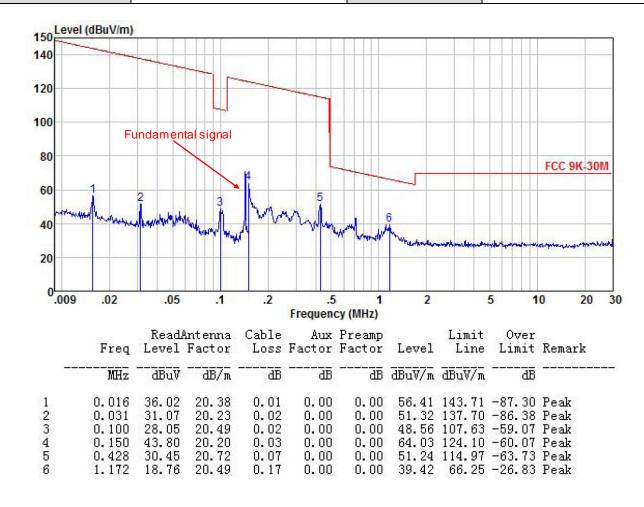
a) Fundamental field strength


Peak value									
Test Polarization	Frequency (kHz)	H-field@3m (dBµV)	Limit@3m (dBµV)	Result					
Horizontal	161.90	75.91	124.51	Pass					
Vertical	161.90	65.18	124.51	Pass					
		Average value							
Test Polarization	Frequency (kHz)	H-field@3m (dBµV)	Limit@3m (dBµV)	Result					
Horizontal	161.90	63.49	104.51	Pass					
Vertical	161.90	54.18	104.51	Pass					

b) Radiated spurious:

Below 1GHz:

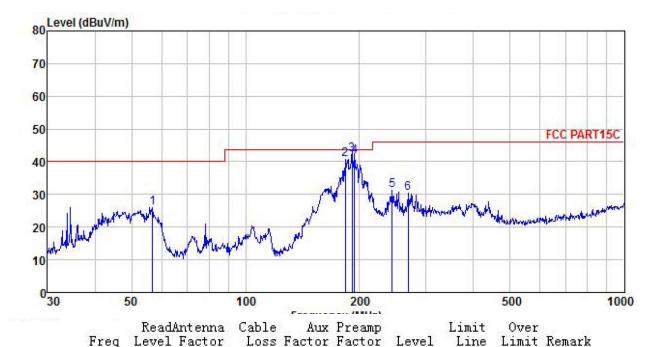
Product Name:	UVC-LED Personal Valet BOX	Product Model:	607002
Test By:	YT	Test mode:	Charing mode
Test Frequency:	9kHz~30MHz	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Environment:	Temp:24 [℃] Huni:57%


	Freq		Factor				Level	Line	Limit	Remark
2	MHz	—dBuV	<u>dB</u> /m	<u>ab</u>	<u>ab</u>	<u>ab</u>	dBuV/m	dBuV/m	<u>q</u> B	
1	0.016	38.55	20.38	0.01	0.00	0.00	58.94	143.73	-84.79	Peak
2	0.031	32.35	20.23	0.02	0.00	0.00	52.60	137.70	-85.10	Peak
2	0.100	24.04	20.49	0.02	0.00	0.00	44.55	107.63	-63.08	Peak
4	0.428	24.83	20.72	0.07	0.00	0.00	45.62	114.97	-69.35	Peak
5	1.172	20.39	20.49	0.17	0.00	0.00	41.05	66.25	-25.20	Peak
6	13.197	23.35	19.66	0.39	0.00	0.00	43.40	69.50	-26.10	Peak

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

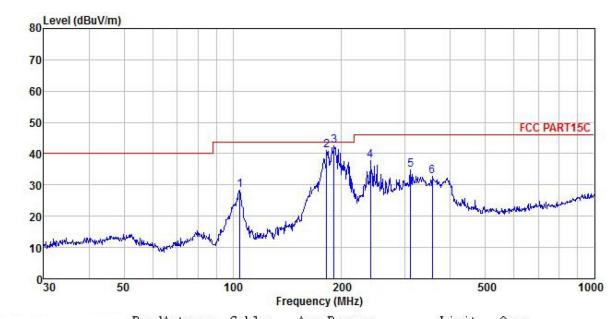
Product Name:	UVC-LED Personal Valet BOX	Product Model:	607002
Test By:	YT	Test mode:	Charing mode
Test Frequency:	9kHz~30MHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp:24°C Huni:57%



Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Test By: YT Test mode: Charing mode	
Test Frequency: 30 MHz ~ 1 GHz Polarization: Vertical	
Test Voltage: AC 120V/60Hz Environment: Temp: 24℃ He	uni:57%


	MHz	dBu₹	dB/m	₫B	₫B		dBuV/m	dBuV/m	<u>dB</u>	
1	56.792	44.29	11.12	0.41	0.00	29.79	26.03	40.00	-13.97	QP
2	183.201	51.97	17.09	0.69	0.00	28.95	40.80	43.60	-2.80	QP
3	191.074	52.84	17.50	0.70	0.00	28.89	42.15	43.60	-1.45	QP
4	193.773	52.01	17.70	0.71	0.00	28.87	41.55	43.60	-2.05	QP
5	244.232	40.53	18.48	0.77	0.00	28.57	31.21	46.00	-14.79	QP
6	268.485	39.64	18.58	0.82	0.00	28.51	30.53	46.00	-15.47	QP

Remark

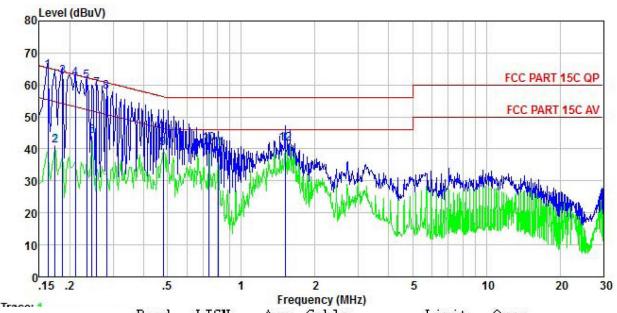
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss + Aux Factor Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Product Name:	UVC-LED Personal Valet BOX	Product Model:	607002
Test By:	YT	Test mode:	Charing mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Environment:	Temp:24℃ Huni:57%

	Freq		Antenna Factor					Limit Line	Over Limit	Remark
2	MHz	dBu₹	<u>dB</u> /m		<u>db</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1	104.536	47.74	9.54	0.53	0.00	29.50	28.31	43.60	-15.29	QP
2	181.920	52.26	17.01	0.68	0.00	28.96	40.99	43.60	-2.61	QP
2	190.405	53.29	17.45	0.70	0.00	28.90	42.54	43.60	-1.06	QP
4	239.987	47.29	18.46	0.76	0.00	28.59	37.92	46.00	-8.08	QP
5	309.998	43.72	18.72	0.87	0.00	28.47	34.84	46.00	-11.16	QP
6	356.676	41.48	18.84	0.94	0.00	28.59	32.67	46.00	-13.33	QP

Remark:

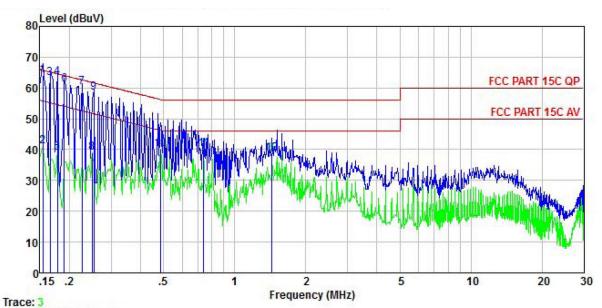
- $1. \ \ \textit{Final Level} = \textit{Receiver Read level} + \textit{Antenna Factor} + \textit{Cable Loss} + \textit{Aux Factor} \textit{Preamplifier Factor}.$
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.


6.3 Conducted Emission

Test Requirement:	FCC Part 15 B Section 15.20	07								
Test Frequency Range:	150kHz to 30MHz	150kHz to 30MHz								
Class / Severity:	Class B	Class B								
Receiver setup:	RBW=9kHz, VBW=30kHz	RBW=9kHz, VBW=30kHz								
Limit:		Limit (dRu\/)								
	Frequency range (MH2)	Frequency range (MHz) Quasi-peak Average								
	0.15-0.5	66 to 56*	56 to 46*							
	0.5-5	56	46							
	0.5-30	60	50							
	* Decreases with the logarith	m of the frequency.								
Test setup:	Reference Plan	ne	_							
	Remark E.U.T Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	AUX Equipment Test table/Insulation plane Remark E.U.T EMI Receiver Remark E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network								
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network(L.I.S.N.). The provide a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 									
Test environment:	Temp.: 23 °C Hun	nid.: 56% Pr	ess.: 101kPa							
Test Instruments:	Refer to section 5.9 for detail	ls								
Test mode:	Refer to section 5.3 for detail	ls								
Test results:	Pass									

Measurement data:

Product name:	UVC-LED Personal Valet BOX	Product Model:	607002
Test by:	YT	Test mode:	Charing mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5 °C Huni: 55%


Freq	Kead Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
MHz	dBu₹	<u>dB</u>	<u>d</u> B	<u>ab</u>	dBu₹	dBu∀	<u>dB</u>	
0.162	54.22	-0.58	-0.08 -0.11	10.77	64.33	65.34		# 180 7 60 to 1
0.186	52.61	-0.59	-0.13	10.76	62.65	64.20	-1.55	QP
0.246	33.88	-0.57	-0.21	10.75	43.85	51.91	-8.06	Average
0.282	48.06	-0.56	-0.25	10.74	57.99	60.76	-2.77	QP
								Average Average
0.809 1.511	30.00 31.20	-0.57 -0.55	-0.05 -0.01	10.81 10.92	40.19 41.56	46.00 46.00	-5.81	Average Average
	MHz 0.162 0.174 0.186 0.211 0.234 0.246 0.258 0.282 0.481 0.739 0.809	MHz dBuV 0.162 54.22 0.174 30.88 0.186 52.61 0.211 52.09 0.234 50.99 0.246 33.88 0.258 48.90 0.282 48.06 0.481 30.03 0.739 31.68 0.809 30.00	Freq Level Factor MHz dBuV dB 0.162 54.22 -0.58 0.174 30.88 -0.58 0.186 52.61 -0.59 0.211 52.09 -0.58 0.234 50.99 -0.57 0.246 33.88 -0.57 0.258 48.90 -0.57 0.282 48.06 -0.56 0.481 30.03 -0.44 0.739 31.68 -0.54 0.809 30.00 -0.57	MHz dBuV dB dB 0.162 54.22 -0.58 -0.08 0.174 30.88 -0.58 -0.11 0.186 52.61 -0.59 -0.13 0.211 52.09 -0.58 -0.17 0.234 50.99 -0.57 -0.20 0.246 33.88 -0.57 -0.21 0.258 48.90 -0.57 -0.22 0.282 48.06 -0.56 -0.25 0.481 30.03 -0.44 -0.24 0.739 31.68 -0.54 -0.28 0.809 30.00 -0.57 -0.05	MHz dBuV dB dB dB 0.162 54.22 -0.58 -0.08 10.77 0.174 30.88 -0.58 -0.11 10.77 0.186 52.61 -0.59 -0.13 10.76 0.211 52.09 -0.58 -0.17 10.76 0.234 50.99 -0.57 -0.20 10.75 0.246 33.88 -0.57 -0.21 10.75 0.258 48.90 -0.57 -0.22 10.75 0.282 48.06 -0.56 -0.25 10.74 0.481 30.03 -0.44 -0.24 10.75 0.739 31.68 -0.54 -0.28 10.79 0.809 30.00 -0.57 -0.05 10.81	MHz dBuV dB dB dB dB uV 0.162 54.22 -0.58 -0.08 10.77 64.33 0.174 30.88 -0.58 -0.11 10.77 40.96 0.186 52.61 -0.59 -0.13 10.76 62.65 0.211 52.09 -0.58 -0.17 10.76 62.10 0.234 50.99 -0.57 -0.20 10.75 60.97 0.246 33.88 -0.57 -0.21 10.75 43.85 0.258 48.90 -0.57 -0.22 10.75 58.86 0.282 48.06 -0.56 -0.25 10.74 57.99 0.481 30.03 -0.44 -0.24 10.75 40.10 0.739 31.68 -0.54 -0.28 10.79 41.65 0.809 30.00 -0.57 -0.05 10.81 40.19	Freq Level Factor Factor Loss Level Line MHz dBuV dB dB dB dBuV dBuV 0.162 54.22 -0.58 -0.08 10.77 64.33 65.34 0.174 30.88 -0.58 -0.11 10.77 40.96 54.77 0.186 52.61 -0.59 -0.13 10.76 62.65 64.20 0.211 52.09 -0.58 -0.17 10.76 62.10 63.18 0.234 50.99 -0.57 -0.20 10.75 60.97 62.30 0.246 33.88 -0.57 -0.21 10.75 43.85 51.91 0.258 48.90 -0.57 -0.22 10.75 58.86 61.51 0.282 48.06 -0.56 -0.25 10.74 57.99 60.76 0.481 30.03 -0.44 -0.24 10.75 40.10 46.32 0.739 31.68 -0.54 -0.28 10.79 41.65 46.00	MHz dBuV dB dB dB dBuV dBuV dB 0.162 54.22 -0.58 -0.08 10.77 64.33 65.34 -1.01 0.174 30.88 -0.58 -0.11 10.77 40.96 54.77 -13.81 0.186 52.61 -0.59 -0.13 10.76 62.65 64.20 -1.55 0.211 52.09 -0.58 -0.17 10.76 62.10 63.18 -1.08 0.234 50.99 -0.57 -0.20 10.75 60.97 62.30 -1.33 0.246 33.88 -0.57 -0.21 10.75 43.85 51.91 -8.06 0.258 48.90 -0.57 -0.22 10.75 58.86 61.51 -2.65 0.282 48.06 -0.56 -0.25 10.74 57.99 60.76 -2.77 0.481 30.03 -0.44 -0.24 10.75 40.10 46.32 -6.22 0.739

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

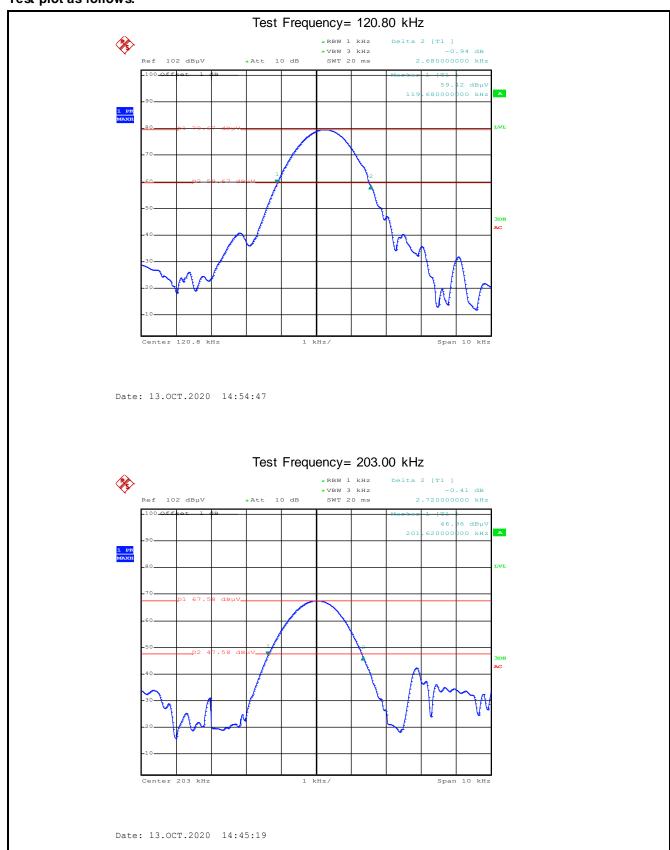
Product name:	UVC-LED Personal Valet BOX	Product Model:	607002
Test by:	YT	Test mode:	Charing mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp:22.5℃ Huni:55%
	_	•	

	Freq	Read Level		Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
<u>=</u>	MHz	dBu∀	<u>ab</u>	<u>dB</u>	<u>ab</u>	dBu∀	dBu∀	<u>d</u> B	
1	0.154	53.87	-0.69	0.01	10.78	63.97	65.78	-1.81	QP
2	0.154	30.82	-0.69	0.01	10.78	40.92	55.78	-14.86	Average
3	0.166	53.00	-0.68	0.01	10.77	63.10	65.16	-2.06	QP
2 3 4 5 6	0.178	53.49	-0.68	0.00	10.77	63.58	64.59	-1.01	QP
5	0.178	28.99	-0.68	0.00	10.77	39.08	54.59	-15.51	Average
6	0.190	50.94	-0.67	0.00	10.76	61.03	64.02	-2.99	QP
7	0.226	50.22	-0.67	0.00	10.75	60.30	62.61	-2.31	QP
8	0.249	28.89	-0.67	0.01	10.75	38.98	51.78	-12.80	Average
9	0.253	48.37	-0.67	0.01	10.75	58.46	61.64	-3.18	
10	0.486	29.91	-0.65	0.02	10.76	40.04	46.23	-6.19	Average
11	0.739	29.93	-0.65	0.05	10.79	40.12	46.00		Average
12	1.441	28.21	-0.70	0.13	10.92	38.56	46.00		Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss.

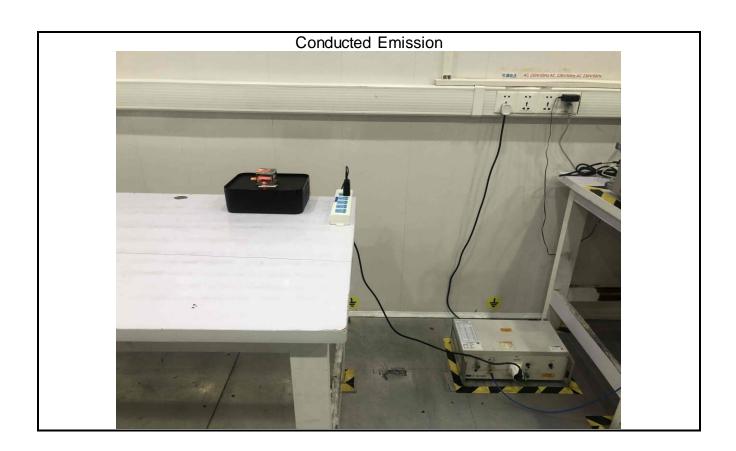
6.4 20dB Bandwidth

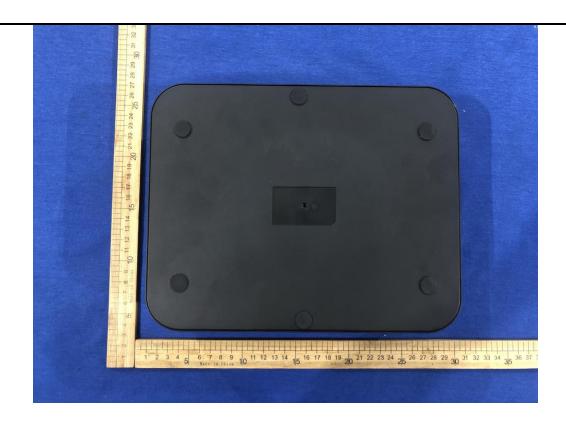

Test Requirement:	FCC Part15 C Section 15.215 (c)	
Receiver setup:	RBW=1 kHz, VBW=3 kHz, detector: Peak	
Limit:	The fundamental emission be kept within at least the central 80% of the permitted band	
Test Procedure:	 According to the follow Test-setup, keep the relative position between the artificial antenna and the EUT. Set the EUT to proper test channel. Max hold the radiated emissions, mark the peak power frequency point and the -20dB upper and lower frequency points. Read 20dB bandwidth. 	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.9 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Passed	

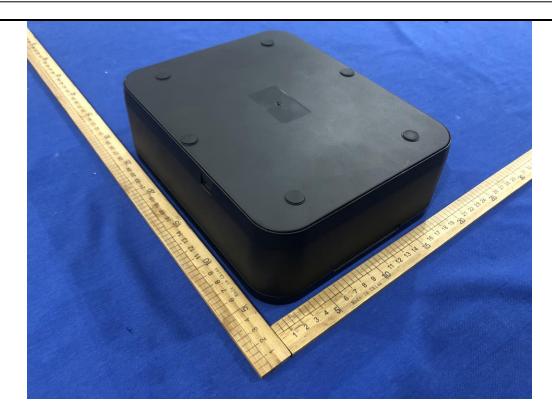
Measurement Data

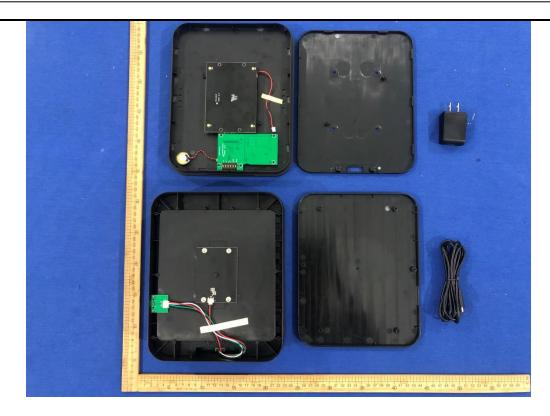
20dB bandwidth (kHz)	Limits			
2.68	N/A			
2.72	- IN/A			
Remark: For report purpose only.				

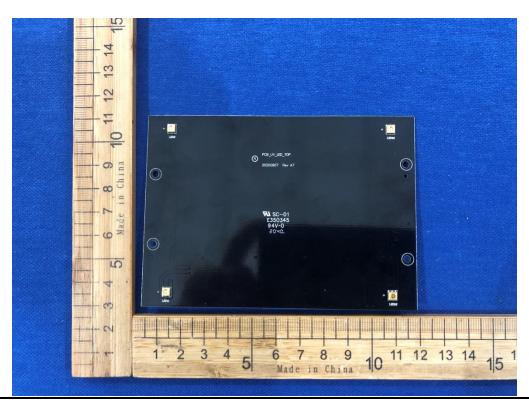
Test plot as follows:

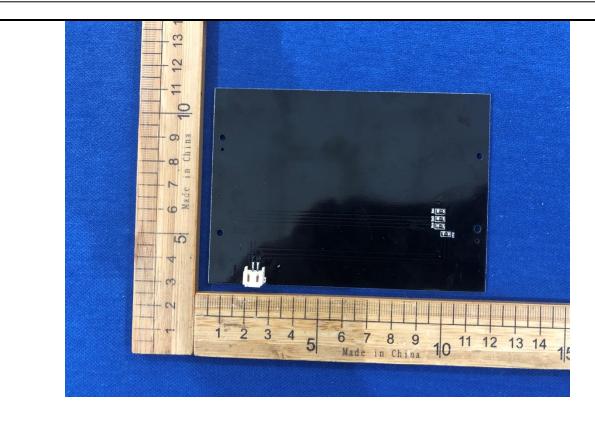

7 Test Setup Photos

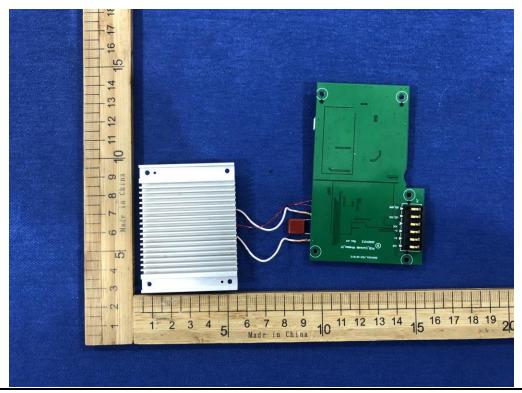

8 EUT Constructional Photos

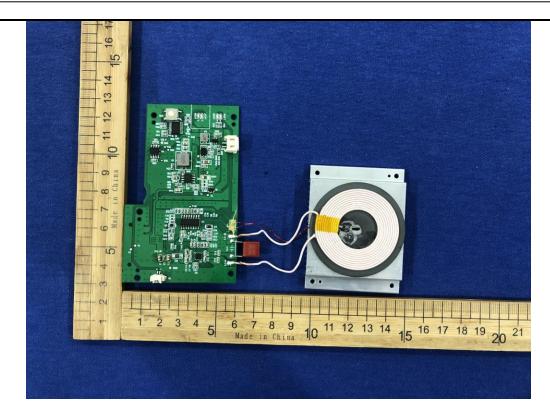












-----End of report-----