

RF TEST REPORT

Report No.: Q190505S004-FCC-R2

Supersede Report No.: N/A

Applicant	3Dconnexion	
Product Name	CADMOUSE PRO WIRELESS	
Main Model	3DX-600065	
Serial Model	3DX-700078	
Test Standard	FCC Part 15.249; ANSI C63.10: 2013	
Test Date	May 06~June 12, 2019	
Issue Date	June 13, 2019	
Test Result	<input checked="" type="checkbox"/> Pass	<input type="checkbox"/> Fail
Equipment complied with the specification		<input checked="" type="checkbox"/>
Equipment did not comply with the specification		<input type="checkbox"/>
Aaron Liang Test Engineer	David Huang Checked By	
This test report may be reproduced in full only Test result presented in this test report is applicable to the tested sample only		

Issued by:

SIEMIC (SHENZHEN-CHINA) LABORATORIES

Zone A, Floor 1, Building 2 Wan Ye Long Technology Park

South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China 518108

Phone: +86 0755 2601 4629801 Email: China@siemic.com.cn

Laboratories Introduction

SIEMIC, headquartered in the heart of Silicon Valley, with superior facilities in US and Asia, is one of the leading independent testing and certification facilities providing customers with one-stop shop services for Compliance Testing and Global Certifications.

In addition to testing and certification, SIEMIC provides initial design reviews and compliance management throughout a project. Our extensive experience with China, Asia Pacific, North America, European, and International compliance requirements, assures the fastest, most cost effective way to attain regulatory compliance for the global markets.

Accreditations for Conformity Assessment

Country/Region	Scope
USA	EMC, RF/Wireless, SAR, Telecom
Canada	EMC, RF/Wireless, SAR, Telecom
Taiwan	EMC, RF, Telecom, SAR, Safety
Hong Kong	RF/Wireless, SAR, Telecom
Australia	EMC, RF, Telecom, SAR, Safety
Korea	EMI, EMS, RF, SAR, Telecom, Safety
Japan	EMI, RF/Wireless, SAR, Telecom
Singapore	EMC, RF, SAR, Telecom
Europe	EMC, RF, SAR, Telecom, Safety

Test Report No.	Q190505S004-FCC-R2
Page	3 of 34

This page has been left blank intentionally.

CONTENTS

1. REPORT REVISION HISTORY.....	5
2. CUSTOMER INFORMATION	5
3. TEST SITE INFORMATION.....	5
4. EQUIPMENT UNDER TEST (EUT) INFORMATION	6
5. TEST SUMMARY	7
6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS	8
6.1 ANTENNA REQUIREMENT.....	8
6.2 AC LINE CONDUCTED EMISSIONS.....	9
6.3 RADIATED SPURIOUS EMISSIONS.....	13
6.4 20DB BANDWIDTH TESTING.....	22
6.5 BAND EDGE.....	25
ANNEX A. TEST INSTRUMENT.....	28
ANNEX B. TEST SETUP AND SUPPORTING EQUIPMENT.....	29
ANNEX C. USER MANUAL / BLOCK DIAGRAM / SCHEMATICS / PARTLIST	33
ANNEX D. DECLARATION OF SIMILARITY.....	34

1. Report Revision History

Report No.	Report Version	Description	Issue Date
Q190505S004-FCC-R2	NONE	Original	June 13, 2019

2. Customer information

Applicant Name	3Dconnexion
Applicant Add	7, Boulevard du Jardin Exotique, 98000 Monaco
Manufacturer	3Dconnexion
Manufacturer Add	7, Boulevard du Jardin Exotique, 98000 Monaco

3. Test site information

Test Lab A:

Lab performing tests	SIEMIC (Shenzhen-China) LABORATORIES
Lab Address	Zone A, Floor 1, Building 2 Wan Ye Long Technology Park South Side of Zhoushi Road, Bao'an District, Shenzhen, Guangdong China 518108
FCC Test Site No.	535293
IC Test Site No.	4842E-1
Test Software	EZ-EMC(ver.lcp-03A1)

4. Equipment under Test (EUT) Information

Description of EUT: CADMOUSE PRO WIRELESS

Main Model: 3DX-600065

Serial Model: 3DX-700078

Date EUT received: May 05, 2019

Test Date(s): May 06~June 12, 2019

Antenna Gain: 0.5dBi

Antenna Type: CERAMIC Antenna

Power: 85.84 dBuV/m

Type of Modulation: 2.4G: GFSK

RF Operating Frequency (ies): 2.4G: 2404-2477MHz

Number of Channels: 2.4G: 5CH

Battery:

Input Power: Model:603450

Spec: DC 3.7V 1100mAh 4.07Wh

Port: Please refer to the user's manual

Trade Name : 3Dconnexion

FCC ID: 2AAHQ-CMPW

5. Test Summary

The product was tested in accordance with the following specifications.

All testing has been performed according to below product classification:

FCC Rules	Description of Test	Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	AC Line Conducted Emissions	Compliance
§15.205, §15.209, §15.249(a), §15.249(d)	Radiated Fundamental / Radiated Spurious Emissions	Compliance
§15.249©	20 dB Bandwidth	Compliance
§15.249(d)	Band Edge	Compliance

Measurement Uncertainty

Emissions		
Test Item	Description	Uncertainty
Band Edge and Radiated Spurious Emissions	Confidence level of approximately 95% (in the case where distributions are normal), with a coverage factor of 2 (for EUTs < 0.5m X 0.5m X 0.5m)	+5.6dB/-4.5dB
-	-	-

6. MEASUREMENTS, EXAMINATION AND DERIVED RESULTS

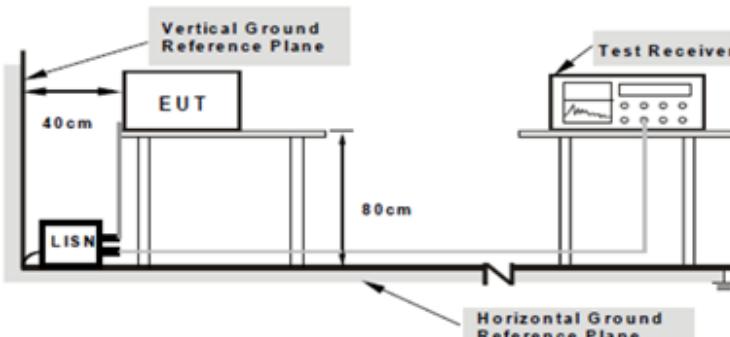
6.1 Antenna Requirement

Standard Requirement:

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

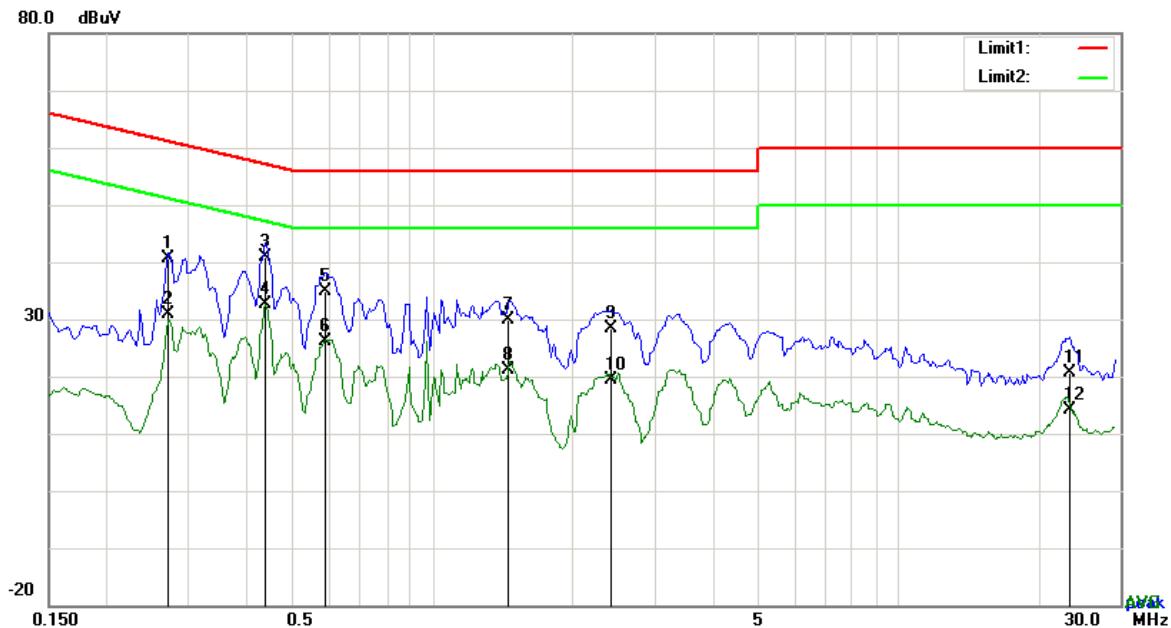
Antenna Connector Construction


The EUT has 1 antenna:

A permanently attached CERAMIC antenna for BLE/2.4G., the gain is 0.5dBi for BLE, the gain is 0.5dBi for 2.4G.

Test Result: Pass

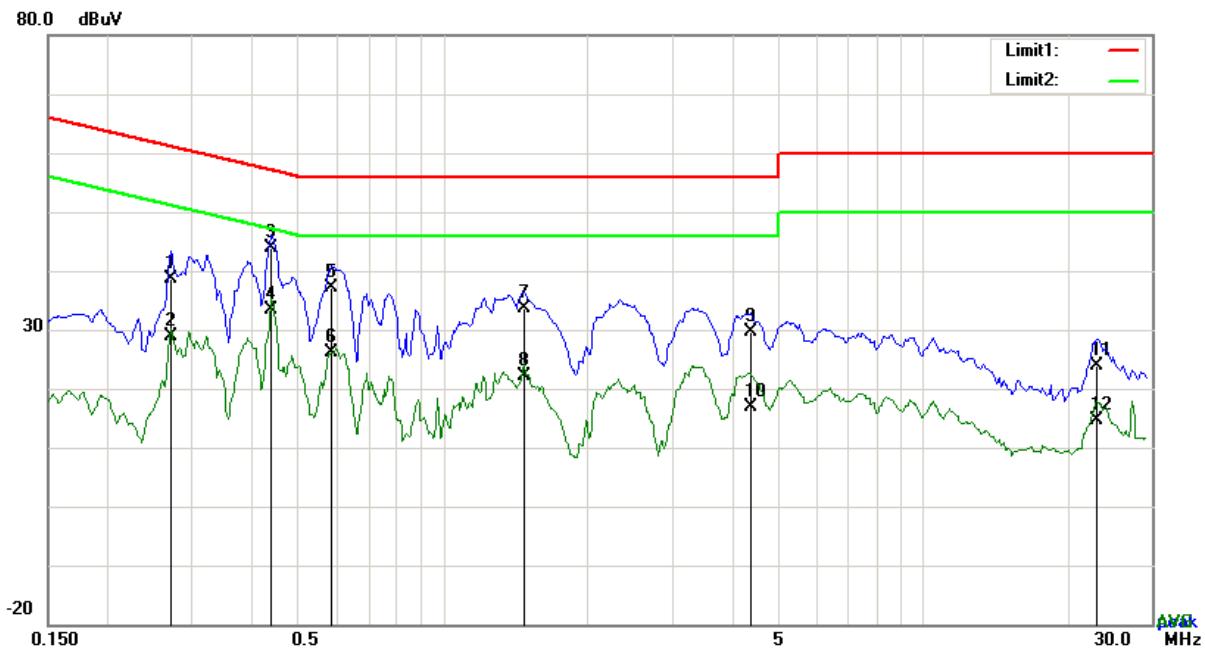
6.2 AC Line Conducted Emissions


Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1016mbar
Test date :	June 06, 2019
Tested By :	Evans He

Spec	Item	Requirement	Applicable														
§15.207	a)	<p>For Low-power radio-frequency devices that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 [mu]H/50 ohms line impedance stabilization network (LISN). The lower limit applies at the boundary between the frequencies ranges.</p> <table border="1"> <thead> <tr> <th rowspan="2">Frequency ranges (MHz)</th> <th colspan="2">Limit (dBμV)</th> </tr> <tr> <th>QP</th> <th>Average</th> </tr> </thead> <tbody> <tr> <td>0.15 ~ 0.5</td> <td>66 – 56</td> <td>56 – 46</td> </tr> <tr> <td>0.5 ~ 5</td> <td>56</td> <td>46</td> </tr> <tr> <td>5 ~ 30</td> <td>60</td> <td>50</td> </tr> </tbody> </table>	Frequency ranges (MHz)	Limit (dB μ V)		QP	Average	0.15 ~ 0.5	66 – 56	56 – 46	0.5 ~ 5	56	46	5 ~ 30	60	50	<input checked="" type="checkbox"/>
Frequency ranges (MHz)	Limit (dB μ V)																
	QP	Average															
0.15 ~ 0.5	66 – 56	56 – 46															
0.5 ~ 5	56	46															
5 ~ 30	60	50															
Test Setup			<p>Note:</p> <ol style="list-style-type: none"> 1. Support units were connected to second LISN. 2. Both of LISNs (AMN) are 80cm from EUT and at least 80cm from other units and other metal planes support units. 														
Procedure			<ol style="list-style-type: none"> 1. The EUT and supporting equipment were set up in accordance with the requirements of the standard on top of a 1.5m x 1m x 0.8m high, non-metallic table. 2. The power supply for the EUT was fed through a 50W/50mH EUT LISN, connected to filtered mains. 3. The RF OUT of the EUT LISN was connected to the EMI test receiver via a low-loss coaxial cable. 														

	<ol style="list-style-type: none"> 4. All other supporting equipment were powered separately from another main supply. 5. The EUT was switched on and allowed to warm up to its normal operating condition. 6. A scan was made on the NEUTRAL line (for AC mains) or Earth line (for DC power) over the required frequency range using an EMI test receiver. 7. High peaks, relative to the limit line, The EMI test receiver was then tuned to the selected frequencies and the necessary measurements made with a receiver bandwidth setting of 10 kHz. 8. Step 7 was then repeated for the LIVE line (for AC mains) or DC line (for DC power).
Remark	
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail <input type="checkbox"/> N/A

Test Data Yes N/A

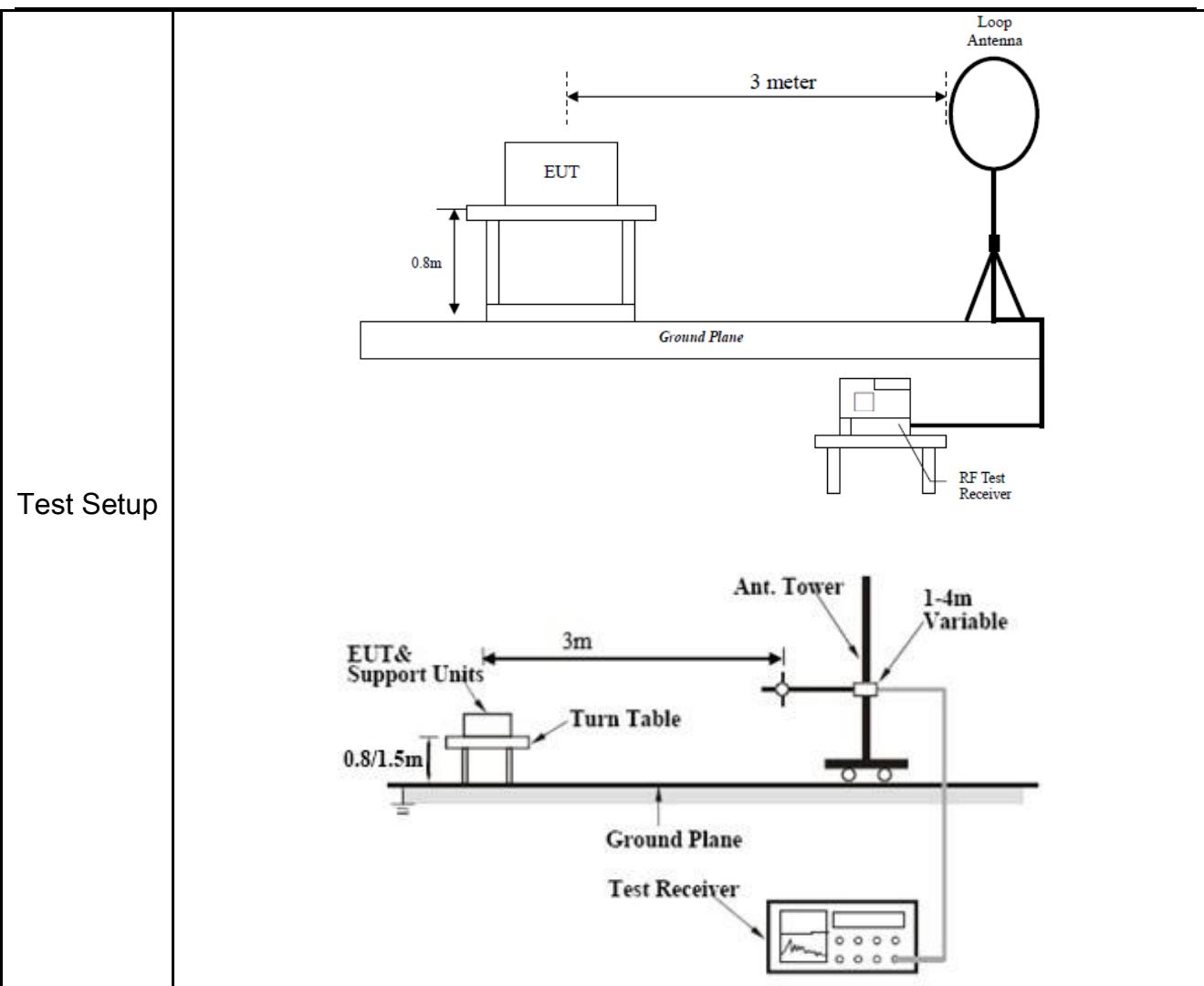

Test Plot Yes (See below) N/A

Test Data

Phase Line Plot at 120Vac, 60Hz

No.	P/L	Frequency (MHz)	Reading (dBuV)	Detector	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)
1	L1	0.2709	30.55	QP	10.03	40.58	61.09	-20.51
2	L1	0.2709	20.81	AVG	10.03	30.84	51.09	-20.25
3	L1	0.4386	30.83	QP	10.03	40.86	57.09	-16.23
4	L1	0.4386	22.68	AVG	10.03	32.71	47.09	-14.38
5	L1	0.5907	24.82	QP	10.03	34.85	56.00	-21.15
6	L1	0.5907	16.05	AVG	10.03	26.08	46.00	-19.92
7	L1	1.4565	19.93	QP	10.04	29.97	56.00	-26.03
8	L1	1.4565	11.03	AVG	10.04	21.07	46.00	-24.93
9	L1	2.4198	18.22	QP	10.05	28.27	56.00	-27.73
10	L1	2.4198	9.31	AVG	10.05	19.36	46.00	-26.64
11	L1	23.3775	10.27	QP	10.36	20.63	60.00	-39.37
12	L1	23.3775	3.81	AVG	10.36	14.17	50.00	-35.83

Phase Neutral Plot at 120Vac, 60Hz


No.	P/L	Frequency (MHz)	Reading (dBuV)	Detector	Corrected (dB)	Result (dBuV)	Limit (dBuV)	Margin (dB)
1	N	0.2709	28.65	QP	10.02	38.67	61.09	-22.42
2	N	0.2709	18.90	AVG	10.02	28.92	51.09	-22.17
3	N	0.4386	33.85	QP	10.02	43.87	57.09	-13.22
4	N	0.4386	23.47	AVG	10.02	33.49	47.09	-13.60
5	N	0.5829	27.10	QP	10.02	37.12	56.00	-18.88
6	N	0.5829	16.05	AVG	10.02	26.07	46.00	-19.93
7	N	1.4721	23.58	QP	10.03	33.61	56.00	-22.39
8	N	1.4721	12.01	AVG	10.03	22.04	46.00	-23.96
9	N	4.3767	19.49	QP	10.06	29.55	56.00	-26.45
10	N	4.3767	6.90	AVG	10.06	16.96	46.00	-29.04
11	N	23.0499	13.56	QP	10.31	23.87	60.00	-36.13
12	N	23.0499	4.22	AVG	10.31	14.53	50.00	-35.47

6.3 Radiated Spurious Emissions

Temperature	25°C
Relative Humidity	57%
Atmospheric Pressure	1022mbar
Test date :	May 28, 2019
Tested By :	Aaron Liang

Requirement(s):

Spec	Requirement	Applicable																															
§15.209, §15.205, §15.249(a) & §15.249(d)	<p>The emissions from the Low-power radio-frequency devices shall not exceed the field strength levels specified in the following table and the level of any unwanted emissions shall not exceed the level of the fundamental emission. The tighter limit applies at the band edges.</p> <p>The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:</p> <table border="1"> <thead> <tr> <th>Fundamental frequency</th> <th>Field strength of fundamental (millivolts/meter)</th> <th>Field strength of harmonics (microvolts/meter)</th> </tr> </thead> <tbody> <tr> <td>902– 928 MHz</td> <td>50</td> <td>500</td> </tr> <tr> <td>2400– 2483.5 MHz</td> <td>50</td> <td>500</td> </tr> <tr> <td>5725– 5875 MHz</td> <td>50</td> <td>500</td> </tr> <tr> <td>24.0– 24.25 GHz</td> <td>250</td> <td>2500</td> </tr> </tbody> </table> <p>(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.</p> <table border="1"> <thead> <tr> <th>Frequency range (MHz)</th> <th>Field Strength (μV/m)</th> </tr> </thead> <tbody> <tr> <td>0.009~0.490</td> <td>2400/F(KHz)</td> </tr> <tr> <td>0.490~1.705</td> <td>24000/F(KHz)</td> </tr> <tr> <td>1.705~30.0</td> <td>30</td> </tr> <tr> <td>30 – 88</td> <td>100</td> </tr> <tr> <td>88 – 216</td> <td>150</td> </tr> <tr> <td>216 960</td> <td>200</td> </tr> <tr> <td>Above 960</td> <td>500</td> </tr> </tbody> </table>	Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)	902– 928 MHz	50	500	2400– 2483.5 MHz	50	500	5725– 5875 MHz	50	500	24.0– 24.25 GHz	250	2500	Frequency range (MHz)	Field Strength (μ V/m)	0.009~0.490	2400/F(KHz)	0.490~1.705	24000/F(KHz)	1.705~30.0	30	30 – 88	100	88 – 216	150	216 960	200	Above 960	500	<input checked="" type="checkbox"/>
Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)																															
902– 928 MHz	50	500																															
2400– 2483.5 MHz	50	500																															
5725– 5875 MHz	50	500																															
24.0– 24.25 GHz	250	2500																															
Frequency range (MHz)	Field Strength (μ V/m)																																
0.009~0.490	2400/F(KHz)																																
0.490~1.705	24000/F(KHz)																																
1.705~30.0	30																																
30 – 88	100																																
88 – 216	150																																
216 960	200																																
Above 960	500																																

<p>Procedure</p> <ul style="list-style-type: none"> - Setup the configuration according to figure 1. Turn on EUT and make sure that it is in normal function - For emission frequencies measured below 1GHz, a pre-scan is performed in a shielded chamber to determine the accurate frequencies of higher emissions will be checked on a open test site. As the same purpose, for emission frequencies measured above 1GHZ, a pre-scan also be performed with a meter measuring distance before final test. - For emission frequencies measured below and above 1GHz, set the spectrum analyzer on a 100kHz and 1MHz resolution bandwidth respectively for each frequency measured in step 2. - The search antenna is to be raised and lowered over a range from 1 to 4m in horizontally polarized orientation. Position the highness when the highest value is indicated on spectrum analyzer, the change the orientation of EUT on the test table over a range from 0 to 360°. With a speed as slow as possible, and keep the azimuth that highest emission is indicated on the spectrum analyzer.
--

	Vary the antenna position again and record the highest value as a final reading. - Repeat step 4 until all frequencies need to be measured was complete. - Repeat step5 with search antenna in vertical polarized orientations.
Remark	
Result	<input checked="" type="checkbox"/> Pass <input type="checkbox"/> Fail

Test Data Yes N/A

Test Plot Yes (See below) N/A

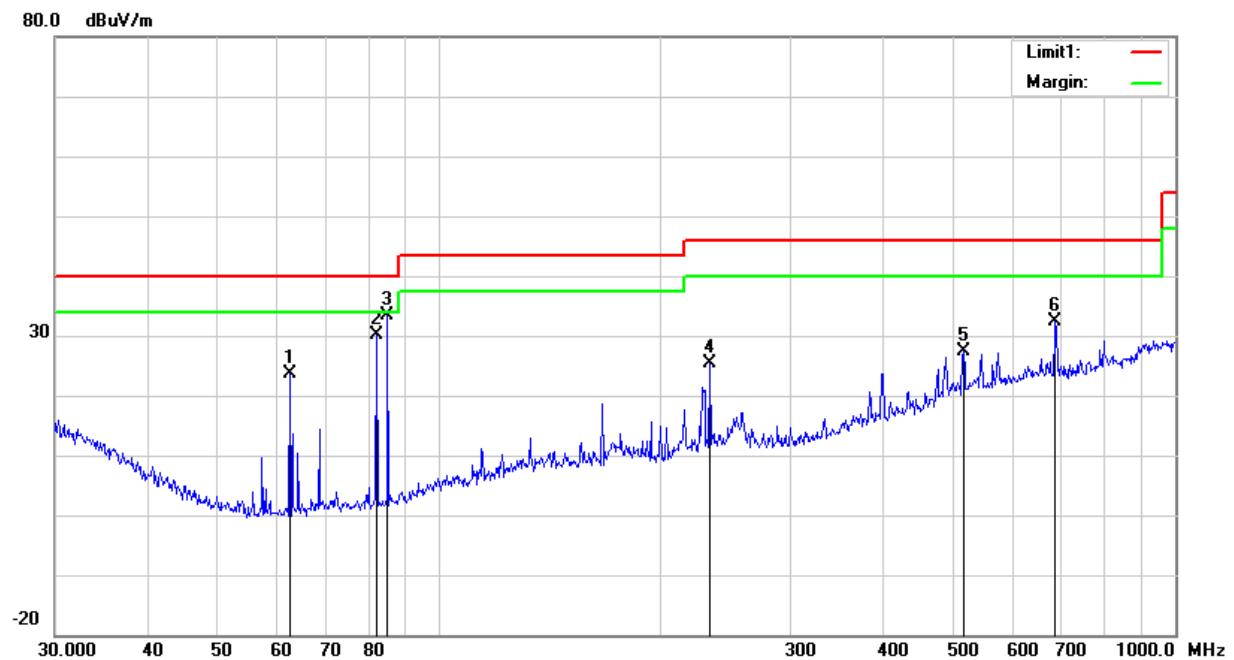
Test Result (worst case):

Test Mode:	Transmitting Mode
------------	-------------------

Frequency range: 9KHz - 30MHz

Freq. (MHz)	Detection value	Factor (dB/m)	Reading (dBuV/m)	Result (dBuV/m)	Limit@3m (dBuV/m)	Margin (dB)
--	--	--	--	--	--	>20
--	--	--	--	--	--	>20

Note:

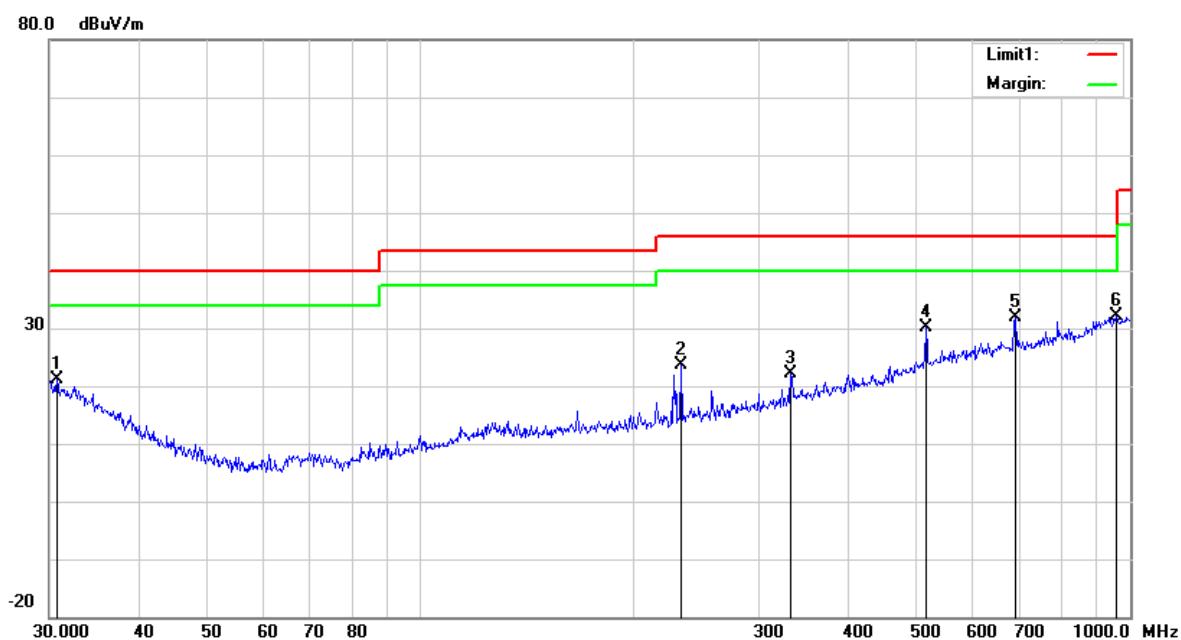

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor = $40 \log(\text{specific distance}/\text{test distance})$ (dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Test Model : Normal Working

(Below 1GHz)


Test Data

Horizontal Polarity Plot @3m

No.	P/L	Frequency (MHz)	Reading (dBuV/m)	Ant_F (dB/m)	PA_G (dB)	Cab_L (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Height (cm)	Degr ee
1	H	62.6507	38.70	6.94	22.40	0.28	23.52	40.00	-16.48	100	337
2	H	82.0706	45.09	6.91	22.40	0.56	30.16	40.00	-9.84	100	333
3	H	84.9995	48.02	7.20	22.37	0.58	33.43	40.00	-6.57	100	317
4	H	233.3487	34.60	11.57	22.32	1.59	25.44	46.00	-20.56	100	354
5	H	515.4374	27.91	19.01	21.77	2.17	27.32	46.00	-18.68	100	244
6	H	687.1507	30.40	20.99	21.39	2.40	32.40	46.00	-13.60	100	40

Test Model : Normal Working

(Below 1GHz)

Test Data

Vertical Polarity Plot @3m

N o.	P/ L	Frequency	Reading	Ant_F	PA_G	Cab_L	Result	Limit	Margin	Height	Degr ee
		(MHz)	(dBuV/m)	(dB/m)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)
1	V	30.7455	23.74	19.62	22.28	0.13	21.21	40.00	-18.79	100	235
2	V	232.5318	32.90	11.55	22.32	1.59	23.72	46.00	-22.28	200	217
3	V	332.5187	28.25	14.35	22.20	1.80	22.20	46.00	-23.80	100	163
4	V	515.4374	30.75	19.01	21.77	2.17	30.16	46.00	-15.84	100	30
5	V	689.5644	29.70	21.08	21.38	2.40	31.80	46.00	-14.20	100	184
6	V	955.4381	26.41	23.70	20.77	2.71	32.05	46.00	-13.95	100	211

Above 1GHz

Test Mode:	Transmitting Mode
-------------------	--------------------------

Low Channel (2404 MHz)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2399.8	55.15PK	74	-18.85	1.5H	218	68.8	-13.65
2	2399.8	30.67AV	54	-23.33	1.5H	271	44.32	-13.65
3	*2404	85.84PK	114	-28.16	1.5H	44	99.81	-13.97
4	*2404	61.36AV	94	-32.64	1.5H	7	75.33	-13.97
5	4808	48.98PK	74	-25.02	1.5H	29	52.73	-3.75
6	4808	24.5AV	54	-29.5	1.5H	162	28.25	-3.75
7	7212	52.66PK	74	-21.34	1.5H	207	53.24	-0.58
8	7212	28.18AV	54	-25.82	1.5H	177	28.76	-0.58

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2396	51.65PK	74	-22.35	1.5V	79	65.3	-13.65
2	2396	27.17AV	54	-26.83	1.5V	245	40.82	-13.65
3	*2404	82.56PK	114	-31.44	1.5V	32	96.53	-13.97
4	*2404	58.08AV	94	-35.92	1.5V	160	72.05	-13.97
5	4808	48.62PK	74	-25.38	1.5V	237	52.37	-3.75
6	4808	24.14AV	54	-29.86	1.5V	156	27.89	-3.75
7	7212	52.53PK	74	-21.47	1.5V	145	53.11	-0.58
8	7212	28.05AV	54	-25.95	1.5V	115	28.63	-0.58

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The emission levels of other frequencies were less than 20dB margin against the limit.
4. Margin value = Emission level – Limit value.
5. " * ": Fundamental frequency.

Middle Channel (2442MHz)

ANTENNA POLARITY & test distance: HORIZONTAL at 3 m								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2442.00	83.62PK	114	-30.38	1.5H	149	96.64	-13.02
2	*2442.00	59.14AV	94	-34.86	1.5H	192	72.16	-13.02
3	4884.00	49.36PK	74	-24.64	1.5H	198	53.32	-3.96
4	4884.00	24.88AV	54	-29.12	1.5H	233	28.84	-3.96
5	7326	53.62PK	74	-20.38	1.5H	111	54.38	-0.76
6	7326	29.14AV	54	-24.86	1.5H	62	29.9	-0.76

ANTENNA POLARITY & test distance: Vertical at 3 m

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2442.00	81.01PK	114	-32.99	1.5V	272	94.03	-13.02
2	*2442.00	56.53AV	94	-37.47	1.5V	59	69.55	-13.02
3	4884.00	49.21PK	74	-24.79	1.5V	351	53.17	-3.96
4	4884.00	24.73AV	54	-29.27	1.5V	356	28.69	-3.96
5	7326	53.26PK	74	-20.74	1.5V	335	54.02	-0.76
6	7326	28.78AV	54	-25.22	1.5V	87	29.54	-0.76

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The emission levels of other frequencies were less than 20dB margin against the limit.
4. Margin value = Emission level – Limit value.
5. " * ": Fundamental frequency.

High Channel (2477 MHz)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2491.23	50.53PK	74	-23.47	1.5H	122	64.18	-13.65
2	2491.23	26.05AV	54	-27.95	1.5H	66	39.7	-13.65
3	*2477	81.12PK	114	-32.88	1.5H	123	95.09	-13.97
4	*2477	56.64AV	94	-37.36	1.5H	344	70.61	-13.97
5	4954	50.75PK	74	-23.25	1.5H	244	54.5	-3.75
6	4954	26.27AV	54	-27.73	1.5H	201	30.02	-3.75
7	7431	55.33PK	74	-18.67	1.5H	229	55.91	-0.58
8	7431	30.85AV	54	-23.15	1.5H	43	31.43	-0.58

ANTENNA POLARITY & test distance: Vertical at 3 m

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2483.84	48.96PK	74	-25.04	1.5V	332	62.61	-13.65
2	2483.84	24.48AV	54	-29.52	1.5V	71	38.13	-13.65
3	*2477	75.65PK	114	-38.35	1.5V	243	89.62	-13.97
4	*2477	51.17AV	94	-42.83	1.5V	43	65.14	-13.97
5	4954	50.67PK	74	-23.33	1.5V	32	54.42	-3.75
6	4954	26.19AV	54	-27.81	1.5V	279	29.94	-3.75
7	7431	55.21PK	74	-18.79	1.5V	38	55.79	-0.58
8	7431	30.73AV	54	-23.27	1.5V	77	31.31	-0.58

REMARKS:

1. Emission level (dBuV/m) = Raw Value (dBuV) + Correction Factor (dB/m).
2. Correction Factor (dB/m) = Antenna Factor (dB/m) + Cable Factor (dB).
3. The emission levels of other frequencies were less than 20dB margin against the limit.
4. Margin value = Emission level – Limit value.
5. " * ": Fundamental frequency.

6.4 20dB Bandwidth Testing

Temperature	24°C
Relative Humidity	60%
Atmospheric Pressure	1015mbar
Test date :	June 05, 2019
Tested By :	Aaron Liang

Requirement(s):

Test Report No.	Q190505S004-FCC-R2
Page	23 of 34

Result	<input checked="" type="checkbox"/> Pass	<input type="checkbox"/> Fail
--------	--	-------------------------------

Test Data Yes N/A

Test Plot Yes (See below) N/A

20dB Bandwidth measurement result

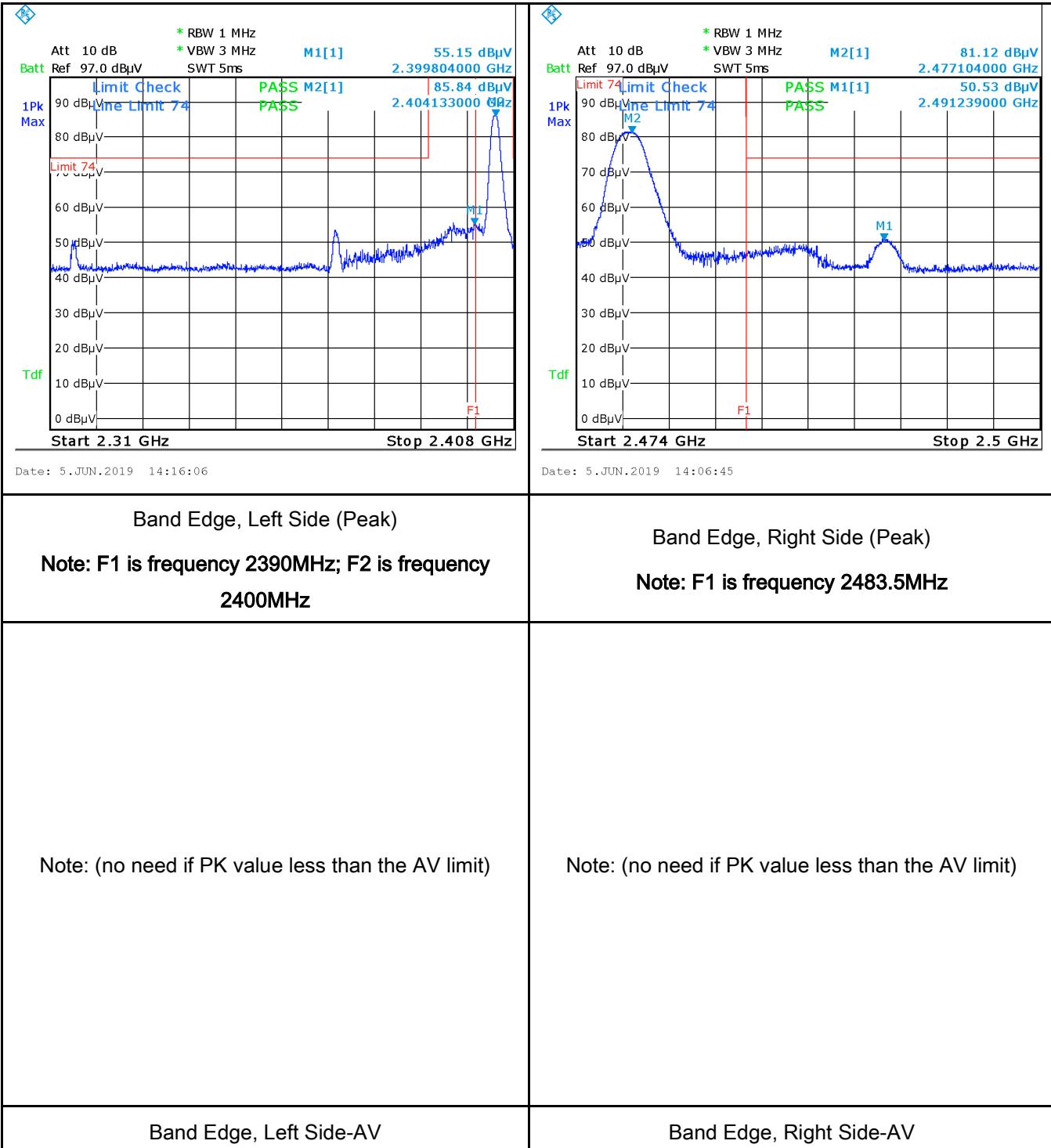
CH	Fundamental Frequency (MHz)	20dB Bandwidth (MHz)	Result
Low	2404	1.130	Pass
Middle	2442	1.142	Pass
High	2477	1.138	Pass

Test Plots

20dB Bandwidth measurement result

6.5 Band Edge

Temperature	24°C
Relative Humidity	60%
Atmospheric Pressure	1015mbar
Test date :	June 05, 2019
Tested By :	Aaron Liang


Test Report No.	Q190505S004-FCC-R2
Page	26 of 34

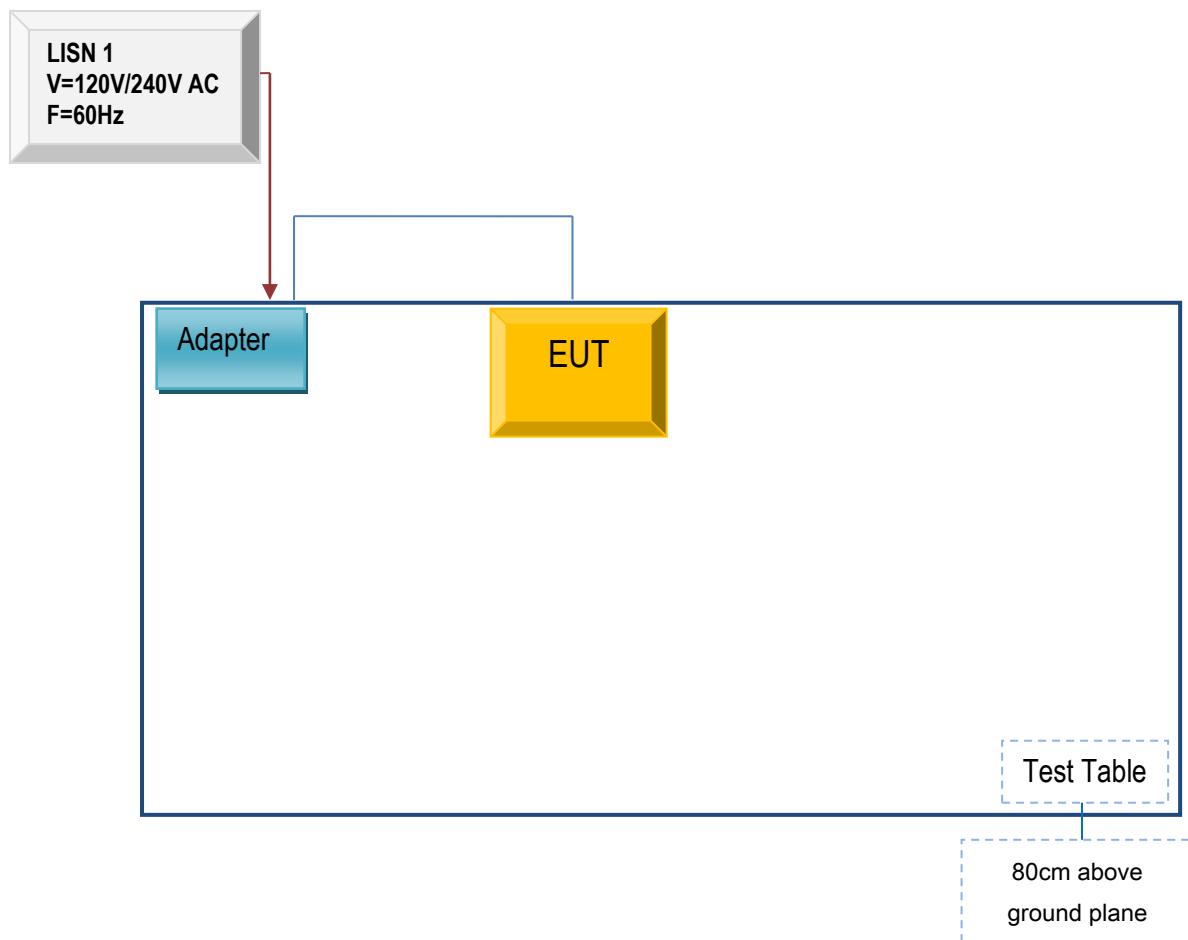
Test Data Yes N/A

Test Plot Yes (See below) N/A

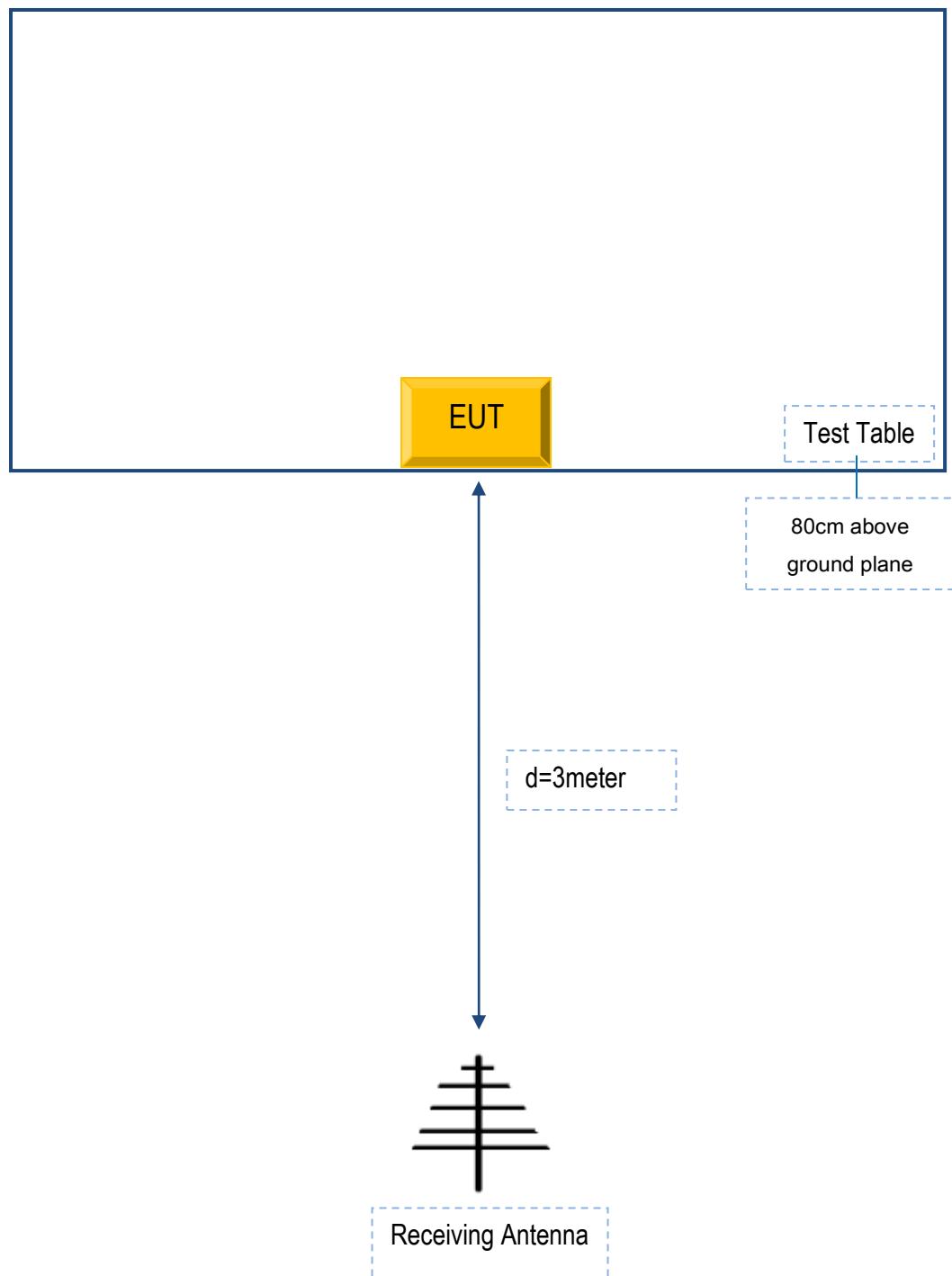
Test Plots

Band Edge measurement result (worst case)

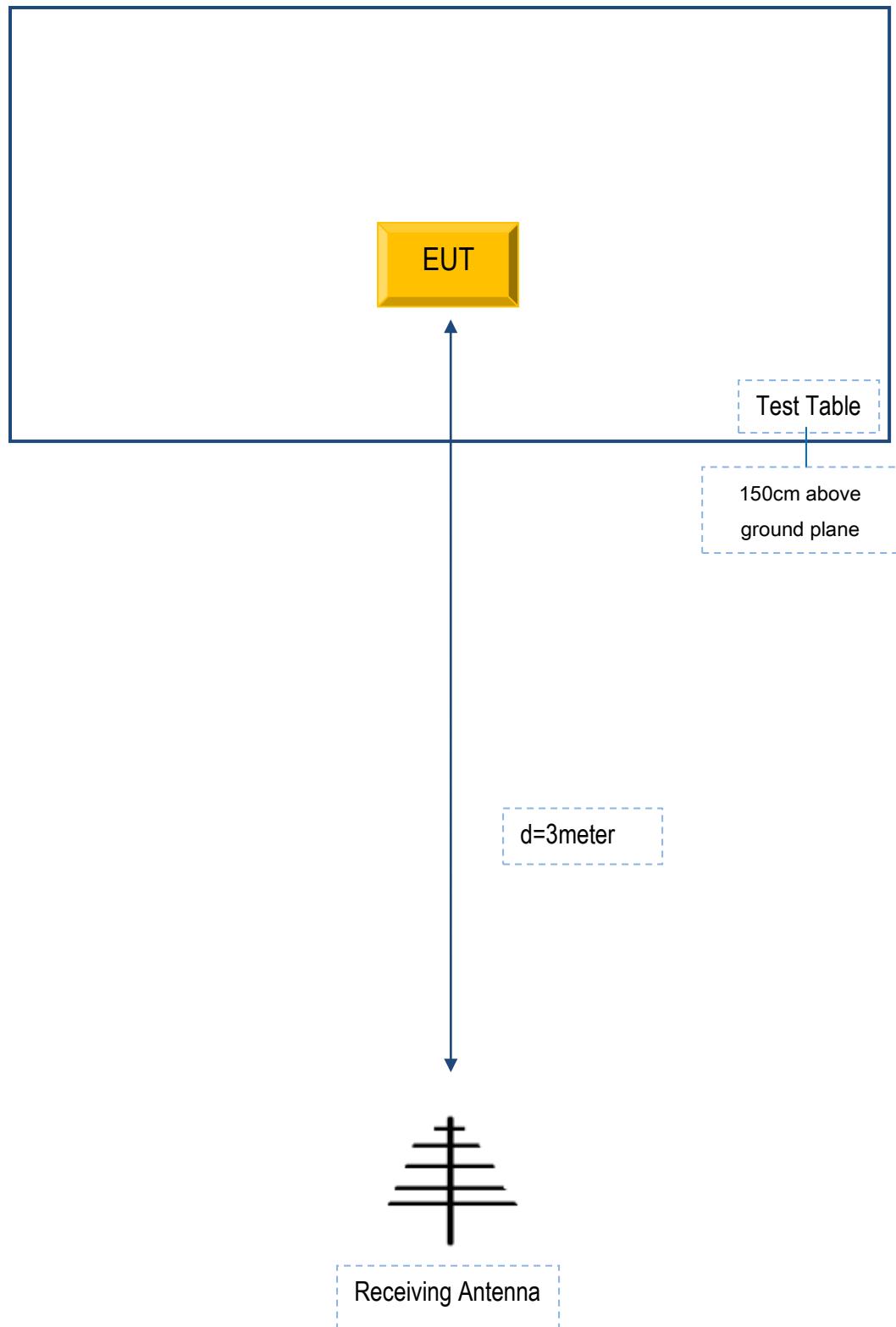
Note: Both Horizontal and vertical polarities were investigated.


Annex A. TEST INSTRUMENT

Instrument	Model	Serial #	Cal Date	Cal Due
AC Line Conducted Emissions				
EMI test receiver	ESCS30	8471241027	01/04/2019	01/03/2020
Artificial Mains Network	8127	8127713	01/04/2019	01/03/2020
ISN	ISN T800	34373	01/04/2019	01/03/2020
Radiated Emissions				
EMI test receiver	ESL6	1300.5001K06-100262-eQ	01/04/2019	01/03/2020
Active Antenna	AL-130	121031	02/07/2019	02/06/2020
3m Semi-anechoic Chamber	9m*6m*6m	N/A	10/18/2018	10/17/2019
Signal Amplifier	8447E	443008	01/24/2019	01/23/2020
MXA signal analyzer	N9020A	MY49100060	01/04/2019	01/03/2020
Horn Antenna	HAH-118	71259	01/25/2019	01/24/2020
Horn Antenna	HAH-118	71283	02/01/2019	01/31/2020
AMPLIFIER	EM01G26G	60613	01/24/2019	01/23/2020
AMPLIFIER	Emc012645	980077	01/04/2019	01/03/2020
Bilog Antenna (30MHz~6GHz)	JB6	A110712	02/07/2019	02/06/2020
RF Conducted				
DC Power Supply	E3640A	MY40004013	01/04/2019	01/03/2020
MXA Signal Analyzer	N9020A	MY49100060	01/04/2019	01/03/2020
MXG Vector Signal Generator	N5182A	MY50140530	01/04/2019	01/03/2020
Series Signal Generator	E4421B	US40051152	05/11/2019	05/10/2020
RF control unit	JS0806-0806-2	188060112	04/24/2019	04/23/2020
Wireless Connectivity Tester	CMW270	1201.0002K75-101601-PE	04/24/2019	04/23/2020
Weinschel	1580-1	TL177	01/04/2019	01/03/2020
Universal Radio Communica	CMU200	121393	02/10/2019	02/09/2020


Annex B. TEST SETUP AND SUPPORTING EQUIPMENT

Annex B.i. TEST SET UP BLOCK


Block Configuration Diagram for Conducted Emissions

Block Configuration Diagram for Radiated Emissions (Below 1GHz) .

Block Configuration Diagram for Radiated Emissions (Above 1GHz) .

Annex B. ii. SUPPORTING EQUIPMENT DESCRIPTION

The following is a description of supporting equipment and details of cables used with the EUT.

Supporting Equipment:

Manufacturer	Equipment Description	Model	Serial No
TECNO	Adapter	Cu-52JT	N/A

Supporting Cable:

NO.	DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	USB Line: Unshielded, Detachable 0.8m

Annex C. User Manual / Block Diagram / Schematics / Partlist

Please see attachment

Annex D. DECLARATION OF SIMILARITY

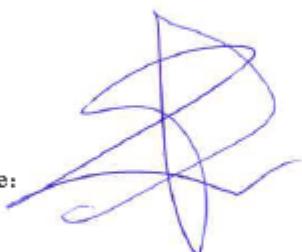
3D Connexion

To: SIEMIC, INC
775 Montague Expressway Milpitas, CA 95035, USA

Declaration Letter
Dear Sir,

For our business issue and marketing requirement, we would like to list serial model numbers on the reports, as following:

Model No: 3DX-600065,


Serial Model No: 3DX-700078

We declare that : all models the same PCB , accessories ,the difference of these is listed as below
Thank you very much.

Main Model No	Serial Model No	Difference
3DX-600065,	3DX-700078	3DX-600065 is Product model 3DX-700078 is Market model

Sincerely,

Client's signature:

Second Party

Address : 33, Rue du Portier, 98000 Monaco

Name of Corporation: 3Dconnexion.

Name: Xiaobing Lin

Date: 2019-6-18