

TEST REPORT

Applicant Name: Tavini LLC

Address: 3342 Oak Dr, Hollywood, FL 33021

Report Number: RA221220-62844E-RF FCC ID: 2A9ZL-288SUN21-4MG

Test Standard (s) FCC Part 15.247

Sample Description

Product: WIFI CAMERA

Tested Model: AP-288ZDSUN21-4MG

Trade Name N/A

Date Received: 2022-12-20

Date of Test: 2023-01-05 to 2023-02-28

Report Date: 2023-02-28

Test Result: Pass*

Prepared and Checked By:

Bob. Liao

Bob.Liao

EMC Engineer

Approved By:

Candy Li

EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "**.

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290
Fax: +86 755-26503396
Web: www.atc-lab.com

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	
GENERAL INFORMATION	
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EQUIPMENT MODIFICATIONS	
EUT Exercise Software	
DUTY CYCLE	
SUPPORT EQUIPMENT LIST AND DETAILS	
SUMMARY OF TEST RESULTS	
Test Equipment List	
FCC §1.1310 & §2.1091 –RF EXPOSURE EVALUATION	
APPLICABLE STANDARD	
TEST RESULT	
FCC §15.203 - ANTENNA REQUIREMENT	13
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	13
FCC §15.207 (a) – AC LINE CONDUCTED EMISSIONS	14
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUPTEST PROCEDURE	
FACTOR & MARGIN CALCULATION	
TEST DATA	15
FCC §15.209, §15.205 & §15.247(d) - Spurious Emissions	18
APPLICABLE STANDARD	
EUT SETUP EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	
FACTOR & MARGIN CALCULATION	19
TEST DATA	19
FCC $\S15.247(a)$ (2) – 6 dB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH	20
APPLICABLE STANDARD	
TEST PROCEDURE	
FCC §15.247(b) (3) - Maximum CONDUCTED Output Power	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(d) – 100 kHz Bandwidth of Frequency Band Edge	28
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	28

Shenzhen Accurate Technology Co., Ltd.

Report No.: RA221220-62844E-RF

FCC §15.247(e) - Power Spectral Density	29
APPLICABLE STANDARD	29
Test Procedure	29
Test Data	29
APPENDIX A: 6dB Emission Bandwidth	30
APPENDIX B: Occupied Channel Bandwidth	37
APPENDIX C: Maximum Conducted AVERAGE Output Power	44
APPENDIX D: Band Edge Measurements	45
APPENDIX E: Maximum Power Spectral Density	49
APPENDIX F: Duty Cycle	56

DOCUMENT REVISION HISTORY

Revision Number	Report Number	Description of Revision	Date of Revision
0	RA221220-62844E-RF	Original Report	2023-02-28

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Product	WIFI CAMERA
Tested Model	AP-288ZDSUN21-4MG
Frequency Range	Wi-Fi: 2412-2462MHz
Maximum Conducted Average Output Power	Wi-Fi: 12.52dBm(802.11b), 4.01dBm(802.11g), 1.79dBm(802.11n20),-1.62dBm(802.11n40)
Modulation Technique	Wi-Fi: DSSS, OFDM
Antenna Specification*	glue stick antenna: 2.38dBi (provided by the applicant)
Voltage Range	DC 5V from USB port
Sample serial number	RA221220-62844E-RF-S1 (RF Radiated Test) RA221220-62844E-RF-S2 (RF Conducted Test) (Assigned by ATC, Shenzhen)
Sample/EUT Status	Good condition

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission's rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.207, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices, and KDB 558074 D01 15.247 Meas Guidance v05r02.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement Uncertainty

Para	meter	Uncertainty
Occupied Char	nnel Bandwidth	5%
RF Fre	equency	$0.082*10^{-7}$
RF output pov	wer, conducted	0.73dB
Unwanted Emis	ssion, conducted	1.6dB
AC Power Lines C	onducted Emissions	2.72dB
	9kHz - 30MHz	2.66dB
.	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
	26.5GHz - 40GHz	4.72dB
Temperature		1℃
Humidity		6%
Supply	voltages	0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

For 802.11b, 802.11g, 802.11n-HT20 and 802.11n-HT40 mode, total 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	8	2447
2	2417	9	2452
3	2422	10	2457
4	2427	11	2462
5	2432	/	/
6	2437	/	/
7	2442	/	/

802.11b, 802.11g and 802.11n-HT20 mode was tested with Channel 1, 6 and 11. 802.11n-HT40 mode was tested with Channel 3, 6 and 9.

Equipment Modifications

No modification was made to the EUT tested.

EUT Exercise Software

Software "Xshell7.0.0063"* was used during testing and power level as below:

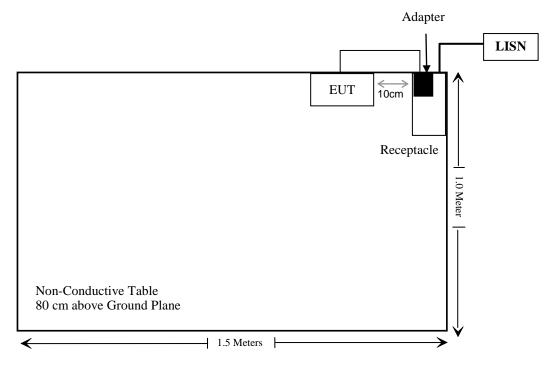
Mode	Data Rate (Mbps)	Power Level*
802.11 b	11	-8
802.11 g	54	-12
802.11 n20	65	-12
802.11 n40	135	-12

The worse-case data rates are determined to be as above for each mode based upon investigations by measuring the output power and PSD across all data rates, bandwidths and modulations.

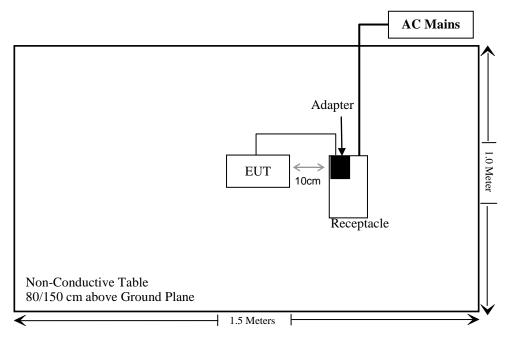
Duty cycle

Test Result: Compliant. Please refer to the Appendix F

Support Equipment List and Details


Manufacturer	Description	Model	Serial Number
HUAWEI	Adapter	HW-050100C01	H779KBK6V19398

External I/O Cable


Cable Description	Length (m)	From Port	То
DC Cable	1.0	Adapter	EUT

Block Diagram of Test Setup

For conducted emission:

For radiated emission:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i) & §1.1307(b)	RF Exposure Evaluation	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 (a)	AC Line Conducted Emissions	Compliant
§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliant
§15.247 (a)(2)	6 dB Emission Bandwidth & Occupied Bandwidth	Compliant
§15.247(b)(3)	Maximum Conducted Output Power	Compliant
§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliant
§15.247(e)	Power Spectral Density	Compliant

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
	(Conducted Emis	sions Test		
Rohde & Schwarz	EMI Test Receiver	ESCI	100784	2022/11/25	2023/11/24
Rohde & Schwarz	L.I.S.N.	ENV216	101314	2022/11/25	2023/11/24
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.17	N0350	2022/11/25	2023/11/24
		Radiated Emiss	ions Test		
Rohde & Schwarz	Test Receiver	ESR	102725	2022/11/25	2023/11/24
Rohde & Schwarz	Spectrum Analyzer	FSV40	101949	2022/11/25	2023/11/24
SONOMA INSTRUMENT	Amplifier	310 N	186131	2022/11/08	2023/11/07
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2022/11/08	2023/11/07
Quinstar	Amplifier	QLW-184055 36-J0	15964001002	2022/11/08	2023/11/07
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2022/11/30	2025/11/29
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2022/12/26	2025/12/25
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.10	N050	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.11	N1000	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.12	N040	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.13	N300	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.14	N800	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.15	N600	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.16	N650	2022/11/25	2023/11/24
Radiated Emission Test Software: e3 19821b (V9)					
RF Conducted Test					
Rohde & Schwarz	Spectrum Analyzer	FSV-40	101495	2022/11/25	2023/11/24
Rohde & Schwarz	Open Switch and Control Unit	OSP120 + OSP-B157	101244 + 100866	2022/11/25	2023/11/24
WEINSCHEL	10dB Attenuator	5324	AU 3842	2022/11/25	2023/11/24
Unknown	RF Coaxial Cable	No.33	RF-03	Each	time

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §1.1310 & §2.1091 -RF EXPOSURE EVALUATION

Applicable Standard

According to KDB 447498 D04 Interim General RF Exposure Guidance v01, clause 2.1.4 -MPE-Based Exemption:

An alternative to the SAR-based exemption is provided in § 1.1307(b)(3)(i)(C), for a much wider frequency range, from 300 kHz to 100 GHz, applicable for separation distances greater or equal to $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. The MPE-based test exemption condition is in terms of ERP, defined as the product of the maximum antenna gain and the delivered maximum time-averaged power. For this case, a RF source is an RF exempt device if its ERP (watts) is no more than a frequency-dependent value, as detailed tabular form in Appendix B. These limits have been derived based on the basic specifications on Maximum Permissible Exposure (MPE) considered for the FCC rules in § 1.1310(e)(1).

Table to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation

RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	$3.83 R^2$.
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Test Result

For worst case:

Mode	Frequency Range	Tune-up Pov	-		enna iin	ERP		Evaluation Distance	ERP Limit
	(MHz)	(dBm)	(mW)	(dBi)	(dBd)	(dBm)	(mW)	(cm)	(mW)
2.4G Wi-Fi	2412-2462	13.0	19.95	2.38	0.23	13.23	21.04	20	768

Note 1: The tune-up power was declared by the applicant.

Note 2: 0dBd=2.15dBi.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant.

FCC §15.203 - ANTENNA REQUIREMENT

Applicable Standard

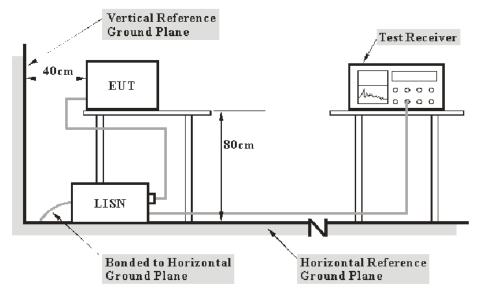
According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.
- c. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has one integral antenna arrangement, which was permanently attached and the antenna gain is 2.38 dBi, fulfill the requirement of this section. Please refer to the EUT photos.


Result: Compliant.

FCC §15.207 (A) – AC LINE CONDUCTED EMISSIONS

Applicable Standard

FCC§15.207

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Factor & Margin Calculation

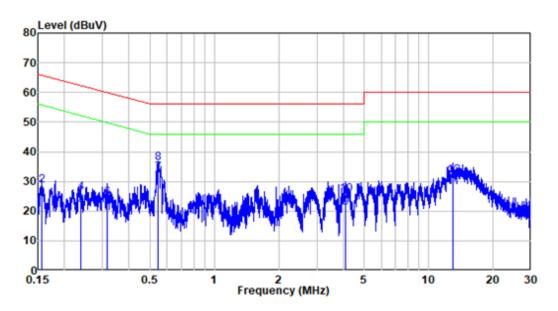
The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Factor = LISN VDF + Cable Loss

The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit Level = Read Level + Factor

Test Data


Environmental Conditions

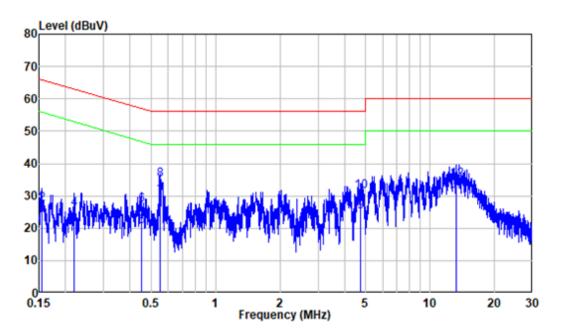
Temperature:	22 °C
Relative Humidity:	51 %
ATM Pressure:	101.0 kPa

The testing was performed by Jason Liu on 2023-01-16.

EUT operation mode: 2.4G WIFI Transmitting (worst case 802.11b, middle channel)

AC 120V/60 Hz, Line

Site : Shielding Room


Condition: Line

Job No. : RA221220-62844E-RF Mode : 2.4G Wifi Transmitting

Power : AC 120V 60HZ

			Read		Limit	Over	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.156	9.90	14.53	24.43	55.68	-31.25	Average
2	0.156	9.90	18.73	28.63	65.68	-37.05	QP
3	0.238	9.88	12.01	21.89	52.17	-30.28	Average
4	0.238	9.88	16.51	26.39	62.17	-35.78	QP
5	0.315	9.85	11.72	21.57	49.83	-28.26	Average
6	0.315	9.85	14.72	24.57	59.83	-35.26	QP
7	0.546	9.84	22.93	32.77	46.00	-13.23	Average
8	0.546	9.84	26.25	36.09	56.00	-19.91	QP
9	4.100	9.94	11.33	21.27	46.00	-24.73	Average
10	4.100	9.94	15.62	25.56	56.00	-30.44	QP
11	12.937	10.03	17.93	27.96	50.00	-22.04	Average
12	12.937	10.03	21.99	32.02	60.00	-27.98	QP

AC 120V/60 Hz, Line

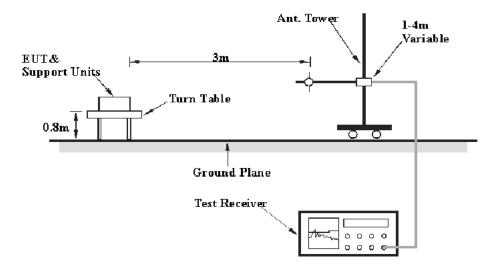
Site : Shielding Room

Condition: Neutral

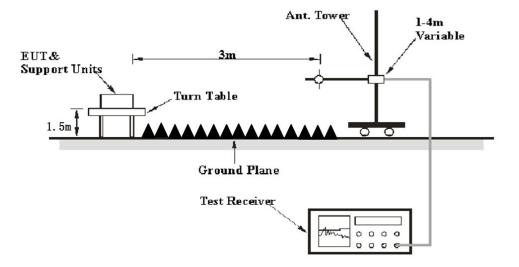
Job No. : RA221220-62844E-RF Mode : 2.4G Wifi Transmitting

Power : AC 120V 60HZ

	Freq	Factor	Read Level	Level	Limit Line	Over Limit	Remark
	MHz	dB	dBuV	dBuV	dBuV	dB	
1	0.154	9.80	14.32	24.12	55.77	-31.65	Average
2	0.154	9.80	17.78	27.58	65.77	-38.19	QP
3	0.219	9.81	11.30	21.11	52.86	-31.75	Average
4	0.219	9.81	16.11	25.92	62.86	-36.94	QP
5	0.450	9.89	10.66	20.55	46.87	-26.32	Average
6	0.450	9.89	17.30	27.19	56.87	-29.68	QP
7	0.550	9.88	19.79	29.67	46.00	-16.33	Average
8	0.550	9.88	25.26	35.14	56.00	-20.86	QP
9	4.724	9.91	15.18	25.09	46.00	-20.91	Average
10	4.724	9.91	21.35	31.26	56.00	-24.74	QP
11	13.267	10.03	19.67	29.70	50.00	-20.30	Average
12	13.267	10.03	25.01	35.04	60.00	-24.96	QP


FCC §15.209, §15.205 & §15.247(D) - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.247 (d); §15.209; §15.205;

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
	1 MHz	3 MHz	/	PK
Above 1 GHz	1 MHz	10Hz*	/	Ave.
	1 MHz	1/T**	/	Ave.

Note: * for duty cycle ≥ 98%

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

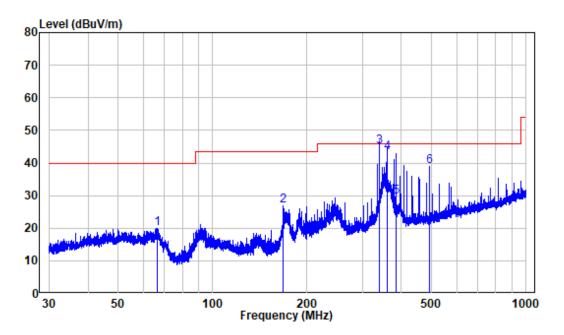
The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit/Margin = Level / Corrected Amplitude – Limit Level / Corrected Amplitude = Read Level + Factor

Test Data

Environmental Conditions

Temperature:	25°C
Relative Humidity:	56 ~58%
ATM Pressure:	101.0 kPa


The testing was performed by Jimi from 2023-01-05 to 2023-01-13.

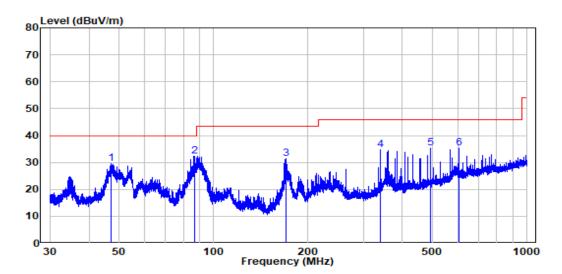
EUT operation mode: Transmitting (Pre-scan EUT in X axis, Y axis, Z axis, the worst case is Y axis)

^{**}for duty cycle < 98%, and T is maximum transmission duration.

30MHz-1GHz: (worst case 802.11b, middle channel)

Horizontal

Site : chamber


Condition: 3m HORIZONTAL

Job No. : RA221220-62844E-RF

Test Mode: 2.4G WIFI Transmitting

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	66.703	-13.22	33.09	19.87	40.00	-20.13	Peak
2	167.971	-13.78	40.79	27.01	43.50	-16.49	Peak
3	340.185	-7.42	52.40	44.98	46.00	-1.02	QP
4	359.974	-7.68	50.80	43.12	46.00	-2.88	QP
5	384.100	-7.08	36.60	29.52	46.00	-16.48	QP
6	491.390	-4.61	43.47	38.86	46.00	-7.14	Peak

Vertical

Site : chamber Condition: 3m VERTICAL

Job No. : RA221220-62844E-RF Test Mode: 2.4G WIFI Transmitting

	Freq	Factor		Level			Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	47.077	-10.00	39.61	29.61	40.00	-10.39	Peak
2	86.731	-14.97	47.35	32.38	40.00	-7.62	Peak
3	170.493	-13.53	44.83	31.30	43.50	-12.20	Peak
4	340.185	-7.42	42.15	34.73	46.00	-11.27	Peak
5	491.390	-4.61	39.87	35.26	46.00	-10.74	Peak
6	604.863	-2.31	37.61	35.30	46.00	-10.70	Peak

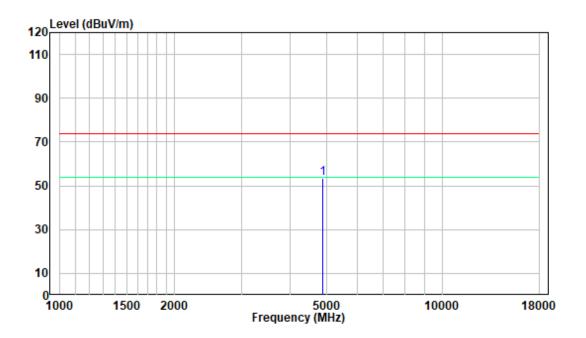
Note: for below 1GHz, when the test result of peak was below to the limit of QP more than 6dB, just peak value was recorded.

1-25 GHz(the worst case)

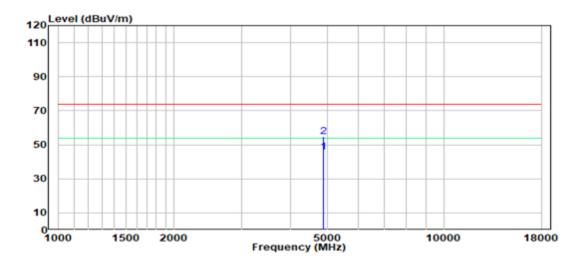
Frequenc	Rece	eiver	Turntable Angle	Rx Ar	ntenna	Factor	Corrected Amplitude	Limit	Margin
(MHz)	Reading (dBuV)	PK/Ave	Degree	Height (m)	Polar (H/V)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)
				802.11B, Lo	w Channel				
2310	57.2	PK	129	1.2	Н	-7.23	49.97	74	-24.03
2310	57.04	PK	259	1.1	V	-7.23	49.81	74	-24.19
2390	60.11	PK	53	2.2	Н	-7.21	52.90	74	-21.10
2390	61.1	PK	291	1.3	V	-7.21	53.89	74	-20.11
4824	55.82	PK	257	2.0	Н	-3.53	52.29	74	-21.71
4824	57.26	PK	230	1.5	V	-3.53	53.73	74	-20.27
			8	02.11B, Mid	dle Channel				
4874	56.92	PK	289	1.6	Н	-3.36	53.56	74	-20.44
4874	58.24	PK	47	1.7	V	-3.36	54.88	74	-19.12
4874	49.06	AV	47	1.7	V	-3.36	45.64	54	-8.36
				11B, High	Channel				
2483.5	61.38	PK	107	1.5	Н	-7.2	54.18	74	-19.82
2483.5	51.89	AV	107	1.5	Н	-7.2	44.69	54	-9.31
2483.5	64.27	PK	194	1.1	V	-7.2	57.07	74	-16.93
2483.5	54.18	AV	194	1.1	V	-7.2	46.98	54	-7.02
2500	57.37	PK	247	1.3	Н	-7.18	50.19	74	-23.81
2500	58.66	PK	54	1.1	V	-7.18	51.48	74	-22.52
4924	57	PK	205	1.7	Н	-3.06	53.94	74	-20.06
4924	56.51	PK	63	1.9	V	-3.06	53.45	74	-20.55
				802.11G, Lo	w Channel				
2310	56.69	PK	255	1.2	H	-7.23	49.46	74	-24.54
2310	56.35	PK	220	2.2	V	-7.23	49.12	74	-24.88
2390	61.15	PK	317	1.6	Н	-7.21	53.94	74	-20.06
2390	57.09	PK	317	2.1	V	-7.21	49.88	74	-24.12
4824	53.53	PK	243	1.7	Н	-3.53	50.00	74	-24.00
4824	54.79	PK	326	1.8	V	-3.53	51.26	74	-22.74
			80	02.11G, Mid	dle Channel				
4874	56.23	PK	100	2.2	Н	-3.36	52.87	74	-21.13
4874	56.7	PK	238	1.2	V	-3.36	53.34	74	-20.66
	•			802.11G, Hig	gh Channel				•
2483.5	59.97	PK	329	1.0	Н	-7.2	52.77	74	-21.23
2483.5	55.76	PK	26	1.8	V	-7.2	48.56	74	-25.44
2500	57.5	PK	139	1.6	Н	-7.18	50.32	74	-23.68
2500	56.4	PK	139	1.6	V	-7.18	49.22	74	-24.78
4924	55.92	PK	140	1.1	Н	-3.06	52.86	74	-21.14
4924	55.97	PK	117	1.8	V	-3.06	52.91	74	-21.09

E	Rece	iver	Turntable	Rx A	ntenna	E4	Corrected	T	Manain
Frequency (MHz)	Reading (dBuV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBuV/m)	Limit (dBuV/m)	Margin (dB)
			8	302.11N20	, Low Chan	nel			
2310	56.09	PK	333	1.8	Н	-7.23	48.86	74	-25.14
2310	55.22	PK	163	1.5	V	-7.23	47.99	74	-26.01
2390	62.47	PK	163	1.5	Н	-7.21	55.26	74	-18.74
2390	49.62	AV	146	1.8	Н	-7.21	42.41	54	-11.59
2390	55.62	PK	56	1.8	V	-7.21	48.41	74	-25.59
4824	55.21	PK	57	1.4	Н	-3.53	51.68	74	-22.32
4824	55.54	PK	314	2.1	V	-3.53	52.01	74	-21.99
			80)2.11N20,	Middle Cha	nnel	•		
4874	56.35	PK	354	1.1	Н	-3.36	52.99	74	-21.01
4874	56.2	PK	62	1.2	V	-3.36	52.84	74	-21.16
			8	302.11N20	, High Chan				
2483.5	65.01	PK	342	1.3	Н	-7.2	57.81	74	-16.19
2483.5	47.42	AV	74	1.8	Н	-7.2	40.22	54	-13.78
2483.5	56.77	PK	179	1.7	V	-7.2	49.57	74	-24.43
2500	57.67	PK	321	1.4	Н	-7.18	50.49	74	-23.51
2500	56.1	PK	321	1.4	V	-7.18	48.92	74	-25.08
4924	54.68	PK	163	1.7	Н	-3.06	51.62	74	-22.38
4924	55.92	PK	260	1.9	V	-3.06	52.86	74	-21.14
			8	302.11N40	, Low Chan	nel			
2310	55.91	PK	239	1.5	Н	-7.23	48.68	74	-25.32
2310	54.94	PK	160	1.9	V	-7.23	47.71	74	-26.29
2390	62.19	PK	56	1.1	Н	-7.21	54.98	74	-19.02
2390	49.15	AV	98	1.4	Н	-7.21	41.94	54	-12.06
2390	56.53	PK	189	2.1	V	-7.21	49.32	74	-24.68
4844	55.27	PK	70	1.4	Н	-3.53	51.74	74	-22.26
4844	55.5	PK	149	1.3	V	-3.53	51.97	74	-22.03
			80)2.11N40,	Middle Cha	nnel			
4874	55.94	PK	35	1.7	Н	-3.36	52.58	74	-21.42
4874	55.97	PK	209	1.9	V	-3.36	52.61	74	-21.39
			8	302.11N40	, High Chan	,			
2483.5	64.17	PK	152	1.7	Н	-7.2	56.97	74	-17.03
2483.5	47.51	AV	54	1.3	Н	-7.2	40.31	54	-13.69
2483.5	56.45	PK	359	1.8	V	-7.2	49.25	74	-24.75
2500	57.94	PK	226	1.3	Н	-7.18	50.76	74	-23.24
2500	56.2	PK	332	1.9	V	-7.18	49.02	74	-24.98
4904	54.5	PK	77	1.8	Н	-3.06	51.44	74	-22.56
4904	54.7	PK	107	1.7	V	-3.06	51.64	74	-22.36
Note:									

Note:

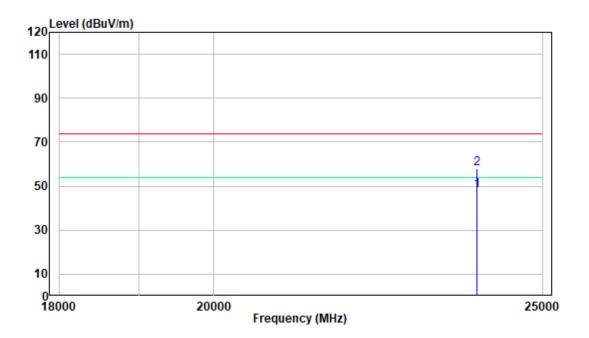

Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor

Corrected Amplitude = Factor + Reading
Margin = Corrected Amplitude – Limit
The other spurious emission which is in the noise floor level was not recorded.

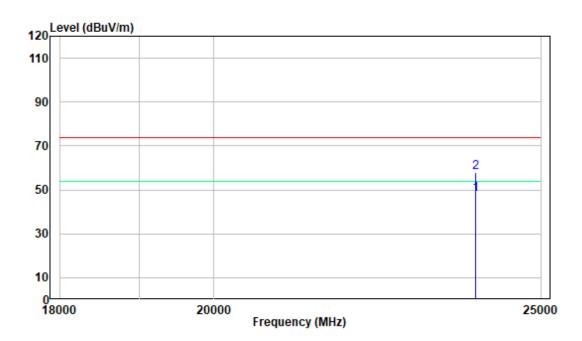

For above 1GHz, when the test result of peak was 20dB below to the limit of peak, which can be compliant to the average limit, just peak value was recorded.

1-18 GHz:

Pre-scan plots 802.11 b Middle Channel Horizontal



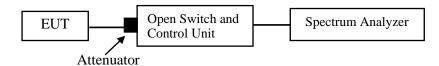
Vertical



18 -25GHz:

Pre-scan plots 802.11 b Middle Channel Horizontal

Vertical


FCC §15.247(A) (2) – 6 DB EMISSION BANDWIDTH & OCCUPIED BANDWIDTH

Applicable Standard

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that were attenuated 6 dB from the reference level. Record the frequency difference as the emission bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Data

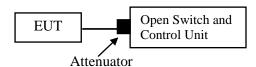
Environmental Conditions

Temperature:	24 °C
Relative Humidity:	48 %
ATM Pressure:	101.0 kPa

The testing was performed by Glenn Jiang on 2023-01-13.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix A and Appendix B.


FCC §15.247(B) (3) - MAXIMUM CONDUCTED OUTPUT POWER

Applicable Standard

According to FCC §15.247(b) (3), for systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Note: The Open Switch and Control Unit has built-in power sensor.

Test Data

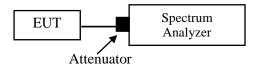
Environmental Conditions

Temperature:	24 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Glenn Jiang on 2023-02-16.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix C.


FCC §15.247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

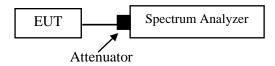
Environmental Conditions

Temperature:	24 °C	
Relative Humidity:	50 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Glenn Jiang on 2023-02-15.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix D.


FCC §15.247(E) - POWER SPECTRAL DENSITY

Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Test Procedure

- 1. Use this procedure when the maximum conducted averageoutput power in the fundamental emission is used to demonstrate compliance and the continuous transmission (or at least 98% duty cycle) cannot be achieved but exhibit a constant duty cycle during the measurement duration.
- 2. Measure the duty cycle (D) of the transmitter output signal as described in C63.10-2013 Clause 11.6.
- 3. Set the RBW to: 3kHz< RBW<100 kHz.
- 4. Set the VBW $\geq 3 \times RBW$.
- 5. Set the span to at least 1.5 times the OBW.
- 6. Detector = power averaging (rms) or sample detector (when rms not available).
- 7. Sweep time = auto couple.
- 8. Ensure that the number of measurement points in the sweep $\geq [2 \cdot \text{span} / \text{RBW}]$.
- 9. Do not use sweep triggering; allow sweep to "free run."
- 10. Employ trace averaging (rms) mode over a minimum of 100 traces.
- 11. Use the peak marker function to determine the maximum amplitude level.
- 12. Add [10 log (1 / D)], where D is the duty cycle measured in step 2), to the measured PSD to compute the average PSD during the actual transmission time.
- 13. If measured value exceeds requirement specified by regulatory agency, then reduce RBW (but no less than 3 kHz) and repeat (note that this may require zooming in on the emission of interest and reducing the span to meet the minimum measurement point requirement as the RBW is reduced).

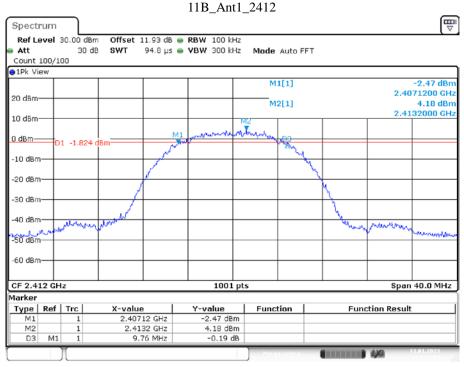
Test Data

Environmental Conditions

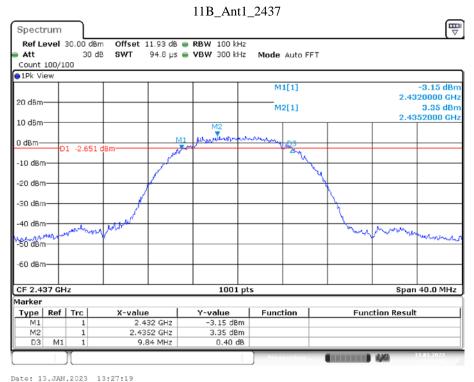
Temperature:	24 °C	
Relative Humidity:	48 %	
ATM Pressure:	101.0 kPa	

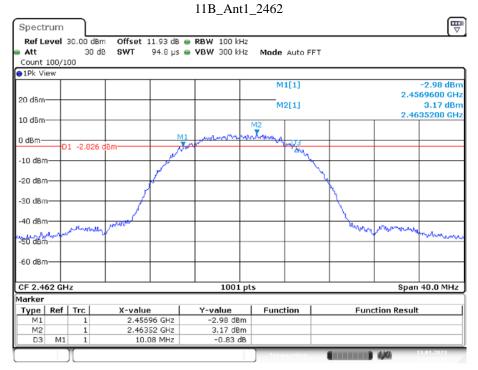
The testing was performed by Glenn Jiang on 2023-02-28.

EUT operation mode: Transmitting

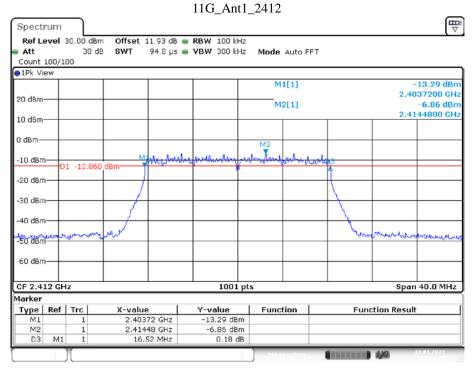

Test Result: Compliant. Please refer to the Appendix E.

APPENDIX A: 6DB EMISSION BANDWIDTH

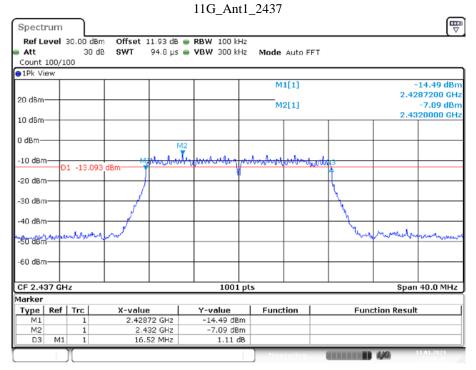

Test Result

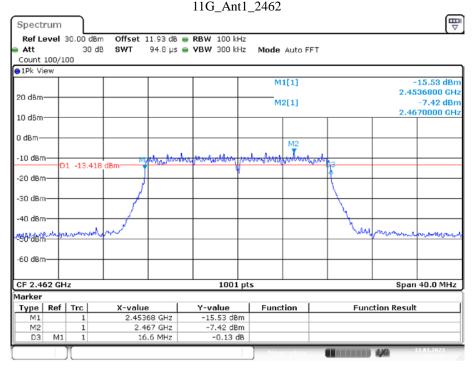

Test Mode	Antenna	Channel	DTS BW [MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	9.760	0.5	PASS
		2437	9.840	0.5	PASS
		2462	10.080	0.5	PASS
11G	Ant1	2412	16.520	0.5	PASS
		2437	16.520	0.5	PASS
		2462	16.600	0.5	PASS
11N20SISO	Ant1	2412	17.680	0.5	PASS
		2437	17.640	0.5	PASS
		2462	17.640	0.5	PASS
11N40SISO	Ant1	2422	36.480	0.5	PASS
		2437	36.240	0.5	PASS
		2452	36.480	0.5	PASS

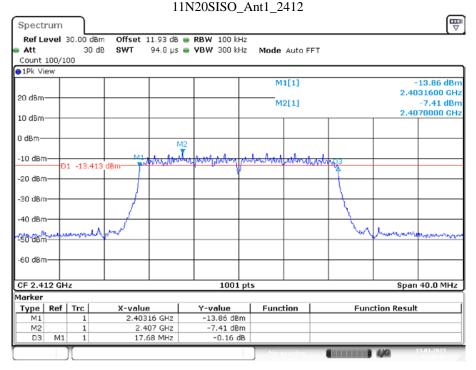
Test Graphs

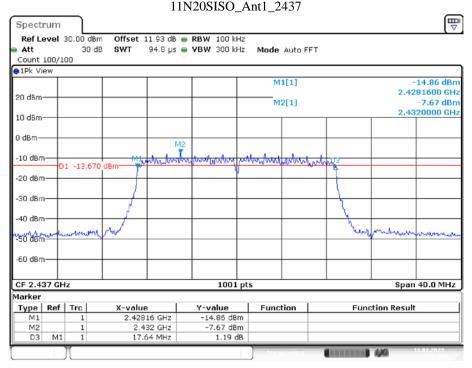


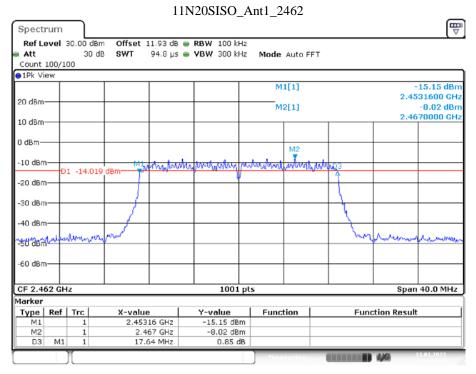
Date: 13.JAN.2023 13:23:11

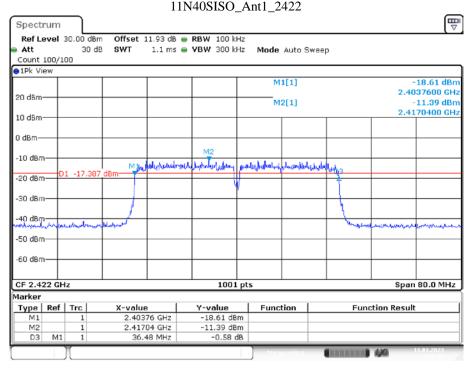


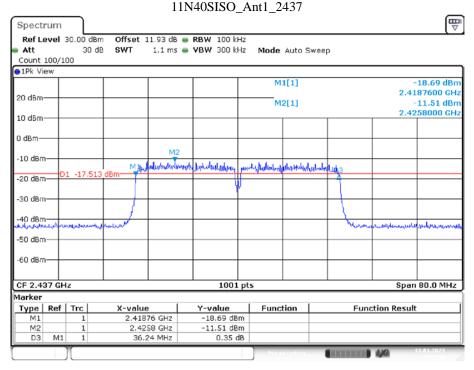

Date: 13.JAN.2023 13:30:37


Date: 13.JAN.2023 13:35:30

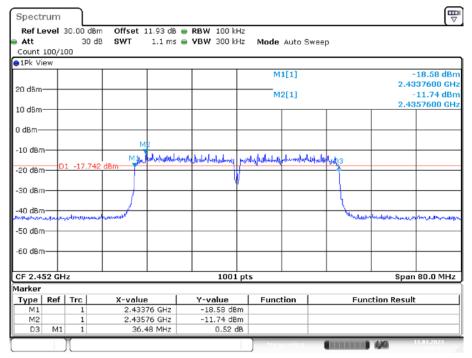

Date: 13.JAN.2023 13:39:50


Date: 13.JAN.2023 13:42:35


Date: 13.JAN.2023 13:46:02


Date: 13.JAN.2023 13:50:54

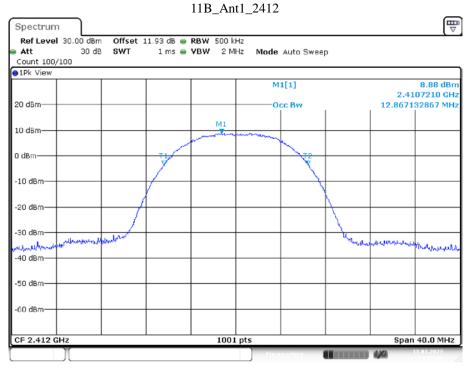
Date: 13.JAN.2023 13:57:33



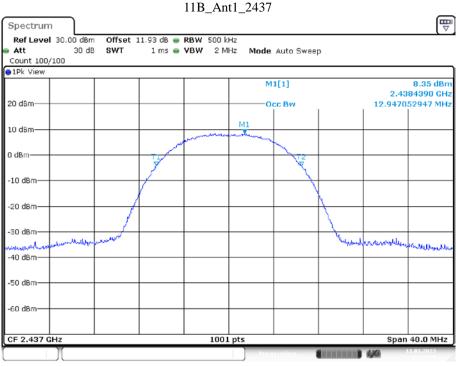
Date: 13.JAN.2023 14:02:26

Date: 13.JAN.2023 14:06:40

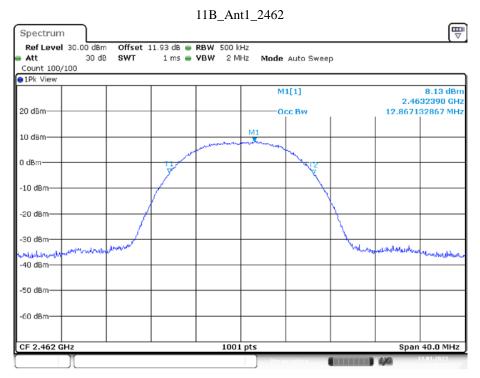
11N40SISO_Ant1_2452

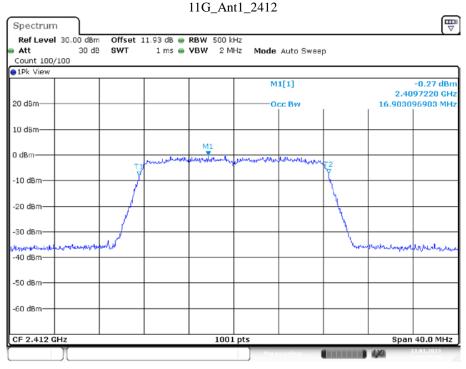

Date: 13.JAN.2023 14:09:37

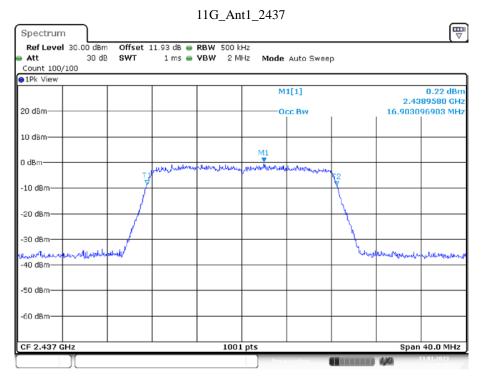
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH

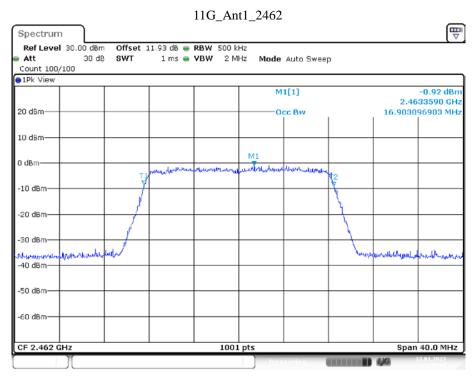

Test Result

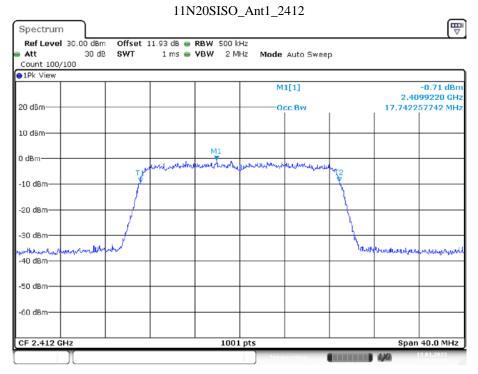
Test Mode	Antenna	Channel	OCB [MHz]	Limit[MHz]	Verdict
11B	Ant1	2412	12.867		PASS
		2437	12.947		PASS
		2462	12.867		PASS
	Ant1	2412	16.903		PASS
11G		2437	16.903		PASS
		2462	16.903		PASS
11N20SISO	Ant1	2412	17.742		PASS
		2437	17.742		PASS
		2462	17.782		PASS
11N40SISO	Ant1	2422	36.284		PASS
		2437	36.284		PASS
		2452	36.284		PASS

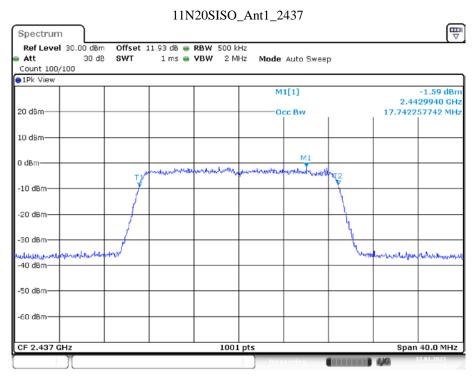

Test Graphs

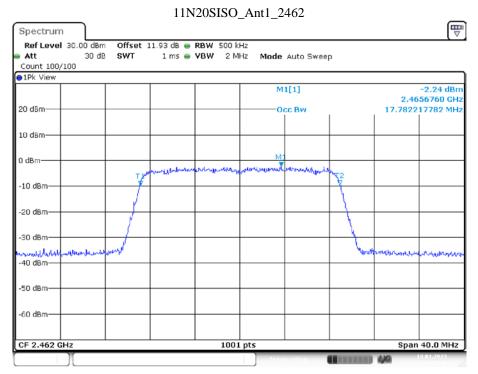

Date: 13.JAN.2023 13:23:28


Date: 13.JAN.2023 13:27:36


Date: 13.JAN.2023 13:30:54


Date: 13.JAN.2023 13:35:47


Date: 13.JAN.2023 13:40:06


Date: 13.JAN.2023 13:42:51


Date: 13.JAN.2023 13:46:19


Date: 13.JAN.2023 13:51:11

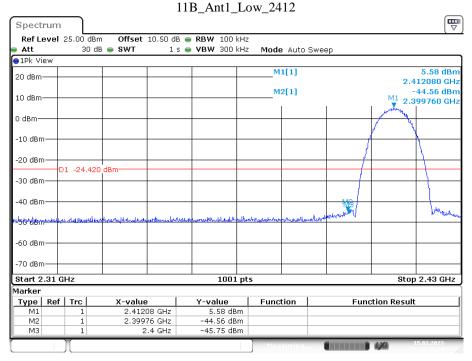
Date: 13.JAN.2023 13:57:50

Date: 13.JAN.2023 14:02:42

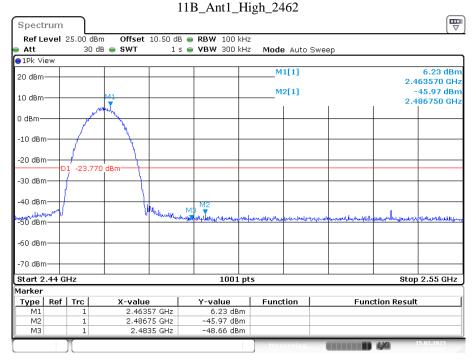
Date: 13.JAN.2023 14:06:56

Date: 13.JAN.2023 14:09:54

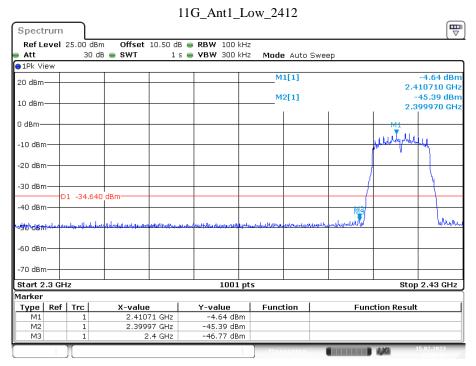
APPENDIX C: MAXIMUM CONDUCTED AVERAGE OUTPUT POWER

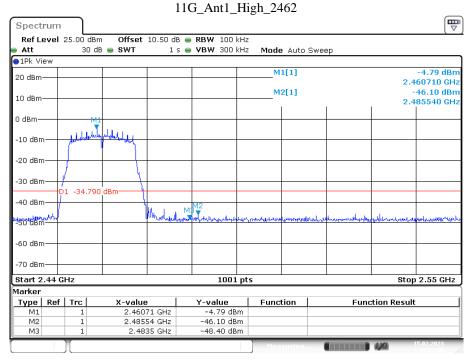

Test Result

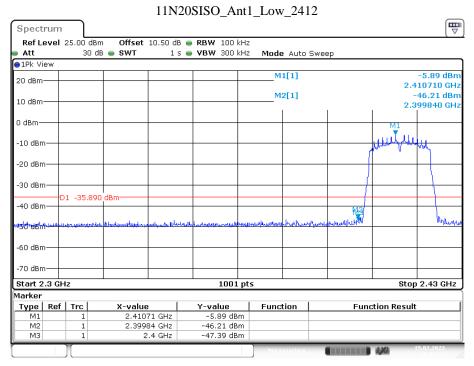
Average Output Power

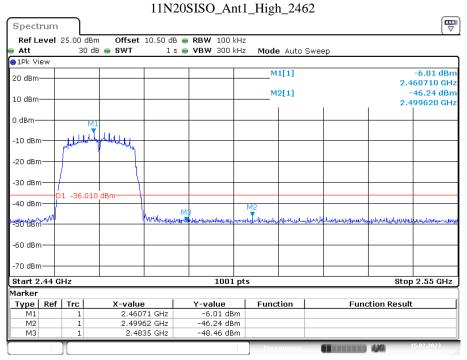

Test Mode	Antenna	Channel Result[dBm]		Limit[dBm]	Verdict
11B	Ant1	2412	12.52	<=30	PASS
		2437	12.34	<=30	PASS
		2462	12.33	<=30	PASS
	Ant1	2412	4.01	<=30	PASS
11G		2437	3.92	<=30	PASS
		2462	3.85	<=30	PASS
11N20SISO	Ant1	2412	1.63	<=30	PASS
		2437	1.79	<=30	PASS
		2462	1.57	<=30	PASS
11N40SISO	Ant1	2422	-1.62	<=30	PASS
		2437	-1.75	<=30	PASS
		2452	-2.23	<=30	PASS

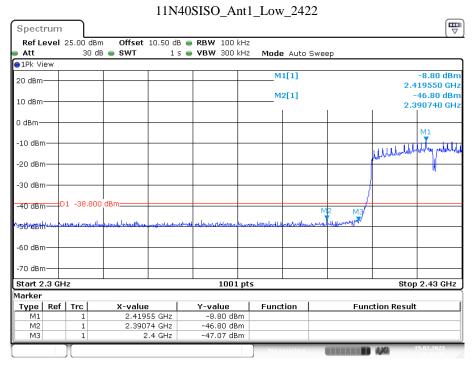
APPENDIX D: BAND EDGE MEASUREMENTS

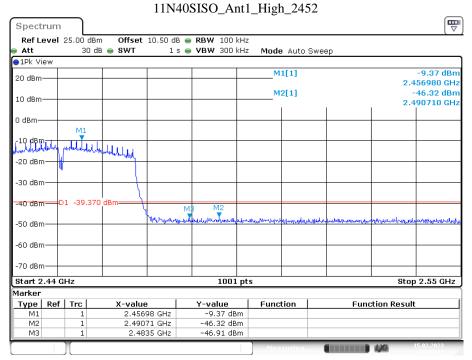

Test Graphs


Date: 15.FEB.2023 17:33:44


Date: 15.FEB.2023 18:06:02


Date: 15.FEB.2023 18:08:16

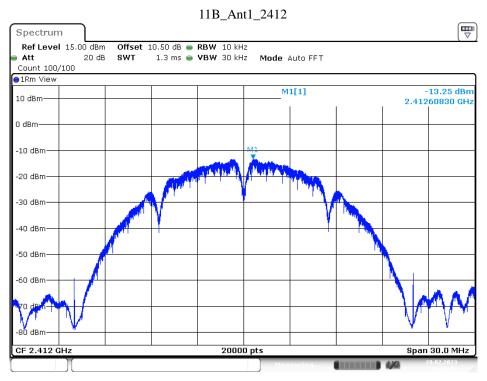

Date: 15.FEB.2023 18:11:15


Date: 15.FEB.2023 18:14:34

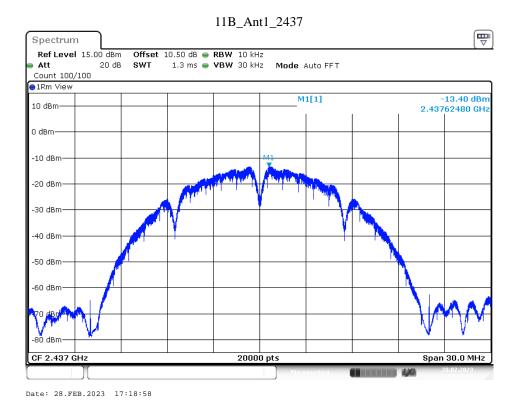
Date: 15.FEB.2023 18:17:28

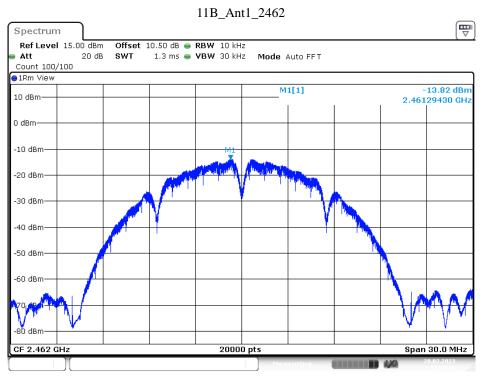
Date: 15.FEB.2023 18:21:39

Date: 15.FEB.2023 18:24:17

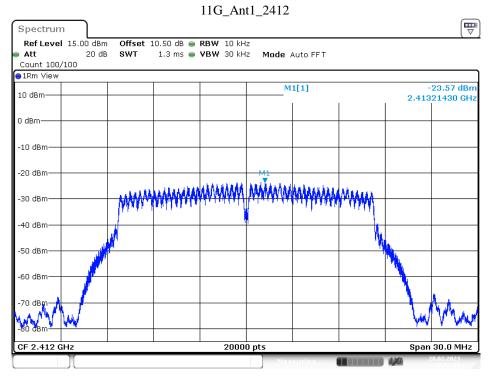

APPENDIX E: MAXIMUM POWER SPECTRAL DENSITY

Test Result

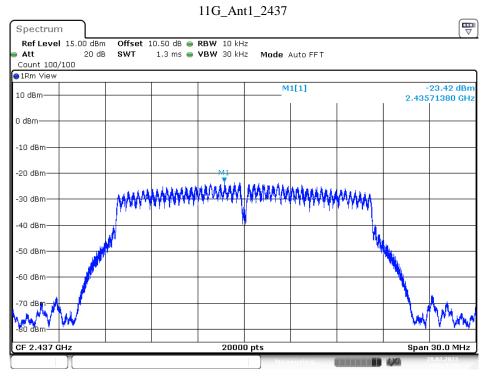

Test Mode	Antenna	Channel	Reading [dBm/10kHz]	DC factor [dB]	PSD [dBm/10kHz]	Limit [dBm/3kHz]	Verdict
11B	Ant1	2412	-13.25	1.00	-12.25	<=8	PASS
		2437	-13.40	1.17	-12.23	<=8	PASS
		2462	-13.82	1.04	-12.78	<=8	PASS
	Ant1	2412	-23.57	2.69	-20.88	<=8	PASS
11G		2437	-23.42	2.69	-20.73	<=8	PASS
		2462	-23.28	2.43	-20.85	<=8	PASS
	Ant1	2412	-23.21	2.43	-20.78	<=8	PASS
11N20SISO		2437	-23.89	2.43	-21.46	<=8	PASS
		2462	-23.78	2.43	-21.35	<=8	PASS
11N40SISO	Ant1	2422	-25.52	4.39	-21.13	<=8	PASS
		2437	-26.02	3.42	-22.60	<=8	PASS
		2452	-26.03	3.42	-22.61	<=8	PASS

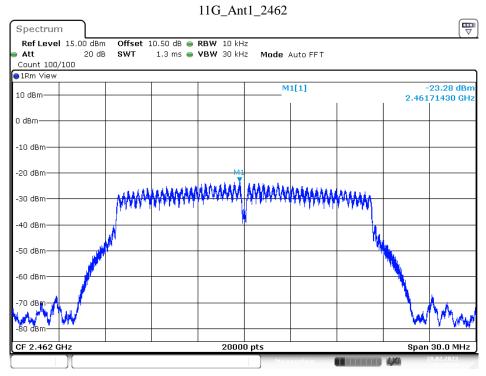

Note: PSD=reading + DC factor DC factor= $10*log(1/duty\ cycle)$, where duty cycle please refer Appendix F.

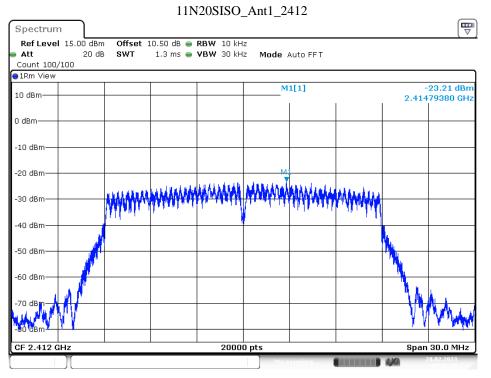
Test Graphs



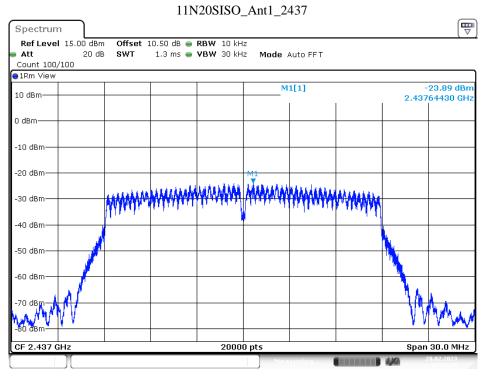
Date: 28.FEB.2023 17:18:14

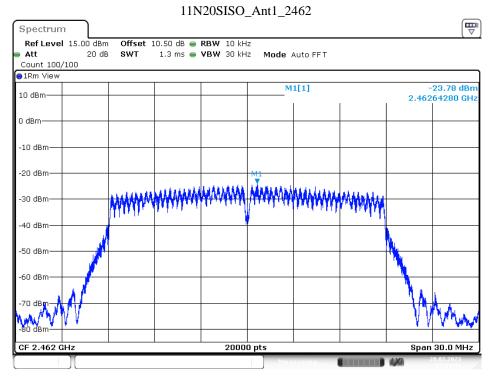


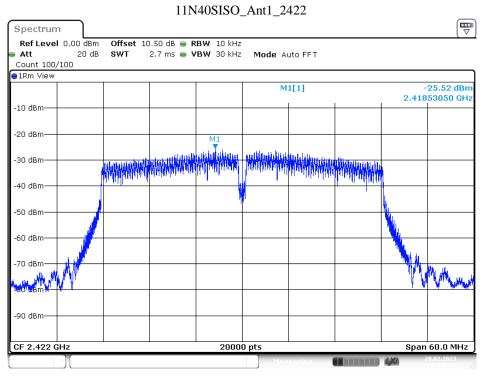

Date: 28.FEB.2023 17:20:07

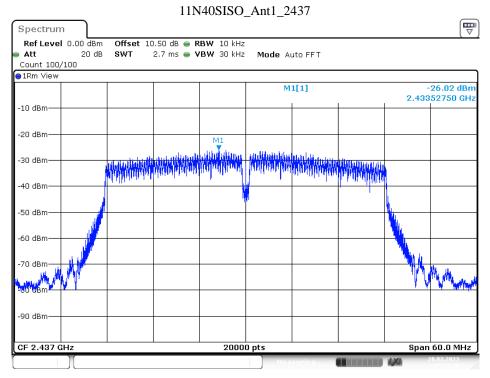


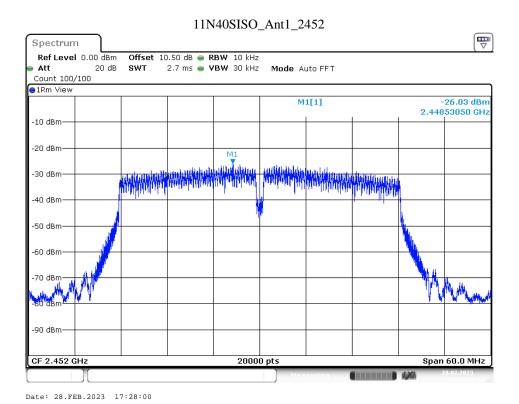
Date: 28.FEB.2023 17:22:07




Date: 28.FEB.2023 17:21:30

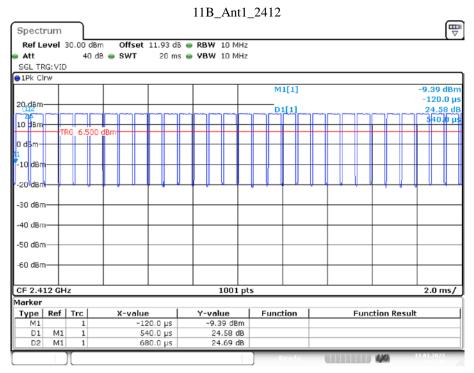



Date: 28.FEB.2023 17:22:59

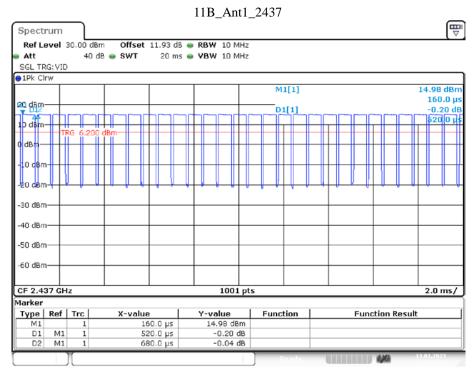


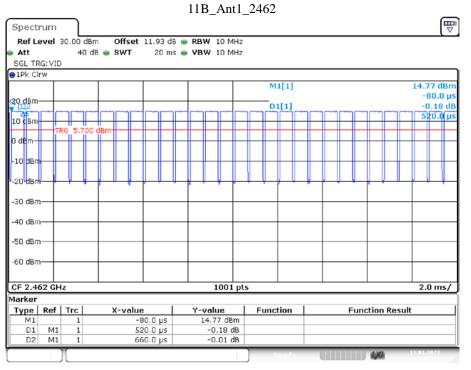
Date: 28.FEB.2023 17:24:30

Date: 28.FEB.2023 17:27:10

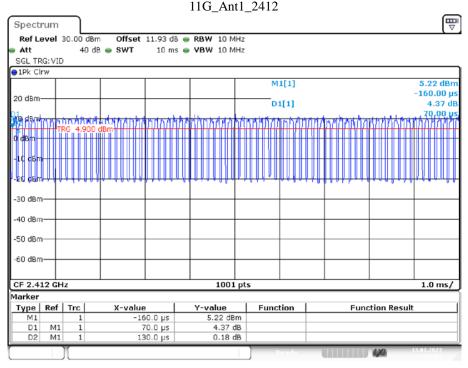


APPENDIX F: DUTY CYCLE

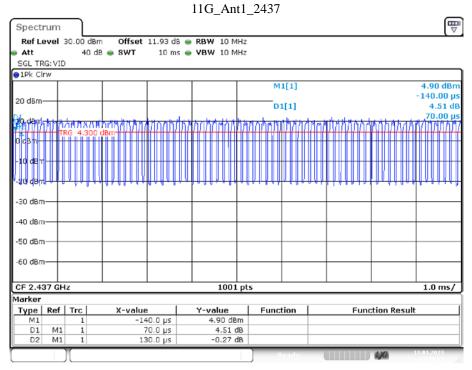

Test Result

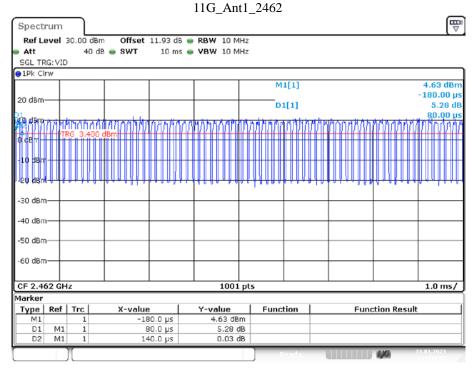

Test Mode	Antenna	Channel	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
11B	Ant1	2412	0.54	0.68	79.41
		2437	0.52	0.68	76.47
		2462	0.52	0.66	78.79
	Ant1	2412	0.07	0.13	53.85
11G		2437	0.07	0.13	53.85
		2462	0.08	0.14	57.14
11N20SISO	Ant1	2412	0.08	0.14	57.14
		2437	0.08	0.14	57.14
		2462	0.08	0.14	57.14
11N40SISO	Ant1	2422	0.04	0.11	36.36
		2437	0.05	0.11	45.45
		2452	0.05	0.11	45.45

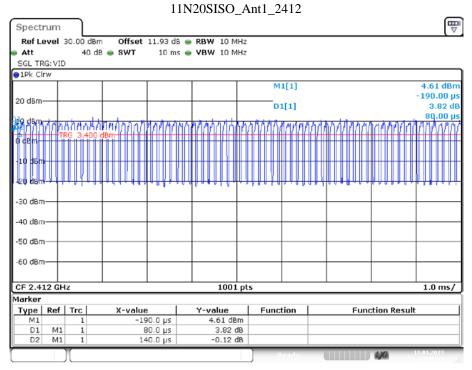
Test Graphs

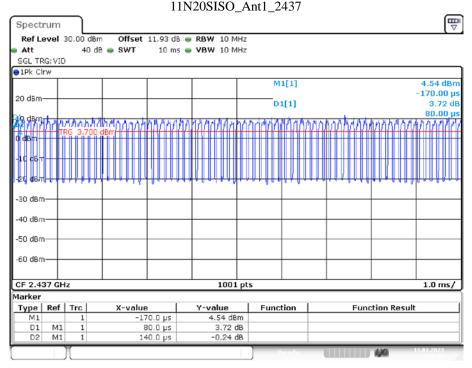


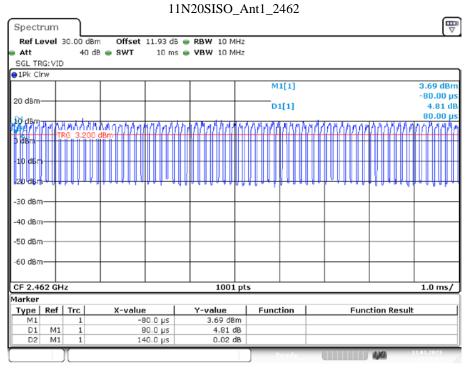
Date: 13.JAN.2023 13:22:45

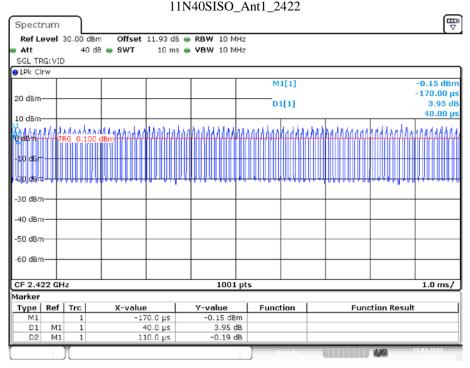


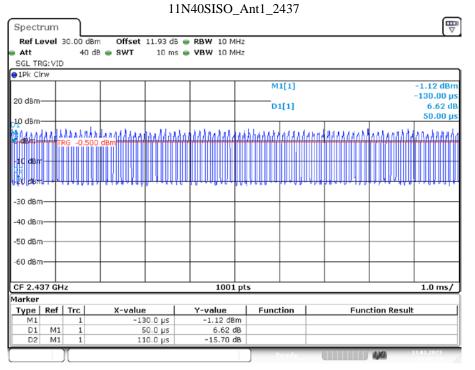

Date: 13.JAN.2023 13:30:11


Date: 13.JAN.2023 13:35:04

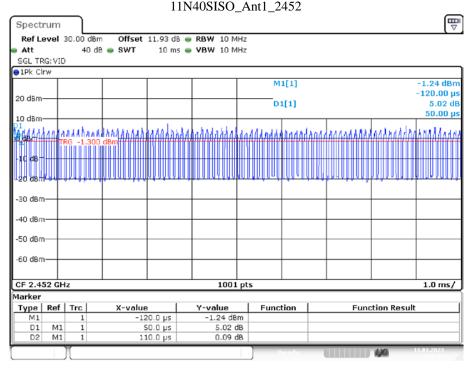

Date: 13.JAN.2023 13:39:23


Date: 13.JAN.2023 13:42:08


Date: 13.JAN.2023 13:45:36



Date: 13.JAN.2023 13:50:28



Date: 13.JAN.2023 13:57:07

Date: 13.JAN.2023 14:06:14

Date: 13.JAN.2023 14:09:12

***** END OF REPORT *****