

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202211196F02

TEST Report

Applicant: Shenzhen RIEEZO Intelligent Technology Co,. Ltd

Address of Applicant: 77-1 Jianshe Road, No.22 Community, Pingdi Street,

Longgang District, Shenzhen

Manufacturer: Shenzhen RIEEZO Intelligent Technology Co,. Ltd

Address of 77-1 Jianshe Road, No.22 Community, Pingdi Street,

Manufacturer: Longgang District, Shenzhen

Equipment Under Test (EUT)

Product Name: Smart watch

Model No.: T3 PROMAX

Series model: HK20, HK22, HK23, HK33, HK43, HK46PRO, T16,

T17, X8, WS8PLUS, WS19, Q13, QX7, QW33, Y2

Trade Mark: N/A

FCC ID: 2A9GS-T3PROMAX

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Nov.08,2022

Date of Test: Nov.08,2022~Nov.19,2022

Date of report issued: Nov.19,2022

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Nov.19,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Nov.19,2022
	Project Engineer	_	
Check By:	Bruce Zhu	Date:	Nov.19,2022
	Reviewer		
Approved By :	Kein Yang	Date:	Nov.19,2022
	Authorized Signature		

2. Contents

			Page
1.	. VEF	RSION	2
2.		NTENTS	
3.		ST SUMMARY	
4.	. GEN	NERAL INFORMATION	5
	4.1.	GENERAL DESCRIPTION OF EUT	5
	4.2.	TEST MODE	
	4.3.	DESCRIPTION OF SUPPORT UNITS	7
	4.4.	DEVIATION FROM STANDARDS	
	4.5.	ABNORMALITIES FROM STANDARD CONDITIONS	7
	4.6.	TEST FACILITY	7
	4.7.	TEST LOCATION	
	4.8.	ADDITIONAL INSTRUCTIONS	7
5.	. TES	ST INSTRUMENTS LIST	8
6.	. TES	ST RESULTS AND MEASUREMENT DATA	9
	6.1.	CONDUCTED EMISSIONS	9
	6.2.	CONDUCTED PEAK OUTPUT POWER	
	6.3.	20DB EMISSION BANDWIDTH	13
	6.4.	FREQUENCIES SEPARATION	17
	6.5.	HOPPING CHANNEL NUMBER	19
	6.6.	DWELL TIME	21
	6.7.	BAND EDGE	26
	6.7.	1. Conducted Emission Method	26
	6.7.	2. Radiated Emission Method	30
	6.8.	Spurious Emission	
		1. Conducted Emission Method	
	6.8.	2. Radiated Emission Method	37
7.	. TES	ST SETUP PHOTO	45
8.	. EU1	CONSTRUCTIONAL DETAILS	45

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)(iii)	Pass
Dwell Time	15.247 (a)(1)(iii)	Pass
Radiated Emission	15.205/15.209	Pass
Band Edge	15.247(d)	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

<u>-</u>	,
Product Name:	Smart watch
Model No.:	T3 PROMAX
Series model:	HK20, HK22, HK23, HK33, HK43, HK46PRO, T16, T17, X8, WS8PLUS, WS19, Q13, QX7, QW33 Y2
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK, π/4-DQPSK, 8-DPSK
Antenna Type:	Wire Antenna
Antenna gain:	2.0dBi
Power Supply:	DC 3.7V/250mAh Form Battery and DC 5V From External Circuit
Adapter Information	Mode: CD122
(Auxiliary test provided by the lab):	Input: AC100-240V, 50/60Hz, 500mA
	Output: DC 5V, 2A

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

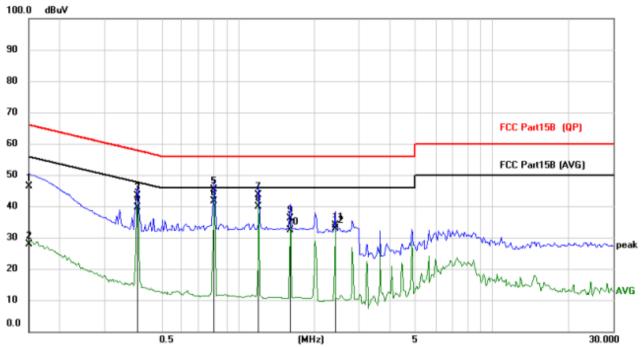
5. Test Instruments list

	rest mstrume		T T	1		1
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May 23 2022	May 22 2023
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May 23 2022	May 22 2023
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	May 23 2022	May 22 2023
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	May 23 2022	May 22 2023
13	low frequency Amplifier Sonoma Instrui		310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

Shenzhen HTT Technology Co.,Ltd.

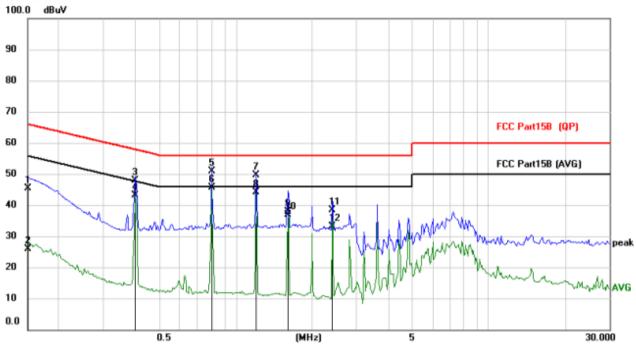
6. Test results and Measurement Data

6.1. Conducted Emissions

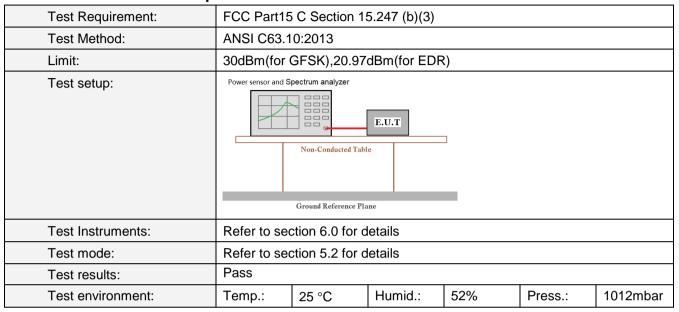

	<u> </u>						
Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Test Frequency Range:	150KHz to 30MHz						
Class / Severity:	Class B	Class B					
Receiver setup:	RBW=9KHz, VBW=30KHz, S	weep time=auto					
Limit:	Erogueney rongo (MHz)	Limit	(dBuV)				
	Frequency range (MHz)	rage					
	0.15-0.5	66 to 56*		o 46*			
	0.5-5	56		16			
	5-30 * Decreases with the logarithm	60	5	50			
Test setup:	Reference Plane						
Test procedure:	Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm						
	termination. (Please refer to photographs). 3. Both sides of A.C. line are interference. In order to fin positions of equipment and according to ANSI C63.10:	checked for maximured the maximum emised all of the interface candidated and conducted in	m conducted sion, the rela ables must b	d ative oe changed			
Test Instruments:	Refer to section 6.0 for details	S					
Test mode:	Refer to section 5.2 for details	S					
Test environment:	Temp.: 25 °C Hur	mid.: 52%	Press.:	1012mbar			
Test voltage:	AC 120V, 60Hz						
Test results:	Pass						

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



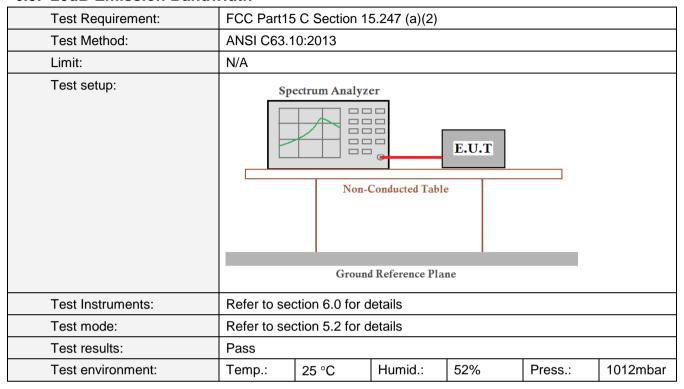
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	0.1500	35.93	10.37	46.30	66.00	-19.70	QP
2	0.1500	17.46	10.37	27.83	56.00	-28.17	AVG
3	0.4035	32.90	10.43	43.33	57.78	-14.45	QP
4	0.4035	29.16	10.43	39.59	47.78	-8.19	AVG
5	0.8052	34.60	10.80	45.40	56.00	-10.60	QP
6 *	0.8052	30.93	10.80	41.73	46.00	-4.27	AVG
7	1.2069	32.85	10.88	43.73	56.00	-12.27	QP
8	1.2069	29.12	10.88	40.00	46.00	-6.00	AVG
9	1.6086	25.34	10.85	36.19	56.00	-19.81	QP
10	1.6086	21.64	10.85	32.49	46.00	-13.51	AVG
11	2.4159	23.01	10.83	33.84	56.00	-22.16	QP
12	2.4159	22.10	10.83	32.93	46.00	-13.07	AVG


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1500	34.99	10.27	45.26	66.00	-20.74	QP
2		0.1500	15.68	10.27	25.95	56.00	-30.05	AVG
3		0.3996	37.68	10.30	47.98	57.86	-9.88	QP
4		0.3996	32.81	10.30	43.11	47.86	-4.75	AVG
5		0.8013	40.18	10.70	50.88	56.00	-5.12	QP
6	*	0.8013	34.99	10.70	45.69	46.00	-0.31	AVG
7		1.2030	38.76	10.80	49.56	56.00	-6.44	QP
8		1.2030	33.24	10.80	44.04	46.00	-1.96	AVG
9		1.6086	27.19	10.81	38.00	56.00	-18.00	QP
10		1.6086	26.05	10.81	36.86	46.00	-9.14	AVG
11		2.4081	27.66	10.83	38.49	56.00	-17.51	QP
12		2.4081	22.42	10.83	33.25	46.00	-12.75	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

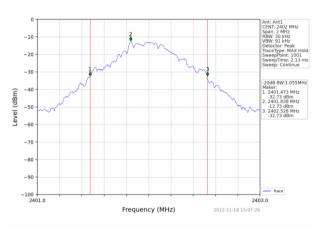
6.2. Conducted Peak Output Power



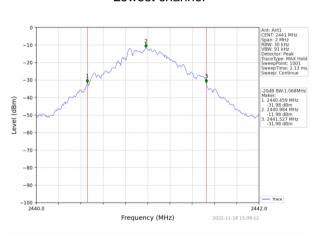
Measurement Data

Mode	Test channel	Peak Output Power (dBm)	Limit (dBm)	Result
	Lowest	-10.38		
GFSK	Middle	-9.74	30.00	Pass
	Highest	-8.88		
	Lowest	-9.53		
π/4-DQPSK	Middle	-8.89	20.97	Pass
	Highest	-8.02		
	Lowest	-9.18		
8-DPSK	Middle	-8.49	20.97	Pass
	Highest	-7.63		

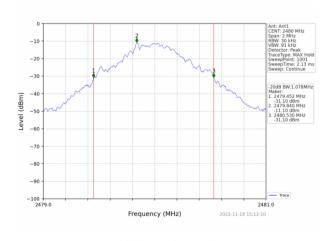
6.3. 20dB Emission Bandwidth


Measurement Data

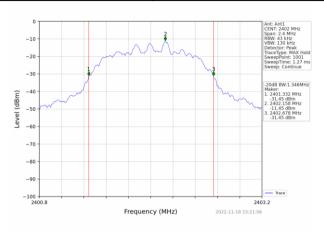
Mode	Test channel	20dB Emission Bandwidth (MHz)	Result
	Lowest	1.055	
GFSK	Middle	1.068	Pass
	Highest	1.078	
	Lowest	1.346	
π/4-DQPSK	Middle	1.354	Pass
	Highest	1.394	
	Lowest	1.325	
8-DPSK	Middle	1.318	Pass
	Highest	1.307	

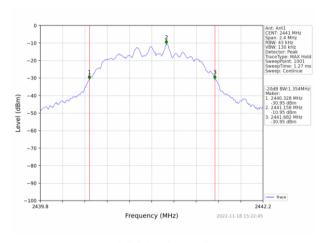


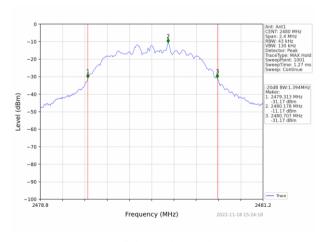
Test plot as follows:


Test mode: GFSK mode

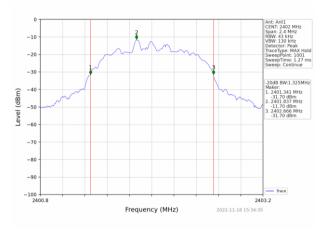
Lowest channel

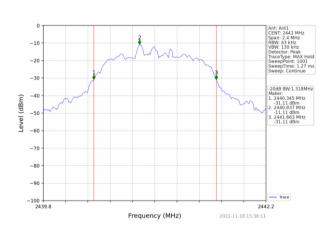

Middle channel

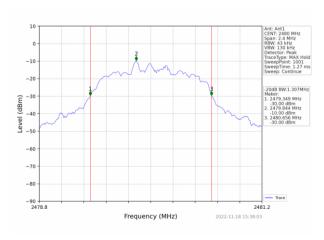

Highest channel


Test mode: $\pi/4$ -DQPSK mode

Lowest channel


Middle channel


Highest channel


Test mode: 8-DPSK mode

Lowest channel

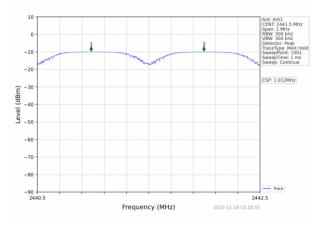
Middle channel

Highest channel

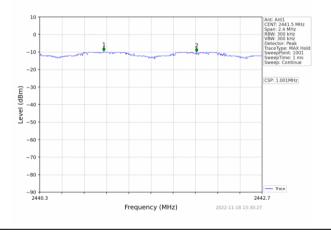
6.4. Frequencies Separation

Test Requirement:	FCC Part1	5 C Section 1	5.247 (a)(1)			
Test Method:	ANSI C63.		- (/(/			
Receiver setup:		KHz, VBW=30	00KHz, detec	tor=Peak		
Limit:		B bandwidth 〈: 0.025MH	lz or 2/3 of	the 20dB b	oandwidth (v	whichever is
Test setup:	Sp					
Test Instruments:	Refer to se	ction 6.0 for o	details			
Test mode:	Refer to se	ction 5.2 for o	details			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

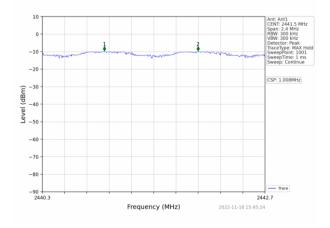
Measurement Data


Wieasurement Date	a			
Mode	Test channel	Frequencies Separation (MHz)	Limit (kHz)	Result
			25KHz or	
GFSK	Middle	1.012	2/3*20dB	Pass
			bandwidth	
			25KHz or	
π/4-DQPSK	Middle	1.001	2/3*20dB	Pass
			bandwidth	
			25KHz or	
8-DPSK	Middle	1.008	2/3*20dB	Pass
			bandwidth	

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle



Test plot as follows:


Modulation mode: GFSK

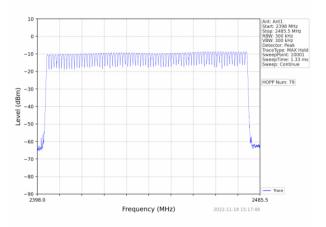
Test mode: $\pi/4$ -DQPSK

Modulation mode: 8-DPSK

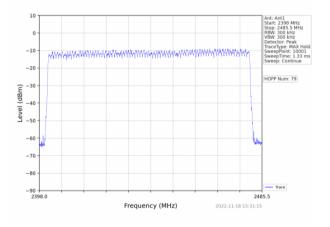
Shenzhen HTT Technology Co.,Ltd.

6.5. Hopping Channel Number

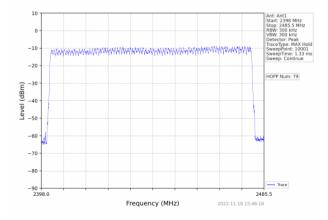
Test Requirement:	FCC Part15	C Section 1	5.247 (a)(1)(ii	ii)		
Test Method:	ANSI C63.1	0:2013				
Receiver setup:	RBW=100k Detector=P	Hz, VBW=30 eak	0kHz, Freque	ency range=2	2400MHz-248	3.5MHz,
Limit:	15 channels	3				
Test setup:	Spe	Non-Co		C.U.T		
		Ground R	deference Plane			
Test Instruments:	Refer to sec	ction 6.0 for d	etails			
Test mode:	Refer to sec	ction 5.2 for d	etails			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar


Measurement Data:

Mode	Hopping channel numbers	Limit	Result
GFSK	79		Pass
π/4-DQPSK	79	≥15	Pass
8-DPSK	79		Pass



Test plot as follows:


Test mode: GFSK

Test mode: $\pi/4$ -DQPSK

Test mode: 8-DPSK

Shenzhen HTT Technology Co.,Ltd.

6.6. Dwell Time

Test Requirement:	FCC Part15	C Section 15	5.247 (a)(1)(i	ii)		
Test Method:	ANSI C63.1	0:2013				
Receiver setup:	RBW=1MH	z, VBW=1MH	Iz, Span=0Hz	z, Detector=P	Peak	
Limit:	0.4 Second					
Test setup:	Sp					
Test Instruments:	Refer to see	ction 6.0 for d	etails			
Test mode:	Refer to see	ction 5.2 for d	etails			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

Measurement Data

GFSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	DH1	0.380	121.600	400	Pass
Hopping	DH3	1.636	276.484	400	Pass
Hopping	DH5	2.892	294.984	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 ÷ 2 ÷ 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) x (1600 \div 6 \div 79) x31.6 Second for DH5, 2-DH5, 3-DH5

$\pi/4$ -DOPSK mode:

Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	2DH1	0.388	122.996	400	Pass
Hopping	2DH3	1.642	257.794	400	Pass
Hopping	2DH5	2.890	300.560	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

Dwell time=Pulse time (ms) x (1600 \div 2 \div 79) x31.6 Second for DH1, 2-DH1, 3-DH1

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

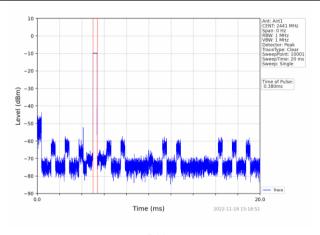
Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

8-DPSK mode:

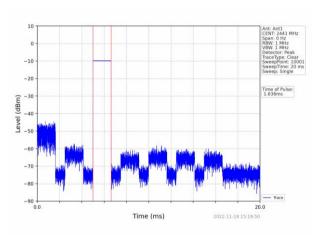
Frequency	Packet	Pulse time (ms)	Dwell time(ms)	Limit(ms)	Result
Hopping	3DH1	0.390	124.410	400	Pass
Hopping	3DH3	1.648	258.736	400	Pass
Hopping	3DH5	2.892	315.228	400	Pass

Note:We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.

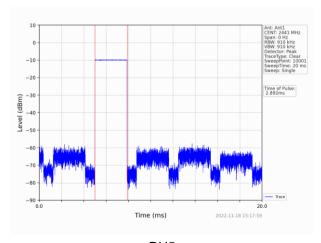
Dwell time=Pulse time (ms) \times (1600 \div 2 \div 79) \times 31.6 Second for DH1, 2-DH1, 3-DH1

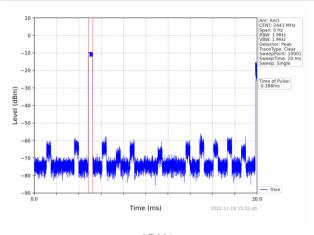

Dwell time=Pulse time (ms) \times (1600 \div 4 \div 79) \times 31.6 Second for DH3, 2-DH3, 3-DH3

Dwell time=Pulse time (ms) \times (1600 \div 6 \div 79) \times 31.6 Second for DH5, 2-DH5, 3-DH5

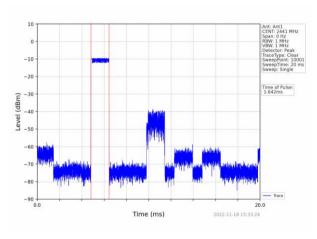


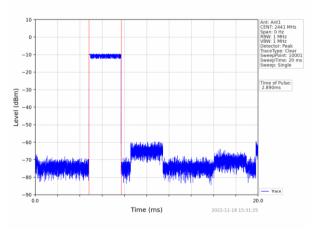
Test plot as follows:


GFSK mode

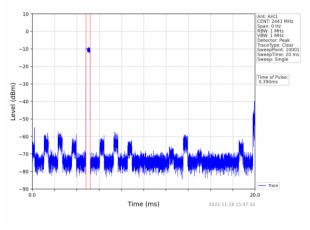


DH3

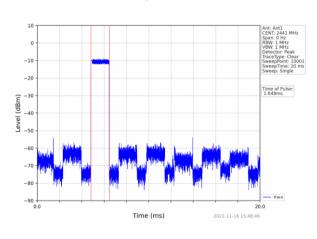


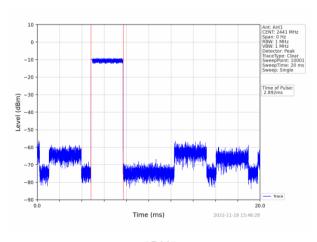

π/4-DQPSK mode

2DH1



2DH3

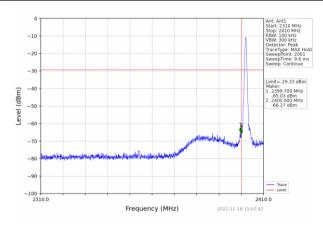


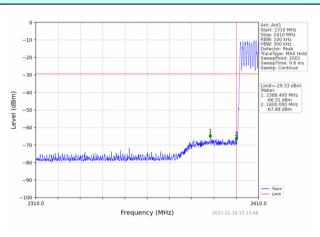

8-DPSK mode

3DH1

3DH3

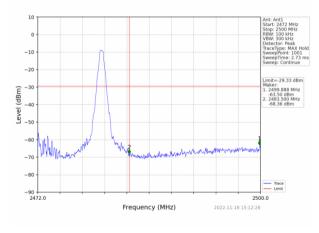
6.7. Band Edge

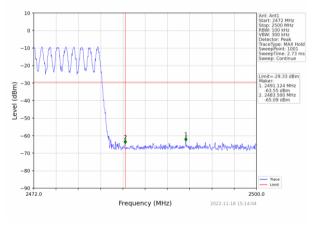

6.7.1. Conducted Emission Method


Test Requirement: FCC Part15 C Section 15.247 (d) Test Method: Receiver setup: RBW=100kHz, VBW=300kHz, Detector=Peak Limit: In any 100 kHz bandwidth outside the frequency spectrum intentional radiator is operating, the raproduced by the intentional radiator shall be at least 100 kHz bandwidth within the band that contains desired power, based on either an RF conducte measurement. Test setup: Spectrum Analyzer E.U.T	dio frequency peast 20 dB belo the highest le	oower that is ow that in the
Receiver setup: RBW=100kHz, VBW=300kHz, Detector=Peak Limit: In any 100 kHz bandwidth outside the frequency spectrum intentional radiator is operating, the raproduced by the intentional radiator shall be at least 100 kHz bandwidth within the band that contains desired power, based on either an RF conducte measurement. Test setup: Spectrum Analyzer Spectrum Analyzer	dio frequency peast 20 dB belo the highest le	oower that is ow that in the
Limit: In any 100 kHz bandwidth outside the frequency spectrum intentional radiator is operating, the raproduced by the intentional radiator shall be at least le	dio frequency peast 20 dB belo the highest le	oower that is ow that in the
spectrum intentional radiator is operating, the rate produced by the intentional radiator shall be at least 100 kHz bandwidth within the band that contains desired power, based on either an RF conducte measurement. Test setup: Spectrum Analyzer	dio frequency peast 20 dB belo the highest le	oower that is ow that in the
Non-Conducted Table Ground Reference Plane		
Test Instruments: Refer to section 6.0 for details		
Test mode: Refer to section 5.2 for details		
Test results: Pass		
Test environment: Temp.: 25 °C Humid.: 52%	Press.:	1012mbar

Test plot as follows: GFSK Mode:

Test channel Lowest channel




No-hopping mode

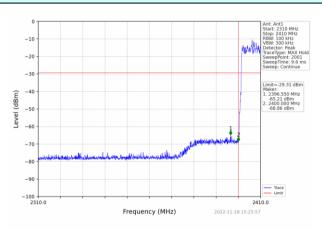
Hopping mode

Test channel:

Highest channel

No-hopping mode

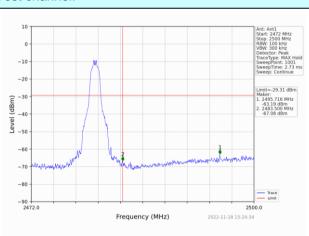
Hopping mode

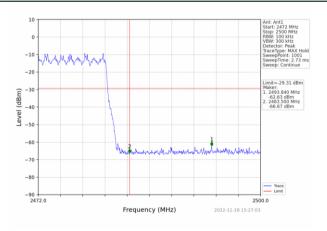


π/4-DQPSK Mode:

Test channel

| Ant. Ant. | Start 2310 MHz | Start 2310 MHz | Store 2410 MHz | Store 241

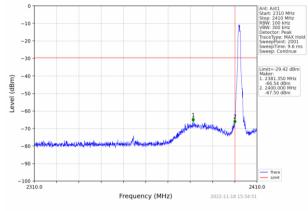

Lowest channel

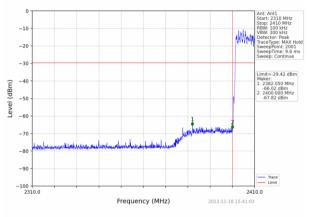

No-hopping mode

Hopping mode

Test channel:

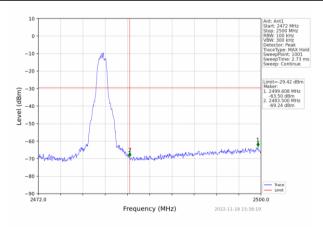
Highest channel

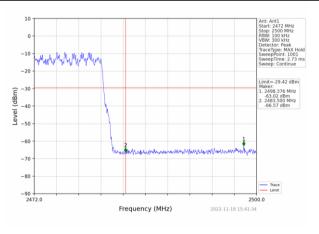

No-hopping mode


Hopping mode

8-DPSK Mode:

Test channel: Lowest channel Ant: Ant. Start: 2310 Mrtz Start: 2310 Mrtz





No-hopping mode

Hopping mode

Test channel: Highest channel

No-hopping mode

Hopping mode

6.7.2. Radiated Emission Method

7.7.2. Radiated Linission Method										
Test Requirement:	FCC Part15 C	Section 15.2	09 and 15.	205						
Test Method:	ANSI C63.10:	2013								
Test Frequency Range	All of the rest 2500MHz) dat			only the w	orst band's (2310MHz to				
Test site:	Measurement	Distance: 3m								
Receiver setup:	Frequency	Detecto	· RB\	W VBV	N Re	emark				
·	Above 1GHz	Peak Peak	1MH 1MH			k Value age Value				
Limit:	Frequ	uency		BuV/m @3r		emark				
Limit		: 1GHz	,	54.00	Avera	age Value				
	7 1.5 5 7 5			74.00	Pea	k Value				
Test setup:	Tum Tables <150cm >4	—————————————————————————————————————		ntenna- 4m >- Preamplifier						
Test Procedure:	4 71 717		3710 327							
Test i loccuure.	determine to antenna, we tower. 3. The antenna ground to compare the following the fo	a 3 meter came the position of	ber. The tall the highesters away from the from the maximum solarizations assion, the Estuned from the EUT in page could be otherwise and one by otherwise.	able was rotated radiation. The tradiation of the intervalue of the of the antervalue of the existing personal of the existing persona	ference-recei ariable-height of four meters efield strength nna are set to ranged to its v n 1 meter to 4 o 360 degree ect Function a was 10dB low nd the peak v ins that did no eak, quasi-pea	ving antenna above the and Both of make the worst case at meters are to find the alues of the othave 10dB ak or				
Test Instruments:	Refer to section									
Test mode:	Refer to section	on 5.2 for deta	ils							
Test results:	Pass		1			T				
Test environment:	Temp.: 2	25 °C H	umid.:	52%	Press.:	1012mbar				

Shenzhen HTT Technology Co.,Ltd.

Measurement Data

Remark: GFSK, Pi/4 DQPSK,8-DPSK all have been tested, only worse case GFSK is reported.

Operation Mode: GFSK TX Low channel(2402MHz)

Horizontal (Worst case)

1 10112011	iai (VVOIOLO	u00)						
Fraguesa	Motor Dooding	Antenna		Preamp	Emission Level	Limits	Marain	
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
(1411 12)	(αΒμν)	(05/111)	(45)	(GD)	(аБру/пі)	(аБру/пі)	(GB)	
2390	58.35	26.20	5.72	33.30	56.97	74.00	-17.03	peak
	00.00	20.20	0.72	00.00	00.01	7 1.00	17.00	pourt
2390	45.31	26.20	5.72	33.30	43.93	54.00	-10.07	AVG
2000	10.01	20.20	0.72	00.00	+0.50	04.00	10.07	/ / / /

Vertical:

Fraguenay	Meter Reading	Antenna		Preamp	Emission Level	Limits	Morgin	
Frequency	Meter Reading	Factor	Cable Loss	Factor	Ellission Level	LIIIIIIS	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
2390	57.68	26.20	5.72	33.30	56.30	74.00	-17.70	peak
2390	45.11	26.20	5.72	33.30	43.73	54.00	-10.27	AVG

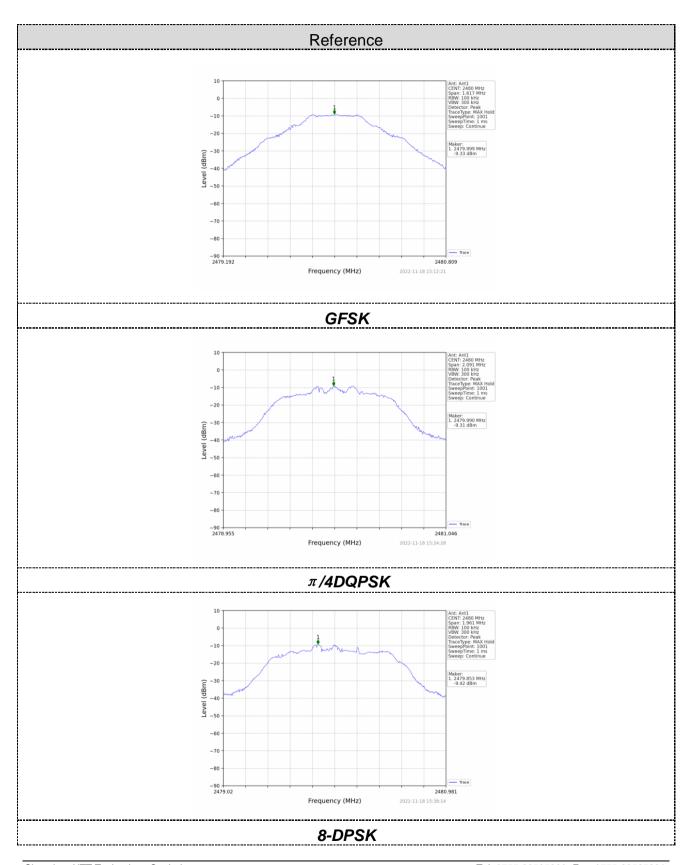
Operation Mode: GFSK TX High channel (2480MHz)

Horizontal (Worst case)

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.32	28.60	6.97	32.70	58.19	74.00	-15.81	peak
2483.5	41.26	28.60	6.97	32.70	44.13	54.00	-9.87	AVG

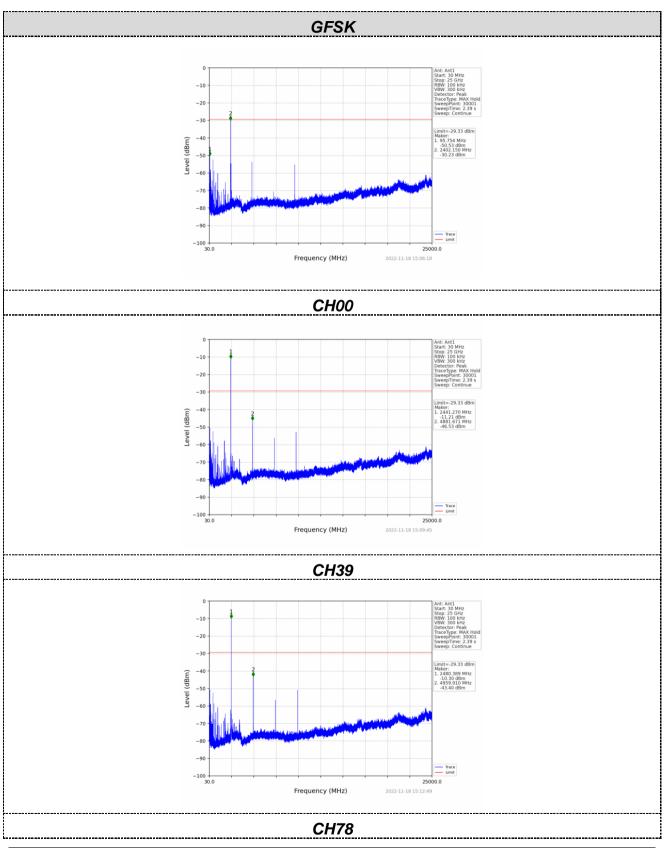
Vertical:

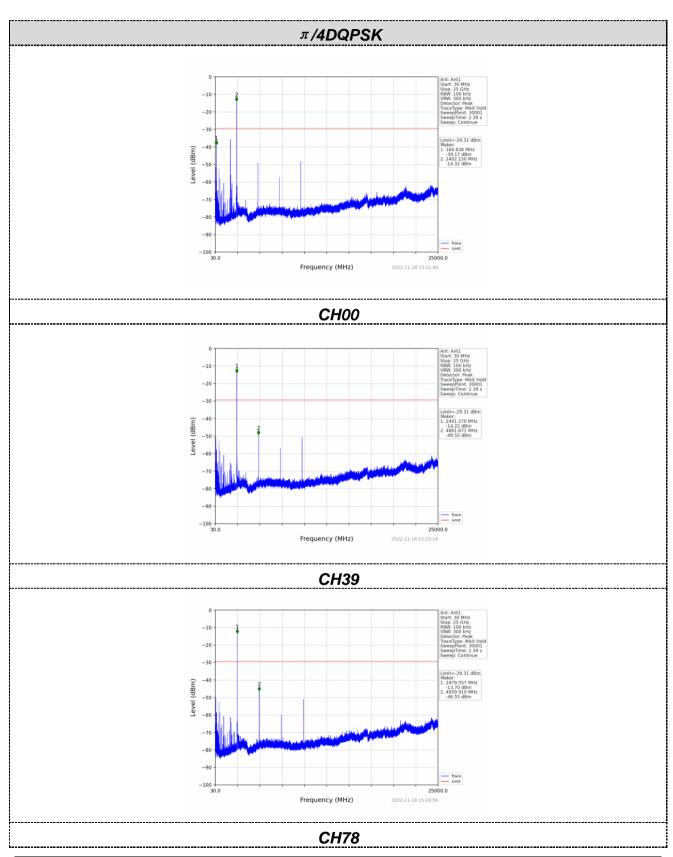
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	54.38	28.60	6.97	32.70	57.25	74.00	-16.75	peak
2483.5	42.51	28.60	6.97	32.70	45.38	54.00	-8.62	AVG

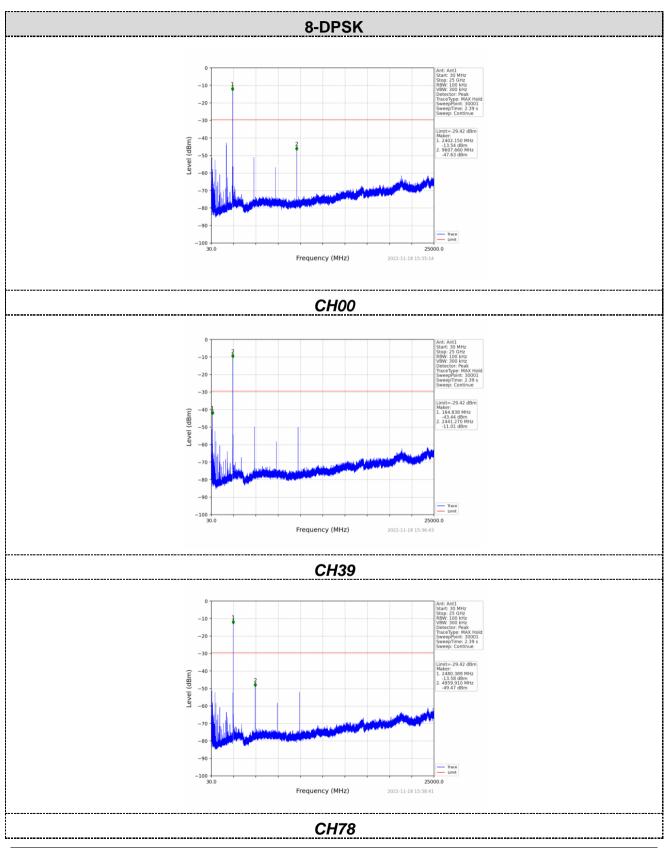


6.8. Spurious Emission

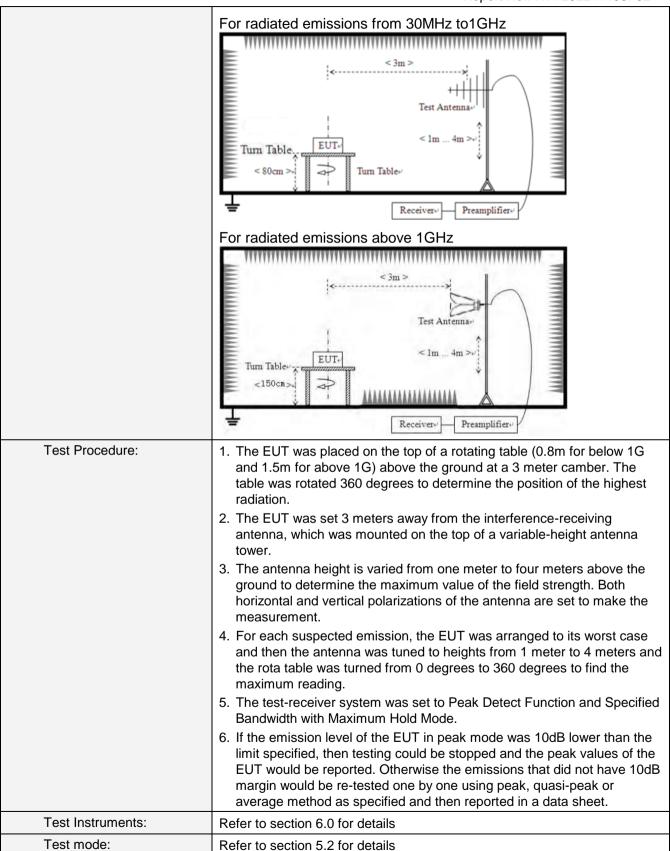
6.8.1. Conducted Emission Method


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (d)								
Test Method:	ANSI C63.1	ANSI C63.10:2013								
Limit:	spectrum ir produced b 100 kHz ba desired pov	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.								
Test setup:	Sp									
Test Instruments:	Refer to se	ction 6.0 for o	details							
Test mode:	Refer to section 5.2 for details									
Test results:	Pass									
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar				


Shenzhen HTT Technology Co.,Ltd.


Shenzhen HTT Technology Co.,Ltd.

Shenzhen HTT Technology Co.,Ltd.


Shenzhen HTT Technology Co.,Ltd.

6.8.2. Radiated Emission Method

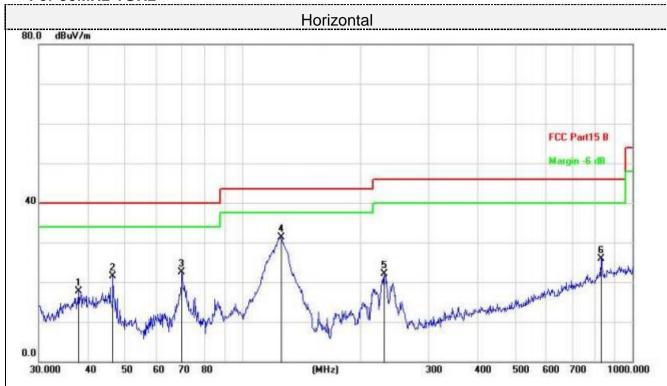
Test Requirement:	FCC Part15 C Section	on 15	5.209						
Test Method:	ANSI C63.10:2013 9kHz to 25GHz								
Test Frequency Range:	9kHz to 25GHz								
Test site:	Measurement Distar	nce: 3	3m						
Receiver setup:	Frequency		Detector	RBW		V VBW		Value	
	9KHz-150KHz Quasi-peak 200Hz 600							Quasi-peak	
	150KHz-30MHz	łz	30KH	Z	Quasi-peak				
	30MHz-1GHz	ă	ıasi-peak	120K	Ήz	300KH	łz	Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	Z	Peak	
	ABOVE TOTIZ		Peak	1MF	Ηz	10Hz	<u>-</u>	Average	
Limit:	Frequency Limit (uV/m) Value Measuremen Distance								
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP		300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)		QP		30m	
	1.705MHz-30MH	Z	30	(QP		30m	
	30MHz-88MHz		100			QP			
	88MHz-216MHz	<u>'</u>	150			QP			
	216MHz-960MH	Z	200			QP		3m	
	960MHz-1GHz		500		QP			OIII	
	Above 1GHz		500		Av	erage			
	7,5000 10112		5000		F	Peak			
Test setup:	For radiated emiss	sions	from 9kH	z to 30	MH	Z			
	Turn Table EUT		< 3m >	ntenna lm					

Shenzhen HTT Technology Co.,Ltd.

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

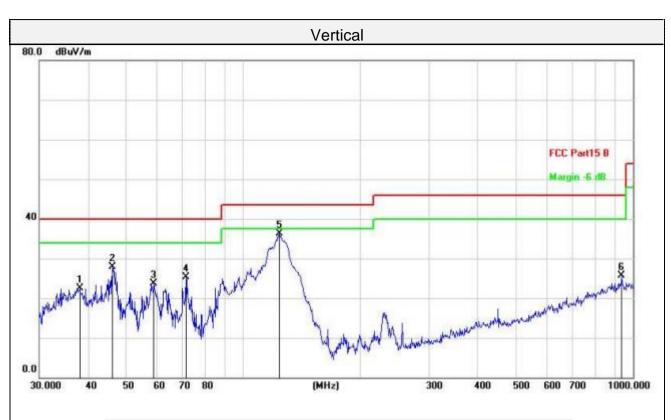
Measurement data:

Remarks:


- 1. During the test, pre-scan the GFSK, $\pi/4$ -DQPSK, 8-DPSK modulation, and found the GFSK modulation which it is worse case.
- 2. Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.


For 30MHz-1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		37.9450	35.31	-17.70	17.61	40.00	-22.39	QP
2		46.5030	38.75	-17.20	21.55	40.00	-18.45	QP
3		69.8449	42.49	-19.94	22.55	40.00	-17.45	QP
4	*	125.8864	50.37	-19.15	31.22	43.50	-12.28	QP
5		230.9068	41.44	-19.30	22.14	46.00	-23.86	QP
6		830.4002	32.17	-6.24	25.93	46.00	-20.07	QP

Final Level =Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		38.0783	40.26	-17.68	22.58	40.00	-17.42	QP
2		46.1779	45.17	-17.36	27.81	40.00	-12.19	QP
3		59.0251	41.80	-18.03	23.77	40.00	-16.23	QP
4		71.3300	45.54	-20.24	25.30	40.00	-14.70	QP
5	*	123.6985	55.42	-19.06	36.36	43.50	-7.14	QP
6		935.5463	30.75	-4.96	25.79	46.00	-20.21	QP

Final Level =Receiver Read level + Correct Factor

For 1GHz to 25GHz

Remark: For test above 1GHz GFSK,Pi/4 DQPSK and 8-DPSK were test at Low, Middle, and

High

channel; only the worst result of GFSK was reported as below:

CH Low (2402MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4804	50.15	31.40	8.18	31.50	58.23	74.00	-15.77	peak
4804	36.45	31.40	8.18	31.50	44.53	54.00	-9.47	AVG
7206	44.52	35.80	10.83	31.40	59.75	74.00	-14.25	peak
7206	29.02	35.80	10.83	31.40	44.25	54.00	-9.75	AVG
				-				

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier

Vertical:

		Antenna		Preamp							
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin				
(N.41.1)	(15.)()	(10/)	(10)	(10)	(15.) (1.)	(ID)//)	(ID)	Detector			
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type			
4804	50.42	31.40	8.18	31.50	58.50	74.00	-15.50	peak			
4804	36.22	31.40	8.18	31.50	44.30	54.00	-9.70	AVG			
7206	43.31	35.80	10.83	31.40	58.54	74.00	-15.46	peak			
7206	29.24	35.80	10.83	31.40	44.47	54.00	-9.53	AVG			
Remark: Facto	Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.										

CH Middle (2441MHz)

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4882	50.25	31.40	9.17	32.10	58.72	74.00	-15.28	peak
4882	37.45	31.40	9.17	32.10	45.92	54.00	-8.08	AVG
7323	43.24	35.80	10.83	31.40	58.47	74.00	-15.53	peak
7323	29.11	35.80	10.83	31.40	44.34	54.00	-9.66	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4882	50.72	31.40	9.17	32.10	59.19	74.00	-14.81	peak
4882	36.15	31.40	9.17	32.10	44.62	54.00	-9.38	AVG
7323	41.82	35.80	10.83	31.40	57.05	74.00	-16.95	peak
7323	27.88	35.80	10.83	31.40	43.11	54.00	-10.89	AVG

CH High (2480MHz)

Horizontal:

		A m4 a m m a	1	Draama			1	1
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4960	50.33	31.40	9.17	32.10	58.80	74.00	-15.20	peak
4960	36.45	31.40	9.17	32.10	44.92	54.00	-9.08	AVG
7440	43.36	35.80	10.83	31.40	58.59	74.00	-15.41	peak
7440	28.20	35.80	10.83	31.40	43.43	54.00	-10.57	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4960	50.25	31.40	9.17	32.10	58.72	74.00	-15.28	peak
4960	36.34	31.40	9.17	32.10	44.81	54.00	-9.19	AVG
7440	42.12	35.80	10.83	31.40	57.35	74.00	-16.65	peak
7440	29.34	35.80	10.83	31.40	44.57	54.00	-9.43	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

-----End-----