

EMC Bayswater Pty Ltd

18/88 Merrindale Drive Croydon South, Victoria, 3136, Australia

Telephone: +61 3 9761 5888 Facsimile: +61 3 8761 6547

Email: sales@emcbayswater.com.au

ABN: 49 112 221 333

RADIO COMPLIANCE REPORT Certification Test Report In accordance with: CFR47 FCC Part 15, Subpart C, 15.247

CR Mining

T1074

Portable Reader

FCC ID: 2A9FA-07-0025-915-A

REPORT: E2211-1609D-2 DATE: April, 2023

Accreditation Number: 18553

Accredited for compliance with ISO/IEC 17025 - Testing

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing and calibration reports. This document may not be reproduced except in full without approval from EMC Bayswater, with the exception of the certificate on page 2.

Certificate of Compliance Certification Compliance Report EMC Bayswater Test Report: E2211-1609D-2 Issue Date: April, 2023

Test Sample(s): Portable Reader

 Model No:
 T1074

 Serial No:
 2022-081

FCC ID: 2A9FA-07-0025-915-A

Customer Details: Mr Julien Lopez

CR Mining

3/271 Treasure Road North

Welshpool WA 6106 Australia

Phone No: +61 (08) 6253 3913

e-mail: Julien.Lopez@crmining.com

Test Specification: CFR47 FCC Part 15, Subpart C, 15.247

Results Summary: 15.203 - Antenna requirement Complied

15.247 (a)(2) - 6dB BandwidthComplied15.247 (b)(3) - Maximum Output PowerComplied15.247 (d) - Out-of-Band Emissions - - 100kHz, -20dBcComplied15.247 (d) - Emissions on the Band edgeComplied

15.247 (d), 15.209 - Radiated emissions in Restricted bands
15.247 (e) - Power Spectral Density
Complied
15.247 (i) - Radio frequency hazard
15.109 - Radiated Emissions (Receive Mode)
Complied
15.111 - Antenna power conduction limits for receivers
Complied

Test Date(s): 19th of December, 2022 to 3rd of February, 2023

Test House EMC Bayswater Pty Ltd (Issued By): 18/88 Merrindale Drive

Croydon South Victoria 3136 Australia

FCC Accredited Test Firm Registration number: 527798 FCC Accredited Test Firm Designation number: AU0004

 Phone No:
 +61 3 9761 5888
 e-mail:
 sales@emcbayswater.com.au

 Fax No:
 +61 3 8761 6547
 Web:
 www.emcbayswater.com.au/

This is to certify that the necessary measurements were made by EMC Bayswater Pty Ltd, and that the CR Mining, T1074, Portable Reader, has been tested in accordance with requirements contained in the appropriate commission regulations..

Prepared & tested by:

Approved by:

21/04/2023 10:46

Adnan Zaman (EMC Test Engineer)

Neville Liyanapatabendige (Manager)

Date

Radio Compliance Report for CR Mining

Contents

1.	Introduction	5
2.	Test Report Revision History	5
3.	Report Information	5
4.	Summary of Results	6
5.	Product Sample Details	7 8 8 8 8
6.	Test Facility & Equipment 6.1. Test Facility 6.2. Test Equipment	8
7.	Referenced Standards	9
8.	Referenced Documents	9
9.	9.1. Requirements	10
10.	10.1. Test Procedure 10.2. Limits 10.3. Test Results 10.3. Test Results	1 1
11.	Occupied Channel Bandwidth (99% Emission Bandwidth)1	
	11.1. Test Procedure	13 13
12.	Maximum Peak Output Power – FCC 15.247 (b)(3) 1 12.1. Test Procedure 1 12.2. Limits 1 12.3. Test Results 1	15 15
13.	Radiated emissions in Restricted bands – 15.247 (d), 15.209	17 18
14.	Out of Band emissions (100kHz, -20dBc) - FCC 15.247 (d)	

Accreditation number: 18553. The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports. This document may not be reproduced except in full without approval from EMC Bayswater, with the exception of the certificate on page 2.

	14.2.	Limits	23
	14.3.	Test Results	24
15.	Emissi	ons on the Band edge – FCC 15.247 (d)	25
	15.1.	Test Procedure	25
	15.2.	Limits	
	15.3.	Test Results	26
16.	Power	Spectral Density – FCC 15.247 (e)	
	16.1.	Test Procedure	
	16.2.	Limits	
	16.3.	Test Results	
		ed Emissions (Receive Mode)	
	17.1. 17.2.	Test Procedure	
	17.2. 17.3.	Limits Test Results	
	_		
		na power conduction limits for receivers – FCC 15.111	
	_	Test Procedure	
	18.3.	Test Results	
19.	Conclu	ısion	
		A – Test Equipment	
		B – Photographs	
• •			
App	pendix	C.1 – Measurement Graphs – 6dB Bandwidth - 15.247 (a)(2)	42
App	pendix	C.2 - Measurement Graphs - Maximum Peak Output Power - 15.247 (b)(3).	45
App	pendix	C.3 – Measurement Graphs – Band Edge - 15.247 (d)	48
App	oendix	C.4 – Measurement Graphs – Transmitter Spurious – FCC 15.247 (d), 15.20	951
App	oendix	C.5 – Measurement Graphs – Power Spectral Density – FCC 15.247 (e)	79
App	oendix	C.6 – Occupied Bandwidth (99% Emission Bandwidth)	82
Apı	pendix	C.7 – Receive Mode Emissions	85

1. Introduction

Electromagnetic Compatibility (EMC) tests were performed on a CR Mining, T1074, Portable Reader in accordance with the requirements of Title 47 of the standard CFR47 FCC Part 15, Subpart C, 15.247.

2. Test Report Revision History

None

3. Report Information

EMC Bayswater Pty Ltd reports apply only to the specific samples tested under the stated test conditions. All samples tested were in good operating condition throughout the entire test program unless otherwise stated. EMC Bayswater Pty Ltd does not in any way guarantee the later performance of the product/equipment. It is the manufacturer's responsibility to ensure that additional production units of the tested model are manufactured with identical electrical and mechanical components. EMC Bayswater Pty Ltd shall have no liability for any deductions, inference or generalisations drawn by the clients or others from EMC Bayswater Pty Ltd issued reports. This report shall not be used to claim, constitute or imply product endorsement by EMC Bayswater Pty Ltd. This report shall not be reproduced except in full (with the exception of the certificate on page 2) without the written approval of EMC Bayswater Pty Ltd. This document may be altered or revised by EMC Bayswater Pty Ltd personnel only, and shall be noted in the revision section of the document. Any alteration of this document not carried out by EMC Bayswater Pty Ltd will nullify the document.

4. Summary of Results

The EUT complied with applicable requirements of CFR47 FCC Part 15, Subpart C, 15.247. Worst-case results are tabled as follows:

FCC Part 15 sections	Test	Result	
15.203	Antenna Requirement	Complied	
15.247 (a)(2)	6dB Bandwidth	Complied by 9.6kHz	
15.247 (b)(3)	Maximum Peak Output Power	Complied by 27.7dB	
15.247 (d)	Out-of-Band Emissions – 100kHz, -20dBc	Complied by at least > 6dB	
15.247 (d)	Emissions on the Band edge	Complied by 12.8dB	
15.247 (d), 15.209	Radiated emissions in Restricted bands	Complied by 1.0dB+	
15.247 (e)	Power Spectral Density	Complied by 10.3dB	
		Complied with quasi-peak limit by 1.9dB+	
	Radiated Emissions (Receive Mode) External antenna (search mode)	Complied with peak limit by > 20dB	
4E 400	External anterma (scaron mode)	Complied with average limit by > 10dB	
15.109		Complied with quasi-peak limit by 12.9dB	
	Radiated Emissions (Receive Mode) Internal antenna (920MHz)	Complied with peak limit by > 20dB	
	miemarama (325WH2)	Complied with average limit by > 10dB	
15.111	Antenna power conduction limits for receivers – External antenna (search mode)	Complied	
	Occupied Bandwidth (99% Emission Bandwidth)	625kHz	

^{*}Refer to relevant section for statement of measurement uncertainty.

Table 1: Summary of test results

5. Product Sample Details

5.1. EUT Description

The EUT (Equipment Under Test), as supplied by the client, is described as follows:

Product:	Portable Reader				
Model No:	T1074	T1074			
Serial No:	2022-081				
Firmware:	5.0.3.9				
Software:	4.1.1.7				
Power Specifications:	Rechargeable	e batt	tery 1x 3.6V lithium NCR18650PF		
Power	AC/DC Plug	ack			
Specifications	Manufacturer	: P	OWERTRAN		
(Charger):	Model:	N	1 8931 A		
	Input:	1	00-240V 50/60Hz 0.5A		
	Output:	12VDC, 1A			
Dimensions:	104 x 105 x 275 (mm) (Length x Width x Height)				
Weight:	750g				
EUT Type:	Tested as table top.				
Transmitter	Description: Portable Reader				
Details:	Type:	User interface			
	Modulation:		FK		
Channels:		903 to 927MHz			
	Max power:	10mW			
	Antenna:	4 SMD antennas			
	FCC ID:	2A9	FA-07-0025-915-A		

(Customer supplied product information)

(Refer to photographs in Annex A & B for views of the EUT)

5.2. Product description

The EUT (Equipment Under Test) has been described by the customer as follows:

"The portable reader T1074 is a user interface for the Ground Engaging Tool IoT sensor. Powered by a rechargeable battery it is using GSFK modulation at a rate of 250 kbps for bidirectional wireless communication in the 915MHz ISM band."

(Customer supplied product description information)

The highest fundamental frequency generated or used within the EUT, or the highest frequency at which it operates as specified by the customer is 927MHz.

5.3. Support Equipment

Support	Description:	External Antenna
Equipment: 1	Manufacturer:	MobileMark
Equipment.	Model:	HD7-915RCP-BLK
	Serial number:	Not stated

5.4. Product operating modes

The customer described the product normal operation modes as the following:

- Activation/Deactivation: In which the device is acting as transceiver with the GET sensor and reference sensor.
- Search mode: used to find lost sensors installed in mining equipment, in this mode device is acting strictly as a receiver.

(Customer supplied product operating mode information)

5.5. Product operating mode for testing

Transmit Mode and Receive Mode (including Search Mode).

5.6. Configuration

The EUT was either configured by the customer or configured using the customer's instructions.

The EUT was battery powered. For transmitter testing, the EUT was configured to transmit with modulation. For receiver testing, the EUT was set to receive mode for the internal antenna. Receiver test was also performed in Search mode with an external antenna connected to the external antenna port of the EUT. The external antenna port was also tested in Search mode using conducted method.

Figure 1: Block diagram of EUT test configuration

5.7. Modifications

EMC Bayswater Pty Ltd did not modify the EUT.

6. Test Facility & Equipment

6.1. Test Facility

Tests were performed at the indoor Open Area Test Site (iOATS) at EMC Bayswater Pty Ltd, located at 18/88 Merrindale Drive, Croydon South, Victoria, 3136, Australia.

EMC Bayswater Pty Ltd FCC Test Firm registration number is 527798.

EMC Bayswater Pty Ltd FCC Test Firm Designation number is AU0004.

6.2. Test Equipment

Refer to Appendix A for the measurement instrument list.

7. Referenced Standards

CFR47 FCC Part 15, Subpart C, 15.247

CFR47 FCC Part 15, Subpart B

ANSI C63.10 - 2013

American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices

ANSI C63.4 - 2014

American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz.

FCC KDB - 558074 D01 15.247 Meas Guidance v05r02

8. Referenced Documents

Test Plan None

9. Antenna Requirement - FCC Part 15.203

9.1. Requirements

As per section 15.203 of CFR47 FCC Part 15, Subpart C, 15.247:

An intentional radiator shall be designed to ensure that no antenna other than
that furnished by the responsible party shall be used with the device. The use of
a permanently attached antenna or of an antenna that uses a unique coupling to
the intentional radiator shall be considered sufficient to comply with the provisions
of this section.

9.2. Result

The EUT uses permanent, internally attached four SMD antennas which are soldered into the PCB for default transceiver mode (Activation/Deactivation). Therefore, the EUT complied with the antenna requirements of CFR47 FCC Part 15, Subpart C, 15.247 Section 15.203. The customer confirmed that all four internal antennas are used together to improve the radiation pattern and they are not used separately.

Note: The EUT has an external antenna connector port (female BNC type). As specified by the customer, the EUT uses external antenna for search mode only and the device is acting strictly as a receiver in search mode.

10.6dB Bandwidth - FCC 15.247 (a) (2)

10.1.Test Procedure

The 6dB Bandwidth was performed in accordance with the section 11.8 of ANSI C63.10 - 2013.

6dB Bandwidth measurements were performed at a distance of 3m from the EUT, using the spectrum analyser. The worst-case transmitter orientation, measurement antenna height and polarization were used for each measurement. The spectrum analyser was tuned to the fundamental (transmit frequency) of the transmitter bottom, centre and top channels with 100kHz RBW and 300kHz VBW using the peak detector and a suitable span to allow accurate measurements whilst capturing the full intentional transmission including side lobes. The resultant bandwidth measurement was recorded.

(Refer to photographs in Annex C for views of the test configuration)

10.2.Limits

Applicable only to systems using digital modulation techniques:

Transmit operating frequency (MHz)	Minimum 6dB Bandwidth (kHz)
902 – 928	500

Table 2: 6dB Bandwidth

10.3.Test Results

6dB Bandwidth measurements are tabulated below:

(Refer to graphs in Appendix C.1)

Transmit operating frequency (MHz)	Measured 6dB Bandwidth (kHz)	Minimum 6dB Bandwidth (kHz)	Margin (kHz)	Comment
903 (Bottom)	509.6	500	+9.6	Complied
916 (Middle)	509.6	500	+9.6	Complied
927 (Top)	509.6	500	+9.6	Complied

Table 3: Results for 6dB Bandwidth

The measurement uncertainty was calculated as follows:

Measurement Parameter	Calculated measurement uncertainty
Operating Frequency	±10.5kHz
Bandwidth	±14.96kHz

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions		
Temperature:	19.7 to 20.2°C	
Humidity:	44 to 45%	
Atmospheric pressure:	1021.7 to 1022.9hPa	

Table 4: Climatic conditions

Notes: The minimum required 500kHz 6dB Bandwidth requirements were

satisfied by at least 9.6kHz.

The transmitter was continuously transmitting in modulated transmit

mode.

Assessment: The EUT complied with the 6dB Bandwidth requirements of CFR47

FCC Part 15, Subpart C, 15.247 (a)(2).

11. Occupied Channel Bandwidth (99% Emission Bandwidth)

11.1.Test Procedure

The 99% emission Bandwidth was performed in accordance with the section 6.9.3 of ANSI C63.10 - 2013.

The EUT was placed on a polystyrene support at a height of 0.8m above the ground reference plane. The measuring antenna was located at a distance of 3m from the EUT, using the spectrum analyser. The transmitter was operated at its maximum carrier power. The worst-case transmitter orientation, measurement antenna polarization were used for each measurement. The spectrum analyzer centre frequency was tuned to the fundamental (transmit frequency) of the transmitter with the span of the analyzer was set to capture all products of the modulation process, including the emission skirts. The resolution bandwidth (RBW) was set to 1% to 5% of the occupied bandwidth and video bandwidth (VBW) was set to three times the RBW.

A peak detector, maxhold function (worst case) was used to measure the occupied bandwidth, using the built-in 99% occupied bandwidth measurement function of the receiver. The resultant bandwidth measurement was recorded.

(Refer to photographs in Annex C for views of the test configuration)

11.2.Requirements

No limits are defined in CFR47 FCC Part 15, Subpart C, 15.247.

11.3.Test Results

Occupied Bandwidth measurements are tabulated below:

(Refer to graph in Appendix C.6)

Transmit Operating Frequency (MHz)	99%BW Lower Frequency (MHz)	99%BW Upper Frequency (MHz)	Occupied Channel Bandwidth (kHz)
903 (Bottom Channel)	902.673	903.298	625.0
916 (Middle Channel)	915.673	916.288	615.0
927 (Top Channel)	926.673	927.269	596.0

Table 5: Occupied Bandwidth

The measurement uncertainty was calculated as follows:

Measurement Parameter	Calculated measurement uncertainty
Operating Frequency	±10.5kHz
Bandwidth	±14.96kHz

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions		
Temperature:	19.7 to 20.2°C	
Humidity:	44 to 45%	
Atmospheric pressure:	1021.7 to 1022.9hPa	

Table 6: Climatic conditions

Notes: The transmitter was tested with modulation applied.

Assessment: The measured Occupied bandwidth (99% Emission Bandwidth) is

625 kHz (informative only).

12. Maximum Peak Output Power – FCC 15.247 (b)(3)

12.1.Test Procedure

The Maximum Peak Output Power measurements were performed in accordance with ANSI C63.10 - 2013.

Radiated Emissions were measured 3 metres away from the EUT in the iOATS (indoor Open Area Test Site) facility, which is an ANSI C63.4 compliant semi-anechoic chamber with ground plane. The EUT was placed on a non-conductive support at a height of 0.8m above the ground plane.

For both horizontal and vertical antenna polarizations, the peak detector was set to MAX-HOLD and the range selected continuously scanned with 1MHz RBW and 3MHz VBW. The antenna height was varied from 1 to 4 metres using the antenna bore-sighting technique and the turntable slowly rotated. The EUT was orientated in each of the X, Y and Z-axis, in-turn, to find the worst case emissions. The maximum emissions were recorded.

Plots of the accumulated measurement data for both horizontal and vertical antenna polarizations, including all transducer and other measuring system correction factors were produced using commercially available compliant software (as listed in the test equipment list of this report)

The EUT was tested on the top, middle and bottom channels.

(Refer to photographs in Annex C for views of the test configuration)

12.2.Limits

For systems using digital modulation techniques:

Transmit operating frequency (MHz)	Peak Power (W)	Peak Power (dBm)	e.i.r.p (W)	e.i.r.p (dBm)
902 – 928	1	30	4	36

Table 7: Limits – Transmitter maximum peak output power

12.3.Test Results

The worst-case maximum output power measurements are tabulated below:

(Refer to graphs in Appendix C.2)

Channel	Frequency (MHz)	Measured E-Field Peak (dBμV/m)	e.i.r.p (dBm)	Limit (dBm)	Margin (dB)	Result
Bottom	903.141	103.5	+8.3	36.0	-27.7*	Complied
Middle	915.795	103.4	+8.2	36.0	-27.8	Complied
Тор	926.801	101.7	+6.5	36.0	-29.5	Complied

*Worst-case emissions

Table 8: Results for Maximum Peak Output Power

The measurement uncertainty was calculated at ± 4.83 dB. The reported uncertainty is an expanded uncertainty calculated using a coverage factor of approximately k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions				
Temperature:	19.7 to 20.2°C			
Humidity:	44 to 45%			
Atmospheric pressure:	1021.7 to 1022.9hPa			

Table 9: Climatic Conditions

Notes:

The transmitter maximum output power was below the specified limit for the specified operating frequency.

The transmitter was continuously transmitting in modulated transmit mode.

Assessment:

The EUT complied with the Transmitter Maximum Peak output power requirements of CFR47 FCC Part 15, Subpart C, 15.247 (b)(3).

13. Radiated emissions in Restricted bands – 15.247 (d), 15.209

13.1.Requirements

As per section 15.247(d) of 47 CFR Part 15 Subpart C:

 Radiated emissions which fall in the restricted bands, as defined in section 15.205(a) of 47 CFR Part 15 Subpart C, must also comply with the radiated emission limits specified in section15.209(a) of 47 CFR Part 15 Subpart C (see §15.205(c) of 47 CFR Part 15 Subpart C).

As per section 47 CFR Part 15 Subpart C section 15.209 (Radiated emissions, general requirements) the EUT is required to meet the limits that permit the highest field strength of the following table for the radiated emissions which fall in the restricted bands, as defined in section 15.205(a) of 47 CFR Part 15 Subpart C:

Frequency Range (MHz)	Limits at 3m (dBμV/m)
0.009 to 0.490	128.5 to 93.8
0.490 to 1.705	73.8 to 62.9
1.705 to 30.0	69.5
30.0 to 88	40.0
88.0 to 216.0	43.5
216.0 to 960.0	46.0
Above 960	54.0
NOTE: The lower limit shall a	pply at the transition frequency.

Note 1: as per CFR FCC Part 15 section15.209 (d) The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector

Note 2: as per CFR FCC Part 15.35 (b) Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1 MHz. When average radiated emission measurements are specified in this part, including average emission measurements below 1000 MHz, there also is a limit on the peak level of the radio frequency emissions. Unless otherwise specified, e.g., see §§15.250, 15.252, 15.253(d), 15.255, 15.256, and 15.509 through 15.519 of this part, the limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device, e.g., the total peak power level. Note that the use of a pulse desensitization correction factor may be needed to determine the total peak emission level. The instruction manual or application note for the measurement instrument should be consulted for determining pulse desensitization factors, as necessary.

Table 10: Limits for Radiated Spurious Emissions at distance of 3m - Restricted Bands

13.2.Test Procedure

The Radiated Emissions were performed in accordance with the section 11.12 of ANSI C63.10 - 2013.

Radiated Emissions were measured 3 metres (from 9kHz to 25GHz) away from the EUT in the iOATS (indoor Open Area Test Site) facility, which is an ANSI C63.4 compliant semi-anechoic chamber with ground plane. The EUT was placed on a non-conductive support at a height of 0.8m (9kHz to 1GHz) and 1.5m (1GHz to 25GHz) above the ground plane.

In the frequency range of 9kHz to 30MHz, an Active loop antenna was used. For X (Parallel), Y (Perpendicular) and Z (Ground-Parallel) antenna polarizations, the peak detector was set to MAX-HOLD and the range selected continuously scanned. The measuring antenna was positioned at 1m fixed height, and the turntable slowly rotated. The peak preview measurements were performed with a resolution bandwidth of 200Hz (9kHz to 150kHz), 9kHz (150kHz to 30MHz) and a video bandwidth of 30kHz. Peak emissions that exceeded the limit or were close to the applicable limit were investigated further. The frequency of each emission was then accurately determined. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees to find the worst-case emission arrangement. Quasi peak measurements were then performed using a measuring time of no less than 15 seconds. The final quasi-peak measurements were performed using a receiver bandwidth of 6dB and a resolution bandwidth of 200Hz (9kHz to 150kHz) and 9kHz (150kHz to 30MHz).

In the frequency range of 30MHz to 1GHz, a Biconilog antenna was used. For both horizontal and vertical antenna polarizations, the peak detector was set to MAX-HOLD and the range selected continuously scanned. The measuring antenna was positioned at 4 different fixed height positions and the turntable slowly rotated. The peak preview measurements were performed with a resolution bandwidth of 120kHz and a video bandwidth of 300kHz. Peak emissions that exceeded the limit or were close to the applicable limit were investigated further. The frequency of each emission was then accurately determined. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees and varying the height of the antenna between 1 and 4 metres to find the worst-case emission arrangement. Quasi peak measurements were then performed using a measuring time of no less than 15 seconds. The final quasi-peak measurements were performed using a receiver bandwidth of 6dB and a resolution bandwidth of 120kHz.

In the frequency range 1.0GHz to 26.5GHz a Horn antenna was used and an area of 3m x 3.6m was covered between the antenna and the EUT using RF absorbing material with a rated attenuation more than 20dB over the frequency range. The height of the horn antenna was varied using the antenna bore-sighting technique and the turntable slowly rotated to maximise the emissions. For both horizontal and vertical antenna polarizations, the Peak and Average preview measurements were performed with a resolution bandwidth of 1 MHz and a video bandwidth of 3MHz. Peak and average emissions that exceeded the applicable limit or were close to the applicable limit were investigated further. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees and the antenna height varied (if applicable, using the antenna bore-sighting technique) to find the worst-case emission arrangement. Peak and CISPR Average measurements were then performed using a

measuring time of no less than 15 seconds, the maximum emission level in the observed duration was recorded as the final result. The final peak and CISPR Average measurements were performed using a receiver bandwidth of 6dB and a resolution bandwidth of 1 MHz. Peak and Average measurements were performed at spot frequencies where the peak or average emission was close to, or exceeded the applicable limit line with the EUT rotation and antenna height varied (if applicable, using the antenna bore-sighting technique) to produce the highest emission.

Plots of the accumulated measurement data for both horizontal and vertical antenna polarizations, including all transducer and other measuring system correction factors were produced using commercially available compliant software (as listed in the test equipment list of this report).

(Refer to photographs in Annex C for views of the test configuration)

13.3.Test Results

Transmitter Spurious Emissions measurements are detailed as follows:

(Refer to graphs in Appendix C.4)

Operating Channel: Bottom, Middle and Top						
Measurement Antenna Polarisation	Frequency (MHz)	Result peak (dBμV/m)	Limit Quasi-peak/ Average (dBµV/m)	Delta limit (dB)		
Х	Peak preview emissions >20dB below limit or no significant emissions above the noise floor observed					
Y	Peak preview emissions >20dB below limit or no significant emissions above the noise floor observed					
Z			dB below limit or n noise floor observ			

Table 11: Transmitter Spurious Emissions – 9kHz to 30MHz

Operating Chan	Operating Channel: Bottom					
Measurement Antenna Polarisation	Frequency (MHz)	Result Quasi-peak (dBμV/m)	Limit Quasi-peak (dBµV/m)	Delta limit (dB)		
	255.962	44.9	46.0	-1.1*+		
Horizontal	267.893	38.0	46.0	-8.0		
	271.918	40.1	46.0	-5.9		
	37.663	20.2	40.0	-19.8		
Vertical	255.962	38.7	46.0	-7.3		
	969.882	32.1	54.0	-21.9		

*Worst-case emissions, +Refer to measurement uncertainty statement

Table 12: Transmitter Spurious Emissions – 30MHz to 1GHz

Operating Chan	Operating Channel: Middle					
Measurement Antenna Polarisation	Frequency (MHz)	Result Quasi-peak (dBμV/m)	Limit Quasi-peak (dBμV/m)	Delta limit (dB)		
	255.913	44.9	46.0	-1.1*+		
Horizontal	271.773	39.0	46.0	-7.0		
	279.775	34.8	46.0	-11.2		
	38.100	19.8	40.0	-20.2		
Vertical	256.010	37.8	46.0	-8.2		
	962.122	32.0	54.0	-22.0		

*Worst-case emissions, +Refer to measurement uncertainty statement

Table 13: Transmitter Spurious Emissions – 30MHz to 1GHz

Operating Chan	Operating Channel: Top					
Measurement Antenna Polarisation	Frequency (MHz)	Result Quasi-peak (dBµV/m)	Limit Quasi-peak (dBµV/m)	Delta limit (dB)		
	255.962	45.0	46.0	-1.0*+		
Horizontal	271.918	40.1	46.0	-5.9		
	279.727	34.9	46.0	-11.1		
	37.712	20.1	40.0	-19.9		
Vertical	255.962	38.7	46.0	-7.3		
	964.256	32.0	54.0	-22.0		

^{*}Worst-case emissions, *Refer to measurement uncertainty statement

Table 14: Transmitter Spurious Emissions – 30MHz to 1GHz

Operating Channel: Bottom, (903MHz), Middle, (916MHz) and Top, (927MHz)								
Measurement	Peak Measurements			Average Measurements				
Antenna Polarisation	Frequency (MHz)	· · · I Imit			Frequency (MHz)	Result (dBμV/m)	Limit (dBµV/m)	Delta Limit (dB)
Horizontal	Peak emissions were not above the measurements system noise floor or at least 20dB below the limit		Average emissions were not above the measurements system noise floor or at least 10dB below the limit					
Vertical		Peak emissions were not above the measurements system noise floor or at least 20dB below the limit			emissions we ents system no 10dB below t	oise floor or a		

Table 15: Transmitter Spurious Emissions – 1GHz to 9.5GHz

The measurement uncertainty was calculated as follows:

Measurement frequency range	Calculated measurement uncertainty
30MHz to 1GHz	±4.65dB
1GHz to 6GHz	±4.83dB
6GHz to 18GHz	±4.49dB
18GHz to 26.5GHz	±4.46dB

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions				
Temperature:	19.6 to 22.3°C			
Humidity:	44 to 46%			
Atmospheric pressure:	1008.7 to 1022.9hPa			

Table 16: Climatic conditions

Calculation: The above results are based upon the following calculation:

 $E = V_{QP/PK/AV} + AF - G_{Amp} + L_{C}$

Where:

E = E-field in $dB\mu V/m$

V_{QP/PK/A} Measured Voltage (Quasi Peak, Peak or Average) in

√ [−] dBμV

AF = Antenna Factor in dB(/m)

 L_C = Cable and attenuator Loss in dB G_{Amp} = Pre Amplifier Voltage Gain in dB

Example calculation:

 $E = V_{PK} + AF - G_{Amp} + L_{C}$

 $E = 30dB\mu V + 12dB/m - 0dB + 2.3dB$

 $E = 44.3 dB\mu V/m$

Notes: All Transmitter Radiated spurious emissions in restricted bands

measurements were below the specified limits.

Radiated Emissions measurements were made up to the 10th

harmonic.

The transmitter was continuously transmitting in modulated transmit

mode.

Assessment: The EUT complied with the Radiated emissions in Restricted bands

requirements of CFR47 FCC Part 15, Subpart C, 15.247 (d).

14. Out of Band emissions (100kHz, -20dBc) - FCC 15.247 (d)

14.1.Test Procedure

The Out of band emissions in non-restricted bands were performed in accordance with the section 11.11 of ANSI C63.10 – 2013.

Radiated Emissions were measured 3 metres (from 30MHz to 25GHz) away from the EUT in the iOATS (indoor Open Area Test Site) facility, which is an ANSI C63.4 compliant semi-anechoic chamber with ground plane. The EUT was placed on a non-conductive support at a height of 0.8m (30MHz to 1GHz) and 1.5m (1GHz to 25GHz) above the ground plane.

Reference and emission level measurements were performed as per section 11.11.2 and 11.11.3 of ANSI ANSI C63.10 - 2013.

In the frequency range of 30MHz to 1GHz, a Biconilog antenna was used. For both horizontal and vertical antenna polarizations, the peak detector was set to MAX-HOLD and the range selected continuously scanned. The measuring antenna was positioned at 4 different fixed height positions and the turntable slowly rotated. The peak preview measurements were performed with a resolution bandwidth of 100 kHz and a video bandwidth of 300 kHz. Peak emissions that exceeded the limit or were close to the applicable limit were investigated further. The frequency of each emissions was then accurately determined. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees and varying the height of the antenna between 1 and 4 metres to find the worst-case emission arrangement. Peak measurements were then performed using a measuring time of no less than 15 seconds.

In the frequency range 1.0GHz to 9.5GHz a Horn antenna was used and an area of 3m x 3.6m was covered between the antenna and the EUT using RF absorbing material with a rated attenuation more than 20dB over the frequency range. The height of the horn antenna was varied using the antenna bore-sighting technique and the turntable slowly rotated to maximise the emissions. For both horizontal and vertical antenna polarizations, the Peak preview measurements were performed with a resolution bandwidth of 100 Hz and a video bandwidth of 300 kHz. Peak emissions that exceeded the applicable limit or were close to the applicable limit were investigated further. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees and the antenna height varied (if applicable, using the antenna bore-sighting technique) to find the worst-case emission arrangement. Peak measurements were then performed using a measuring time of no less than 15 seconds, the maximum emission level in the observed duration was recorded as the final result.

Plots of the accumulated measurement data for both horizontal and vertical antenna polarizations, including all transducer and other measuring system correction factors were produced using commercially available compliant software (as listed in the test equipment list of this report).

(Refer to photographs in Annex C for views of the test configuration)

14.2.Limits

As per section 15.247(d) of 47 CFR Part 15 Subpart C:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of section 15.247 of 47 CFR Part 15 Subpart C, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section 15.209(a) of 47 CFR Part 15 Subpart C is not required. In addition, radiated emissions which fall in the restricted bands, as defined in section 15.205(a) of 47 CFR Part 15 Subpart C, must also comply with the radiated emission limits specified in section15.209(a) of 47 CFR Part 15 Subpart C (see §15.205(c) of 47 CFR Part 15 Subpart C).

The measured highest fundamental channel PSD in 100kHz was +8.3dBm.

Frequency Range	Limits
(MHz)	(dBm)
30MHz and 9.5GHz	-11.7

Table 17: Limits for Unwanted Emissions - -20dBc (Non-restricted bands)

14.3.Test Results

Unwanted emissions measurements are detailed as follows:

(Refer to graphs in Appendix C.4)

Channel	Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Delta limit (dB)
Bottom	Peak preview emissions >20dB below limit or no significant emissions above the noise floor observed			
Middle	Peak preview emissions >20dB below limit or no significant emissions above the noise floor observed			
Тор	Peak preview emi	issions >20dB below limi above the noise floor o		emissions

Table 18: Transmitter Out of Band emissions - -20dBc/100kHz

The measurement uncertainty was calculated as follows:

Measurement frequency range	Calculated measurement uncertainty
30MHz to 1GHz	±4.65dB
1GHz to 6GHz	±4.83dB
6GHz to 18GHz	±4.49dB

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%. The referenced uncertainty standard specifies that determination of compliance shall be based on measurements without taking into account measurement uncertainty. However, the measurement uncertainty shall appear in the test report.

Notes: All Transmitter Out of Band emissions measurements were below the

specified limits (-20dBc).

Radiated measurements were made up to the 10th harmonic.

The transmitter was continuously transmitting in modulated transmit

mode.

Assessment: The EUT complied with the Out of Band emissions (100kHz, -20dBc)

requirements of CFR47 FCC Part 15, Subpart C, 15.247 (d).

15. Emissions on the Band edge - FCC 15.247 (d)

15.1.Test Procedure

The Band edge Measurement (100kHz, -20dB from fc) was performed in accordance with the section 11.11, 11.12 and 11.13 of ANSI C63.10 – 2013.

Radiated measurements were performed within 2 MHz of the authorised band-edge.

99% Occupied Band Width of the fundamental channel emission was within 2 MHz of the authorised band edge therefore Marker-delta method was used. Unwanted emission at the band-edge were performed as per section 6.10.4 of ANSI C63.10 - 2013. At authorised-band band edge where the requiring band-edge emission attenuation is - 20dB in a 100kHz bandwidth relative to the highest fundamental channel PSD in 100kHz. Radiated peak measurements were performed as per as section 6.10.4 of ANSI C63.10 - 2013.

(Refer to photographs in Annex C for views of the test configuration)

15.2.Limits

Band edge in Non-restricted Bands

As per CFR47 FCC Part 15, Subpart C, 15.247 (d) the EUT shall meet the requirements that in any given 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.

The measured highest fundamental channel PSD in 100kHz was +8.3dBm

Band edge Frequencies	Limits (dBm)	
Lower Edge (902MHz)	44.7	
Higher Edge (928MHz)	-11.7	

Table 19: Limits for Band edge - -20dBc (Non-restricted bands)

15.3.Test Results

Band edge measurements are detailed as follows:

(Refer to graphs in Appendix C.3)

Operating Channel: Bottom (903MHz)					
Measurement Antenna Polarisation	Frequency (MHz)	Result Radiated Peak Power Spectral Density (dBm/100kHz)	Limit Radiated Peak Power Spectral Density (dBm/100kHz)	Delta limit (dB)	
Horizontal	901.941	-25.5	-11.7	-13.8	
Honzontai	901.976	-24.5	-11.7	-12.8*	
Vertical	901.872	-27.6	-11.7	-15.9	
vertical	901.928	-27.0	-11.7	-15.3	

*Worst-case emissions

Table 20: Transmitter Emissions on the Band edge - Low end

Operating Channel: Top (927MHz)					
Measurement Antenna Polarisation	Frequency (MHz)	Result Radiated Peak Power Spectral Density (dBm/100kHz)	Limit Radiated Peak Power Spectral Density (dBm/100kHz)	Delta limit (dB)	
Horizontal	928.040	-26.3	-11.7	-14.6	
Honzoniai	928.130	-26.9	-11.7	-15.2	
Vertical	928.016	-25.5	-11.7	-13.8*	
vertical	928.040	-25.8	-11.7	-14.1	

^{*}Worst-case emissions

Table 21: Transmitter Emissions on the Band edge - High end

The measurement uncertainty was calculated as follows:

Measurement frequency range	Calculated measurement uncertainty		
Radiated (1GHz to 6GHz)	±4.83dB		

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions				
Temperature: 19.7 to 20.2°C				
Humidity:	44 to 45%			
Atmospheric pressure:	1021.7 to 1022.9hPa			

Table 22: Climatic conditions

Calculation: The above results are based upon the following calculation:

 $E = V_{QP/PK/AV} + AF - G_{Amp} + L_{C}$

Where:

E = E-field in $dB\mu V/m$

Measured Voltage (Quasi Peak, Peak or Average)

 $V_{QP/PK/AV} = in dB\mu V$

AF = Antenna Factor in dB(/m)

 L_C = Cable and attenuator Loss in dB G_{Amp} = Pre Amplifier Voltage Gain in dB

Example calculation:

 $E = V_{PK} + AF - G_{Amp} + L_{C}$

 $E = 30dB\mu V + 12dB/m - 0dB + 2.3dB$

 $E = 44.3 dB\mu V/m$

Notes: All Band edge measurements were below the specified limits.

The transmitter was continuously transmitting in modulated

transmit mode.

Assessment: The EUT complied with the Transmitter Emissions on the Band

edge requirements of CFR47 FCC Part 15, Subpart C, 15.247 (d).

16. Power Spectral Density - FCC 15.247 (e)

16.1.Test Procedure

The Power Spectral Density was performed in accordance with the section 11.10 of ANSI C63.10 - 2013.

The radiated peak power spectral density was measured 3 metres away from the EUT in the iOATS (indoor Open Area Test Site) facility, which is an ANSI C63.4 compliant semi-anechoic chamber with ground plane.

The EUT was placed on a polystyrene support at a height of 0.8m above the ground plane. For both horizontal and vertical antenna polarizations, peak detector was set to MAX-HOLD and the range selected continuously scanned. The antenna height was varied from 1 to 4 metres using the antenna bore-sighting technique and the turntable slowly rotated with X, Y and Z EUT orientations, in order to find the worst-case emission arrangement.

The EUT was tested on the lowest, middle and highest channels measured using a spectrum analyser with 3kHz RBW and 30kHz VBW using the peak detector and a suitable span to allow accurate measurement whilst capturing the full intentional transmission. The maximum emissions were recorded.

Plots of the accumulated measurement data including all transducer correction factors were produced using commercially available compliant software (as listed in the test equipment list of this report).

(Refer to photographs in Annex C for views of the test configuration)

16.2.Limits

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of CFR47 FCC Part 15, Subpart C, 15.247 (e). The same method of determining the conducted output power shall be used to determine the power spectral density.

Applicable only to systems using digital modulation techniques:

Transmit operating frequency (MHz)	Limit	
902 – 928	8dBm/3kHz	

Table 23: Power Spectral Density limits

16.3.Test Results

Power Spectral Density measurements are tabulated below:

(Refer to graphs in Appendix C.5)

Channel	Frequency (MHz)	Measured Power (dBm)	Limit (dBm/3kHz)	Margin (dB)	Result
Bottom	903.098	-2.3	8.0	-10.3*	Complied
Middle	916.094	-3.2	8.0	-11.2	Complied
Тор	927.092	-4.3	8.0	-12.3	Complied

*Worst-case emissions

Table 24: Results for Power Spectral Density

The measurement uncertainty was calculated at ± 4.83 dB. The reported uncertainty is an expanded uncertainty calculated using a coverage factor of approximately k=2 which gives a level of confidence of approximately 95%. The referenced uncertainty standard specifies that determination of compliance shall be based on measurements without taking into account measurement uncertainty. However, the measurement uncertainty shall appear in the test report.

Climatic Conditions				
Temperature:	19.7 to 20.2°C			
Humidity:	44 to 45%			
Atmospheric pressure:	1021.7 to 1022.9hPa			

Table 25: Climatic conditions

Notes: All Power Spectral Density measurements were below the specified

limits.

The transmitter was supplied by the customer to be continuously

transmitting in modulated transmit mode.

Assessment: The EUT complied with the Power Spectral Density requirements of

CFR47 FCC Part 15, Subpart C, 15.247 (e).

17. Radiated Emissions (Receive Mode)

17.1.Test Procedure

Radiated Emissions were measured 3 metres away from the EUT in the iOATS (indoor Open Area Test Site) facility, which is an ANSI C63.4 compliant semi-anechoic chamber with ground plane. The EUT was placed on a non-conductive table, at a height of 0.8m above the ground plane.

In the frequency range of 30MHz to 1GHz, a Biconilog antenna was used. For both horizontal and vertical antenna polarizations, the peak detector was set to MAX-HOLD and the range selected continuously scanned. The measuring antenna was positioned at 4 different fixed height positions and the turntable slowly rotated. The peak preview measurements were performed with a resolution bandwidth of 120 kHz and a video bandwidth of 300 kHz. Peak emissions that exceeded the limit or were close to the applicable limit were investigated further. The frequency of each emissions was then accurately determined. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees and varying the height of the antenna between 1 and 4 metres to find the worst-case emission arrangement. Quasi peak measurements were then performed using a measuring time of no less than 15 seconds. The final quasi-peak measurements were performed using a receiver bandwidth of 6dB and a resolution bandwidth of 120 kHz.

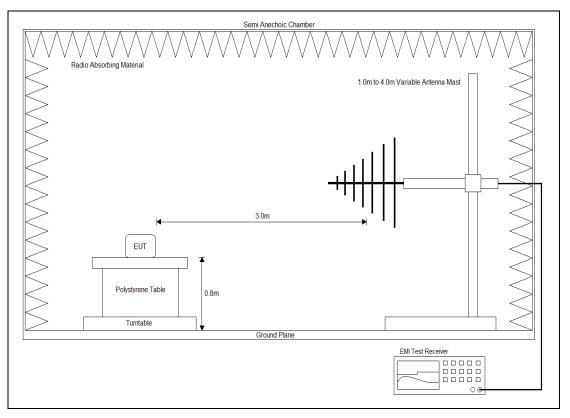


Figure 2: Test setup – 30MHz to 1GHz

In the frequency range 1GHz to 5GHz a Horn antenna was used and an area of 3m x 3m was covered between the antenna and the EUT using RF absorbing material with a rated attenuation more than 20dB over the frequency range. The height of the horn

antenna was varied using the antenna bore-sighting technique and the turntable slowly rotated to maximise the emissions. For both horizontal and vertical antenna polarizations, the Peak and Average preview measurements were performed with a resolution bandwidth of 1 MHz and a video bandwidth of 3 MHz. Peak and average emissions that exceeded the applicable limit or were close to the applicable limit were investigated further. Each emission of interest was then in-turn maximised by using the turntable to rotate the EUT through 360 degrees and the antenna height varied (if applicable, using the antenna bore-sighting technique) to find the worst-case emission arrangement. Peak and CISPR Average measurements were then performed using a measuring time of no less than 15 seconds, the maximum emission level in the observed duration was recorded as the final result. The final peak and CISPR Average measurements were performed using a receiver bandwidth of 6dB and a resolution bandwidth of 1 MHz. Peak and Average measurements were performed at spot frequencies where the peak or average emission was close to, or exceeded the applicable limit line with the EUT rotation and antenna height varied (if applicable, using the antenna bore-sighting technique) to produce the highest emission.

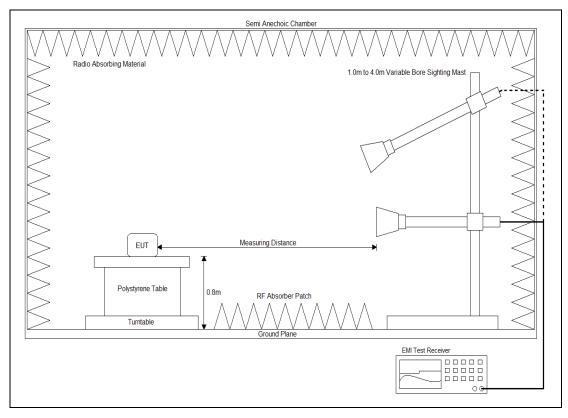


Figure 3: Test setup – above 1GHz

Horn	Frequency (GHz)	Degrees	Measuring Distance (m)	Illumination (m)	Measuring Distance (m)	Illumination (m)
	1 to 2	55.00	3	3.12	1	1.04
EMCO 3115	2 to 4	50.00	3	2.80	1	0.93
	4 to 6	34.00	3	1.83	1	0.61
AH SAS-584	5.8 to 8.2	30.00	3	1.61	1	0.54
AH SAS-585	8.2 to 12.4	30.00	3	1.61	1	0.54
AH SAS-586	12.4 to 18	30.00	3	1.61	1	0.54
AH SAS 587	18 to 26.5	30.00	3	1.61	1	0.54
AH SAS 588	26.5 to 40	31.00	3	1.66	1	0.55

Table 26: Worst case Maximum size of measuring envelope for Horn antennas

Plots of the accumulated measurement data for both horizontal and vertical antenna polarizations, including all transducer and other measuring system correction factors were produced using commercially available compliant software (as listed in the test equipment list of this report).

(Refer to photographs in Annex C for views of the test configuration)

17.2.Limits

17.2.1. CFR 47 FCC Part 15 Class A Limit

The EUT shall meet the limits in the following table:

Frequency Range (MHz)	Measuring distance	Limits (dBµV/m) Quasi-Peak			
30 to 88	3m	49).5		
88 to 216	3m	54	.0		
216 to 960	3m	56.9			
960 to 1000	3m	60.0			
Frequency Range	Measuring distance	Lim (dBμ	nits V/m)		
(GHz)		Average	Peak		
1.0 to 26.5	3m	60.0 80.0			
26.5 to 40.0	26.5 to 40.0 1m		69.5 89.5		
NOTE The lower limit shall apply at the transition frequency.					

Table 27: Limits for Radiated Emissions of Class A equipment

17.3.Test Results

Radiated Emissions measurements are tabulated below. For below 1GHz measurements, Quasi-peak measurements were performed at spot frequencies where the peak emission was close to, or exceeded the applicable limit line. For above 1GHz measurements, Peak or CISPR Average measurements were performed at spot frequencies where the peak or average emission was close to, or exceeded the applicable limit line.

(Refer to graphs in Appendix C.7)

Operating Channel: Bottom								
Measurement Antenna Polarisation	Frequency (MHz)	Result Quasi-peak (dBμV/m)	Limit Quasi-peak (dBμV/m)	Delta limit (dB)				
	59.925	15.5	49.5	-34.0				
	63.950	45.4	49.5	-4.1*+				
Horizontal	67.879	22.4	49.5	-27.1				
Horizontai	68.073	21.8	49.5	-27.7				
	143.878	36.9	54.0	-17.1				
	319.836	44.1	56.9	-12.8				
	63.999	43.5	49.5	-6.0				
Vertical	68.267	17.4	49.5	-32.1				
	191.893	34.4	54.0	-19.6				

*Worst-case emissions, *Refer to measurement uncertainty statement

Table 28: Receive Mode Radiated Emissions (External Antenna) - 30MHz to 1000MHz

Operating Channel: Middle								
Measurement Antenna Polarisation	Frequency (MHz)	Result Quasi-peak (dBμV/m)	Limit Quasi-peak (dBμV/m)	Delta limit (dB)				
	63.999	47.6	49.5	-1.9*+				
	67.733	19.0	49.5	-30.5				
Horizontal	67.830	20.6	49.5	-28.9				
	68.024	22.9	49.5	-26.6				
	143.975	43.2	54.0	-10.8				
Vertical	63.950	46.2	49.5	-3.3+				

*Worst-case emissions, *Refer to measurement uncertainty statement

Table 29: Receive Mode Radiated Emissions (External Antenna) - 30MHz to 1000MHz

Operating Channel: Top								
Measurement Antenna Polarisation	Frequency (MHz)	Result Quasi-peak (dBμV/m)	Limit Quasi-peak (dBμV/m)	Delta limit (dB)				
Horizontal	63.950	47.3	49.5	-2.2*+				
Honzontai	67.830	17.0	49.5	-32.5				
Vertical	63.950	44.4	49.5	-5.1				

*Worst-case emissions, *Refer to measurement uncertainty statement

Table 30: Receive Mode Radiated Emissions (External Antenna) - 30MHz to 1000MHz

Operating Channel: Middle, (916MHz)									
Measurement	Peak Measurements				Average Measurements				
Antenna Polarisation	Frequency (MHz)	· · · I I I I I I I I I I I I I I I I I				Result (dBμV/m)	Limit (dBµV/m)	Delta Limit (dB)	
					1981.760	23.1	60.0	-36.9	
	Poak o	missions were	a not above t	ho	3330.900	26.8	60.0	-33.2	
Horizontal		ents system n			4624.320	28.8	60.0	-31.2	
		20dB below the limit				All other Average emissions were not above the measurements system noise floor or at least 10dB below the limit			
					2643.460	24.6	60.0	-35.4	
	Dook	missions wer	a nat ahaya ti	ha	3172.560	26.2	60.0	-33.8	
Vertical		emissions were not above the ents system noise floor or at least			4751.040	29.5	60.0	-30.5*	
. 57 1100	20dB below the limit			rage emissions ents system no 10dB below tl	ise floor or a				

*Worst-case emissions

Table 31: Receive Mode Radiated Emissions (External Antenna) – 1GHz to 5GHz

Operating Char	Operating Channel: Bottom and Top							
Measurement	ı	Peak Measu	rements	Average Measurements				
Antenna Polarisation	Frequency Result Limit Limit (dBμV/m) Delta Limit (dB)				Frequency (MHz)	Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)
Horizontal	Peak emissions were not above the measurements system noise floor or at least 20dB below the limit						ere not above noise floor or the limit	
Vertical	Peak emissions were not above the measurements system noise floor or at least 20dB below the limit					ere not above noise floor or the limit		

Table 32: Receive Mode Radiated Emissions (External Antenna) – 1GHz to 5GHz

Operating Channel: 920MHz							
Measurement Antenna Polarisation	Frequency (MHz)						
Horizontal	255.962	44.0	56.9	-12.9*			
Vertical	Peak preview emissions >10dB below limit or no significant emissions above the noise floor observed						

*Worst-case emissions

Table 33: Receive Mode Radiated Emissions (Internal Antenna) - 30MHz to 1000MHz

Operating Channel: 920MHz								
Measurement	I	Peak Measu	rements		Average Measurements			
Antenna Polarisation	Frequency (MHz)	· · · I I I I I I I I I I I I I I I I I				Result (dBμV/m)	Limit (dBμV/m)	Delta Limit (dB)
Horizontal	Peak emissions were not above the measurements system noise floor or at least 20dB below the limit				Average emissions were not above the measurements system noise floor or at least 10dB below the limit			
Vertical	Peak emissions were not above the measurements system noise floor or at least 20dB below the limit					ere not above noise floor or the limit		

Table 34: Receive Mode Radiated Emissions (Internal Antenna) - 1GHz to 5GHz

The measurement uncertainty was calculated as follows:

Measurement frequency range	Calculated measurement uncertainty
30MHz to 1GHz	±4.65dB
1GHz to 6GHz	±4.83dB

The reported uncertainty is an expanded uncertainty calculated using a coverage factor of k=2 which gives a level of confidence of approximately 95%. The referenced uncertainty standard specifies that determination of compliance shall be based on measurements without taking into account measurement uncertainty. However, the measurement uncertainty shall appear in the test report.

Climatic Conditions				
Temperature:	19.2 to 22.3°C			
Humidity:	42 to 44%			
Atmospheric pressure:	993.6 to 996.7hPa			

Table 35: Climatic conditions

Calculation: The above results are based upon the following calculation:

 $E = V_{QP/PK/AV} + AF - G_{Amp} + L_{C}$

Where:

E = E-field in $dB\mu V/m$

V_{QP/PK/AV} = Measured Voltage (Quasi Peak, Peak or

VQP/PK/AV - Average) in dBμV

AF = Antenna Factor in dB(/m)

L_C = Cable and attenuator Loss in dB G_{Amp} = Pre Amplifier Voltage Gain in dB

Example calculation:

 $E = V_{QP} + AF - G_{Amp} + L_{C}$

 $E = 30dB\mu V + 12dB/m - 0dB + 2.3dB$

 $E = 44.3 dB\mu V/m$

Notes:

All Radiated Emissions measured were below the FCC Class A limits.

If the highest frequency generated or used within the device or on which the device operates or tunes is between 500MHz and 1000MHz, the upper frequency of measurement range should be 5000MHz.

The highest frequency of the EUT as specified by the customer is 927MHz as such measurements up to 5GHz were taken.

Assessment:

The EUT complied with the Radiated Emissions (Receive Mode) requirements of CFR47 FCC Part 15, Subpart B section 15.109.

18. Antenna power conduction limits for receivers - FCC 15.111

18.1.Test Procedure

The Antenna power conduction limits for receivers measurements were performed in accordance with the section 15.111 (a) of CFR47 FCC Part 15, Subpart B.

Measurements were performed at the antenna port.

The EUT was placed inside a shielded chamber. The transmitter output was connected to a spectrum analyzer through a suitable attenuator. The antenna port emission in receiver mode were measured by spectrum analyzer with 100kHz RBW and 300kHz VBW using the peak detector. All measuring system correction factors (attenuators and cables) were used to get a true measurement.

(Refer to photographs in Annex C for views of the test configuration)

18.2.Limits

As per section 15.111 (a) of 47 CFR Part 15 Subpart B the EUT shall meet the following limits:

Frequency Range	Limits	Limits
(MHz)	(nanowatts)	(dBm)
9kHz and 10GHz	2.0	-57

Table 36: Limits for Antenna power conduction limits for receivers

18.3.Test Results

Antenna power conduction limits for receivers measurements are detailed as follows:

(Refer to graphs in Appendix C.7)

Operating Channel: Bottom, Middle and Top			
Frequency (MHz)	Measured Level (dBm)	Limit (dBm)	Delta limit (dB)
Emissions were not above the measurements system noise floor or at least 15dB below the limit			

Table 37: Antenna power conduction limits for receivers – 9kHz to 5GHz

The measurement uncertainty for Antenna power conduction limits for receivers measurement was calculated at ± 1.4 dB. The reported uncertainty is an expanded uncertainty calculated using a coverage factor of approximately k=2 which gives a level of confidence of approximately 95%.

Climatic Conditions		
Temperature: 19.2 to 22.3°C		
Humidity:	42 to 44%	
Atmospheric pressure:	993.6 to 996.7hPa	

Table 38: Climatic conditions

Notes: Antenna power conduction limits for receivers measurements were

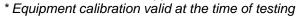
below the specified limit.

Assessment: The EUT complied with the Antenna power conduction limits for

receivers requirements of CFR47 FCC Part 15, Subpart C, 15.111.

19. Conclusion

The CR Mining, T1074, Portable Reader complied with the applicable requirements of CFR47 FCC Part 15, Subpart C, 15.247.



Appendix A – Test Equipment

Inv.	Equipment	Make Model No.	Model No	Serial No.	Calibration		
Inv. Equipment		Wake Woder No.		Serial No.	Interval	Due	Туре
	Transmitter Maximum EIRP, Power Spectral Density, 6dB Bandwidth and Band-edge						
1217	ANALYSER, EMI Receiver	Rohde & Schwarz	ESU40	100182	1 year	Jun-23	Е
0932	CONTROLLER, Position	Sunol Sciences	SC104V-3	081006-1	N/A	N/A	V
0933	TURNTABLE	Sunol Sciences	SM46C	081006-2	N/A	N/A	V
0934	MAST, Antenna	Sunol Sciences	TLT2	081006-5	N/A	N/A	V
0935	ANTENNA, Biconilog	Sunol Sciences	JB5	A071106	2 years	Feb-23	Е
0718	ATTENUATOR, 6dB	JFW	50FPE-006	-	1 year	Jan-24	I
0710	ATTENUATOR, 10dB	JFW	50HF-010N		3 years	Dec-24	I
0989	CABLE, Coax, Sucoflex 104A	Huber+Suhner	44454/4A	C357	1 year	Jan-24	I
1145	CABLE, Coax, Sucoflex 104PA	Huber + Suhner	84279564	SN MY056/4PA	1 year	Jan-24	I
1155	Hygrometer, Temp, Humidity	DigiTech	QM7312	-	2 years	Jul-23	I
0666	Enclosure, Semi-Anechoic, No 1	RFI Industries	S800 iOATS	1229	3 years	Aug-25	I
SW007	EMC Measurement Software	Rohde & Schwarz	EMC 32	Version 8.53.0	N/A	N/A	N/A
	Transmitter Spo	urious Emissions an	d Radiated Em	issions (Receive Mod	de)		
1217	ANALYSER, EMI Receiver	Rohde & Schwarz	ESU40	100182	1 year	Jun-23	Е
0932	CONTROLLER, Position	Sunol Sciences	SC104V-3	081006-1	N/A	N/A	V
0933	TURNTABLE	Sunol Sciences	SM46C	081006-2	N/A	N/A	V
0934	MAST, Antenna	Sunol Sciences	TLT2	081006-5	N/A	N/A	V
0935	ANTENNA, Biconilog	Sunol Sciences	JB5	A071106	2 years	Feb-23	Е
0718	ATTENUATOR, 6dB	JFW	50FPE-006	-	1 year	Jan-24	I
1145	CABLE, Coax, Sucoflex 104PA	Huber + Suhner	84279564	SN MY056/4PA	1 year	Jan-24	I
0989	CABLE, Coax, Sucoflex 104A	Huber+Suhner	44454/4A	C357	1 year	Jan-24	I
1238	CABLE, Coax, Sucoflex 126 E	Huber + Suhner	10422876	SN 8000495/126E	1 year	Jan-24	I
0633	ANTENNA, Double Ridge Horn	EMCO	3115	9712-5369	3 years	Aug-24	I
0559	PRE-AMP, Microwave, 18GHz	Miteq	AFS8	605305	1 year	Apr-23	I
1193	Standard Gain Horn Antenna - 5.85GHz to 8.2GHz	A.H. Systems, inc	SAS-584	186	1 year	May-23	Е
1194	Standard Gain Horn Antenna - 8.2GHz to 12.4GHz	A.H. Systems, inc	SAS-585	224	1 year	May-23	Е
0024	ANTENNA, Active Loop	EMCO	6502	2620	2 years	Aug-23	I
1155	Hygrometer, Temp, Humidity	DigiTech	QM7312	-	2 years	Jul-23	I
0666	Enclosure, Semi-Anechoic, No 1	RFI Industries	S800 iOATS	1229	3 years	Aug-25	I
SW007	EMC Measurement Software	Rohde & Schwarz	EMC 32	Version 8.53.0	N/A	N/A	N/A
	A	ntenna power condu	ction limits for	receivers			
1217	ANALYSER, EMI Receiver	Rohde & Schwarz	ESU40	100182	1 year	Jun-23	E
0843	ATTENUATOR, 10dB	JFW	50HF-010N	-	3 years	Dec-24	I
1145	CABLE, Coax, Sucoflex 104PA	Huber + Suhner	84279564	SN MY056/4PA	1 year	Jan-24	I
1205	CABLE, Coax, Sucoflex 126 E	Huber+ Suhner	84383918	SN MY1006/26EA	1 year	Jan-24	I
1155	Hygrometer, Temp, Humidity	DigiTech	QM7312	-	2 years	Jul-23	I
0666	Enclosure, Semi-Anechoic, No 1	RFI Industries	S800 iOATS	1229	3 years	Aug-25	I
SW007	EMC Measurement Software	Rohde & Schwarz	EMC 32	Version 8.53.0	N/A	N/A	N/A

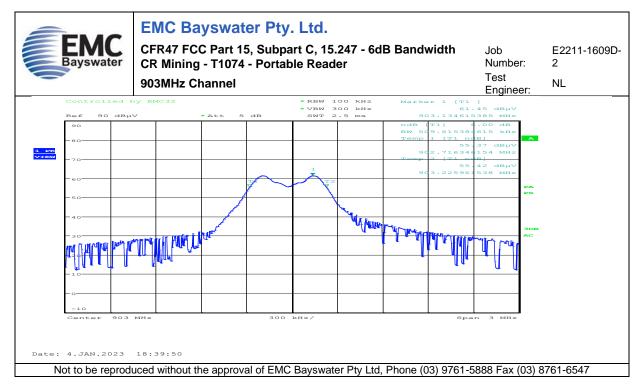
V: Verification of operation against an internal reference
I: Internal calibration against a traceable standard
E: External calibration by a NATA or MRA equivalent endorsed facility
N/A: Not Applicable

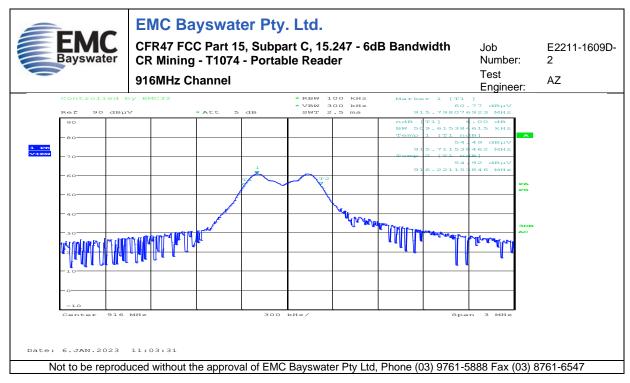
Appendix B - Photographs

Annex	Number	Photograph Description
А	1	
Α	2	
Α	3	
Α	4	
Α	5	
Α	6	EUT – External views
Α	7	LOT - External views
Α	8	
Α	9	
Α	10	
Α	11	
Α	12	
В	1	
В	2	
В	3	
В	4	
В	5	
В	6	
В	7	
В	8	
В	9	
В	10	
В	11	
В	12	
В	13	
В	14	EUT – Internal views
В	15	
B B	16 17	
В	18	
В	19	
В	20	
В	21	
В	22	
В	23	
В	24	
В	25	
В	26	
В	27	

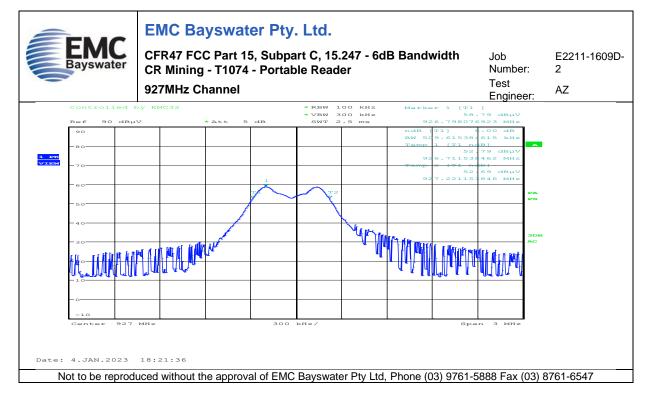
Photographs list continues to next page

Annex	Number	Photograph Description	
С	1	EUT X orientation	
С	2	EUT Y orientation	
С	3	EUT Z orientation	
С	4	Field strength of fundamental, Duty cycle, Emission Bandwidth and Field	
С	5	strength of spurious emissions 30MHz to 1GHz – Test configuration	
С	6		
С	7	Field strength of spurious emissions – Test configuration – 9kHz to 30MHz	
С	8		
С	9	Field strength of anurious emissions. Test configuration, 10Hz to 0.50Hz	
С	10	Field strength of spurious emissions – Test configuration – 1GHz to 9.5GHz	
С	11		
С	12		
С	13	Receive Mode Radiated Emissions (External Antenna) – Test configuration	
С	14		
С	15		
С	16		
С	17		
С	18	Receive Mode Radiated Emissions (Internal Antenna) – Test configuration	
С	19		
С	20		
С	21	Antonno nower conduction limits for receivers. Test configuration	
С	22	Antenna power conduction limits for receivers – Test configuration	
С	23		
С	24	External Antenna	
С	25	External Antenna	
С	26		


EUT External Photographs	EMC Bayswater Test Report E2211-1609D-2 Annex A
EUT Internal Photographs	EMC Bayswater Test Report E2211-1609D-2 Annex B
EUT Orientations & Test Configurations Photographs	EMC Bayswater Test Report E2211-1609D-2 Annex C


Appendix C.1 - Measurement Graphs - 6dB Bandwidth - 15.247 (a)(2)

No.	Test	Graph Description
1		903MHz Channel
2	6dB Bandwidth	916MHz Channel
3		927MHz Channel

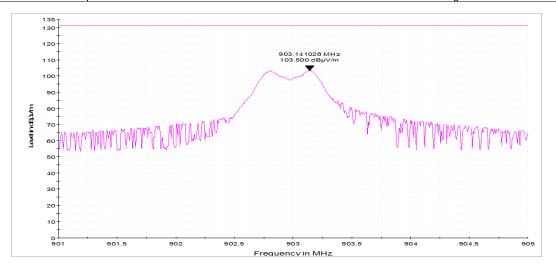

Graph 1

Graph 2

Graph 3

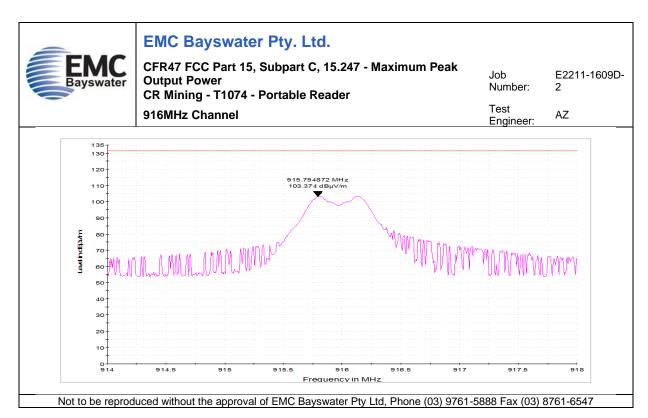
Appendix C.2 – Measurement Graphs – Maximum Peak Output Power - 15.247 (b)(3)

No.	Test	Graph Description
4		903MHz Channel
5	Maximum Peak Output Power	916MHz Channel
6		927MHz Channel


CFR47 FCC Part 15, Subpart C, 15.247 - Maximum Peak Output Power CR Mining - T1074 - Portable Reader

903MHz Channel

Job E2211-1609D-


Number: 2

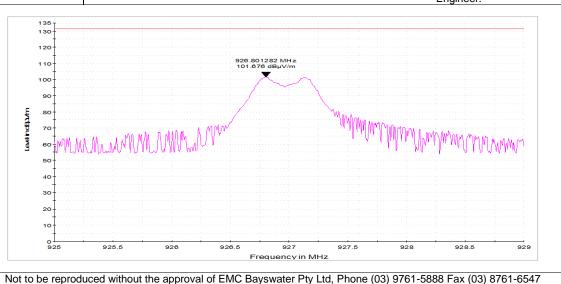
Test Engineer: AZ

Not to be reproduced without the approval of EMC Bayswater Pty Ltd, Phone (03) 9761-5888 Fax (03) 8761-6547

Graph 4

Graph 5

CFR47 FCC Part 15, Subpart C, 15.247 - Maximum Peak Output Power


CR Mining - T1074 - Portable Reader

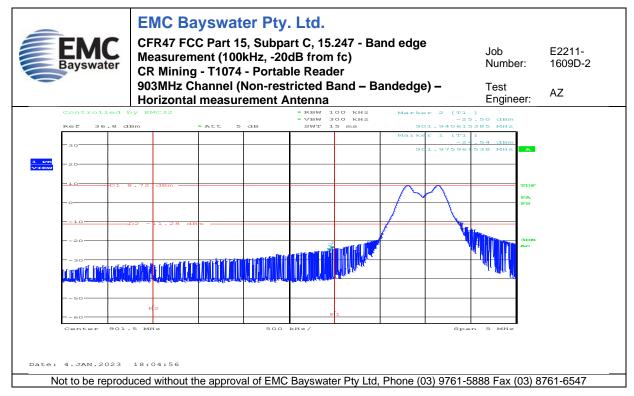
927MHz Channel

Job E2211-1609D-

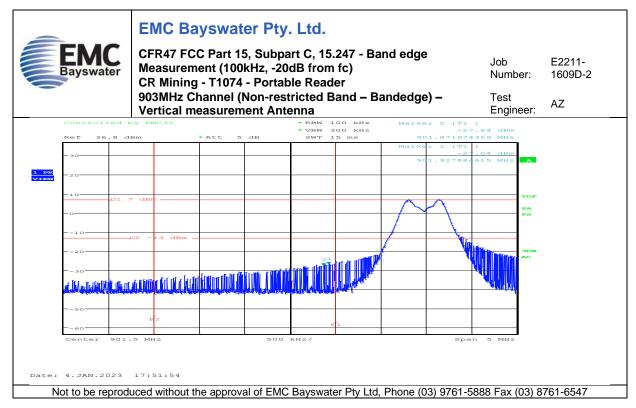
Number: 2

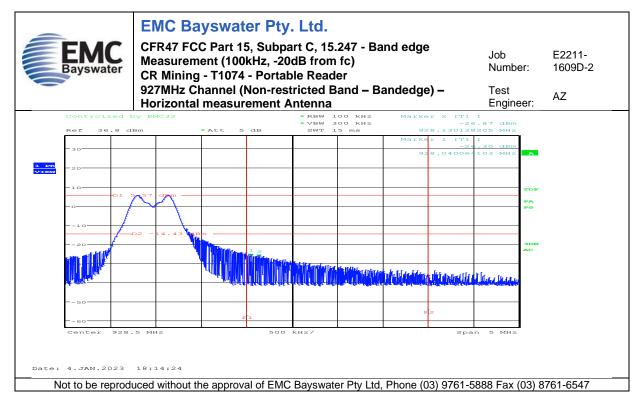
Test Engineer: AZ

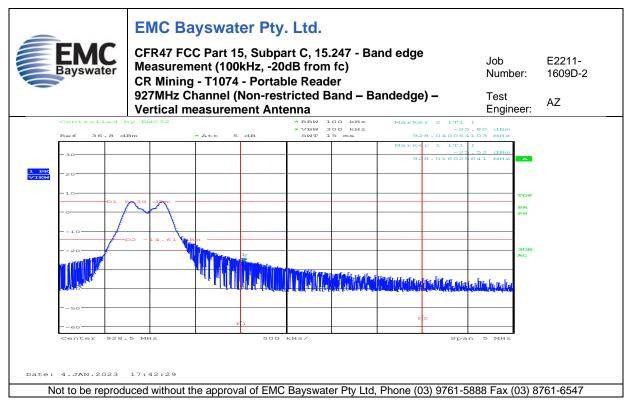
Graph 6



Appendix C.3 - Measurement Graphs - Band Edge - 15.247 (d)


No.	Test	Graph Description
7	Band edge Measurement	903MHz Channel (Non-restricted Band – Bandedge) – Horizontal measurement Antenna
8		903MHz Channel (Non-restricted Band – Bandedge) – Vertical measurement Antenna
9		927MHz Channel (Non-restricted Band – Bandedge) – Horizontal measurement Antenna
10		927MHz Channel (Non-restricted Band – Bandedge) – Vertical measurement Antenna

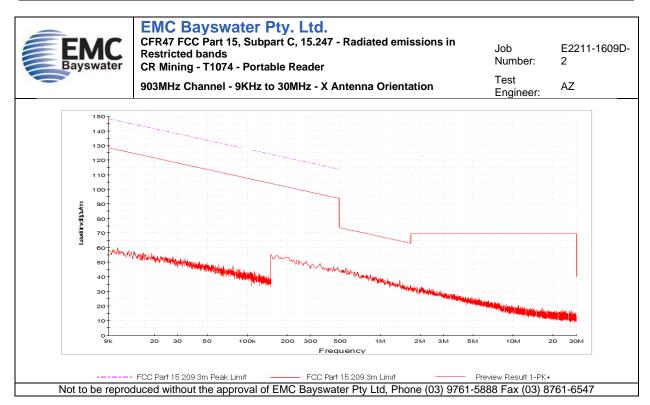

Graph 7

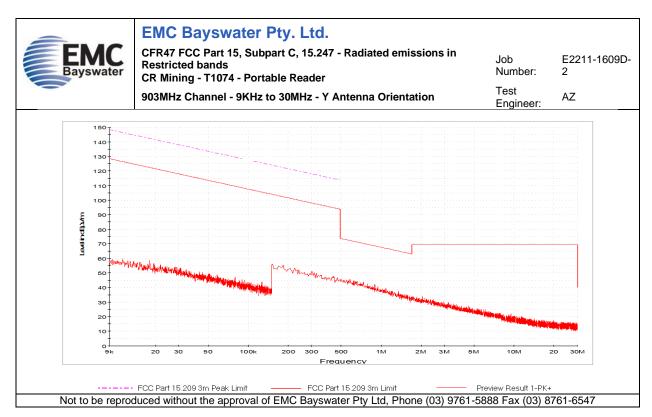

Graph 8

Graph 9

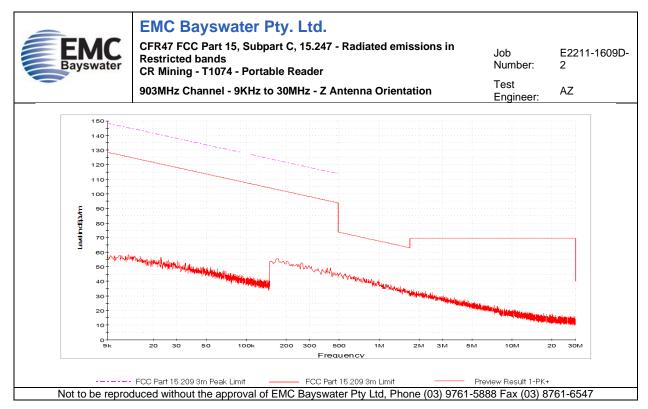
Graph 10

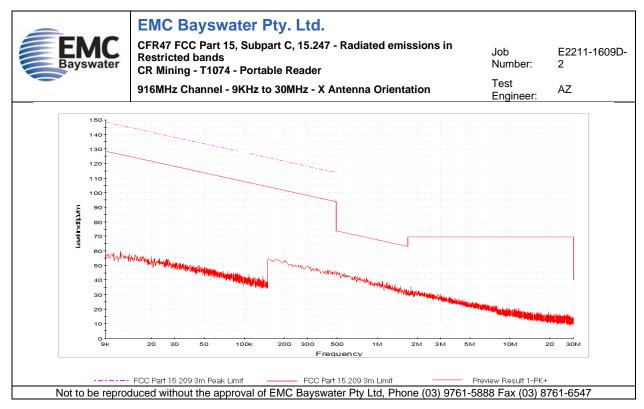
Appendix C.4 – Measurement Graphs – Transmitter Spurious – FCC 15.247 (d), 15.209

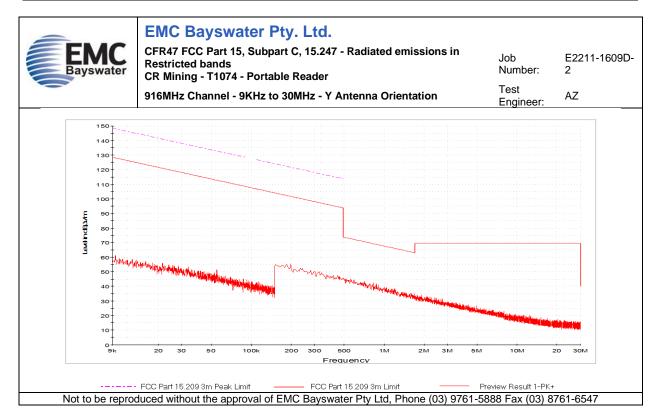

No.	Test	Graph Description
11		903MHz Channel, Antenna X
12		903MHz Channel, Antenna Y
13		903MHz Channel, Antenna Z
14	9kHz to 30MHz	916MHz Channel, Antenna X
15	Restricted Bands	916MHz Channel, Antenna Y
16		916MHz Channel, Antenna Z
17		927MHz Channel, Antenna X
18		927MHz Channel, Antenna Y
19		927MHz Channel, Antenna Z
20		903MHz Channel, Antenna Horizontal
21	30MHz to 1GHz	903MHz Channel, Antenna Vertical
22	Restricted and	916MHz Channel, Antenna Horizontal
23	Non-Restricted Bands	916MHz Channel, Antenna Vertical
24		927MHz Channel, Antenna Horizontal
25		927MHz Channel, Antenna Vertical
26		903MHz Channel, Antenna Horizontal
27		903MHz Channel, Antenna Vertical
28	1GHz to 6GHz	916MHz Channel, Antenna Horizontal
29	Restricted Bands	916MHz Channel, Antenna Vertical
30		927MHz Channel, Antenna Horizontal
31		927MHz Channel, Antenna Vertical
32		903MHz Channel, Antenna Horizontal
33	4011 4 0011	903MHz Channel, Antenna Vertical
34	1GHz to 6GHz	916MHz Channel, Antenna Horizontal
35	Non-Restricted Bands	916MHz Channel, Antenna Vertical
36		927MHz Channel, Antenna Horizontal
37		927MHz Channel, Antenna Vertical
38		903MHz Channel, Antenna Horizontal
39		903MHz Channel, Antenna Vertical
40	5.8GHz to 8.2GHz	916MHz Channel, Antenna Horizontal
41	Restricted Bands	916MHz Channel, Antenna Vertical
42		927MHz Channel, Antenna Horizontal
43		927MHz Channel, Antenna Vertical
44		903MHz Channel, Antenna Horizontal
45	5 0011- 4- 0 0011	903MHz Channel, Antenna Vertical
46	5.8GHz to 8.2GHz Non-Restricted Bands	916MHz Channel, Antenna Horizontal
47	Non-Restricted bands	916MHz Channel, Antenna Vertical
48		927MHz Channel, Antenna Horizontal
49		927MHz Channel, Antenna Vertical
50		903MHz Channel, Antenna Horizontal
51	8.2GHz to 9.5GHz	903MHz Channel, Antenna Vertical
52		916MHz Channel, Antenna Horizontal
53	Restricted Bands	916MHz Channel, Antenna Vertical
54		927MHz Channel, Antenna Horizontal
55		927MHz Channel, Antenna Vertical

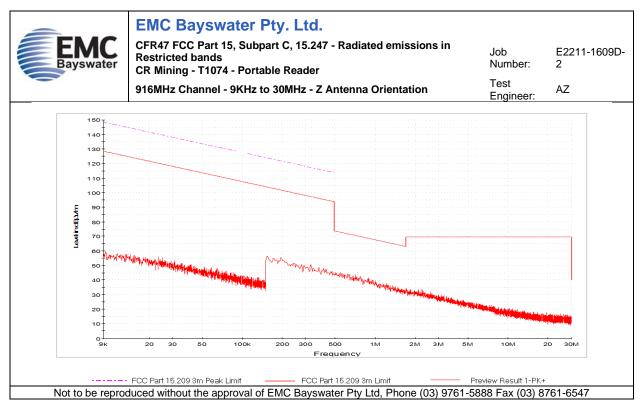


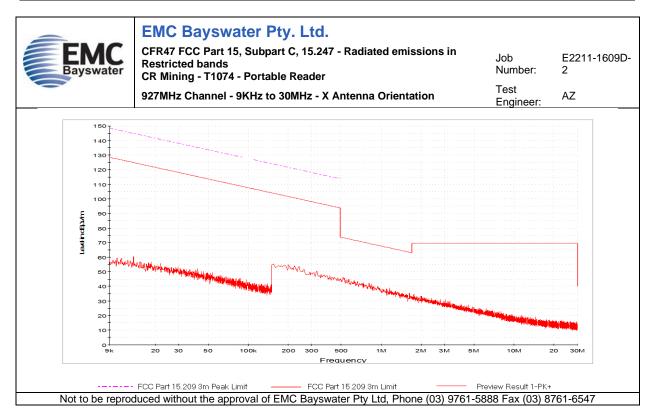
No.	Test	Graph Description
56		903MHz Channel, Antenna Horizontal
57		903MHz Channel, Antenna Vertical
58	8.2GHz to 9.5GHz Non-Restricted Bands	916MHz Channel, Antenna Horizontal
59	Non-Restricted Barids	916MHz Channel, Antenna Vertical
60		927MHz Channel, Antenna Horizontal
61		927MHz Channel, Antenna Vertical

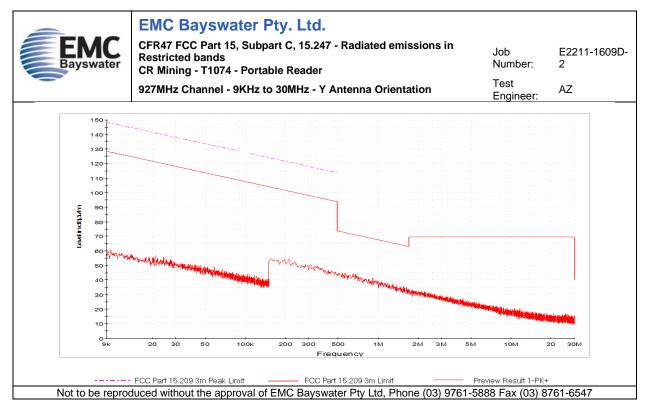

Graph 11

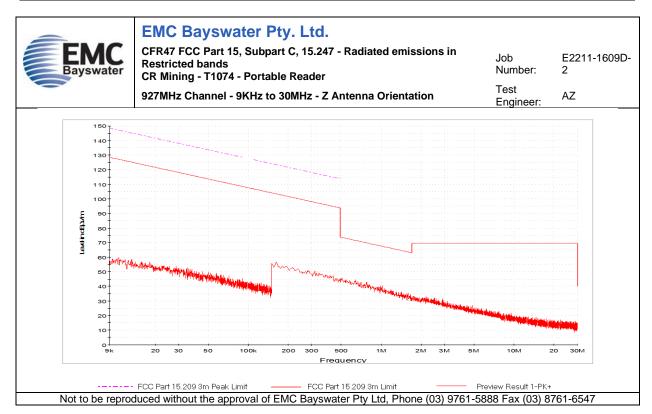

Graph 12

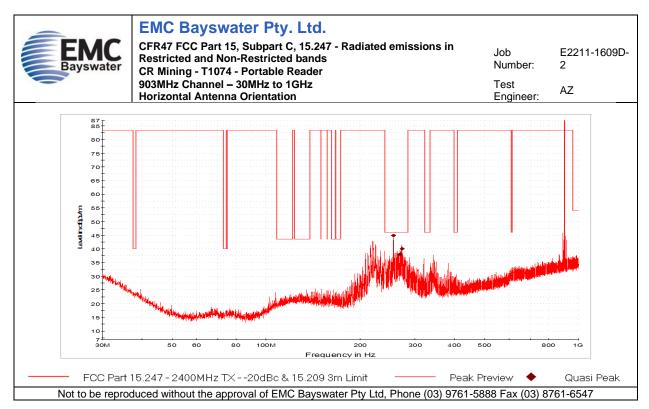

Graph 13

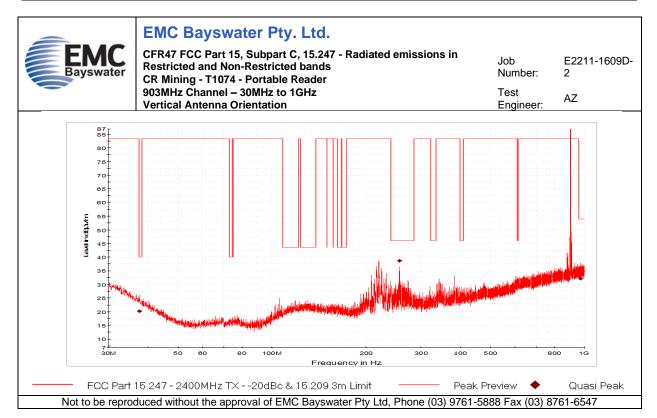

Graph 14

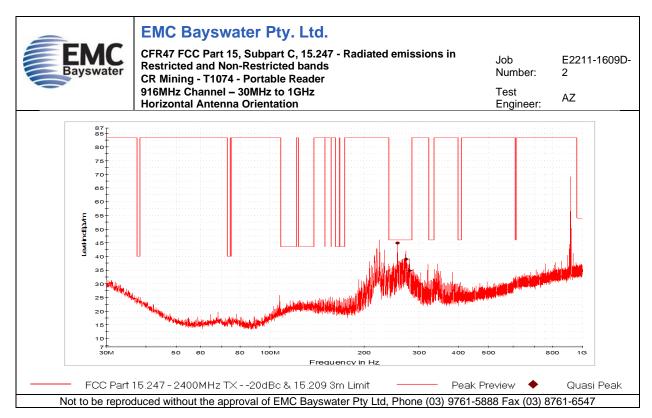

Graph 15

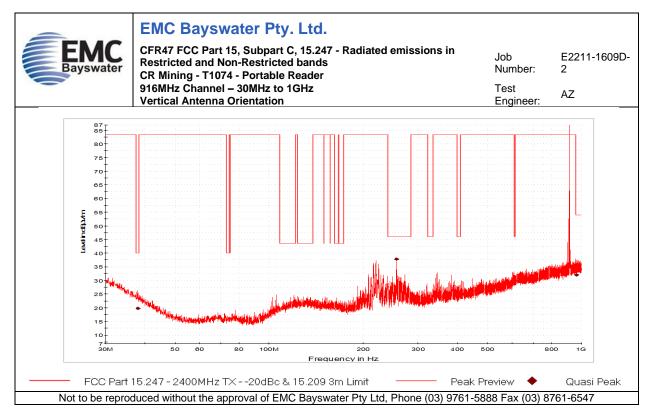

Graph 16

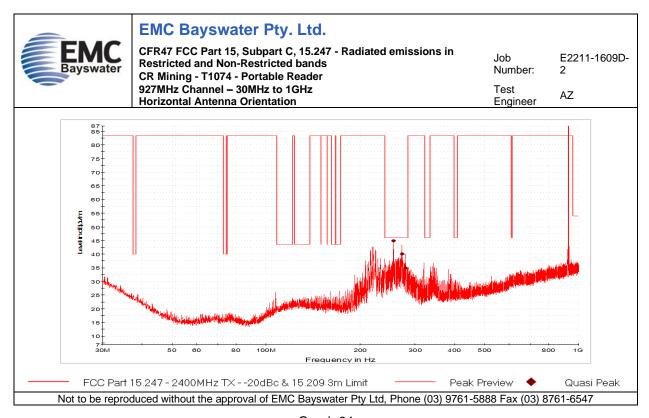

Graph 17

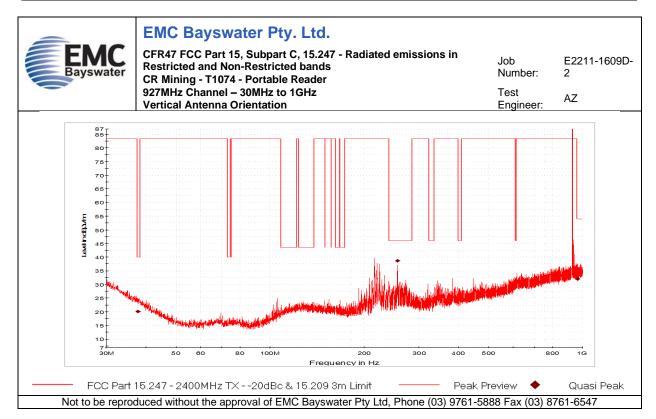

Graph 18

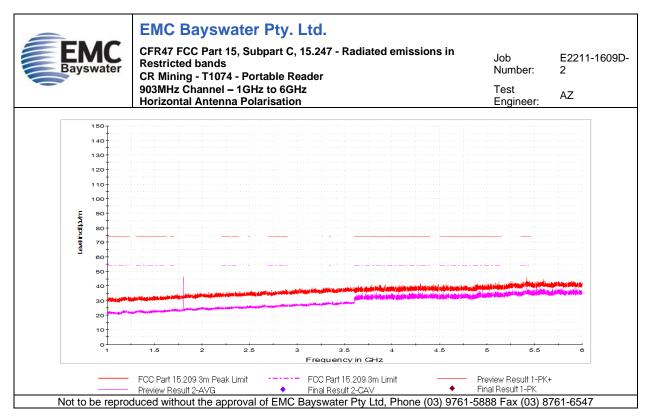

Graph 19


Graph 20


Graph 21


Graph 22


Graph 23

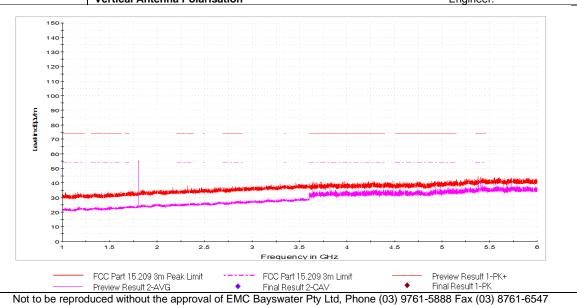

Graph 24

Graph 25

Graph 26

CFR47 FCC Part 15, Subpart C, 15.247 - Radiated emissions in **Restricted bands** CR Mining - T1074 - Portable Reader

903MHz Channel - 1GHz to 6GHz **Vertical Antenna Polarisation**

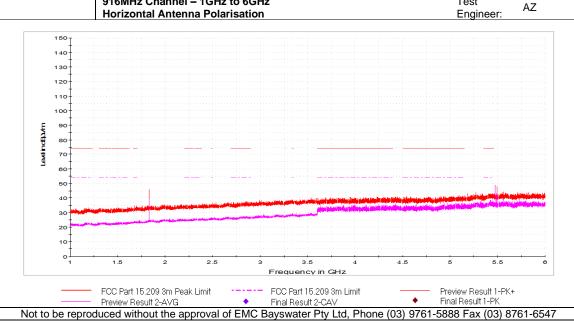

Job E2211-1609D-Number:

Test ΑZ Engineer:

Job

Number:

E2211-1609D-

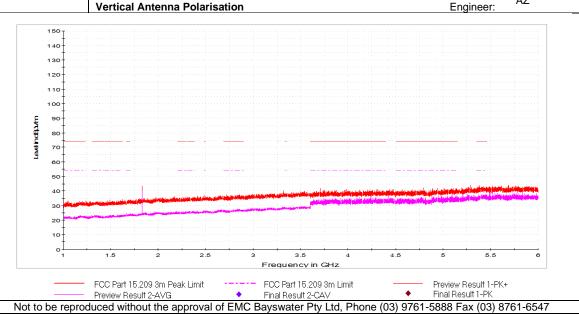

Graph 27

EMC Bayswater Pty. Ltd.

CFR47 FCC Part 15, Subpart C, 15.247 - Radiated emissions in **Restricted bands** CR Mining - T1074 - Portable Reader

916MHz Channel - 1GHz to 6GHz Test

Graph 28


CFR47 FCC Part 15, Subpart C, 15.247 - Radiated emissions in **Restricted bands** CR Mining - T1074 - Portable Reader

916MHz Channel - 1GHz to 6GHz **Vertical Antenna Polarisation**

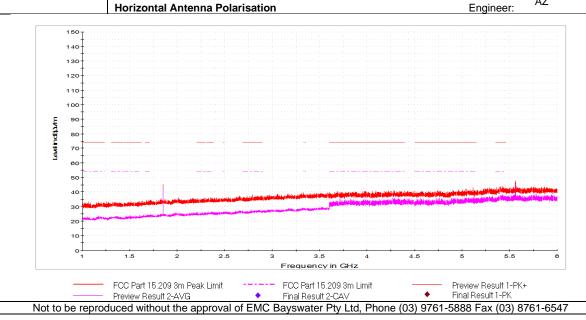
Job Number:

Test ΑZ

E2211-1609D-

Graph 29

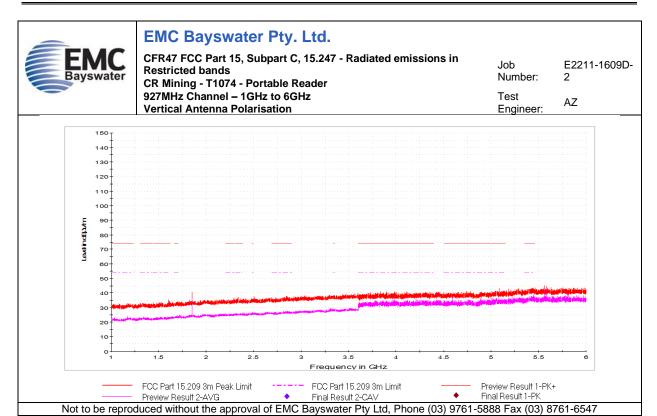
EMC Bayswater Pty. Ltd.

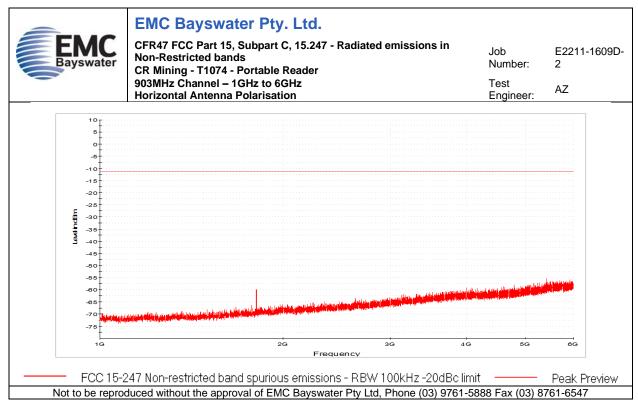

CFR47 FCC Part 15, Subpart C, 15.247 - Radiated emissions in **Restricted bands** CR Mining - T1074 - Portable Reader 927MHz Channel - 1GHz to 6GHz

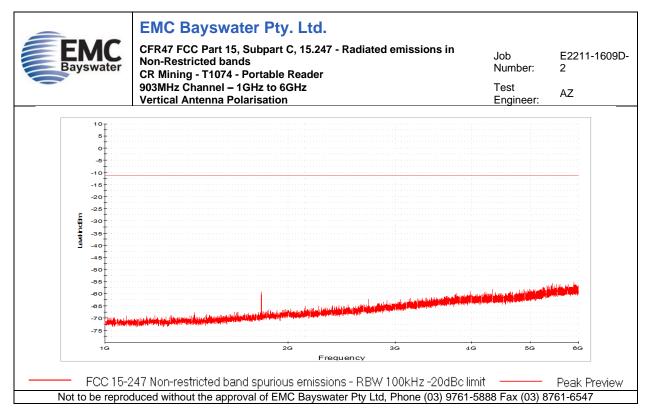
Job Number:

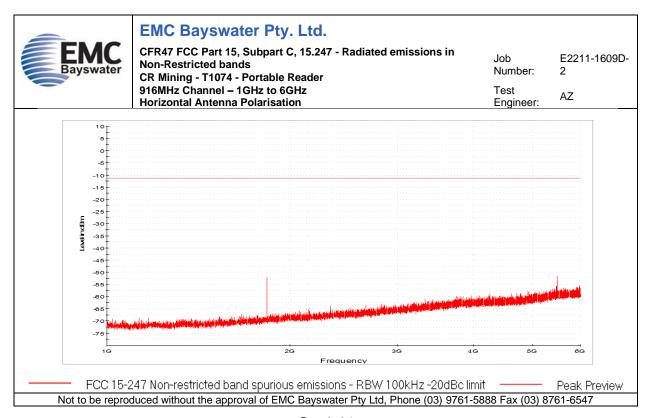
E2211-1609D-

Test

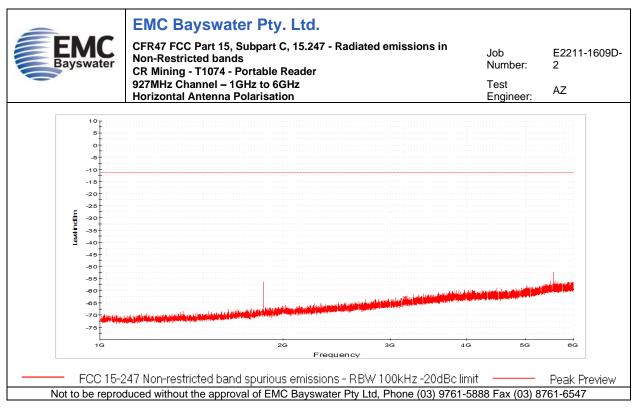

ΑZ

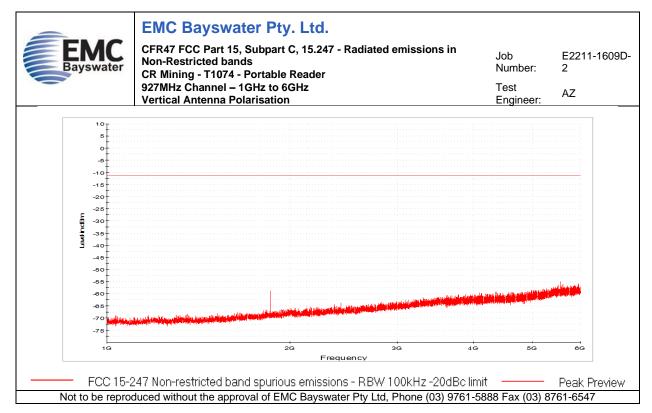

Graph 30

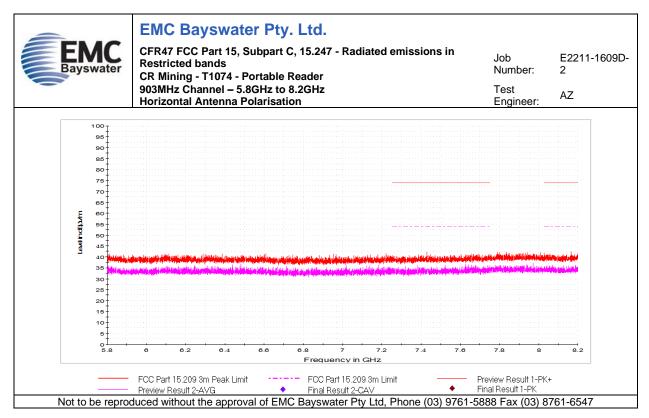

Graph 31


Graph 32


Graph 33

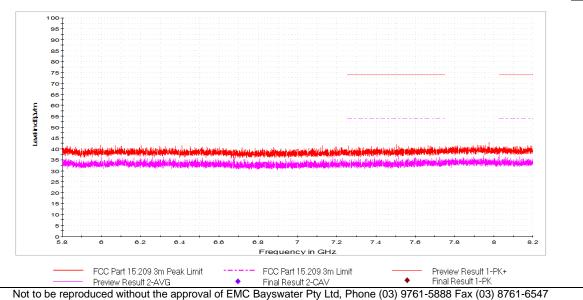

Graph 34

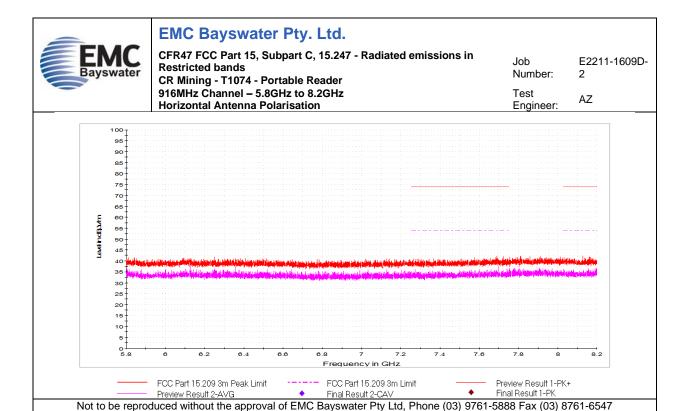

Graph 35


Graph 36

Graph 37

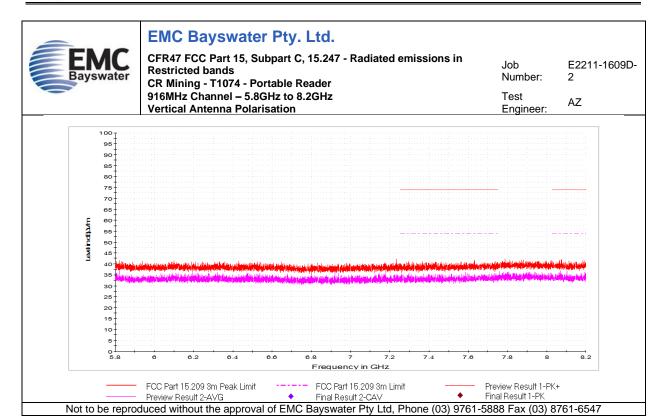
Graph 38

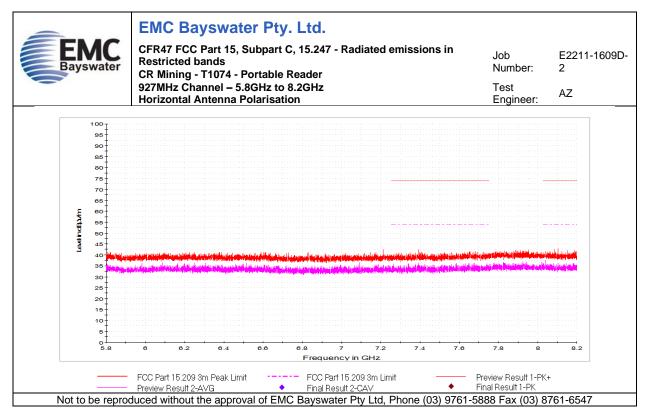


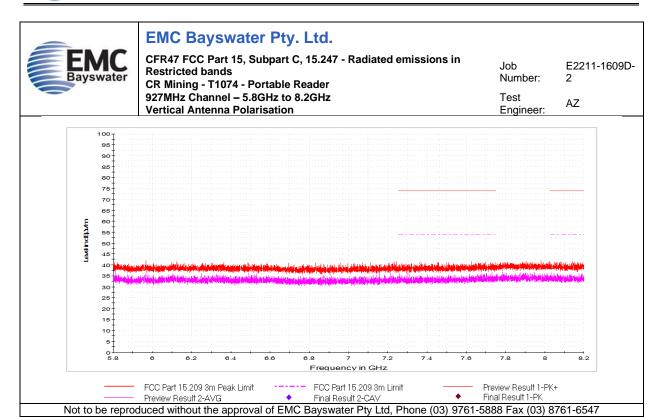

CFR47 FCC Part 15, Subpart C, 15.247 - Radiated emissions in Restricted bands CR Mining - T1074 - Portable Reader

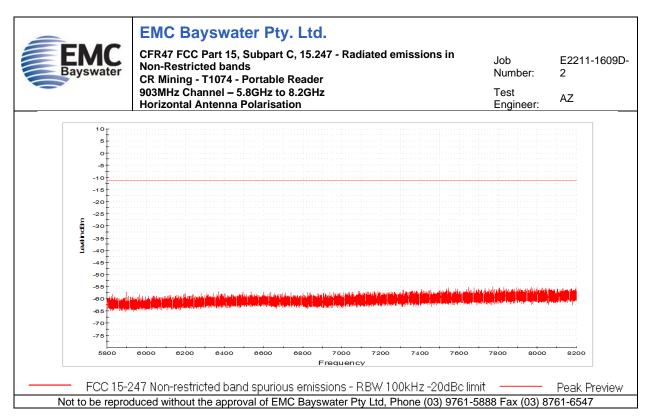
903MHz Channel – 5.8GHz to 8.2GHz Vertical Antenna Polarisation Job E2211-1609D-Number: 2

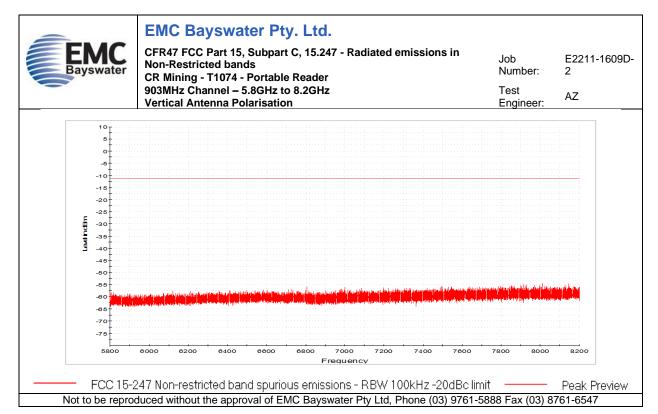
Test Engineer: AZ

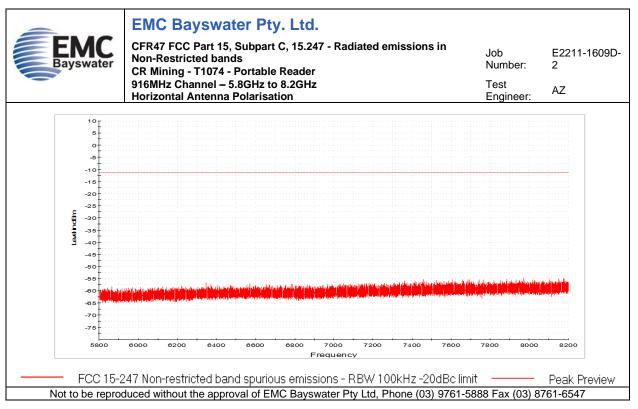

Graph 39

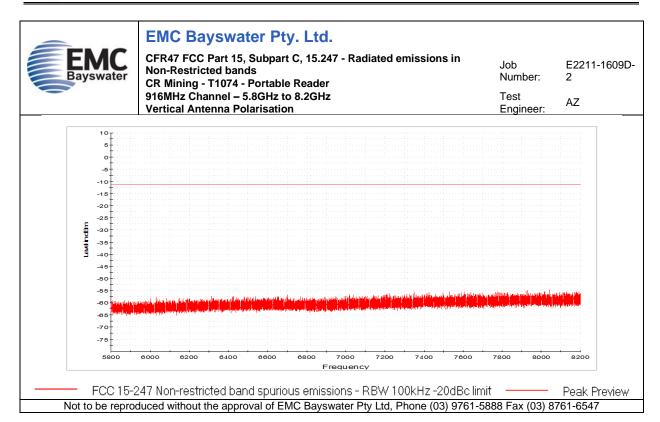

Graph 40

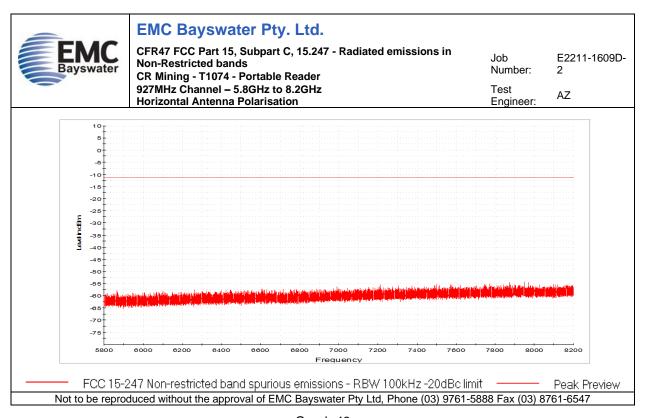

Graph 41

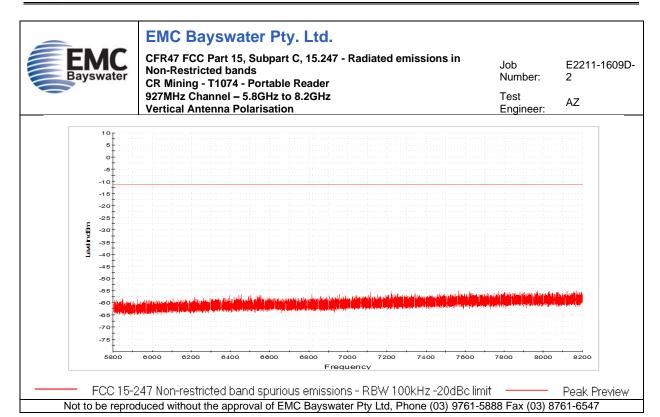

Graph 42

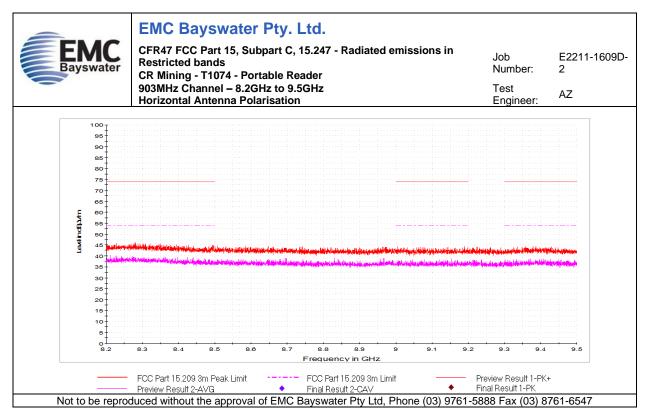

Graph 43

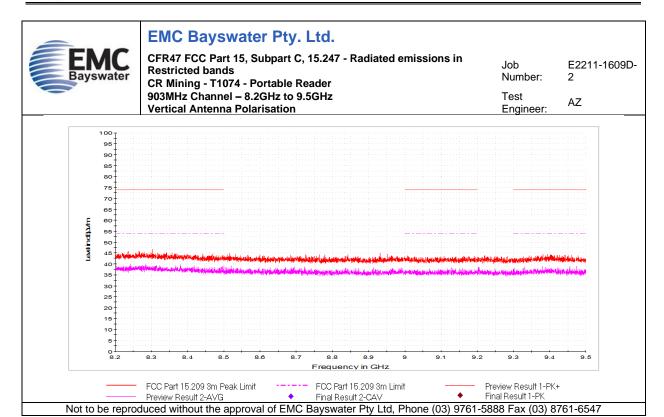

Graph 44

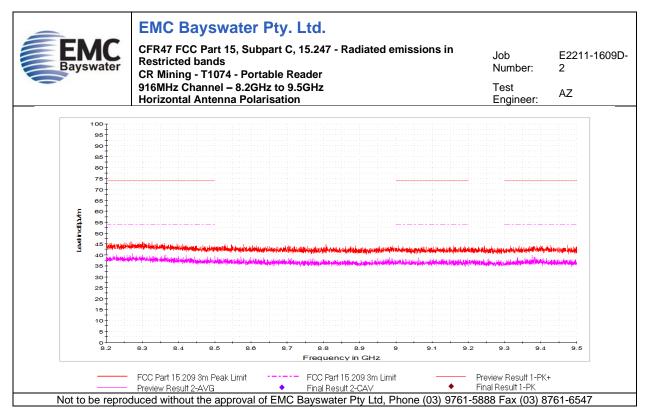

Graph 45

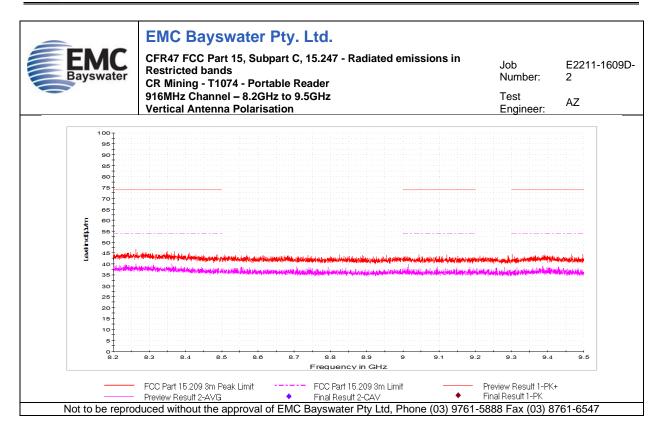

Graph 46

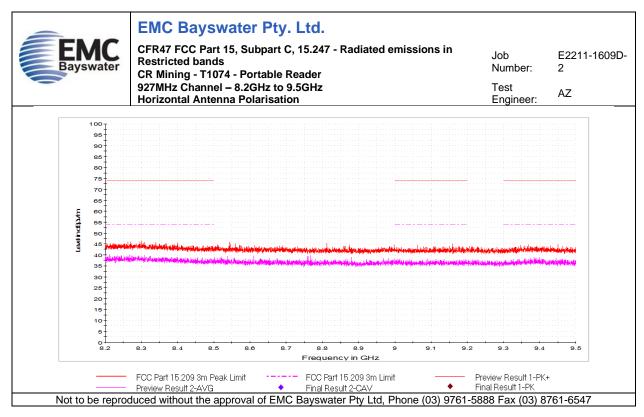

Graph 47

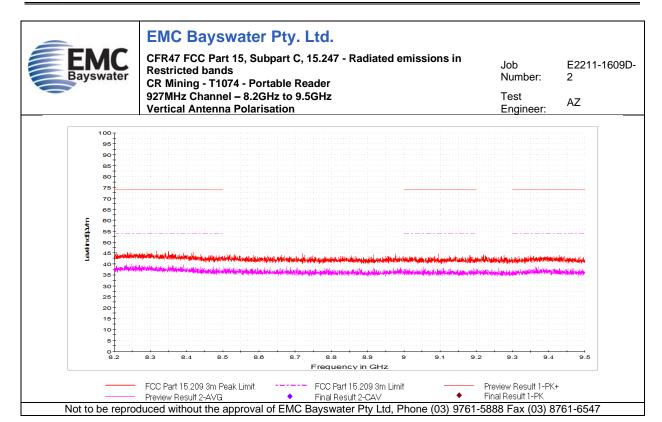

Graph 48

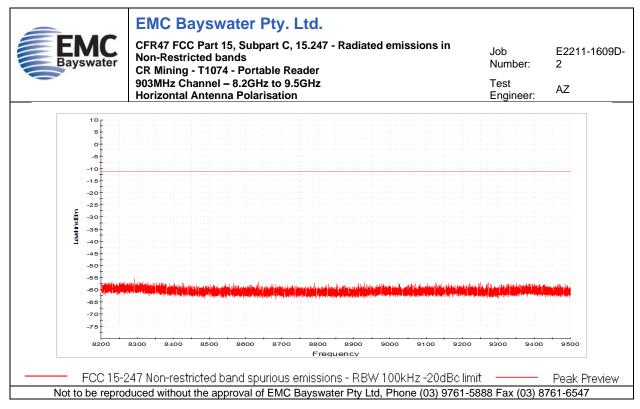

Graph 49

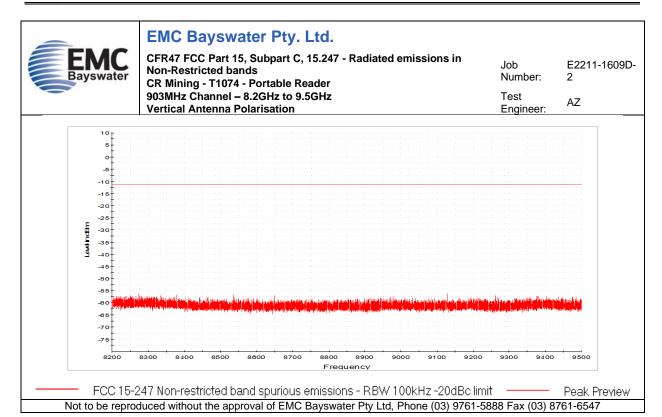

Graph 50

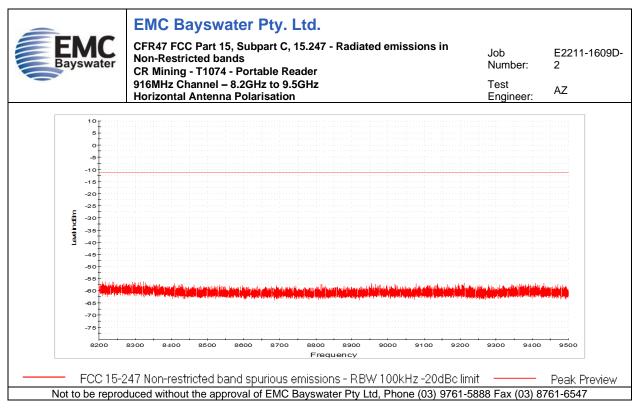

Graph 51

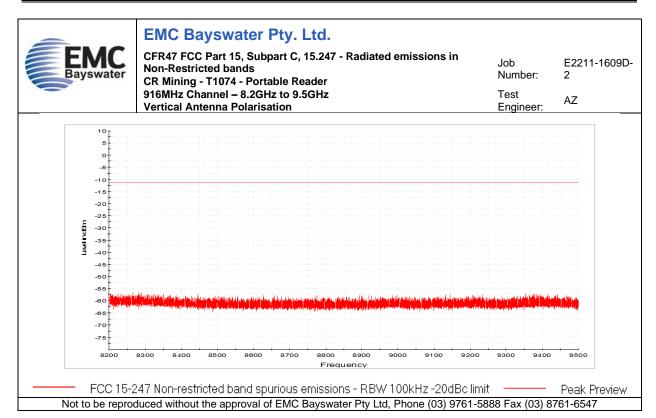

Graph 52

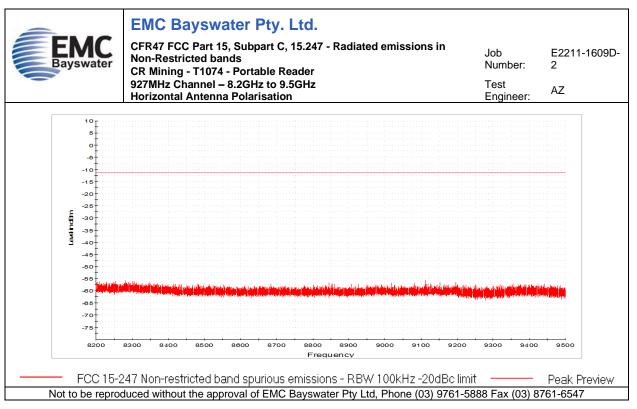

Graph 53

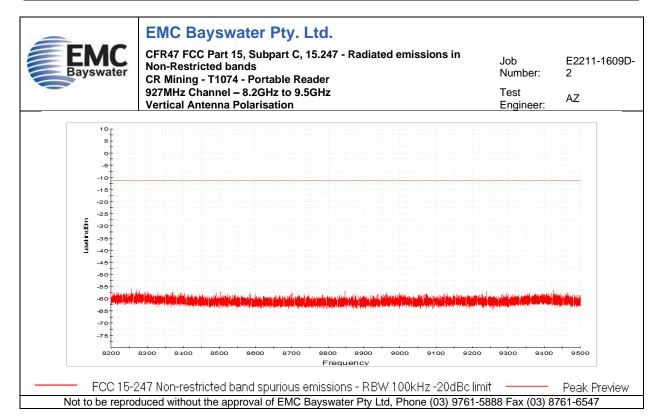

Graph 54


Graph 55


Graph 56

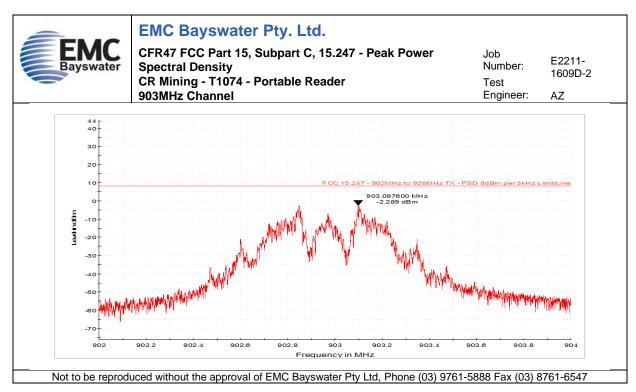

Graph 57

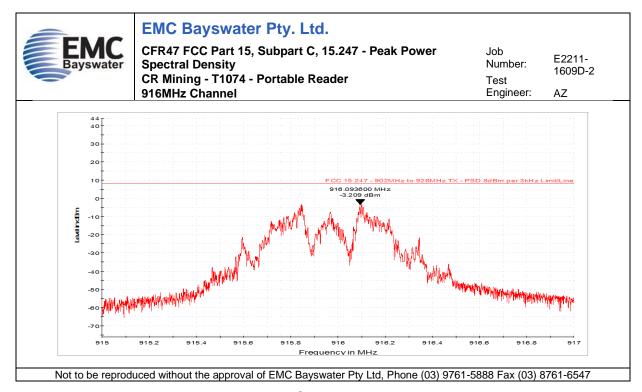

Graph 58


Graph 59

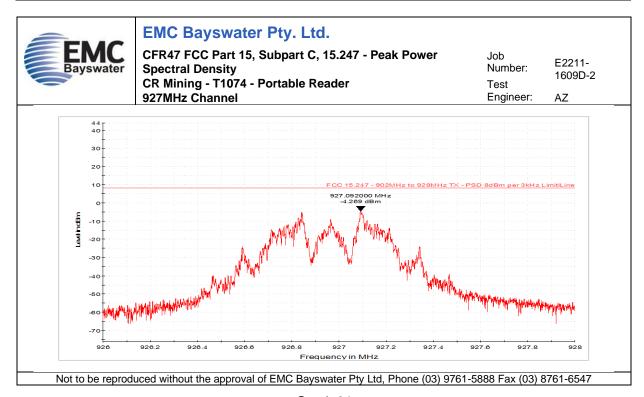
Graph 60

Graph 61



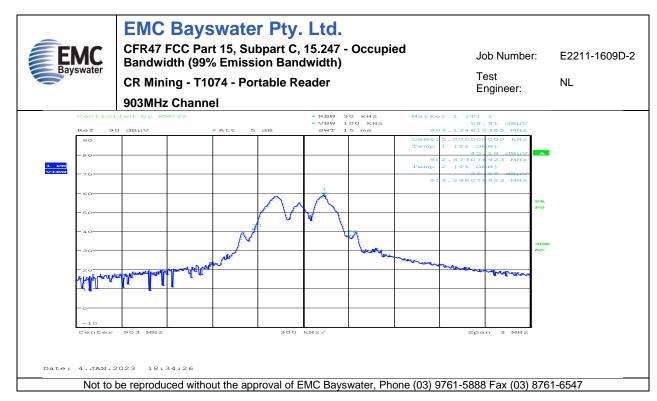

Appendix C.5 - Measurement Graphs - Power Spectral Density - FCC 15.247 (e)

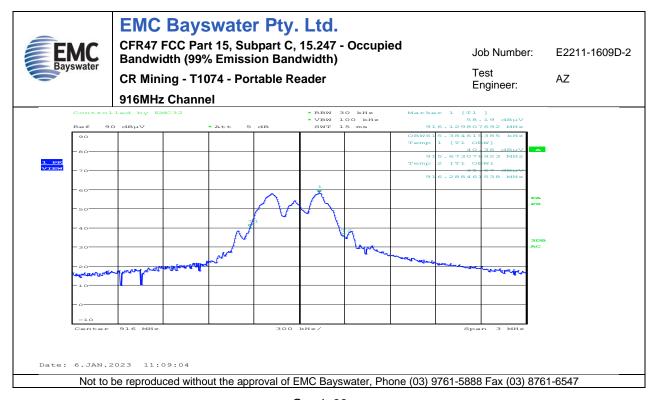
No.	Test	Graph Description
62		903MHz Channel
63	Power Spectral Density	916MHz Channel
64		927MHz Channel


Graph 62

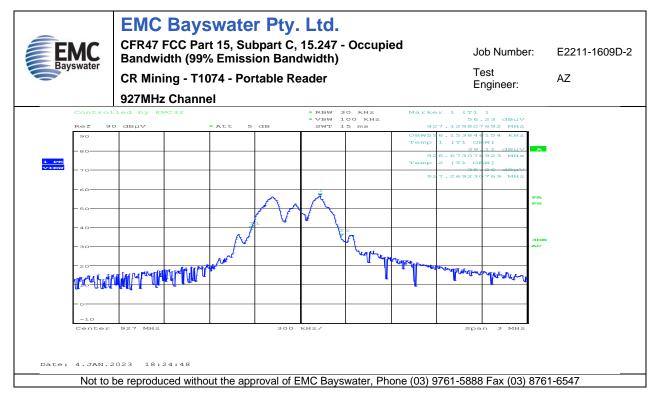
Graph 63

Graph 64



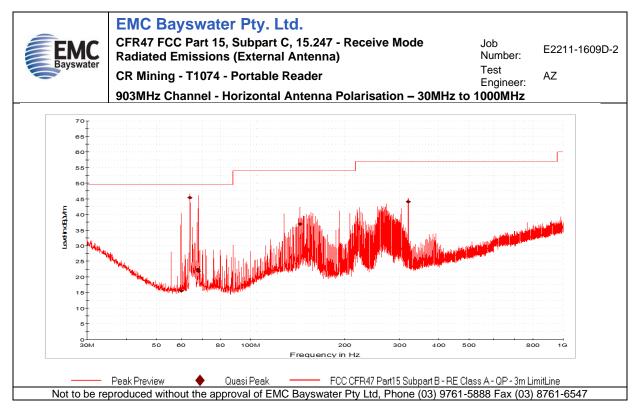

Appendix C.6 – Occupied Bandwidth (99% Emission Bandwidth)

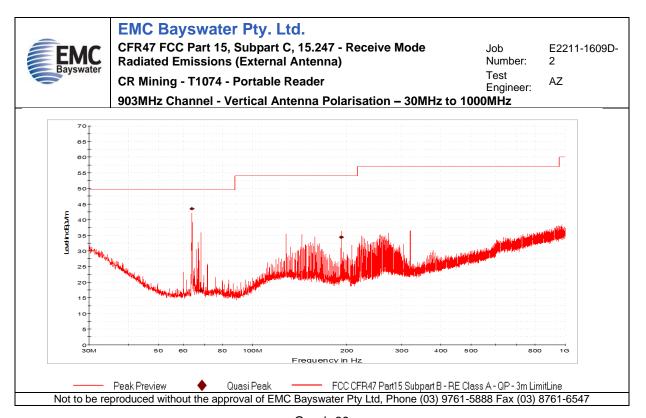
No.	Test	Graph Description
65		903MHz Channel
66	Occupied Bandwidth (99% Emission Bandwidth)	916MHz Channel
67		927MHz Channel


Graph 65

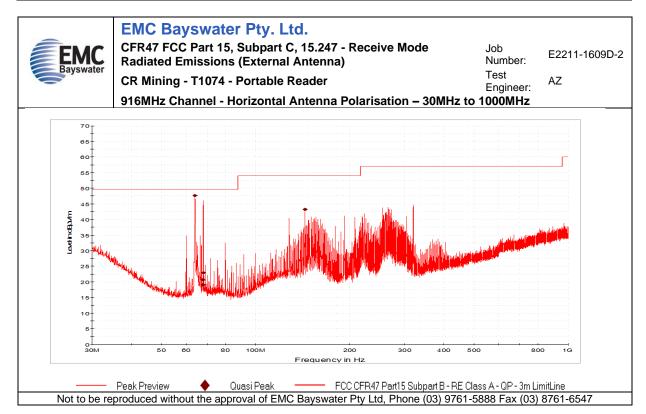
Graph 66

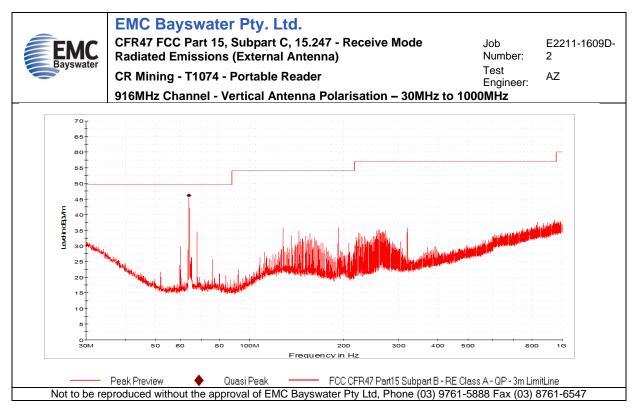
Graph 67

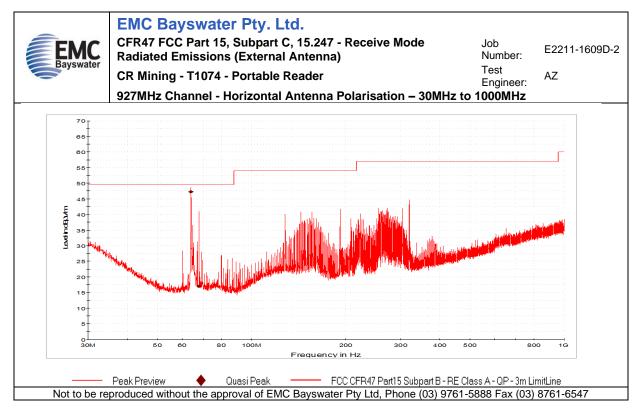


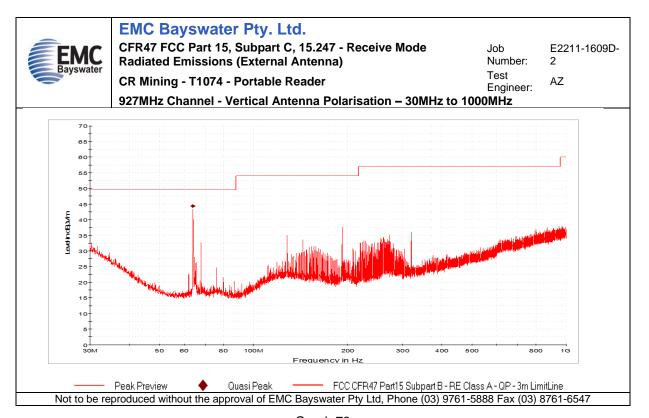

Appendix C.7 – Receive Mode Emissions

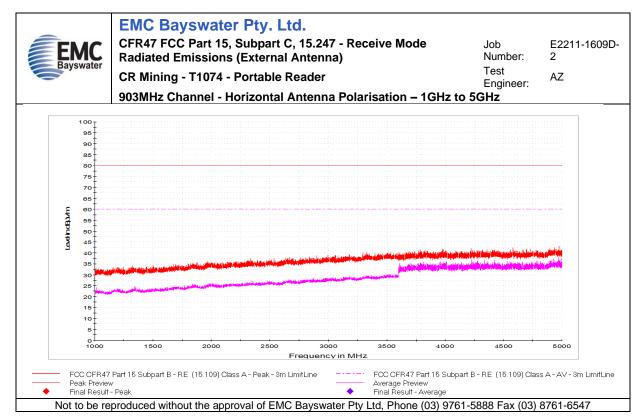
No.	Test	Graph Description
68		903MHz Channel, Horizontal Antenna Polarisation
69	Receive Mode Radiated	903MHz Channel, Vertical Antenna Polarisation
70	Emissions	916MHz Channel, Horizontal Antenna Polarisation
71	(External Antenna)	916MHz Channel, Vertical Antenna Polarisation
72	30MHz to 1000MHz	927MHz Channel, Horizontal Antenna Polarisation
73		927MHz Channel, Vertical Antenna Polarisation
74		903MHz Channel, Horizontal Antenna Polarisation
75	Receive Mode Radiated	903MHz Channel, Vertical Antenna Polarisation
76	Emissions (External Antonna)	916MHz Channel, Horizontal Antenna Polarisation
77	(External Antenna)	916MHz Channel, Vertical Antenna Polarisation
78	1GHz to 5GHz	927MHz Channel, Horizontal Antenna Polarisation
79		927MHz Channel, Vertical Antenna Polarisation
80	Receive Mode Radiated Emissions (Internal Antenna)	920MHz Channel, Horizontal Antenna Polarisation
81	30MHz to 1000MHz	920MHz Channel, Vertical Antenna Polarisation
82	Receive Mode Radiated Emissions	920MHz Channel, Horizontal Antenna Polarisation
83	(Internal Antenna) 1GHz to 5GHz	920MHz Channel, Vertical Antenna Polarisation
84		903MHz Channel, 9kHz to 30MHz
85		903MHz Channel, 30MHz to 1GHz
86		903MHz Channel, 1GHz to 5GHz
87	Antenna power	916MHz Channel, 9kHz to 30MHz
88	conduction limits for	916MHz Channel, 30MHz to 1GHz
89	receivers	916MHz Channel, 1GHz to 5GHz
90		927MHz Channel, 9kHz to 30MHz
91		927MHz Channel, 30MHz to 1GHz
92		927MHz Channel, 1GHz to 5GHz

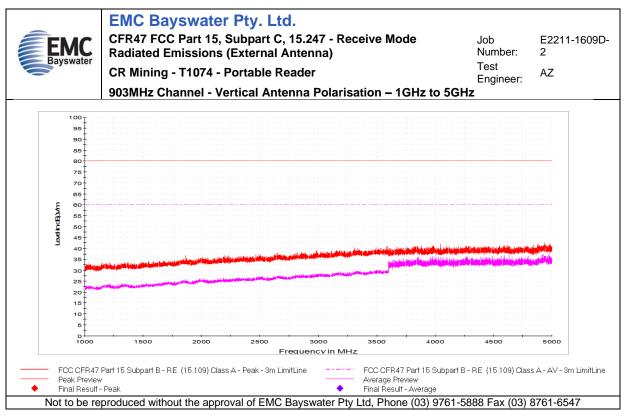

Graph 68

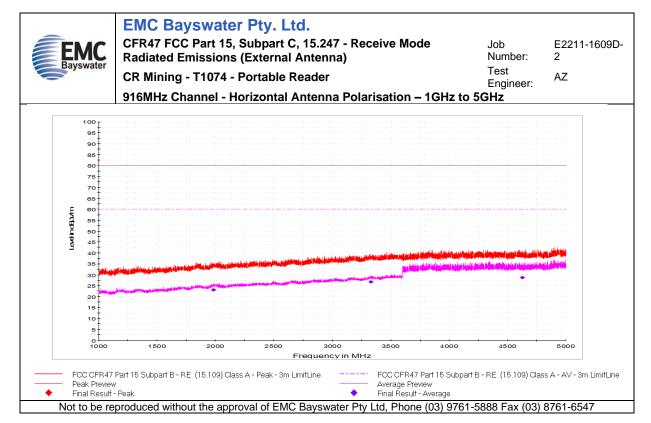

Graph 69

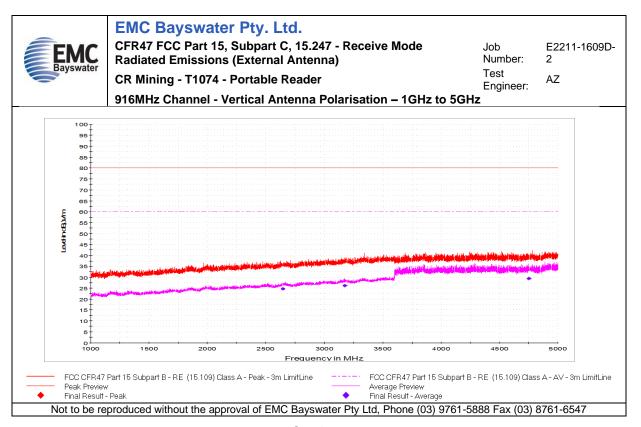

Graph 70

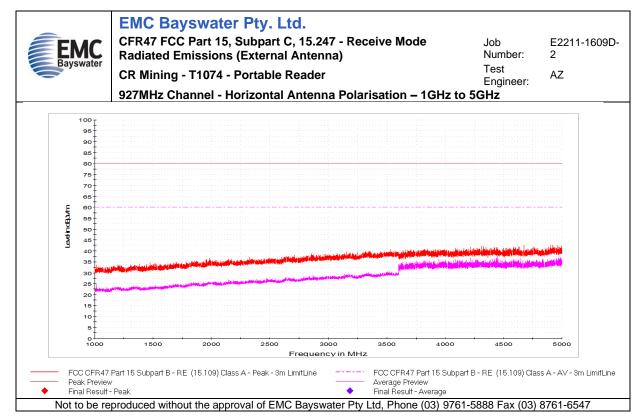

Graph 71

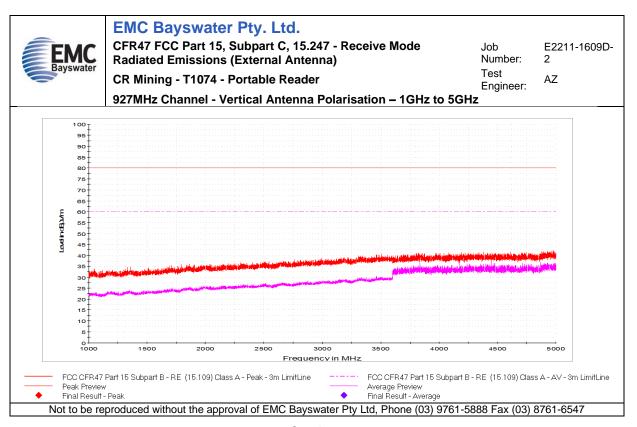

Graph 72

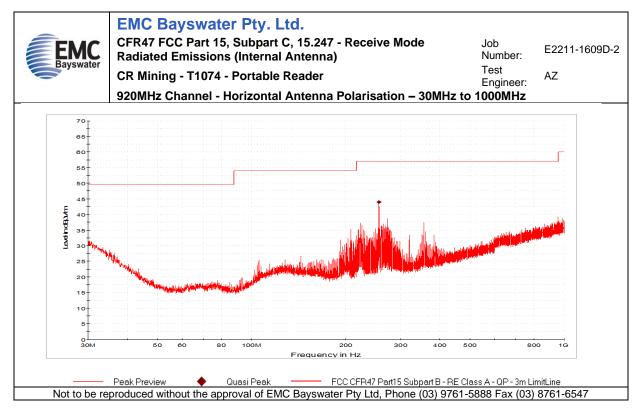

Graph 73

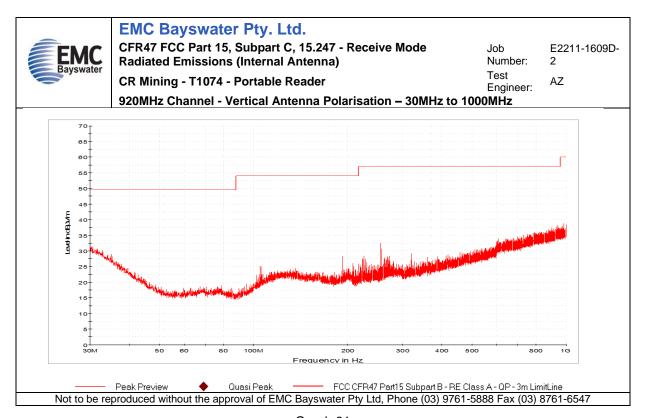

Graph 74

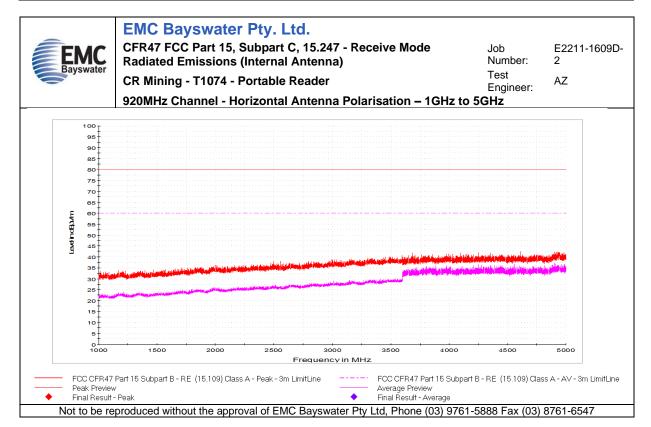

Graph 75

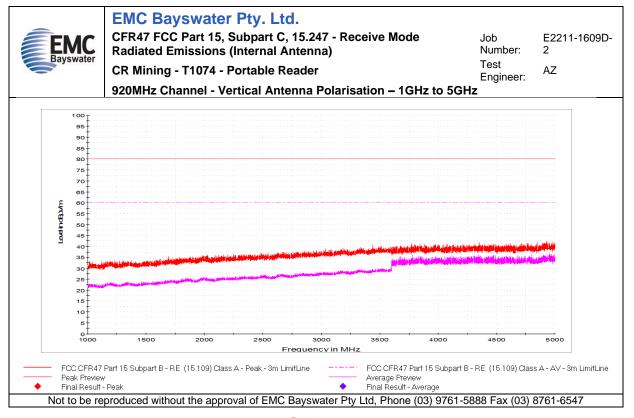

Graph 76

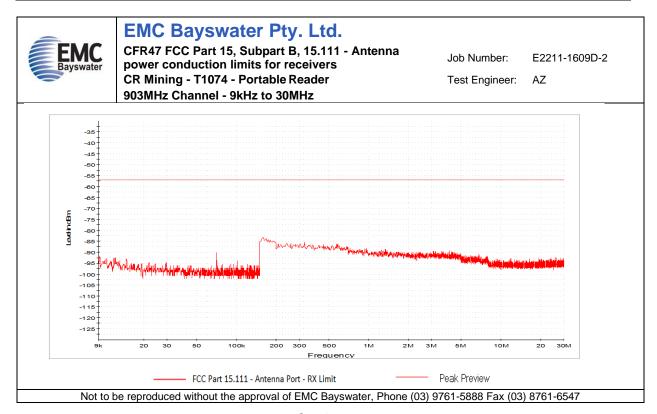

Graph 77

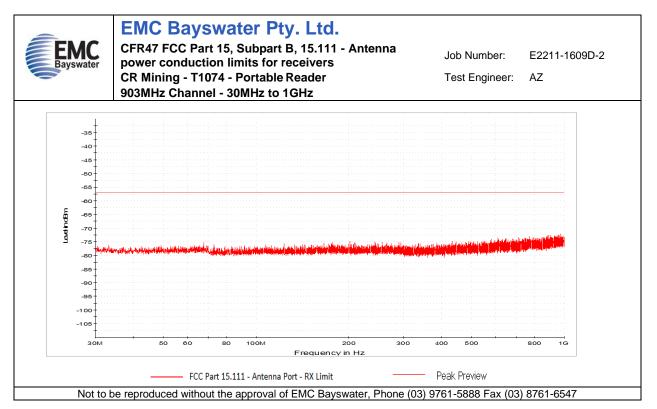

Graph 78


Graph 79


Graph 80

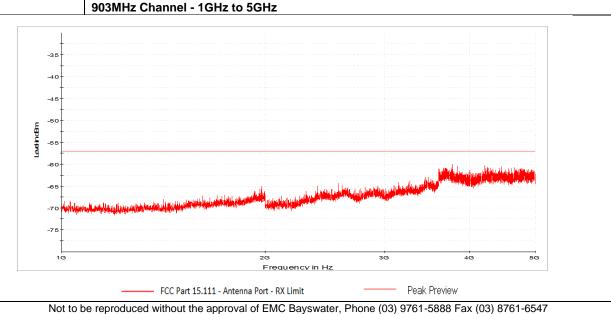

Graph 81


Graph 82


Graph 83

Graph 84

Graph 85



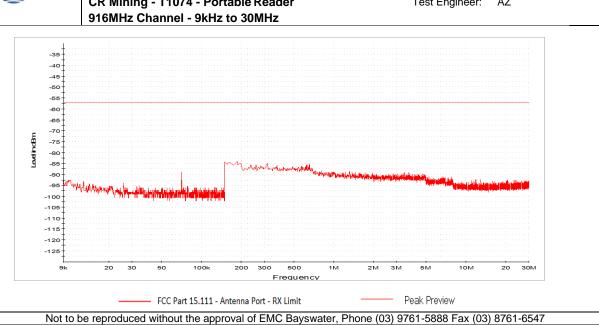
EMC Bayswater Pty. Ltd.

CFR47 FCC Part 15, Subpart B, 15.111 - Antenna power conduction limits for receivers CR Mining - T1074 - Portable Reader

Job Number: E2211-1609D-2

Test Engineer: AZ

Graph 86



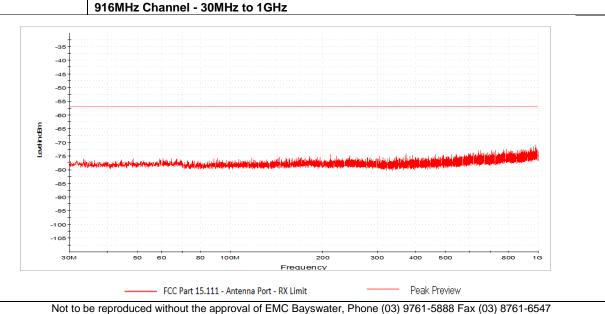
EMC Bayswater Pty. Ltd.

CFR47 FCC Part 15, Subpart B, 15.111 - Antenna power conduction limits for receivers
CR Mining - T1074 - Portable Reader

Job Number: E2211-1609D-2

Test Engineer: AZ

Graph 87



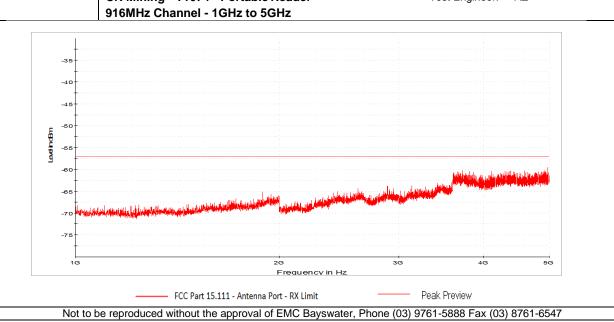
EMC Bayswater Pty. Ltd.

CFR47 FCC Part 15, Subpart B, 15.111 - Antenna power conduction limits for receivers CR Mining - T1074 - Portable Reader

Job Number: E2211-1609D-2

Test Engineer: AZ

Graph 88



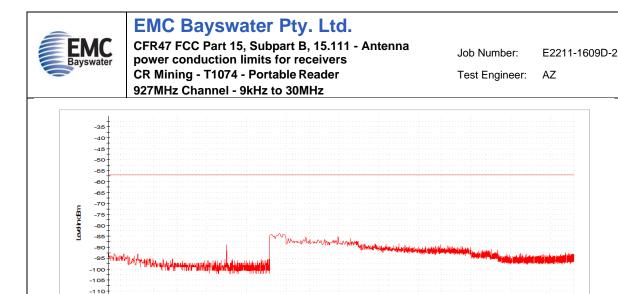
EMC Bayswater Pty. Ltd.

CFR47 FCC Part 15, Subpart B, 15.111 - Antenna power conduction limits for receivers CR Mining - T1074 - Portable Reader

Job Number: E2211-1609D-2

Test Engineer: AZ

Graph 89



20 30M

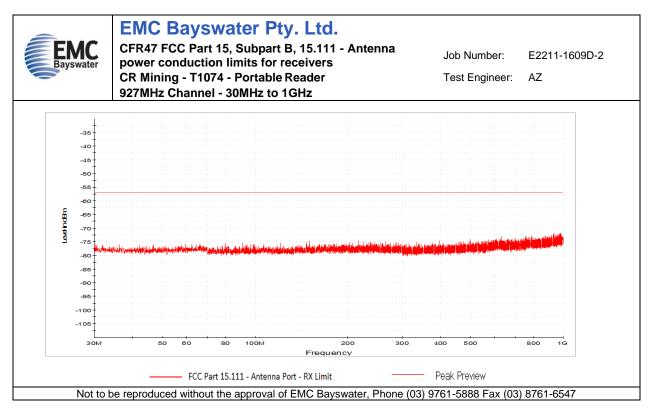
-1 15 -1 20

20 30

Not to be reproduced without the approval of EMC Bayswater, Phone (03) 9761-5888 Fax (03) 8761-6547

500

Frequency

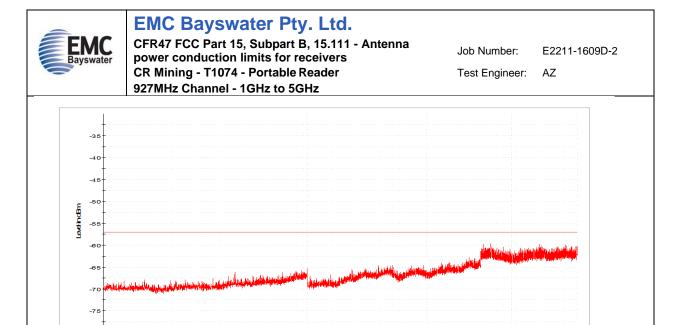

2M 3M

Peak Preview

Graph 90

300

FCC Part 15.111 - Antenna Port - RX Limit



Graph 91

1G

Not to be reproduced without the approval of EMC Bayswater, Phone (03) 9761-5888 Fax (03) 8761-6547

3G

4G

Peak Preview

Graph 92

FCC Part 15.111 - Antenna Port - RX Limit

Frequency in Hz

