

Project No.: ZHT-240402022E-2 Page 1 of 58

FCC TEST REPORT FCC ID:2A9CD-M19

Report Number.....: ZHT-240402022E-2

Date of Test...... Apr. 02, 2024 to Apr. 12, 2024

Date of issue...... Apr. 12, 2024

Test Result: PASS

Testing Laboratory...... : Guangdong Zhonghan Testing Technology Co., Ltd.

Address Room 104, Building 1, Yibaolai Industrial Park, Qiaotou

Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong,

China

Applicant's name Shenzhen Senyang Zhiyuan Technology Co.,Ltd

District, Shenzhen, 518000 China

Manufacturer's name Shenzhen Senyang Zhiyuan Technology Co.,Ltd

Address: 505,Floor 5,West Block,Building 405,Sanda Industrial Zone,Futian

District, Shenzhen, 518000 China

Test specification:

Standard...... FCC CFR Title 47 Part 15 Subpart C Section 15.247

KDB 558074 D01 15.247 Meas Guidance v05r02

Test procedure.....: ANSI C63.10:2013

Non-standard test method: N/A

This device described above has been tested by ZHT, and the test results show that the equipment under test (EUT) is in compliance with the requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZHT, this document may be altered or revised by ZHT, personal only, and shall be noted in the revision of the document.

Trademark: N/A

Model/Type reference.....: M19, DX-08, K70, K60, K40, K30, BQ20, X65, X37, X35, TG09.

\$20, OKS-1, PRO30, M39, M12, TG09, M80, M5, LB518, LB8, K12, K8, JX20, JX10, S28, TM20, TM10, L12, M20, DX-02, DX-05, DX-10, H10, RS71, J5, TWS, S20, GM20, TC04, AIR31, YD07,

ONE, K80, X37

models are identical in circuit, only different on the model names and color. So the test data of M19 can represent the remaining

Ratings...... : Charging box input: DC 5 V,Earphone: DC 5 V by Charging box or

DC 3.7 V by battery

Project No.: ZHT-240402022E-2 Page 2 of 58

ation:				
:	Guangdong Zhon	ghan Testing Technol	ogy Co., Ltd.	
S:		Room 104, Building 1, Yibaolai Industrial Park, Qiaotor Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
:	Kimi Lu	Kimj	Lu	
:	Baret Wu	Bank	:Wu	
	<u> </u>	Thoropao	CO. Vo Guangeo	
:	Levi Lee	csting Technolife	Lundis S	
	1 5	: Guangdong Zhon: Room 104, Buildin Community, Fuhai	: Guangdong Zhonghan Testing Technology Room 104, Building 1, Yibaolai Industrial F. Community, Fuhai Street, Bao'an District, S. Guangdong, China Kimi Lu Baret Wu Baret Wu	

Table of Contents	Page
1. VERSION	
2. SUMMARY OF TEST RESULTS	6
2.1 TEST FACILITY	
2.2 MEASUREMENT UNCERTAINTY	
3. GENERAL INFORMATION	
3.1 GENERAL DESCRIPTION OF EUT	8
3.2 DESCRIPTION OF TEST MODES	9
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	10
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)	10
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS	
4. EMC EMISSION TEST	
4.1 CONDUCTED EMISSION MEASUREMENT	
4.1.2 TEST PROCEDURE	
4.1.3 DEVIATION FROM TEST STANDARD	13
4.1.4 TEST SETUP	
4.1.5 EUT OPERATING CONDITIONS	
4.1.6 TEST RESULTS	
4.2 RADIATED EMISSION MEASUREMENT	
4.2.1 RADIATED EMISSION LIMITS	
4.2.2 TEST PROCEDURE	
4.2.4 TEST SETUP	_
4.2.5 EUT OPERATING CONDITIONS	
5.1 TEST REQUIREMENT:	
5.2 TEST PROCEDURE	22
5.3 DEVIATION FROM TEST STANDARD	
5.4 TEST SETUP	
5.5 EUT OPERATING CONDITIONS	
6.POWER SPECTRAL DENSITY TEST	
6.1 APPLIED PROCEDURES / LIMIT	25

6.3 DEVIATION FROM STANDARD25

		Table of Contents	Page
6.6 TE	ST RESULTS	S:	25
7.1 AP	PLIED PRO	CEDURES / LIMIT	26
7.2 TE	ST PROCED	URE	26
7.3 DE	VIATION FR	OM STANDARD	26
7.5 EU	IT OPERATION	ON CONDITIONS	26
		ER TEST	
8.1 AP	PLIED PRO	CEDURES / LIMIT	27
8.3 DE	VIATION FR	OM STANDARD	27
8.5 EU	IT OPERATION	ON CONDITIONS	27
8.6 TE	ST RESULTS	3	27
9. CONDUC	TED BAND	EDGE AND SPURIOUS EMISSION	N28
9.1 AP	PLICABLE S	STANDARD	28
		URE	
9.3 DE	VIATION FR	OM STANDARD	28
9.4 TE	ST SETUP		28
9.5 EU	IT OPERATION	ON CONDITIONS	28
10.ANTENN	IA REQUIRI	EMENT	29
11. APPEND	OIX BLE		30
12. TEST SI	ETUP PHOT	OS	58
13. EUT CO	NSTRUCTION	ONAL DETAILS	58

Project No.: ZHT-240402022E-2 Page 5 of 58

1. VERSION

Report No.	Version	Description	Approved
ZHT-240402022E-2	Rev.01	Rev.01 Initial issue of report A	
115	15	15	15

Project No.: ZHT-240402022E-2 Page 6 of 58

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Lest Item				
FCC part 15.203/15.247 (b)(4)	Antenna requirement	PASS			
FCC part 15.207	AC Power Line Conducted Emission	N/A			
FCC part 15.247 (b)(3)	Conducted Peak Output Power	PASS	li .		
FCC part 15.247 (a)(2)	Channel Bandwidth& 99% OCB	PASS			
FCC part 15.247 (e)	Power Spectral Density	PASS			
FCC part 15.247(d)	Band Edge	PASS	(1)		
FCC part 15.205/15.209	Spurious Emission	PASS			

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report Remark: the duty cycle is greater than 98%.

Project No.: ZHT-240402022E-2 Page 7 of 58

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd.

Add.: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District

Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %。

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF conducted power	±0.16dB
3	Conducted spurious emissions	±0.21dB
4	All radiated emissions (9k-30MHz)	±4.68dB
5	All radiated emissions (<1G)	±4.68dB
6	All radiated emissions (>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96%

Project No.: ZHT-240402022E-2 Page 8 of 58

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	wireless headset
Test Model No.:	M19
Hardware Version:	V1.0
Software Version:	V1.0
Sample(s) Status:	Engineer sample
Operation Frequency:	2402MHz~2480MHz
Channel Numbers:	40
Channel Separation:	2MHz
Modulation Type:	GFSK
Antenna Type:	PCB Antenna
Antenna gain:	1.1dBi
Power supply:	Charging box input: DC 5 V,Earphone: DC 5 V by Charging box or DC 3.7 V by battery

Project No.: ZHT-240402022E-2 Page 9 of 58

				7)		-945		
Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz	
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz	
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz	
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz	
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz	
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz	
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz	
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz	
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz	
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz	

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

3.2 DESCRIPTION OF TEST MODES

Transmitting mode	Keep the EUT in continuously transmitting mode
	attery during the test, the test voltage was tuned from 85% to 115% of the

nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Project No.: ZHT-240402022E-2 Page 10 of 58

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED Radiated Emission

EUT

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
				(1)	/
				41	11
		G G			

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>FLength</code> <code>geolumn</code>.
- (3) The test software is the RTLBluetooth Test tool which can set the EUT into the individual test modes.TX Power: default

Project No.: ZHT-240402022E-2 Page 11 of 58

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS Radiation Test equipment

				2	4 6 4 4	
Item	Equipment	Manufacturer	Model	Instrument number	Last Cal.	Next Cal.
1	Receiver	R&S	ESCI	ZH-E005	May 12, 2023	May 11, 2024
2	Loop antenna	EMCI	LAP600	ZH-E036	May 12, 2023	May 11, 2024
3	Amplifier	Schwarzbeck	BBV 9743 B	ZH-E019	May 12, 2023	May 11, 2024
4	Amplifier	Schwarzbeck	BBV 9718 B	ZH-E021	May 12, 2023	May 11, 2024
5	Bilog Antenna	Schwarzbeck	VULB9162	ZH-E017	May 17, 2023	May 16, 2024
6	Horn Antenna	Schwarzbeck	BBHA9120D	ZH-E020	May 17, 2023	May 16, 2024
7	Horn Antenna	A.H.SYSTEM S	SAS574	ZH-E062	May 12, 2023	May 11, 2024
8	Amplifier	AEROFLEX	100KHz-40GHz	ZH-E063	May 12, 2023	May 11, 2024
9	Spectrum Analyzer	R&S	FSV40	ZH-E064	May 12, 2023	May 11, 2024
10	CDNE	Schwarzbeck	CDNE M2 + CDNE M3	ZH-E029	May 12, 2023	May 11, 2024
11	966 Anechoic Chamber	EMToni	9m6m6m	ZH-E001	Nov. 25, 2021	Nov. 24, 2024
12	Spectrum Analyzer	KEYSIGHT	N9020A	ZH-E032	May 12, 2023	May 11, 2024
13	WIDBAND RADIO COMMUNICATIO N TESTER	R&S	CMW500	ZH-E033	May 12, 2023	May 11, 2024
14	Single Generator	Agilent	N5182A	ZH-E034	May 12, 2023	May 11, 2024
15	Power Sensor	MWRFtest	MW100-RFCB	ZH-E066	May 12, 2023	May 11, 2024
16	Audio analyzer	R&S	UPL	ZH-E067	May 12, 2023	May 11, 2024
17	Single Generator	R&S	SMB100A	ZH-E068	May 12, 2023	May 11, 2024
18	Power Amplifier Shielding Room	EMToni	2m3m3m	ZH-E003	Nov. 25, 2021	Nov. 24, 2024

Project No.: ZHT-240402022E-2 Page 12 of 58

Conduction Test equipment

Equipment Manufacturer		Model	Instrument number	Last Cal.	Next Cal.
Receiver	R&S	ESCI	ZH-E005	May 12, 2023	May 11, 2024
LISN	R&S	ENV216	ZH-E006	May 12, 2023	May 11, 2024
ISN CAT 6	Schwarzbeck	NTFM 8158	ZH-E012	May 12, 2023	May 11, 2024
ISN CAT 5	Schwarzbeck	CAT5 8158	ZH-E013	May 12, 2023	May 11, 2024
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	ZH-E014	May 12, 2023	May 11, 2024
Current Transformer Clamp	Schwarzbeck	SW 9605	ZH-E015	May 12, 2023	May 11, 2024
CE Shielding Room	EMToni	9m4m3m	ZH-E002	Nov. 25, 2021	Nov. 24, 2024

Conducted Test equipment

	Equipment	Manufacturer	Model	Instrument number	Last Cal.	Next Cal.
	Spectrum Analyzer	KEYSIGHT	N9020A	ZH-E032	May 12, 2023	May 11, 2024
)	Single Generator	Agilent	N5182A	ZH-E034	May 12, 2023	May 11, 2024

Project No.: ZHT-240402022E-2 Page 13 of 58

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (dBuV)		
	QP	AVG	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

(1) *Decreases with the logarithm of the frequency.

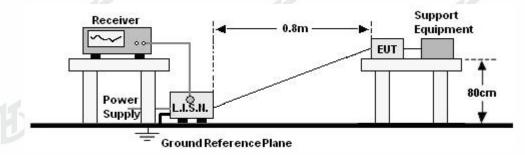
4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

No deviation

admin@zht-lab.cn



Project No.: ZHT-240402022E-2 Page 14 of 58

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULTS

Not applicable in this Test Report, because the wireless headset don't work while charging

Project No.: ZHT-240402022E-2 Page 15 of 58

4.2 RADIATED EMISSION MEASUREMENT

Test Require	ment:	FCC Part15 C Section 15.209 and 15.205;						
Test Method:		ANSI C63.10:2013						
Test Frequen	cy Range:	9kHz to 25GHz						
Test site:		Measurement Distance: 3m						
Receiver setu	Receiver setup:		Detector	RBW	VBW	Value		
			Quasi-peak	200Hz	600Hz	Quasi-peak		
		150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak		
9		30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak		
			Peak	1MHz	3MHz	Peak		
			Peak	1MHz	10Hz	Average		

4.2.1 RADIATED EMISSION LIMITS

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

EDEOLIENCY (MHz)	Limit (dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

- (1) The limit for radiated test was performed according to FCC Part15 C
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

□ admin@zht-lab.cn

Project No.: ZHT-240402022E-2 Page 16 of 58

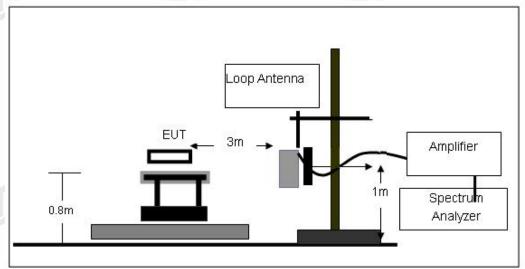
4.2.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 25GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-chamber test. The table was rotated 360 degrees to determine the position of the highest
- c. The height of the equipment or of the substitution antenna shall be 0.8m; above 1GHz, the height was 1.5m, the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item -EUT Test Photos.
- g. For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response.

The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

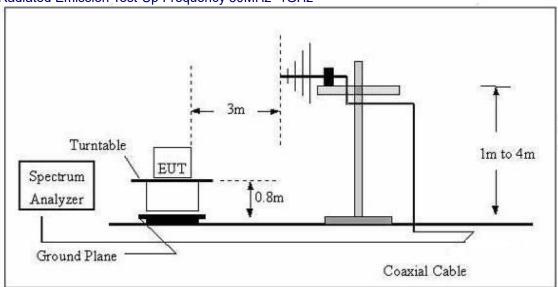
Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

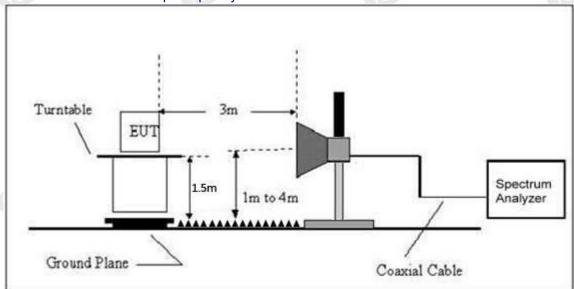

4.2.3 DEVIATION FROM TEST STANDARD

No deviation

Note:

4.2.4 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz


Project No.: ZHT-240402022E-2

Page 17 of 58

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

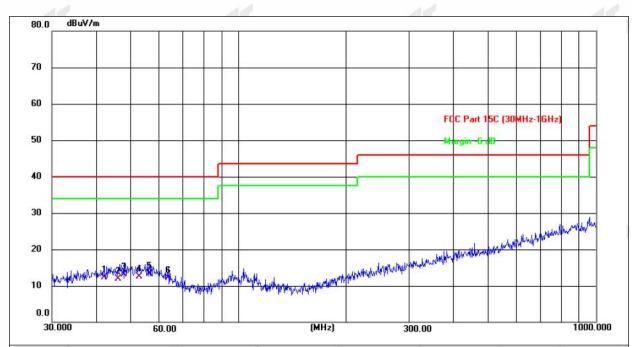
(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.2.6 TEST RESULTS (Between 9KHz – 30 MHz)

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

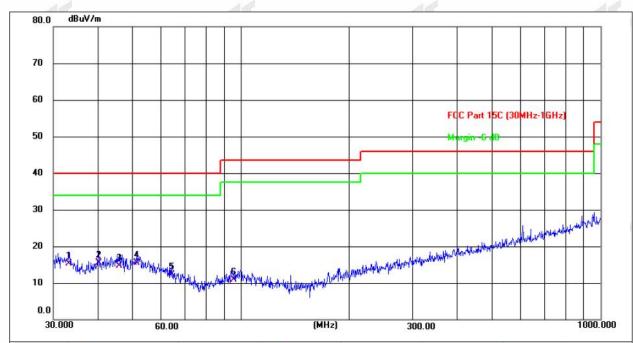


Project No.: ZHT-240402022E-2 Page 18 of 58

Between 30MHz - 1GHz

Temperature :	25.1℃	Relative Humidity :	50%
Pressure :	101kPa	Polarization :	Horizontal
Test Voltage :	DC 3.7V		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	42.0066	21.82	-9.50	12.32	40.00	-27.68	QP
2	46.0164	21.11	-9.12	11.99	40.00	-28.01	QP
3	47.6586	22.10	-8.95	13.15	40.00	-26.85	QP
4	52.7600	21.64	-9.04	12.60	40.00	-27.40	QP
5 *	56.1974	22.77	-9.41	13.36	40.00	-26.64	QP
6	63.5356	23.12	-10.97	12.15	40.00	-27.85	QP



Project No.: ZHT-240402022E-2 Page 19 of 58

Temperature :	25.1℃	Relative Humidity :	50%
Pressure :	101kPa	Polarization :	Vertical
Test Voltage :	DC 3.7V		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	33.2112	26.14	-10.88	15.26	40.00	-24.74	QP
2 *	40.1347	25.21	-9.68	15.53	40.00	-24.47	QP
3	45.6947	23.86	-9.15	14.71	40.00	-25.29	QP
4	51.1210	24.32	-8.85	15.47	40.00	-24.53	QP
5	63.9827	23.47	-11.11	12.36	40.00	-27.64	QP
6	95.4270	22.50	-11.66	10.84	43.50	-32.66	QP

Remarks:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3. The test data shows only the worst case GFSK 1M Low Channel: 2402MHz.

Project No.: ZHT-240402022E-2 Page 20 of 58

1	GHz~25GHz								
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				l ow Cha	nnel:2402M	 H7			
V	4806.00	55.65	30.55	5.77	24.66	55.53	74	-18.47	PK
V	4806.00	48.55	30.55	5.77	24.66	48.43	54	-5.57	AV
V	7206.00	55.52	30.33	6.32	24.55	56.06	74	-17.94	PK
V	7206.00	45.57	30.33	6.32	24.55	46.11	54	-7.89	AV
V	9608.00	52.67	30.55	5.77	24.66	52.55	74	-21.45	PK
V	9608.00	47.47	30.55	5.77	24.66	47.35	54	-6.65	AV
V	12010.00	57.32	30.33	6.32	24.55	57.86	74	-16.14	PK
V	12010.00	43.54	30.33	6.32	24.55	44.08	54	-9.92	AV
Н	4806.00	59.52	30.55	5.77	24.66	59.40	74	-14.6	Pk
Н	4806.00	45.94	30.55	5.77	24.66	45.82	54	-8.18	AV
Н	7206.00	57.75	30.33	6.32	24.55	58.29	74	-15.71	Pk
Н	7206.00	45.45	30.33	6.32	24.55	45.99	54	-8.01	AV
H	9608.00	57.57	30.55	5.77	24.66	57.45	74	-16.55	Pk
H	9608.00	41.75	30.55	5.77	24.66	41.63	54	-12.37	AV
H	12010.00	57.14	30.33	6.32	24.55	57.68	74	-16.32	Pk
Н	12010.00	41.86	30.33	6.32	24.55	42.40	54	-11.6	AV
	1 1 1 1 1 1 1 1 1 1				annel:2440l				
V	4882.00	56.22	30.55	5.77	24.66	56.10	74	-17.9	Pk
V	4882.00	45.45	30.55	5.77	24.66	45.33	54	-8.67	AV
V	7320.00	55.58	30.33	6.32	24.55	56.12	74	-17.88	Pk
V	7320.00	41.38	30.33	6.32	24.55	41.92	54	-12.08	AV
V	9760.00	51.57	30.55	5.77	24.66	51.45	74	-22.55	Pk
V	9760.00	45.52	30.55	5.77	24.66	45.4	54	-8.6	AV
V	12200.00	52.45	30.33	6.32	24.55	52.99	74	-21.01	Pk
V	12200.00	44.25	30.33	6.32	24.55	44.79	54	-9.21	AV
H	4882.00	51.57	30.55	5.77	24.66	51.45	74	-22.55	Pk
H	4882.00	42.25	30.55	5.77	24.66	42.13	54	-11.87	AV
H	7320.00	57.23	30.33	6.32	24.55	57.77	74	-16.23	Pk
H	7320.00	45.31	30.33	6.32	24.55	45.85	54	-8.15	AV
H	9760.00	55.51	30.55		24.66	55.39		-18.61	Pk
. Н	9760.00	45.34	30.55	5.77 5.77	24.66	45.22	74 54	-8.78	AV
Н	12200.00	54.52		-	7 - 7	55.06	74	-18.94	Pk
Н	1	49.15	30.33	6.32 6.32	24.55	49.69		-4.31	
	12200.00	49.10	30.33		24.55		54	-4.31	AV
\/	4040.00	56.32			nnel:2480N	56.20	7.1	-17.8	DIV
V	4940.00	41.55	30.55	5.77	24.66	41.43	74 54	-17.8	Pk AV
V	4940.00	57.61	30.55	5.77	24.66	58.15	74	-12.57	10.00
V	7440.00		30.33	6.32	24.55	7			Pk
V	7440.00	42.87 56.42	30.33	6.32	24.55 24.66	43.41 56.3	54 74	-10.59 -17.7	AV
V	9920.00		30.55	5.77		45.55	54	+	Pk AV
V	9920.00 12400.00	45.67 55.14	30.55 30.33	5.77 6.32	24.66 24.55	45.55 55.68	74	-8.45 -18.32	Pk
V	12400.00	47.44	30.33	6.32	24.55	47.98	54	-6.02	AV
H	4940.00	52.65	30.33	5.77	24.55	52.53	74	-0.02	Pk
H	4940.00	46.35	30.55	5.77	24.66	46.23	54	-21.47	AV
Н	7440.00	57.92	30.33	6.32	24.55	58.46	74	-15.54	Pk
Н	7440.00	45.44	30.33	6.32	24.55	45.98	54	-8.02	AV
Н	9920.00	57.27	30.55	5.77		57.15	74	-16.85	Pk
П	<u> </u> ∌∌∠∪.∪∪	J1.21	JU.33	J.11	24.66	J1.10	14	-10.00	_ FK

Project No.: ZHT-240402022E-2 Page 21 of 58

7	Н	9920.00	41.47	30.55	5.77	24.66	41.35	54	-12.65	AV
! !-	_N H	12400.00	55.37	30.33	6.32	24.55	55.91	74	-18.09	Pk
	Н	12400.00	48.33	30.33	6.32	24.55	48.87	54	-5.13	AV

Remark:

- Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4. The test data shows only the worst case GFSK 1M.

Project No.: ZHT-240402022E-2 Page 22 of 58

5.RADIATED Band EMISSION MEASUREMENT

5.1 TEST REQUIREMENT:

Test Requirement:	FCC Part15 C	FCC Part15 C Section 15.209 and 15.205						
Test Method:	ANSI C63.10:	ANSI C63.10: 2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.							
Test site:	Measurement	Measurement Distance: 3m						
Receiver setup:	Frequency	Detector	RBW	VBW	Value			
	Above	Peak	1MHz	3MHz	Peak			
	1GHz	Average	1MHz	3MHz	Average			

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)				
	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

- (1) The limit for radiated test was performed according to FCC Part15 C
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD

No deviation

D

Project No.: ZHT-240402022E-2 Page 23 of 58

5.4 TEST SETUP

Turntable

Turntable

Spectrum
Analyzer

Ground Plane

Coaxial Cable

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

Project No.: ZHT-240402022E-2 Page 24 of 58

	Polar	Frequenc	Meter	Pre-	Cable Loss	Antenna Factor	Emission	Limit (dBuV	Margi	Detec tor	Result
	(H/V)	(MHz)	Reading (dBuV)	amplifier (dB)	(dB)	(dB/m)	level (dBuV/m)	/m)	n (dB)	Type	rtoduit
				Low	Channe	l: 2402MHz	7				
	Н	2390.00	55.15	30.22	4.85	23.98	53.76	74	-20.24	PK	PASS
	Н	2390.00	47.57	30.22	4.85	23.98	46.18	54	-7.82	AV	PASS
	Н	2400.00	60.07	30.22	4.85	23.98	58.68	74	-15.32	PK	PASS
	H	2400.00	48.15	30.22	4.85	23.98	46.76	54	-7.24	AV	PASS
	V	2390.00	56.56	30.22	4.85	23.98	55.17	74	-18.83	PK	PASS
	V	2390.00	49.55	30.22	4.85	23.98	48.16	54	-5.84	AV	PASS
	V	2400.00	56.88	30.22	4.85	23.98	55.49	74	-18.51	PK	PASS
GFSK	V	2400.00	48.55	30.22	4.85	23.98	47.16	54	-6.84	AV	PASS
GISK	High Channel: 2480MHz										
41	Н	2483.50	62.15	30.22	4.85	23.98	60.76	74	-13.24	AV	PASS
	Н	2483.50	47.67	30.22	4.85	23.98	46.28	54	-7.72	PK	PASS
	Н	2500.00	59.36	30.22	4.85	23.98	57.97	74	-16.03	AV	PASS
	Н	2500.00	47.45	30.22	4.85	23.98	46.06	54	-7.94	PK	PASS
	V	2483.50	60.47	30.22	4.85	23.98	59.08	74	-14.92	AV	PASS
	V	2483.50	47.92	30.22	4.85	23.98	46.53	54	-7.47	PK	PASS
	V	2500.00	60.25	30.22	4.85	23.98	58.86	74	-15.14	AV	PASS
	V	2500.00	46.75	30.22	4.85	23.98	45.36	54	-8.64	AV	PASS

Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier, Margin= Emission Level - Limit 3.The test data shows only the worst case GFSK-1M.

Project No.: ZHT-240402022E-2 Page 25 of 58

6.POWER SPECTRAL DENSITY TEST

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	ANSI C63.10

6.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (e)	Power Spectral Density	8dBm/3kHz	2400-2483.5	PASS

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS bandwidth.
- 3. Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 6.3 DEVIATION FROM STANDARD

No deviation.

6.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

6.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.1 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8℃	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

6.6 TEST RESULTS:

Please refer to the Appendix BLE

Project No.: ZHT-240402022E-2 Page 26 of 58

7. Channel Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	ANSI C63.10

7.1 APPLIED PROCEDURES / LIMIT

Test Item	Limit	Frequency Range (MHz)	Result
Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8℃	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

7.6 TEST RESULTS:

Please refer to the Appendix BLE

Project No.: ZHT-240402022E-2 Page 27 of 58

8.PEAK OUTPUT POWER TEST

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10

8.1 APPLIED PROCEDURES / LIMIT

Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247 (b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

The EUT was directly connected to the Spectrum Analyzer

8.3 DEVIATION FROM STANDARD

No deviation.

8.4 TEST SETUP

8.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Temperature :	25.8℃	Relative Humidity :	52%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

8.6 TEST RESULTS

Please refer to the Appendix BLE

Project No.: ZHT-240402022E-2 Page 28 of 58

9. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	ANSI C63.10

9.1 APPLICABLE STANDARD

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

9.2 TEST PROCEDURE

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

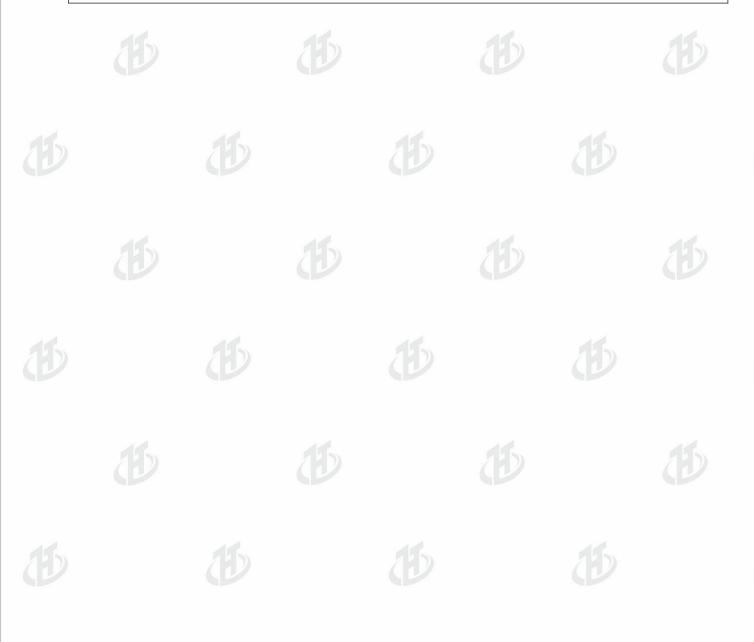
Temperature :	25.8℃	Relative Humidity:	52%
Test Mode :	GFSK	Test Voltage :	DC 3.7V

9.6 TEST RESULTS Please refer to the Appendix BLE

Project No.: ZHT-240402022E-2 Page 29 of 58

Standard requirement:	FCC Part15 C Section 15.203
otanuaru requirement.	1 00 1 41110 0 00011011 10.200

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

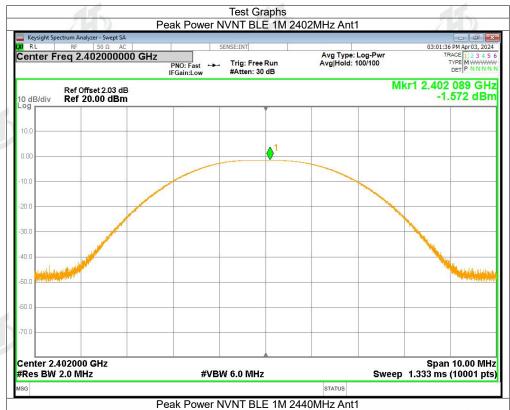
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

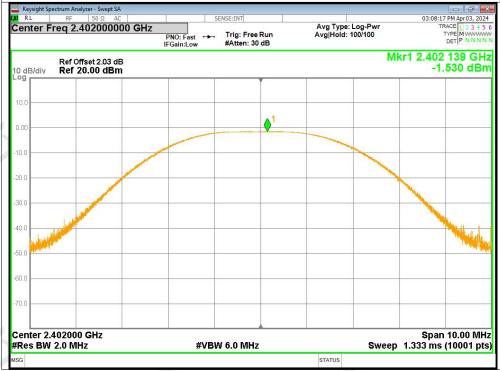
The antenna is PCB antenna, the best case gain of the antennas is 1.1dBi, reference to the appendix II for details

Project No.: ZHT-240402022E-2 Page 30 of 58

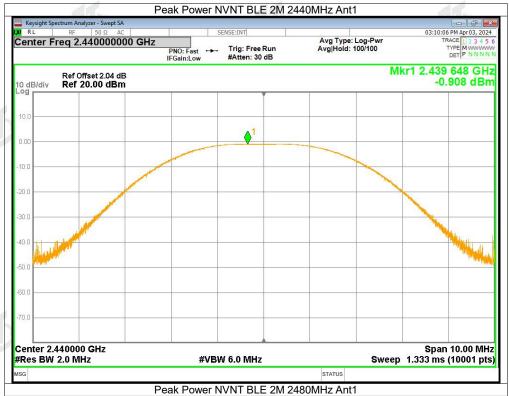
11. APPENDIX BLE


Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	-1.57	30	Pass
NVNT	BLE 1M	2440	Ant1	-1.02	30	Pass
NVNT	BLE 1M	2480	Ant1	-0.87	30	Pass
NVNT	BLE 2M	2402	Ant1	-1.53	30	Pass
NVNT	BLE 2M	2440	Ant1	-0.91	30	Pass
NVNT	BLE 2M	2480	Ant1	-0.76	30	Pass

Project No.: ZHT-240402022E-2 Page 31 of 58



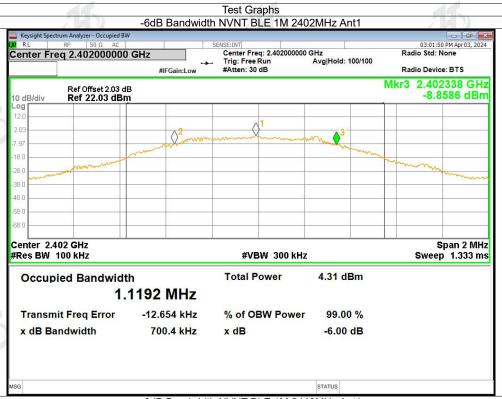
Project No.: ZHT-240402022E-2 Page 32 of 58

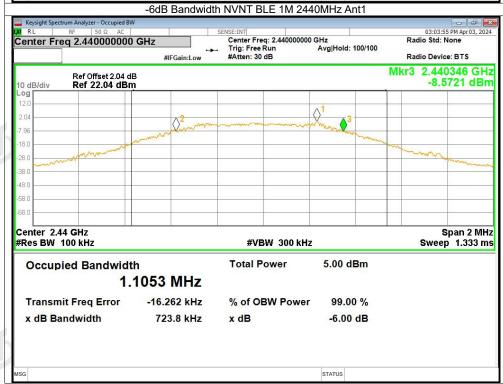


Project No.: ZHT-240402022E-2 Page 33 of 58

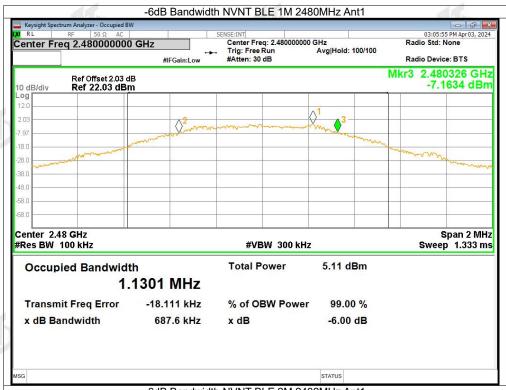
Project No.: ZHT-240402022E-2 Page 34 of 58

-6dB Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	Ant1	0.7	0.5	Pass
NVNT	BLE 1M	2440	Ant1	0.724	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.688	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.127	0.5	Pass
NVNT	BLE 2M	2440	Ant1	1.159	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.184	0.5	Pass



Project No.: ZHT-240402022E-2 Page 35 of 58

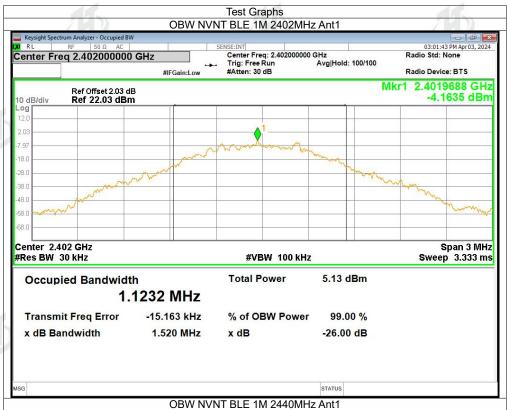


Project No.: ZHT-240402022E-2 Page 36 of 58

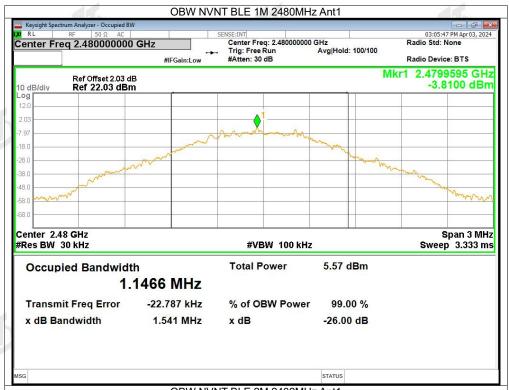
Project No.: ZHT-240402022E-2 Page 37 of 58

Project No.: ZHT-240402022E-2 Page 38 of 58

Occupied Channel Bandwidth

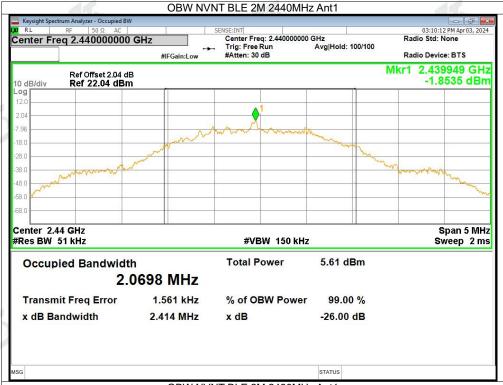

0000,000,000					
Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)	
NVNT	BLE 1M	2402	Ant1	1.123	7
NVNT	BLE 1M	2440	Ant1	1.114	
NVNT	BLE 1M	2480	Ant1	1.147	
NVNT	BLE 2M	2402	Ant1	2.102	
NVNT	BLE 2M	2440	Ant1	2.07	
NVNT	BLE 2M	2480	Ant1	2.063	

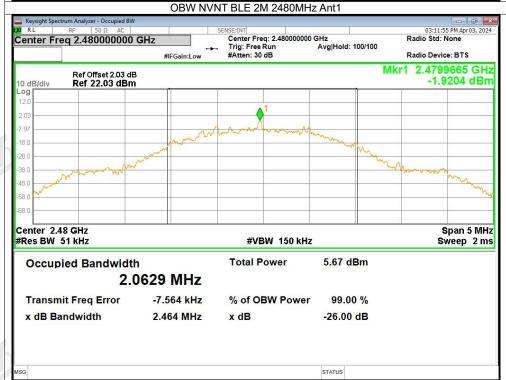
Project No.: ZHT-240402022E-2 Page 39 of 58





Project No.: ZHT-240402022E-2 Page 40 of 58

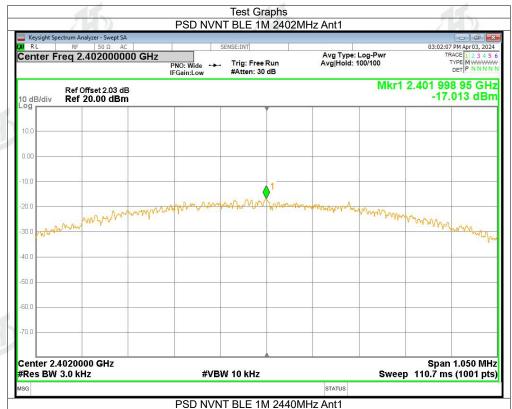




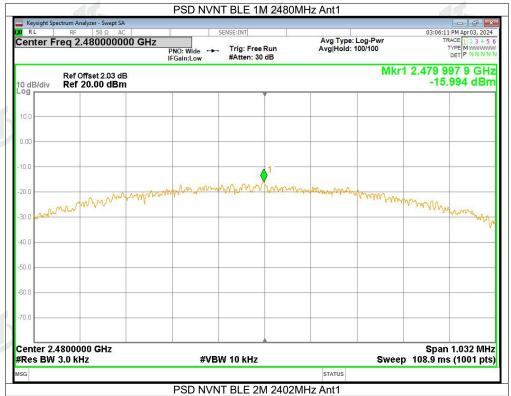
Project No.: ZHT-240402022E-2 Page 41 of 58

Project No.: ZHT-240402022E-2 Page 42 of 58

Maximum Power Spectral Density Level


Maximum Fower Opeonal Bensity Level								
Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict		
NVNT	BLE 1M	2402	Ant1	-17.01	8	Pass		
NVNT	BLE 1M	2440	Ant1	-16.23	8	Pass		
NVNT	BLE 1M	2480	Ant1	-15.99	8	Pass		
NVNT	BLE 2M	2402	Ant1	-19.3	8	Pass		
NVNT	BLE 2M	2440	Ant1	-18.52	8	Pass		
NVNT	BLF 2M	2480	Ant1	-18 47	8	Pass		

Project No.: ZHT-240402022E-2 Page 43 of 58



Project No.: ZHT-240402022E-2 Page 44 of 58



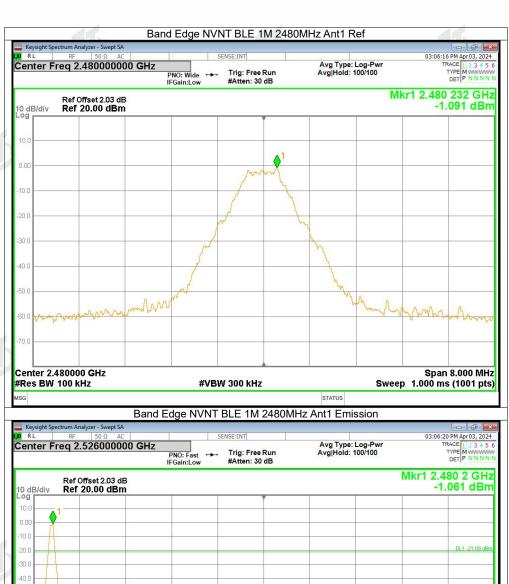
Project No.: ZHT-240402022E-2 Page 45 of 58

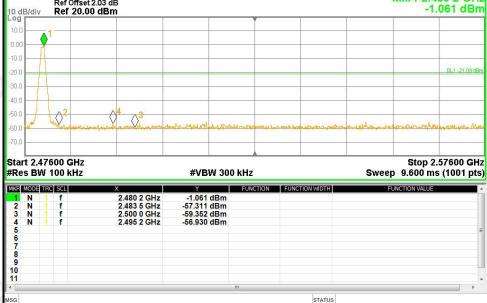
Project No.: ZHT-240402022E-2 Page 46 of 58

Band Edge


						Manalias
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-53.21	-20	Pass
NVNT	BLE 1M	2480	Ant1	-55.84	-20	Pass
NVNT	BLE 2M	2402	Ant1	-31.83	-20	Pass
NVNT	BLE 2M	2480	Ant1	-50.33	-20	Pass

Project No.: ZHT-240402022E-2 Page 47 of 58





Project No.: ZHT-240402022E-2 Page 48 of 58



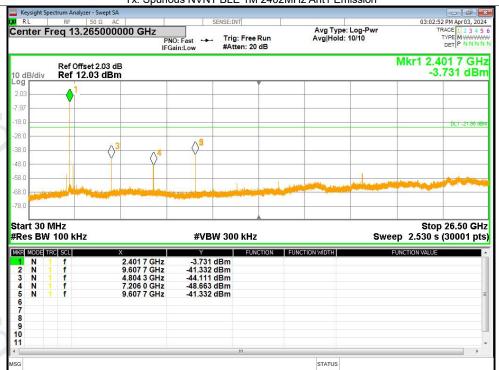
Project No.: ZHT-240402022E-2 Page 49 of 58

Project No.: ZHT-240402022E-2 Page 50 of 58

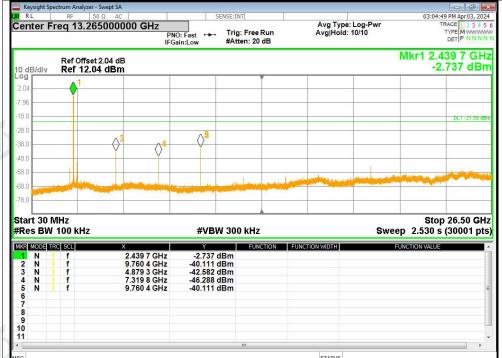
Project No.: ZHT-240402022E-2 Page 51 of 58

Conducted RF Spurious Emission

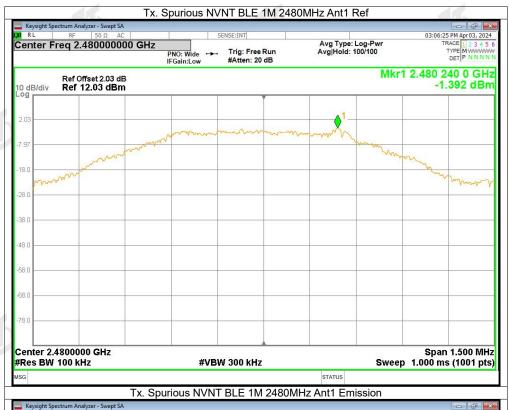
Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-39.47	-20	Pass
NVNT	BLE 1M	2440	Ant1	-38.52	-20	Pass
NVNT	BLE 1M	2480	Ant1	-35.03	-20	Pass
NVNT	BLE 2M	2402	Ant1	-39.68	-20	Pass
NVNT	BLE 2M	2440	Ant1	-38.6	-20	Pass
NVNT	BLE 2M	2480	Ant1	-33.29	-20	Pass

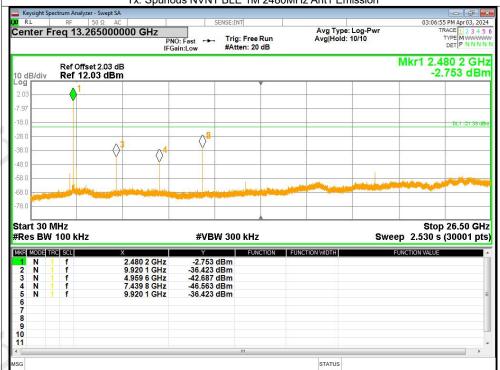


Project No.: ZHT-240402022E-2 Page 52 of 58

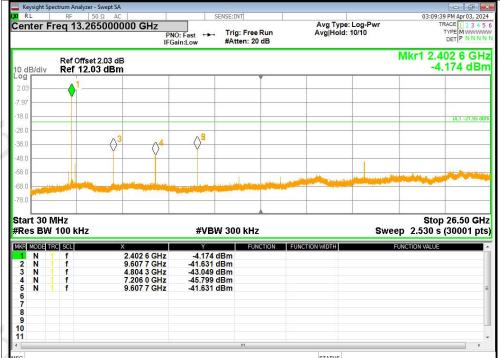


Project No.: ZHT-240402022E-2 Page 53 of 58

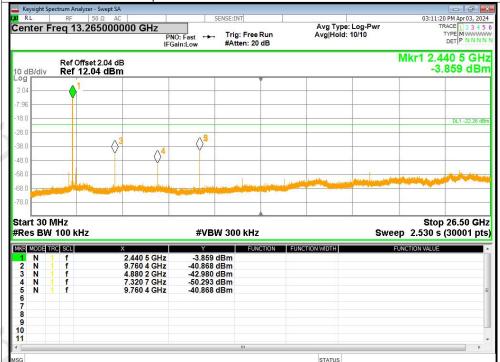




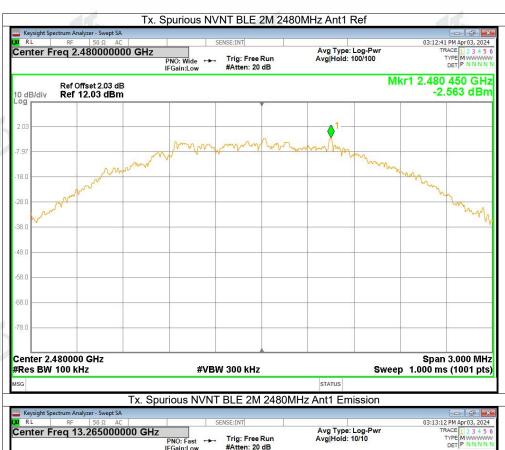
Project No.: ZHT-240402022E-2 Page 54 of 58

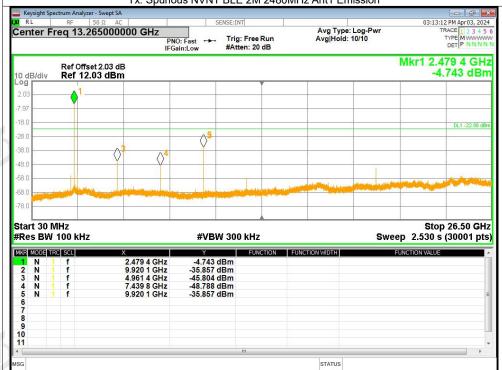


Project No.: ZHT-240402022E-2 Page 55 of 58



Project No.: ZHT-240402022E-2 Page 56 of 58





Project No.: ZHT-240402022E-2 Page 57 of 58

12. TEST SETUP PHOTOS

Reference to the appendix I for details.

13. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

**** END OF REPORT ****

