

COMOSAR E-FIELD PROBE CALIBRATION REPORT

Ref: ACR, 199.1.24.BES.A.

Liquid transition	MVG	SN 32/16 WGLIQ_1G800B_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_1G800H_	Validated. No cal required.	Validated, No cal required,
Wa∨eguide	MVG	SN 32/16 WG10_1	Validated. No cal required.	Validated, No cal required,
Liquid transition	MVG	SN 32/16 WGLIQ_3G500_	Validated. No cal required.	Validated, No cal required.
Waveguide	MVG	SN 32/16 WG12_1	Validated. No cal required.	Validated, No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_5G000_	Validated. No cal required.	Validated, No cal required.
Waveguide	MVG	SN 32/16 WG14_1	Validated. No cal required.	Validated. No cal required.
Liquid transition	MVG	SN 32/16 WGLIQ_7G000_1	Validated. No cal required.	Validated. No cal required.
emperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027

Page: 11/11

Template ACRIDBNYKAV GBISSUF COMOSAIC Probe VE.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR Reference Dipole Calibration Report

Ref: ACR.329.15.24.BES.A

SHENZHEN BCTC TECHNOLOGY CO., LTD.

1~2/ F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINA MVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 2450 MHZ

SERIAL NO.: SN 47/21 DIP 2G450-627

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 11/25/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed in MVG using the COMOSAR test bench. All calibration results are traceable to national metrology institutions.

Page: 1/13

No.: BCTC/RF-ICT-005 Page 67 of 96 Edition C.0

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.15.24 BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	11/25/2024	JES
Checked by:	Jérôme Luc	Technical Manager	11/25/2024	23
Approved by :	Yann Toutain	Laboratory Director	11/25/2024	Gann TOUTAAN

2024.11.25 11:56:55 +01'00'

	Customer Name	
Distribution :	Shenzhen BCTC Technology Co.,	
Dian io alloit.	Ltd.	

Issue	Name	Date	Modifications
A	Jérôme Luc	11/25/2024	Initial release
			1
			1
-			

Page: 2/13

Template ACK.DDD.N.YY.MYGBISSUE SAK Reference Dipole wi This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 68 of 96

No.: BCTC/RF-ICT-005

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR. 329.15.24 BES.A.

TABLE OF CONTENTS

+	11111	oddedoff4	
2	De	vice Under Test4	
3	Pro	duct Description	
	3.1	General Information	4
4	Me	asurement Method5	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2	Dimension Measurement	5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results6	
	6.1	Return Loss and Impedance In Head Liquid	6
	6.2	Return Loss and Impedance In Body Liquid	6
	6.3	Mechanical Dimensions	7
7	Val	idation measurement	
	7.1	Head Liquid Measurement	8
	7.2	SAR Measurement Result With Head Liquid	8
	7.3	Body Liquid Measurement	11
	7.4	SAR Measurement Result With Body Liquid	12
8	Lis	t of Equipment 13	

Page: 3/13

Templote ACR. DDD.N. SYMY GRISSUE SAR Reference Dipole wf

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref; ACR. 329.15.24.BES.A

1 INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

Device Under Test				
Device Type	COMOSAR 2450 MHz REFERENCE DIPOLE			
Manufacturer	MVG			
Model	SID2450			
Serial Number	SN 47/21 DIP 2G450-627			
Product Condition (new / used)	New			

3 PRODUCT DESCRIPTION

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole vJ

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 70 of 96 Edition C.0

TE

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329 15.24 BES.A.

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 RETURN LOSS

The following uncertainties apply to the return loss measurement:

Frequency band	Expanded Uncertainty on Return Loss
400-6000MHz	0.08 LIN

5.2 DIMENSION MEASUREMENT

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm
300 - 450	0.44 mm

5.3 VALIDATION MEASUREMENT

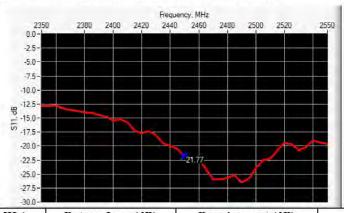
The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Page: 5/13

Template_ACR.ODD.N.YY.MVGBJSSUT SAR Reference Dipole vi

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 71 of 96 Edition C.0


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.15.24.BES.A

Scan Volume	Expanded Uncertainty
1 g	19 % (SAR)
10 g	19 % (SAR)


6 CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS AND IMPEDANCE IN HEAD LIQUID

Frequency (MHz)Return Loss (dB)Requirement (dB)Impedance2450-21.77-20 $49.1 \Omega + 8.1 j\Omega$

6.2 RETURN LOSS AND IMPEDANCE IN BODY LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance	
2450	-21.55	-20	$54.7 \Omega + 6.8 i\Omega$	

Page: 6/13

Template_ACR.DDD,N.YY,MVGB.ISSUE_SAR Reference Dipole vJ

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 72 of 96 Edition

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329 15.24 BES.A.

6.3 MECHANICAL DIMENSIONS

Frequency MHz	Ĺn	nm	hm	im	dr	nm
	required	measured	required	measured	required	measured
300	420,0 ±1 %.		250.0 ±1 %.		6.35 ±1 %.	
450	290.0 ±1 %.		166.7 ±1 %.	- ==	6.35 ±1 %.	
750	176.0 ±1 %.		100.0 ±1 %.	h	6.35 ±1 %.	
835	161.0 ±1 %.		89.8 ±1 %.		3.6 ±1 %.	
900	149.0 ±1 %.		83.3 ±1 %.		3.6 ±1 %.	
1450	89.1 ±1 %.		51.7 ±1 %.		3.6 ±1 %.	
1500	86.2 ±1 %.		50.0 ±1 %.		3.6 ±1 %.	
1640	79.0 ±1 %.		45.7 ±1 %.		3.6 ±1 %.	
1750	75.2 ±1 %.		42.9 ±1 %.		3.6 ±1 %.	
1800	72.0 ±1 %.		41.7±1%.		3.6 ±1 %.	
1900	68.0 ±1 %.		39.5 ±1 %.		3.5 ±1 %.	
1950	66.3 ±1 %.		38.5 ±1 %.		3.6 ±1 %.	
2000	64.5 ±1 %.		37.5 ±1 %.		3.6 ±1 %.	
2100	61.0 ±1 %.		35.7 ±1 %.		3.6 ±1 %.	
2300	55.5 ±1 %.		32.6 ±1 %.		3.6 ±1 %.	
2450	51.5 ±1 %.	51.37	30.4±1 %.	30.45	3.6 ±1 %.	3.60
2600	48.5 ±1 %.		28.8 ±1 %.		3.6 ±1 %.	
3000	41.5 ±1 %.		25.0 ±1 %.		3.6 ±1 %.) -
3300						
3500	37.0±1 %.	- 1	25.4±1 %.		3.5 ±1 %.	
3700	34.7±1 %.		26.4±1 %.		3.6 ±1 %.	
3900		- 1	-			
4200					1	
4600						
4900	-	- 1				

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

Page: 7/13

Template_ACR.DDD.N.YY.MVGBJSSUE SAR Reference Dipole vi

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 73 of 96 Edition C0

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.15.24.BES.A

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s_r')		Conductiv	ity (σ) S/m
77177	required	measured	required	measured
300	45.3 ±10 %		0.87 ±10 %	
450	43.5 ±10 %		0.87 ±10 %	
750	41.9 ±10 %		0.89 ±10 %	
835	41.5±10%		0.90 ±10 %	
900	41.5 ±10 %		0.97 ±10 %	
1450	40.5 ±10 %		1.20±10%	
1500	40.4±10%		1.23 ±10 %	
1640	40,2 ±10 %		1.31 ±10 %	
1750	40.1 ±10 %		1.37 ±10 %	
1800	40.0 ±10 %		1.40 ±10 %	
1900	40.0 ±10 %		1.40 ±10 %	
1950	40.0 ±10 %		1.40 ±10 %	
2000	40.0 ±10 %		1.40 ±10 %	-
2100	39.8 ±10 %		1.49 ±10 %	
2300	39.5 ±10 %		1.67 ±10 %	
2450	39.2 ±10 %	36.4	1.80 ±10 %	1.96
2600	39.0 ±10 %		1.96 ±10 %	
3000	38.5 ±10 %		2.40 ±10 %	
3300	38.2 ±10 %		2.71 ±10 %	
3500	37.9 ±10 %		2.91 ±10 %	
3700	37.7 ±10 %		3.12 ±10 %	-
3900	37.5 ±10 %		3.32 ±10 %	
4200	37.1 ±10 %		3.63 ±10 %	
4600	36.7 ±10 %		4.04 ±10 %	
4900	36.3 ±10 %		4.35 ±10 %	

7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements should produce the SAR values shown below (for phantom thickness of 2 mm), within the uncertainty for the system validation. All SAR values are normalized to 1 W forward power. In bracket, the measured SAR is given with the used input power.

Page: 8/13

Template ACK-DDD.N.YY.MVGRISSUF SAR Reference Dipole vi This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 74 of 96

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329 15 24 BES.A

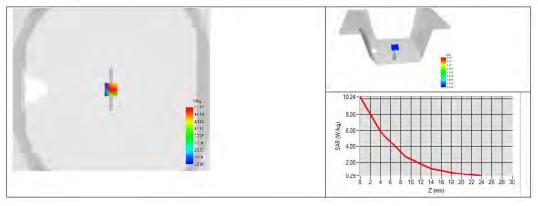
Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Head Liquid Values: eps'; 36.4 sigma; 1.96
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR	(W/kg/W)	10 g SAR	(W/kg/W)
	required	measured	required	measured
300	2.85		1.94	
450	4.58		3.06	
750	8.49		5.55	
835	9.56		6.22	
900	10.9		6.99	
1450	29	1 = 1	16	
1500	30.5		16.8	
1640	34.2		18.4	
1750	36.4		19.3	
1800	38.4		20.1	
1900	39.7		20.5	
1950	40.5		20.9	
2000	41.1		21.1	
2100	43.6		21.9	
2300	48.7		23.3	
2450	52.4	55.16 (5.52)	24	24.15 (2.41
2600	55.3		24.6	
3000	63.8		25.7	
3300	8 1		10	
3500	67.1		25	
3700	67.4		24.2	
3900	-		-	
4200				
4600	- Fe : t	===		1
4900	-	1 - 1	-	

Page: 9/13

Template ACK-DDD.N.YY.MTGBISSUF SAK Reference Dipole wi This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 75 of 96



SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 329.15.24.BES.A

Page: 10/13

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipole vi
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 76 of 96

No.: BCTC/RF-ICT-005

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.15.24 BES.A

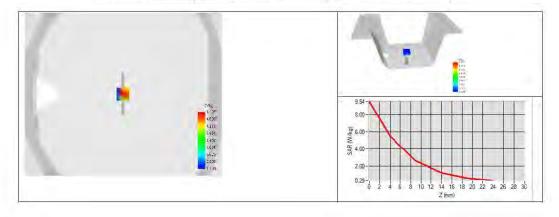
7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (६')		Conductiv	ity (σ) S/m
	required	measured	required	measured
150	61.9 ±10 %		0.80 ±10 %	
300	58.2 ±10 %		0.92 ±10 %	
450	56.7 ±10 %		0.94±10%	
750	55.5 ±10 %		0.96 ±10 %	
835	55.2 ±10 %		0.97 ±10 %	
900	55.0 ±10 %		1,05 ±10 %	
915	55.0 ±10 %		1.06 ±10 %	
1450	54.0 ±10 %		1.30 ±10 %	
1610	53.8 ±10 %		1.40 ±10 %	
1800	53.3 ±10 %		1.52 ±10 %	
1900	53.3 ±10 %		1.52 ±10 %	
2000	53.3 ±10 %		1.52 ±10 %	
2100	53.2 ±10 %		1.62 ±10 %	-
2300	52.9 ±10 %		1.81 ±10 %	
2450	52.7 ±10 %	53.4	1.95 ±10 %	2.14
2600	52.5 ±10 %		216±10%	
3000	52,0 ±10 %		2.73 ±10 %	
3300	51.6 ±10 %		3.08 ±10 %	
3500	51.3 ±10 %		3.31 ±10 %	
3700	51.0 ±10 %		3.55 ±10 %	
3900	50.8 ±10 %		3.78 ±10 %	
4200	50.4±10%		413 ±10 %	
4600	49.8 ±10 %		4.60 ±10 %	
4900	49.4±10%	i de	4.95 ±10 %	
5200	49.0 ±10 %		5.30 ±10 %	
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %		5.53 ±10 %	
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %		5.77 ±10 %	
5800	48.2 ±10 %		6.00 ±10 %	

Page: 11/13

Template ACK.DDD.N.YY.MYGBISSUF SAK Reference Dipole wi This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 77 of 96


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 329.15.24.BES.A

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5
Phantom	SN 13/09 SAM68
Probe	SN 41/18 EPGO333
Liquid	Body Liquid Values: eps': 53.4 sigma: 2.14
Distance between dipole center and liquid	10.0 mm
Area scan resolution	dx=8mm/dy=8mm
Zoon Scan Resolution	dx=5mm/dy=5mm/dz=5mm
Frequency	2450 MHz
Input power	20 dBm
Liquid Temperature	20 +/- 1 °C
Lab Temperature	20 +/- 1 °C
Lab Humidity	30-70 %

Frequency MHz	1 g SAR (W/kg/W)	10 g SAR (W/kg/W)
	measured	measured
2450	52.28 (5.23)	22.68 (2.27)

Page: 12/13

Template ACR.DDD.N.YY.MVGB.ISSUE SAK Reference Dipole vi
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 78 of 96

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.15.24.BES.A

8 LIST OF EQUIPMENT

	Equipment Summary Sheet					
Equipment Description	Manufacturer / Model	Identification No.	Current Calibration Date	Next Calibration Date		
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.		
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.		
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2024	08/2027		
Network Analyzer	Agilent 8753ES	MY40003210	10/2022	10/2025		
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2022	05/2025		
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027		
Calipers	Mitutoyo	SN 0009732	10/2022	10/2025		
Reference Probe	MVG	SN 41/18 EPGO333	10/2024	10/2025		
Multimeter	Keithley 2000	1160271	02/2023	02/2026		
Signal Generator	Rohde & Schwarz SMB	106589	04/2022	04/2025		
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Power Meter	NI-USB 5680	170100013	06/2024	06/2027		
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2022	11/2025		
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.		
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027		

Page: 13/13

Template ACK.DDD.N.YY.MY GBISSUE SAK Reference Dipole w.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 79 of 96 No.: BCTC/RF-ICT-005

SAR Reference Dipole Calibration Report

Ref: ACR.329.17.24.BES.A

SHENZHEN BCTC TECHNOLOGY CO., LTD. 1~2/ F, NO. B FACTORY BUILDING, PENGZHOU INDUSTRIAL PARK, FUYUAN 1ST ROAD, TANGWEI COMMUNITY, FUHAI STREET, BAO'AN DISTRICT, SHENZHEN, GUANGDONG, CHINAMVG COMOSAR REFERENCE DIPOLE

FREQUENCY: 5200-5800 MHZ SERIAL NO.: SN 47/21 DIP 5G000-629

Calibrated at MVG

Z.I. de la pointe du diable

Technopôle Brest Iroise – 295 avenue Alexis de Rochon

29280 PLOUZANE - FRANCE

Calibration date: 11/25/2024

Accreditations #2-6789 and #2-6814 Scope available on www.cofrac.fr

The use of the Cofrac brand and the accreditation references is prohibited from any reproduction.

Summary:

This document presents the method and results from an accredited SAR reference dipole calibration performed at MVG, using the COMOSAR test bench. The test results covered by accreditation are traceable to the International System of Units (SI).

Page: 1/13

No.: BCTC/RF-ICT-005 Page 80 of 96 Edition/ C.0

No.: BCTC/RF-ICT-005

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 329.17.24.BES.A

	Name	Function	Date	Signature
Prepared by :	Jérôme Luc	Technical Manager	11/25/2024	JS
Checked by:	Jérôme Luc	Technical Manager	11/25/2024	35
Approved by :	Yann Toutain	Laboratory Director	11/25/2024	Gann TOUTAG

2024.11.25

11:58:11+01'00'

	Customer Name
	Shenzhen BCTC
Distribution:	Technology Co.,
	Ltd.

Issue	Name	Date	Modifications
A	Jérôme Luc	11/25/2024	Initial release
			1

Page: 2/13

Template ACK, DUD. N. FY MVGB, ISSUE SAR Reference Dipale 5GHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG,

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR. 329.17.24.BES.A.

TABLE OF CONTENTS

Ţ	mu	oduction	
2	De	vice Under Test4	
3	Pro	duct Description4	
	3.1	General Information	4
4	Me	asurement Method	
	4.1	Return Loss Requirements	5
	4.2	Mechanical Requirements	5
5	Me	asurement Uncertainty5	
	5.1	Return Loss	5
	5.2		5
	5.3	Validation Measurement	5
6	Cal	ibration Measurement Results6	
	6.1	Return Loss	6
	6.2	Mechanical Dimensions	7
7	Val	idation measurement7	
	7.1	Head Liquid Measurement	7
	7.2	Measurement Result	8
	7.3	Body Measurement Result	10
8	Lis	t of Equipment13	

Page: 3/13

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipole 5GH; vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 82 of 96 No.: BCTC/RF-ICT-005

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 329.17.24.BES.A

INTRODUCTION

This document contains a summary of the requirements set forth by the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards for reference dipoles used for SAR measurement system validations and the measurements that were performed to verify that the product complies with the fore mentioned standards.

2 DEVICE UNDER TEST

	Device Under Test
Device Type	COMOSAR 5200-5800 MHz REFERENCE DIPOLE
Manufacturer	MVG
Model	SID5000
Serial Number	SN 47/21 DIP 5G000-629
Product Condition (new / used)	New

PRODUCT DESCRIPTION 3

3.1 GENERAL INFORMATION

MVG's COMOSAR Validation Dipoles are built in accordance to the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards. The product is designed for use with the COMOSAR test bench only.

Figure 1 – MVG COMOSAR Validation Dipole

Page: 4/13

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference DipoleSGHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 83 of 96

SAR REFERENCE DIPOLE CALIBRATION REPORT

4 MEASUREMENT METHOD

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards provide requirements for reference dipoles used for system validation measurements. The following measurements were performed to verify that the product complies with the fore mentioned standards.

4.1 RETURN LOSS REQUIREMENTS

The dipole used for SAR system validation measurements and checks must have a return loss of -20 dB or better. The return loss measurement shall be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. A direct method is used with a network analyser and its calibration kit, both with a valid ISO17025 calibration.

4.2 MECHANICAL REQUIREMENTS

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards specify the mechanical components and dimensions of the validation dipoles, with the dimension's frequency and phantom shell thickness dependent. The COMOSAR test bench employs a 2 mm phantom shell thickness therefore the dipoles sold for use with the COMOSAR test bench comply with the requirements set forth for a 2 mm phantom shell thickness. A direct method is used with a ISO17025 calibrated caliper.

5 MEASUREMENT UNCERTAINTY

All uncertainties listed below represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2, traceable to the Internationally Accepted Guides to Measurement Uncertainty.

5.1 <u>RETURN LOSS</u>

The following uncertainties apply to the return loss measurement:

uency band	Expanded Uncertainty on Return Loss
-6000MHz	0.08 LIN

5.2 <u>DIMENSION MEASUREMENT</u>

The following uncertainties apply to the dimension measurements:

Length (mm)	Expanded Uncertainty on Length
0 - 300	0.20 mm

5.3 <u>VALIDATION MEASUREMENT</u>

The guidelines outlined in the IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards were followed to generate the measurement uncertainty for validation measurements.

Scan Volume	Expanded Uncertainty	
1 g	19 % (SAR)	
10 g	19 % (SAR)	

Page: 5/13

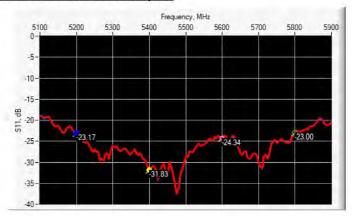
Template_ACR.DDDAY.FY.MVGil.ISSUE_SAR Reference Dipale5GH; vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 84 of 96

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref; ACR 329.17.24.BES.A


CALIBRATION MEASUREMENT RESULTS

6.1 RETURN LOSS IN HEAD LIQUID

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-21.64	-20	54.48 Ω - 6.92 jΩ
5400	-27.75	-20	$50.97 \Omega + 3.98 j\Omega$
5600	-27.45	-20	$54.05 \Omega + 1.24 j\Omega$
5800	-24.45	-20	$45.31 \Omega + 3.71 j\Omega$

6.2 RETURN LOSS IN BODY LIQUID

Page: 6/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole5GHz vD
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 85 of 96

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.17.24.BES.A

Frequency (MHz)	Return Loss (dB)	Requirement (dB)	Impedance
5200	-23.17	-20	54.03 Ω - 5.62 jΩ
5400	-31.83	-20	$51.01 \Omega + 2.35 j\Omega$
5600	-24.34	-20	$55.50 \Omega + 2.51 j\Omega$
5800	-23.00	-20	$43.65 \Omega + 3.06 j\Omega$

6.3 MECHANICAL DIMENSIONS

Frequency MHz	L)	nm	hn	ım	dr	nm
	required	measured	required	measured	required	measured
5000 to 6000	20.6±1 %.	20.62	40.3 ±1 %.	40.45	3.6 ±1 %.	3.61

7 VALIDATION MEASUREMENT

The IEC/IEEE 62209-1528 and FCC KDB865664 D01 standards state that the system validation measurements must be performed using a reference dipole meeting the fore mentioned return loss and mechanical dimension requirements. The validation measurement must be performed against a liquid filled flat phantom, with the phantom constructed as outlined in the fore mentioned standards. Per the standards, the dipole shall be positioned below the bottom of the phantom, with the dipole length centered and parallel to the longest dimension of the flat phantom, with the top surface of the dipole at the described distance from the bottom surface of the phantom.

7.1 HEAD LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (ε _i ')		Conductiv	ity (σ) S/m
	required	measured	required	measured
5000	36.2 ±10 %		4.45 ±10 %	
5100	36.1 ±10 %		4.56 ±10 %	
.5200	36.0 ±10 %	34.44	4.66 ±10 %	4.64
5300	35.9 ±10 %		4.76 ±10 %	
5400	35.8 ±10 %	33.63	4.86 ±10 %	4.88
5500	35.6 ±10 %		4.97 ±10 %	
5600	35.5 ±10 %	32.80	5.07 ±10 %	5.12
5700	35.4 ±10 %		5.17 ±10 %	
5800	35.3 ±10 %	32.63	5.27 ±10 %	5.31
5900	35.2 ±10 %		5.38 ±10 %	
6000	35.1 ±10 %		5.48 ±10 %	

Page: 7/13

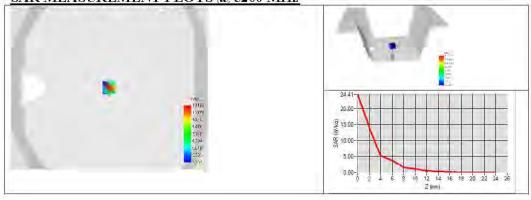
Template_ACR.DDD.N.FY.MVGil.ISSUE_SAR Reference Dipale5GHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 86 of 96 Edition C.0

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.17.24.BES.A


7.2 SAR MEASUREMENT RESULT WITH HEAD LIQUID

At those frequencies, the target SAR value can not be generic. Hereunder is the target SAR value defined by MVG, within the uncertainty for the system validation. All SAR values are normalized to 1 W net power. In bracket, the measured SAR is given with the used input power.

Software	OPENSAR V5	
Phantom	SN 13/09 SAM68	
Probe	SN 41/18 EPGO333	
iquid Head Liquid Values 5200 MHz: eps' :34,4 Head Liquid Values 5400 MHz: eps' :33,6 Head Liquid Values 5600 MHz: eps' :32,8 Head Liquid Values 5800 MHz: eps' :32,6		
Distance between dipole and liquid	10 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm	
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz	
Input power	20 dBm	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

Frequency (MHz)	1 g SAR (W/kg)		10 g SA	R (W/kg)
	required	measured	required	measured
5200	76.50	76.41 (7.64)	21.60	21.86 (2.19)
5400		80.52 (8.05)	-	22.91 (2.29)
5600	-	79.08 (7.91)	-	22.73 (2.27)
5800	78.00	76.49 (7.65)	21.90	22.03 (2.20)

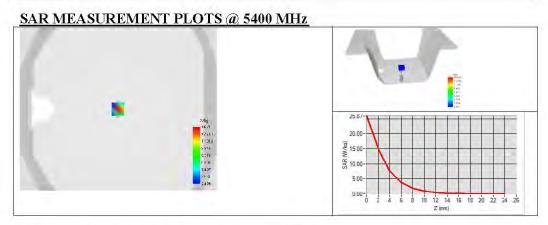
SAR MEASUREMENT PLOTS @ 5200 MHz

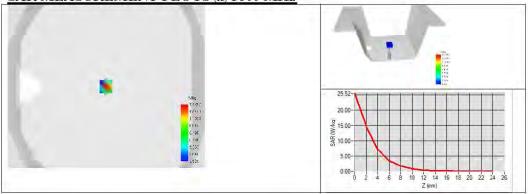
Page: 8/13

Template ACK, DDD.N. TYMVGB. ISSUE SAR Reference Dipole5GH; vD

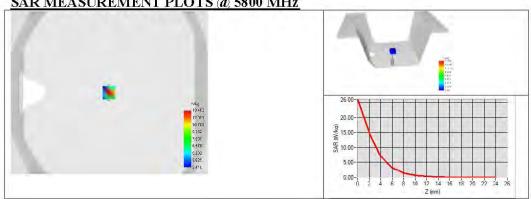
This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 87 of 96





SAR REFERENCE DIPOLE CALIBRATION REPORT


Ref: ACR. 329.17.24.BES.A

SAR MEASUREMENT PLOTS @ 5600 MHz

SAR MEASUREMENT PLOTS @ 5800 MHz

Page: 9/13

Template ACR.DDD.N.YY.MVGB.ISSUE SAR Reference Dipole5GHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

Page 88 of 96 No.: BCTC/RF-ICT-005

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref. ACR 329.17.24.BES.A

7.3 BODY LIQUID MEASUREMENT

Frequency MHz	Relative permittivity (s_r')		Conductiv	ity (σ) S/m
	required	measured	required	measured
5200	49.0 ±10 %	45.50	5.30 ±10 %	5.63
5300	48.9 ±10 %		5.42 ±10 %	
5400	48.7 ±10 %	44.78	5.53 ±10 %	5.95
5500	48.6 ±10 %		5.65 ±10 %	
5600	48.5 ±10 %	44.85	5.77 ±10 %	6.26
5800	48.2 ±10 %	44.45	6.00 ±10 %	6.58

7.4 SAR MEASUREMENT RESULT WITH BODY LIQUID

Software	OPENSAR V5	
Phantom	SN 13/09 SAM68	
Probe	SN 41/18 EPGO333	
Liquid	Body Liquid Values 5200 MHz: eps' :45.50 sigma : 5.63 Body Liquid Values 5400 MHz: eps' :44.78 sigma : 5.95 Body Liquid Values 5600 MHz: eps' :44.85 sigma : 6.26 Body Liquid Values 5800 MHz: eps' :44.45 sigma : 6.58	
Distance between dipole and liquid	10 mm	
Area scan resolution	dx=8mm/dy=8mm	
Zoon Scan Resolution	dx=4mm/dy=4m/dz=2mm	
Frequency	5200 MHz 5400 MHz 5600 MHz 5800 MHz	
Input power	20 dBm	
Liquid Temperature	20 +/- 1 °C	
Lab Temperature	20 +/- 1 °C	
Lab Humidity	30-70 %	

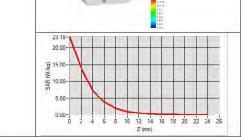
Frequency (MHz)	1 g SAR (W/kg)	10 g SAR (W/kg)
	measured	measured
5200	73.02 (7.30)	20.58 (2.06)
5400	77.86 (7.79)	21.85 (2.19)
5600	79.90 (7.99)	22.73 (2.27)
5800	71.90 (7.19)	20.50 (2.05)

Page: 10/13

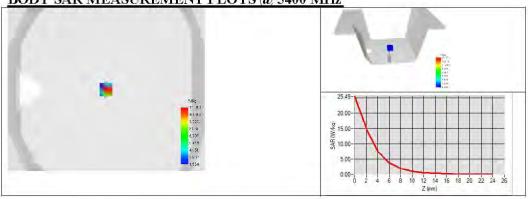
Temptate ACK.DOD.N.YYMVGth.188UE S.Ak Reference Dipale5Gife vid.

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

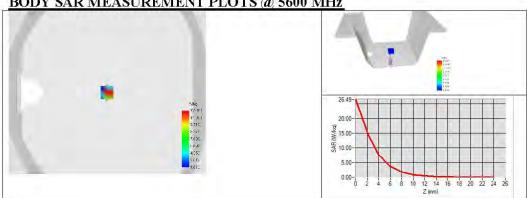
Page 89 of 96 No.: BCTC/RF-ICT-005



No.: BCTC/RF-ICT-005


SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR. 329.17.24.BES.A

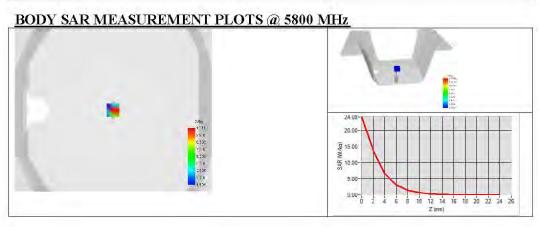


BODY SAR MEASUREMENT PLOTS @ 5400 MHz

BODY SAR MEASUREMENT PLOTS @ 5600 MHz

Page: 11/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference Dipole5GHz vD


This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref; ACR 329.17.24.BES.A

Page: 12/13

Template_ACR.DDD.N.YY.MVGB.ISSUE_SAR Reference DipoleSGH2 vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG.

No.: BCTC/RF-ICT-005 Page 91 of 96

SAR REFERENCE DIPOLE CALIBRATION REPORT

Ref: ACR 329.17.24.BES.A

8 LIST OF EQUIPMENT

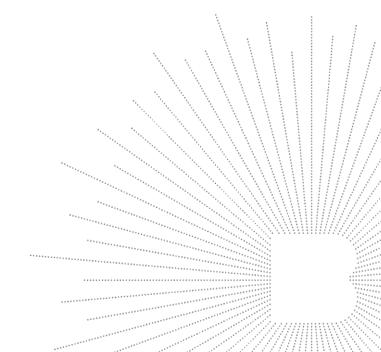
Equipment	Manufacturer/	CO	Current	Next Calibration
Description	Model	Identification No.	Calibration Date	Date
SAM Phantom	MVG	SN 13/09 SAM68	Validated. No cal required.	Validated. No ca required.
COMOSAR Test Bench	Version 3	NA	Validated. No cal required.	Validated. No ca required.
Network Analyzer	Rohde & Schwarz ZVM	100203	08/2024	08/2027
Network Analyzer	Agilent 8753ES	MY40003210	10/2022	10/2025
Network Analyzer – Calibration kit	Rohde & Schwarz ZV-Z235	101223	05/2022	05/2025
Network Analyzer – Calibration kit	HP 85033D	3423A08186	06/2021	06/2027
Calipers	Mitutoyo	SN 0009732	10/2022	10/2025
Reference Probe	MVG	SN 41/18 EPGO333	10/2024	10/2025
Multimeter	Keithley 2000	1160271	02/2023	02/2026
Signal Generator	Rohde & Schwarz SMB	106589	04/2022	04/2027
Amplifier	MVG	MODU-023-C-0002	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Power Meter	NI-USB 5680	170100013	06/2024	06/2027
Power Meter	Rohde & Schwarz NRVD	832839-056	11/2022	11/2025
Directional Coupler	Krytar 158020	131467	Characterized prior to test. No cal required.	Characterized prior to test. No cal required.
Temperature / Humidity Sensor	Testo 184 H1	44225320	06/2024	06/2027

Page: 13/13

Template ACK, DUD. N. FYMVGR, ISSUE SAR Reference Dipale 5GHz vD

This document shall not be reproduced, except in full or in part, without the written approval of MVG. The information contained herein is to be used only for the purpose for which it is submitted and is not to be released in whole or part without written approval of MVG,

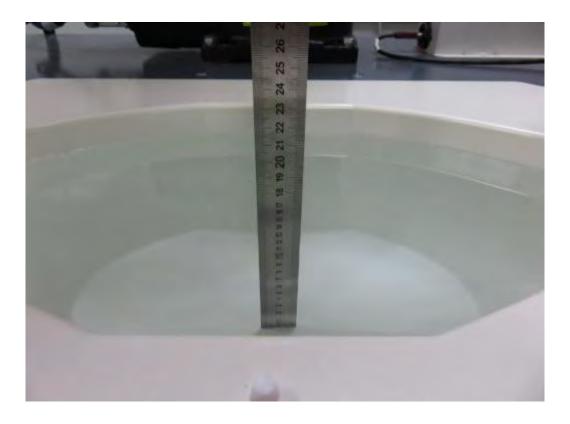
Page 92 of 96 No.: BCTC/RF-ICT-005


17. EUT Photographs

,TC

J (

200


No.: BCTC/RF-ICT-005

Page 93 of 96

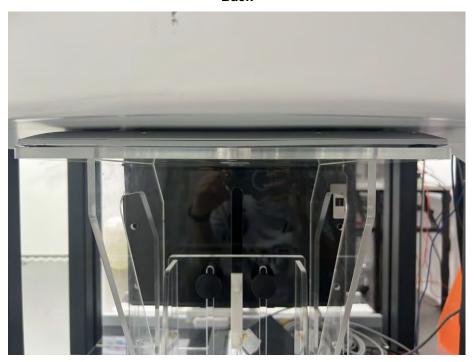
dition: C0

18. Photographs Of The Liquid

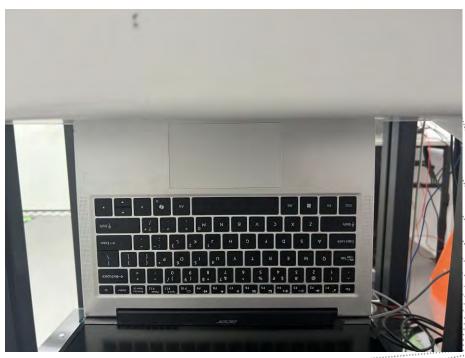
Photograph of the depth in the Body Phantom (600-10000MHz, depth >15cm)

No.: BCTC/RF-ICT-005 Page 94 of 96 Edition// C.0

TE


 $\bigcirc \bigvee$

t Se



19. EUT Test Setup Photographs

Back

Bottom

No.: BCTC/RF-ICT-005 Page 95 of 96 Edition/ C.0

Report No: BCTC2507440513E STATEMENT

- 1. The equipment lists are traceable to the national reference standards.
- 2. The test report can not be partially copied unless prior written approval is issued from our lab.
- 3. The test report is invalid without the "special seal for inspection and testing".
- 4. The test report is invalid without the signature of the approver.
- 5. The test process and test result is only related to the Unit Under Test.
- 6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.
- 7. The quality system of our laboratory is in accordance with ISO/IEC17025.
- 8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

No.: BCTC/RF-ICT-005

Website: http://www.chnbctc.com

E-Mail: bctc@bctc-lab.com.cn

**** END ****

Page 96 of 96

Edition :: C.(