

FCC TEST REPORT FCC ID:2A93X-V99

Report No.....: ZHT-250715115W01

Product...... : Game Magnetic Wireless Charging Power Bank

Trademark.....:: /

Model(s).....:

Model Difference.....:

Shenzhen Lechong Technology Co., Ltd Applicant.....::

2nd Floor, Building 1, No. 181 Renmin Road, Fucheng Street, Longhua

District, Shenzhen, China

Shenzhen Lechong Technology Co., Ltd Manufacturer.....:

Address....:: 2nd Floor, Building 1, No. 181 Renmin Road, Fucheng Street, Longhua

District, Shenzhen, China

Prepared by....:: Guangdong Zhonghan Testing Technology Co., Ltd.

Room 104/201, Building 1, Yibaolai Industrial Park, Qiaotou, Fuhai

Subdistrict, Bao'an District, Shenzhen, Guangdong, China

July 15, 2025 Date of Receipt....::

Date of Issue.....: Aug. 7, 2025

Standard.....: FCC CFR Title 47 Part 15 Subpart C

Test procedure.....: /

In the configuration tested, the EUT complied with the standards specified above.

Prepared by:

Reviewed by:

Approved by:

Kimi Lu/ Engineer

Baret Wu/ Director

Levi Lee/ Manager

Note: This device described above has been tested by ZHT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report. This report shall not be reproduced except in full, without the written approval of ZHT, this document may be altered or revised by ZHT, personal only, and shall be noted in the revision of the document.

1.	VERSION	3
2.	TEST SUMMARY	4
3.	GENERAL INFORMATION	5
	3.1 GENERAL DESCRIPTION OF EUT	5
	3.2 Test mode	5
	3.3 Block Diagram of EUT Configuration	
	3.4 Test Conditions	
	3.5 Description Of Support Units (Conducted Mode)	
4.	TAEST FACILITY AND TEST INSTRUMENT USED	
	4.1 TEST FACILITY	
	4.2 EQUIPMENTS LIST FOR ALL TEST ITEMS	
	4.3 TESTING SOFTWARE	
5.	CONDUCTED EMISSION TEST	
	5.1 CONDUCTED EMISSION MEASUREMENT	_
	5.1.1 POWER LINE CONDUCTED EMISSION Limits	
	5.1.2 TEST PROCEDURE	
	5.1.3 DEVIATION FROM TEST STANDARD	
	5.1.5 EUT OPERATING CONDITIONS	
	5.1.6 Test Result	
6	RADIATED EMISSION MEASUREMENT	
•	6.1 Radiated Emission Limits	
	6.2 Anechoic Chamber Test Setup Diagram	
	6.3 Test Procedure	
	6.4 DEVIATION FROM TEST STANDARD	15
	6.5 Test Result	16
7.	BANDWIDTH TEST	19
8.	ANTENNA REQUIREMENT	22
9.	TEST SETUP PHOTO	23
10). EUT CONSTRUCTIONAL DETAILS	23
		//



1. VERSION

Report No.	Version	Description	Approved
ZHT-250715115W01	Rev.01	Initial issue of report	Aug. 7, 2025
42	44	44	44

B	(E)	(E)	B	_

2. TEST SUMMARY

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Spurious Emission	15.209(a)(f)	Pass
20dB Bandwidth	15.215	Pass

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report





3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Game Magnetic Wireless Charging Power Bank	
Test Model No.:	V99	3.4
Hardware version:	V1.0	(1)
Software version:	V1.0	
Operation Frequency:	Phone: 115-205kHz	
Modulation type:	MSK	
Antenna Type:	Coil Antenna	
Antenna gain:	0dBi	
Ratings	USB-C Input: 5 V-3 A, 9 V-2.22 A, 12 V-1.67 A USB-C Output: 5 V-3 A, 9 V-2.22 A Wireless Output: 15 W(Max) Total Output: 20 W(Max) Capacity: 5000mAh	B
	Rated Capacity: 2800mAh(5 V/2 A)	

3.2 Test mode

Test Modes:						
Mode 1	AC Mains + Phone charging port (5W)		(1)		<i>(11)</i>	
Mode 2	Phone charging port (5W)					
Mode 3	Phone charging port (7.5W)					
Mode 4	Phone charging port (10W)					
Mode 5	Phone charging port (15W)	11)		11)		
Mode 6	Standby					

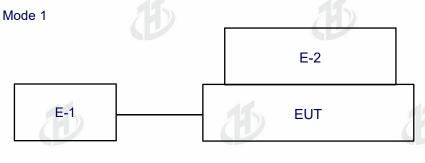
Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate,

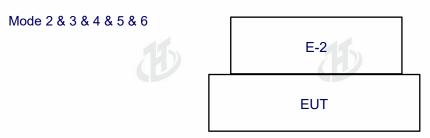
Guangdong Zhonghan Testing Technology Co., Ltd. does not assume any responsibility.

Note: 1. All test modes has been tested, this report only reflected the worst mode.

2. Mode 1 and Mode 5 is worst case for Conducted Emission and Spurious Emission.

3. Charge while discharging, wireless charging only supports 5W output.





Project No.: ZHT-250715115W01 Page 6 of 23

3.3 Block Diagram of EUT Configuration

3.4 Test Conditions

Temperature: 25.6°C Relative Humidity: 54.3 %

3.5 Description Of Support Units (Conducted Mode)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	AC Adapter	Xiaomi	MDY-08-EH	/	AE
E-3	Mobile phone	Xiaomi Communications Co., Ltd.	Xiaomi 13	/	AE

Item	Shielded Type	Ferrite Core	Length	Note

Note:

- The support equipment was authorized by Declaration of Confirmation. (1)
- (2)For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core". (3)

admin@zht-lab.cn

Project No.: ZHT-250715115W01 Page 7 of 23

4. TAEST FACILITY AND TEST INSTRUMENT USED

4.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd.

Add.: Room 104/201, Building 1, Yibaolai Industrial Park, Qiaotou, Fuhai Subdistrict, Bao'an District,

Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

4.2 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

Item	Equipment	Manufacturer	Model	Serial No.	Last Cal.	Next Cal.
1	Receiver	R&S	ESCI	100874	May 6, 2025	May 5, 2026
2	Loop Antenna	TESEQ	HLA6121	58357	Oct. 11, 2024	Oct. 10, 2025
3	Amplifier	Schwarzbeck	BBV 9743 B	00378	May 6, 2025	May 5, 2026
4	Amplifier	Schwarzbeck	BBV 9718 B	00040	May 7, 2025	May 6, 2026
5	Bilog Antenna	Schwarzbeck	VULB9162	00498	May 15, 2025	May 14, 2026
6	Horn Antenna	Schwarzbeck	BBHA9120D	02623	May 15, 2025	May 14, 2026
7	Horn Antenna	A.H.SYSTEMS	SAS574	588	Oct. 21, 2024	Oct. 20, 2025
8	Amplifier	AEROFLEX	100KHz-40GHz	097	Oct. 21, 2024	Oct. 20, 2025
9	Spectrum Analyzer	R&S	FSV40	101413	Oct. 21, 2024	Oct. 20, 2025
10	Spectrum Analyzer	KEYSIGHT	N9020A	MY53420208	May 7, 2025	May 6, 2026
11	WIDBAND RADIO COMMUNICATION TESTER	R&S	CMW500	109863	May 7, 2025	May 6, 2026
12	Single Generator	Agilent	N5182A	MY48180575	May 7, 2025	May 6, 2026
13	Power Sensor	MWRFtest	MW100-RFCB	15	May 7, 2025	May 6, 2026
14	CABLE	EMToni	DA800-NM- NM-11000MM		May 6, 2025	May 5, 2026

Page 8 of 23

Conduction Test equipment

Equipment	Manufacturer	Model	Serial No.	Last Cal.	Next Cal.
Receiver	R&S	ESCI	100874	May 6, 2025	May 5, 2026
LISN	R&S	ENV216	102794	May 6, 2025	May 5, 2026
ISN CAT 6	Schwarzbeck	NTFM 8158	00318	May 7, 2025	May 6, 2026
ISN CAT 5	Schwarzbeck	CAT5 8158	00343	May 7, 2025	May 6, 2026
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	00101	May 8, 2025	May 7, 2026
Current Transformer Clamp	Schwarzbeck	SW 9605	SW9605 #209	May 8, 2025	May 7, 2026
CABLE	EMToni	G223-NM-BNC M-2000MM	1	May 7, 2025	May 6, 2026

RF Conducted Test equipment

Item	Equipment	Manufacturer	Model	Serial No.	Last Cal.	Next Cal.
1	Spectrum Analyzer	R&S	FSV40	101413	Oct. 21, 2024	Oct. 20, 2025
2	Spectrum Analyzer	KEYSIGHT	N9020A	MY53420208	May 7, 2025	May 6, 2026
3	Power Sensor	MWRFtest	MW100-RFCB		May 7, 2025	May 6, 2026

4.3 TESTING SOFTWARE

Project	Software name	Edition
Radiated Emission	EZ-EMC	FA-03A2 RE+
RF Test	MTS 8310	2.0.0.0

Project No.: ZHT-250715115W01 Page 9 of 23

4.4 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y ± U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %。

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF conducted power	±0.16dB
3	Spurious emissions conducted	±0.21dB
4	All radiated emissions (9k-30MHz)	±4.68dB
5	All radiated emissions (<1G)	±4.68dB
6	All radiated emissions (>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96%
10	Power Spectral Density	±0.71dB

Decision Rule

- □ Uncertainty is not included
- ☐ Uncertainty is included



5. CONDUCTED EMISSION TEST

5.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

5.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (d	Standard	
PREQUENCY (MINZ)	QP	AVG	Standard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

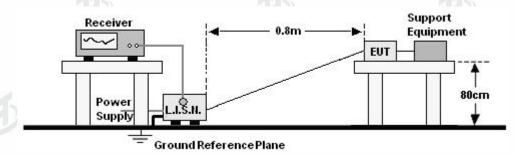
(1) *Decreases with the logarithm of the frequency.

5.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

5.1.3 DEVIATION FROM TEST STANDARD

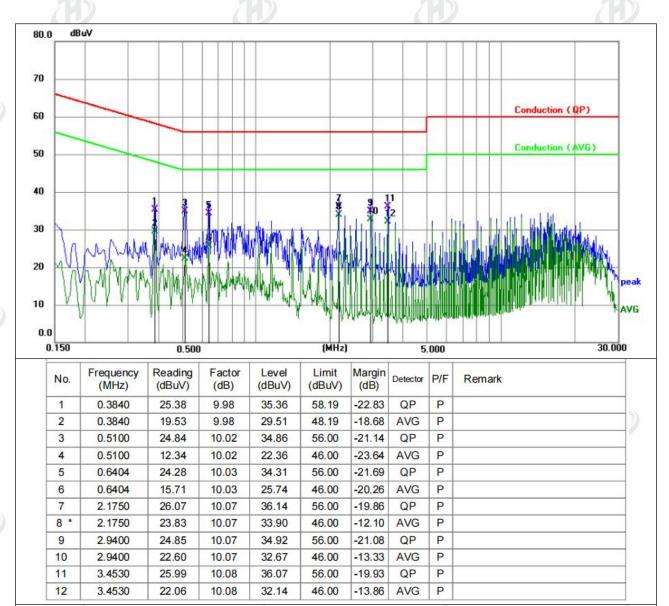
No deviation



5.1.4 TEST SETUP

5.1.5 EUT OPERATING CONDITIONS

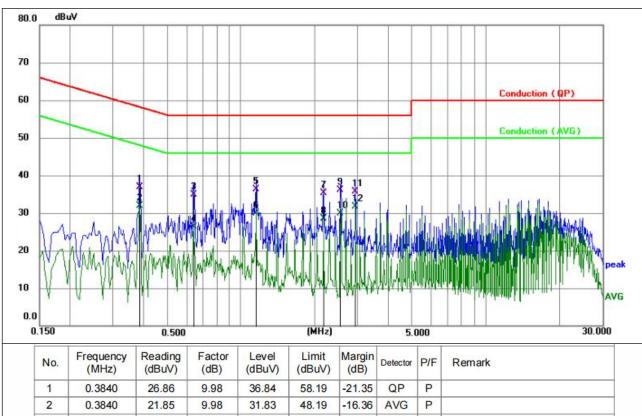
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



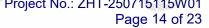
Temperature:	24.4 ℃	Humidity	56.2%
Pressure:	101kPa	Phase :	L
Test Voltage:	AC 120V/60Hz	Test mode:	Mode 1

Notes:

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.



Temperature:	24.4℃	Humidity	56.2%
Pressure:	101kPa	Phase :	N
Test Voltage:	AC 120V/60Hz	Test mode:	Mode 1



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.3840	26.86	9.98	36.84	58.19	-21.35	QP	Р		
2	0.3840	21.85	9.98	31.83	48.19	-16.36	AVG	Р		
3	0.6404	24.87	10.03	34.90	56.00	-21.10	QP	Р		
4	0.6404	16.32	10.03	26.35	46.00	-19.65	AVG	Р		
5	1.1534	26.22	10.06	36.28	56.00	-19.72	QP	Р		
6	1.1534	19.82	10.06	29.88	46.00	-16.12	AVG	Р		
7	2.1750	25.25	10.07	35.32	56.00	-20.68	QP	Р		
8	2.1750	18.34	10.07	28.41	46.00	-17.59	AVG	Р		
9	2.5574	25.97	10.06	36.03	56.00	-19.97	QP	Р		
10	2.5574	19.94	10.06	30.00	46.00	-16.00	AVG	Р		
11	2.9400	25.57	10.07	35.64	56.00	-20.36	QP	Р		
12 *	2.9400	21.62	10.07	31.69	46.00	-14.31	AVG	Р		

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report

6. RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Sect	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 1GHz								
Test site:	Measurement Distance: 3m								
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Peak Value				
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	41	Peak	1MHz	10Hz	Average				
	740 740								

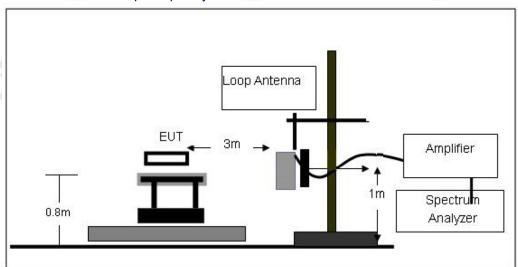
6.1 Radiated Emission Limits

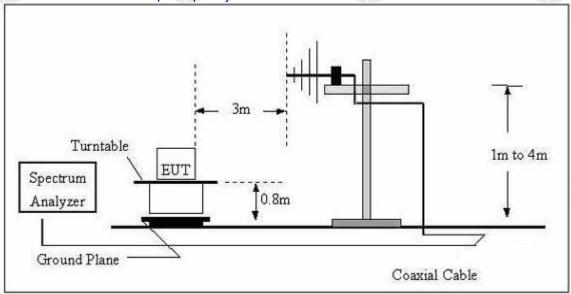
Limits for frequency below 30MHz

Frequency	Limit (uV/m)	Measurement Distance(m)	Remark
0.009-0.490	2400/F(kHz)	300	Peak Value
0.490-1.705	24000/F(kHz)	30	Quasi-peak Value
1.705-30	30	30	Quasi-peak Value

Limits for frequency Above 30MHz

Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.00	Quasi-peak Value
88MHz-216MHz	43.50	Quasi-peak Value
216MHz-960MHz	46.00	Quasi-peak Value
960MHz-1GHz	54.00	Quasi-peak Value
Above 1GHz	54.00	Average Value
Above IGHZ	74.00	Peak Value





6.2 Anechoic Chamber Test Setup Diagram

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

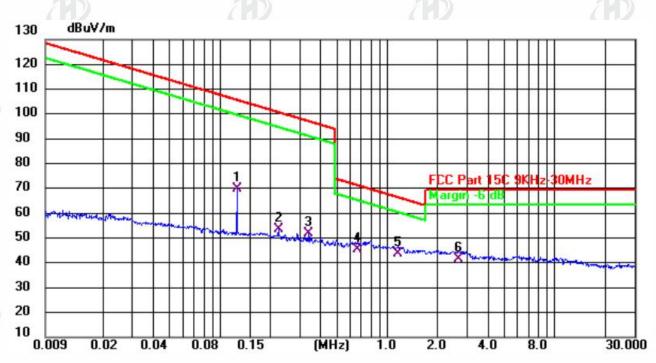
The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.205 limits.

6.3 Test Procedure

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level. Broadband antenna (calibrated by dipole antenna) are used as a receiving antenna. Both horizontal and vertical polarization of the antenna are set on measurement.

6.4 DEVIATION FROM TEST STANDARD

No deviation



6.5 Test Result

Measurement data:

Note: Limit dBuV/m @3m = Limit dBuV/m @300m+ 80 Limit dBuV/m @3m = Limit dBuV/m @30m + 40

9 kHz~30 MHz

Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F
0.1274	69.48	0.16	69.64	105.50	-35.86	Peak	-	-	Р
0.2235	52.75	0.58	53.33	100.62	-47.29	Peak	-5	-	Р
0.3351	50.93	0.81	51.74	97.10	-45.36	Peak	-	-	Р
0.6572	43.98	1.42	45.40	71.25	-25.85	QP	-	-	Р
1.1600	41.12	2.44	43.56	66.32	-22.76	QP	- 4	-	Р
2.6532	36.05	5.49	41.54	69.54	-28.00	QP	-	© = 5	Р
	(MHz) 0.1274 0.2235 0.3351 0.6572 1.1600	(MHz) (dBuV) 0.1274 69.48 0.2235 52.75 0.3351 50.93 0.6572 43.98 1.1600 41.12	(MHz) (dBuV) (dB/m) 0.1274 69.48 0.16 0.2235 52.75 0.58 0.3351 50.93 0.81 0.6572 43.98 1.42 1.1600 41.12 2.44	(MHz) (dBuV) (dB/m) (dBuV/m) 0.1274 69.48 0.16 69.64 0.2235 52.75 0.58 53.33 0.3351 50.93 0.81 51.74 0.6572 43.98 1.42 45.40 1.1600 41.12 2.44 43.56	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) 0.1274 69.48 0.16 69.64 105.50 0.2235 52.75 0.58 53.33 100.62 0.3351 50.93 0.81 51.74 97.10 0.6572 43.98 1.42 45.40 71.25 1.1600 41.12 2.44 43.56 66.32	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 0.1274 69.48 0.16 69.64 105.50 -35.86 0.2235 52.75 0.58 53.33 100.62 -47.29 0.3351 50.93 0.81 51.74 97.10 -45.36 0.6572 43.98 1.42 45.40 71.25 -25.85 1.1600 41.12 2.44 43.56 66.32 -22.76	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector 0.1274 69.48 0.16 69.64 105.50 -35.86 Peak 0.2235 52.75 0.58 53.33 100.62 -47.29 Peak 0.3351 50.93 0.81 51.74 97.10 -45.36 Peak 0.6572 43.98 1.42 45.40 71.25 -25.85 QP 1.1600 41.12 2.44 43.56 66.32 -22.76 QP	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) 0.1274 69.48 0.16 69.64 105.50 -35.86 Peak - 0.2235 52.75 0.58 53.33 100.62 -47.29 Peak - 0.3351 50.93 0.81 51.74 97.10 -45.36 Peak - 0.6572 43.98 1.42 45.40 71.25 -25.85 QP - 1.1600 41.12 2.44 43.56 66.32 -22.76 QP -	(MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) Detector (cm) (deg.) 0.1274 69.48 0.16 69.64 105.50 -35.86 Peak - - 0.2235 52.75 0.58 53.33 100.62 -47.29 Peak - - 0.3351 50.93 0.81 51.74 97.10 -45.36 Peak - - 0.6572 43.98 1.42 45.40 71.25 -25.85 QP - - 1.1600 41.12 2.44 43.56 66.32 -22.76 QP - -

Note:

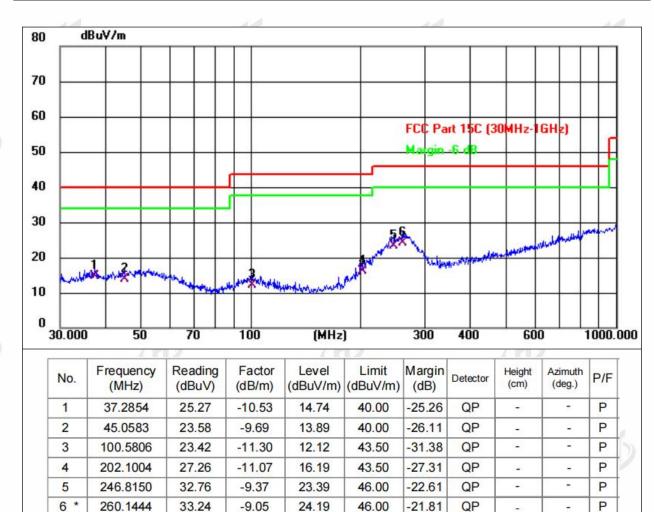
Pre-scan in the all of mode, the worst case in of was recorded.

Factor = antenna factor + cable loss – pre-amplifier.

Emission Level = Meter Reading - Factor

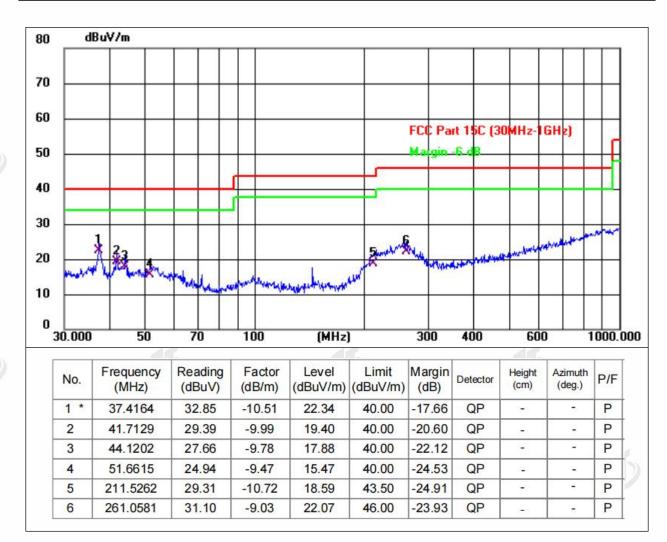
Margin = Emission Level- Limit.

- 1. The amplitude of emissions which are attenuated by more than 20db below the permissible value has no need to be reported.
- 2. '-'Means the test Degree and Height are not recorded by the test software and only show the worst case in the test report.



□ admin@zht-lab.cn

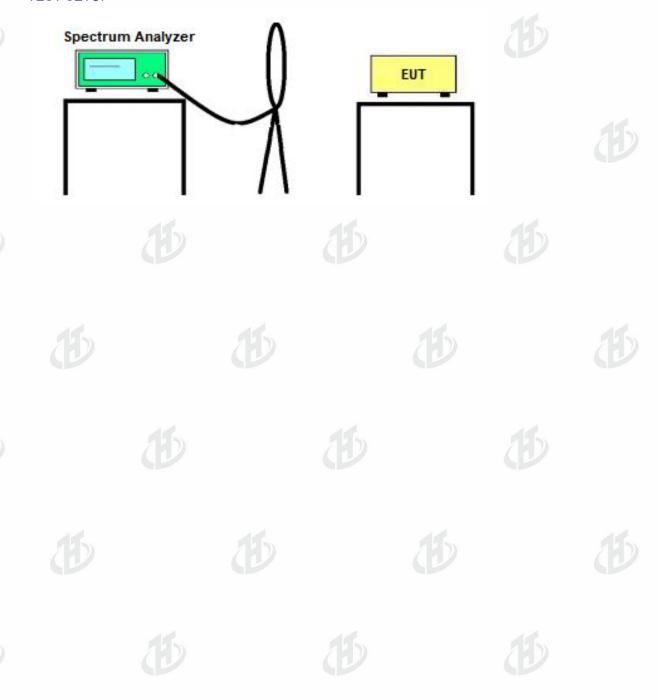
		Lenni I II	- V III
Temperature:	24.4 ℃	Humidity	56.2%
Pressure:	1014 kPa	Polarization:	Horizontal
Test Voltage:	DC 3.7 V	Test mode:	Mode 5



Project No.: ZHT-250715115W01 Page 18 of 23

Temperature:	24.4℃	Humidity	56.2%
Pressure:	1014 kPa	Polarization:	Vertical
Test Voltage:	DC 3.7 V	Test mode:	Mode 5

- 1. Factor = Antenna Factor + Cable Loss Preamplifier Factor
- 2. Level = Reading + Factor
- 3. Margin = Emission Level- Limit.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. '-'Means the test Degree and Height are not recorded by the test software and only show the worst case in the test report.



7. BANDWIDTH TEST

- 1. Set RBW = 1%-5%OBW.
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP

Project No.: ZHT-250715115W01 Page 20 of 23

Temperature:	25.5 ℃	Relative Humidity:	54%
Pressure:	1014kPa		

	Frequency (KHz)	20dB bandwidth (KHz)	Result
Phone coil	127.4	0.039	Pass

Page 22 of 23

ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Coil Antenna, the best case gain of the antennas is 0dBi, reference to the appendix II for details

Reference to the appendix I for details.

9. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

8. TEST SETUP PHOTO

