

Page 1 of 4 FCC ID: 2A8XH-QQ005

Maximum Permissible Exposure Report

1. Product Information

FCC ID : 2A8XH-QQ005 EUT : Pet feeder Test Model : QQ005

Additional Model No. : QQ003, QQ006, QQ013, QQ015, QQ016, QQ023, QQ025, QQ026,

QQ007, QQ027

Model Declaration : PCB board, structure and internal of these model(s) are the same, So

no additional models were tested

Power Supply : Input: 5V=1A

For Adapter Input: 100-240V~, 50/60Hz, 0.15A

For Adapter Output: 5.0V=1.0A 5.0W

DC 6.0V by 4*AA Battery

Hardware Version : V101 Software Version : V1.0.0

WIFI(2.4G Band) :

Frequency Range : 2412MHz-2462MHz

Channel Spacing : 5MHz

Channel Number : 11 Channels for 20MHz bandwidth (2412~2462MHz)

7 Channels for 40MHz bandwidth (2422~2452MHz)

Modulation Type : IEEE 802.11b: DSSS (CCK, DQPSK, DBPSK)

IEEE 802.11g: OFDM (64QAM, 16QAM, QPSK, BPSK)
IEEE 802.11n: OFDM (64QAM, 16QAM, QPSK, BPSK)

Antenna Description : Ceramic Antenna, 2.71dBi(Max.)

Exposure category : General population/uncontrolled environment

EUT Type : Production Unit Device Type : Mobile Device

2. Evaluation Method

Systems operating under the provisions of FCC 47 CFR section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as mobile device whereby a distance of 0.2m normally can be maintained between the user and the device, and below RF Permissible Exposure limit shall comply with.

In accordance with KDB447498D01 for Simultaneous transmission MPE test exclusion applies when the sum of the MPE ratios for all simultaneous transmitting antennas incorporated in a host device, based on the calculated/estimated, numerically modelled or measured field strengths or power density, is ≤ 1.0. The MPE ratio of each antenna is determined at the minimum test separation distance required by the operating configurations and exposure conditions of the host device, according to the ratio of field strengths or power density to MPE limit, at the test frequency. Either the maximum peak or spatially averaged results from measurements or numerical simulations may be used to determine the MPE ratios. Spatial averaging does not apply when MPE is estimated using simple calculations based on far-field plane-wave equivalent conditions. The antenna installation and operating requirements for the host device must meet the minimum test separation distances required by all antennas, in both standalone and simultaneous transmission operations, to satisfy compliance.

FCC ID: 2A8XH-QQ005

3. 1 Refer Evaluation Method

ANSI C95.1–2019: IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz

FCC KDB publication 447498 D01 General 1 RF Exposure Guidance v06: Mobile and Portable Devices RF Exposure Procedures and Equipment Authorization Policies.

FCC CFR 47 part1 1.1310: Radiofrequency radiation exposure limits.

FCC CFR 47 part2 2.1091: Radiofrequency radiation exposure evaluation: mobile devices.

3. 2 Limit

Limits for Maximum Permissible Exposure (MPE)/Controlled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time			
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)			
Limits for Occupational/Controlled Exposure							
0.3 - 3.0	614	1.63	(100)_*	6			
3.0 - 30	3.0 – 30 1842/f		(900/f ²)*	6			
30 - 300	61.4	0.163	` 1.0 ´	6			
300 – 1500	/	/	f/300	6			
1500 – 100,000	/	/	5	6			

Limits for Maximum Permissible Exposure (MPE)/Uncontrolled Exposure

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time			
Range(MHz)	Strength(V/m)	Strength(A/m)	(mW/cm²)	(minute)			
Limits for Occupational/Uncontrolled Exposure							
0.3 - 3.0	614	1.63	(100) *	30			
3.0 - 30	824/f	2.19/f	(180/f ²)*	30			
30 - 300	27.5	0.073	0.2	30			
300 – 1500	人工检测版	ab /	f/1500	30			
1500 - 100,000	Testing	1	1.0	30			

F=frequency in MHz

4. MPE Calculation Method

Predication of MPE limit at a given distance Equation from page 18 of OET Bulletin 65, Edition 97-01

S=PG/4πR²

Where: S=power density

P=power input to antenna

G=power gain of the antenna in the direction of interest relative to an isotropic radiator

R=distance to the center of radiation of the antenna

5. Antenna Information

EUT can only use antennas certificated as follows provided by manufacturer;

Internal/External	Antenna type and	Operate frequency	Maximum	Notes
Identification	antenna number	band	antenna gain	
Antenna	Ceramic Antenna	2400-2500 MHz	2.71dBi	WIFI Antenna

^{*=}Plane-wave equivalent power density

FCC ID: 2A8XH-QQ005

6. Conducted Power

nducted Power			
		[2.4G WLAN]	
Mode	Channel	Frequency (MHz)	Peak Conducted Output Power (dBm)
	1	2412	16.13
IEEE 802.11b	6	2437	15.91
	11	2462	18.62
	1	2412	15
IEEE 802.11g	6	2437	14.77
	11	2462	13.32
IEEE 000 44 m	1	2412	14.97
IEEE 802.11n	6	2437	14.54
HT20	11	2462	14.78
IEEE 000 44 =	3	2422	14.67
IEEE 802.11n - HT40 -	6	2437	14.35
	9	2462	13.54

7. Manufacturing Tolerance

	- mi R& 173						
IEEE 802.11b(Peak)							
Channel	Channel 01	Channel 06	Channel 11				
Target (dBm)	16.0	15.0	18.0				
Tolerance ± (dB)	1.0	1.0	1.0				
	IEEE 802.11g(Peak)						
Channel	Channel 01	Channel 06	Channel 11				
Target (dBm)	15.0	14.0	13.0				
Tolerance ± (dB)	1.0	1.0	1.0				
IEEE 802.11n20(Peak)							
Channel	Channel 01	Channel 06	Channel 11				
Target (dBm)	14.0	14.0	14.0				
Tolerance ± (dB)	1.0	1.0	1.0				
IEEE 802.11n40(Peak)							
Channel	Channel 03	Channel 06	Channel 09				
Target (dBm)	14.0	4.0 14.0					
Tolerance ± (dB)	1.0	1.0	1.0				

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg A & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China

Tel: +(86) 0755-82591330 | E-mail: webmaster@lcs-cert.com | Web: www.lcs-cert.com Scan code to check authenticity

FCC ID: 2A8XH-QQ005

8. Measurement Results

8.1 Standalone MPE Evaluation

As declared by the Applicant, the EUT is a wireless device used in a fix application, at least 20 cm from any body part of the user or nearby persons; from the maximum EUT RF output power, the minimum separation distance, r = 20cm, as well as the gain of the used antenna refer to antenna information, the RF power density can be obtained.

[2.4GWLAN]

	Output power		Antenna	Antenna	MPE	MPE
Modulation Type	dBm	mW	Gain	Gain	(mW/cm2)	Limits
		IIIVV	(dBi)	(linear)		(mW/cm2)
IEEE 802.11b	19.0	79.4328	2.71	1.8664	0.0295	1.0000
IEEE 802.11g	16.0	39.8107	2.71	1.8664	0.0148	1.0000
IEEE 802.11n HT20	15.0	31.6228	2.71	1.8664	0.0117	1.0000
IEEE 802.11n HT40	15.0	31.6228	2.71	1.8664	0.0117	1.0000

Remark:

- 1. Output power including turn-up tolerance;
- 2. Output power was adjust to duty cycle at 100% if measured duty cycle less than 98%;
- 3. MPE evaluate distance is 20cm from user manual provide by manufacturer.

8.2 Simultaneous Transmission MPE Evaluation

The EUT equiped with one module and one antenna. So no need consider simultaneous transmission.

9. Conclusion

The measurement results comply with the FCC Limit per 47 CFR 2.1091 for the uncontrolled RF Exposure of mobile device.

Shenzhen LCS Compliance Testing Laboratory Ltd.

Add: 101, 201 Bldg Å & 301 Bldg Č, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000. China