

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202207133F01

TEST Report

Applicant: Athom Technology Co., Ltd

Address of Applicant: C402 Tianhui Bldg Longhua Shenzhen Guangdong China

Manufacturer: Athom Technology Co., Ltd

Address of C402 Tianhui Bldg Longhua Shenzhen Guangdong China

Manufacturer:

Equipment Under Test (EUT)

Product Name: plug

Model No.: PG03

Series model: PG03V2-US16A, PG03-US16A

Trade Mark: athom

FCC ID: 2A7ZI-PG03

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Jul.08,2022

Date of Test: Jul.08,2022~Jul.20,2022

Date of report issued: Jul.20,2022

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Jul.20,2022	Original

Tested/ Prepared By	Ervin Xu	Date:	Jul.20,2022
	Project Engineer		
Check By:	Bruce Zhu	Date:	Jul.20,2022
	Reviewer	_	
Approved By :	Kein Yang	Date:	Jul.20,2022
	Authorized Signature		

2. Contents

1. VERSION 2. CONTENTS 3. TEST SUMMARY 4. GENERAL INFORMATION 4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	345
3. TEST SUMMARY 4. GENERAL INFORMATION 4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION	5
3. TEST SUMMARY 4. GENERAL INFORMATION 4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION	5
4. GENERAL INFORMATION 4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION	. 5
4.1. GENERAL DESCRIPTION OF EUT	5
4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS	
4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS	
4.4. DEVIATION FROM STANDARDS	7
4.5. ABNORMALITIES FROM STANDARD CONDITIONS	7
4.6. Test Facility	
4.7. TEST LOCATION	
4.8. Additional Instructions	
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS	ç
6.2. CONDUCTED PEAK OUTPUT POWER	
6.3. CHANNEL BANDWIDTH	13
6.4. Power Spectral Density	16
6.5. BAND EDGE	
6.5.1. Conducted Emission Method	
6.5.2. Radiated Emission Method	
6.6. Spurious Emission	
6.6.1. Conducted Emission Method	
6.6.2. Radiated Emission Method	29
7. TEST SETUP PHOTO	
8. EUT CONSTRUCTIONAL DETAILS	37

3. Test Summary

i soc cummung						
Test Item	Section	Result				
Antenna requirement	FCC part 15.203/15.247 (c)	Pass				
AC Power Line Conducted Emission	FCC part 15.207	Pass				
Conducted Peak Output Power	FCC part 15.247 (b)(3)	Pass				
6dB Bandwidth	FCC part 15.247 (a)(2)	Pass				
Power Spectral Density	FCC part 15.247 (e)	Pass				
Band Edge	FCC part 15.247(d)	Pass				
Spurious Emission	FCC part 15.205/15.209	Pass				

Remark: Test according to ANSI C63.10:2013 and RSS-Gen

Pass: The EUT complies with the essential requirements in the standard.

Measurement Uncertainty

· · · · · · · · · · · · · · · · · · ·						
Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~6GHz	3.54 dB	(1)			
Radiated Emission	6~40GHz	5.38 dB	(1)			
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)			
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

4. General Information

4.1. General Description of EUT

Product Name:	plug
Model No.:	PG03
Series model:	PG03V2-US16A, PG03-US16A
Test sample(s) ID:	HTT202207133-1(Engineer sample) HTT202207133-2(Normal sample)
Channel numbers:	802.11b/802.11g /802.11n(HT20): 11 802.11n(HT40):7
Channel separation:	5MHz
Modulation technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n(H20)/802.11n(HT40): Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	PCB Antenna
Antenna gain:	0 dBi
Power supply:	AC 100-240V, 16A MAX

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Total const	Frequency (MHz)			
Test channel	802.11b/802.11g/802.11n(HT20)	802.11n(HT40)		
Lowest channel	2412MHz	2422MHz		
Middle channel	2437MHz	2437MHz		
Highest channel	2462MHz	2452MHz		

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the dutycycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	802.11b	802.11g 802.11n(HT20)		802.11n(HT40)
Data rate	1Mbps	6Mbps	6.5Mbps	13Mbps

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

Shenzhen HTT Technology Co.,Ltd.

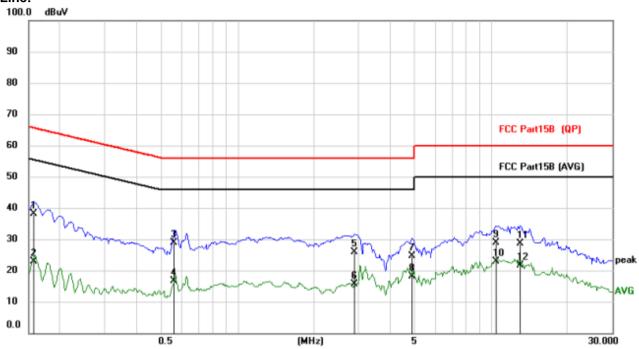
Tel: 0755-23595200 Fax: 0755-23595201

5. Test Instruments list

Э.	rest instrume			lassa at a me	Cal Data	Cal Dua data
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
	2m Cami Anashaia	Chanzhan C.D.T		NO.	(IIIIII-dd-yy)	(IIIII-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2020	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2020	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	May 23 2022	May 22 2023
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	May 23 2022	May 22 2023
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	May 23 2022	May 22 2023
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	May 23 2022	May 22 2023
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	May 23 2022	May 22 2023
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	May 23 2022	May 22 2023
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	Aug. 22 2021	Aug. 21 2022
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	Aug. 22 2021	Aug. 21 2022
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Aug. 22 2021	Aug. 21 2022
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Aug. 22 2021	Aug. 21 2022
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	May 23 2022	May 22 2023
14	high-frequency Amplifier	HP	8449B	HTT-E014	May 23 2022	May 22 2023
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	May 23 2022	May 22 2023
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	May 23 2022	May 22 2023
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May 23 2022	May 22 2023
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May 23 2022	May 22 2023
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	May 23 2022	May 22 2023
20	Attenuator	Robinson	6810.17A	HTT-E007	May 23 2022	May 22 2023
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	May 23 2022	May 22 2023
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	May 23 2022	May 22 2023
23	DC power supply	Agilent	E3632A	HTT-E023	May 23 2022	May 22 2023
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	May 23 2022	May 22 2023
25	Analog signal generator	Agilent	N5181A	HTT-E025	May 23 2022	May 22 2023
26	Vector signal generator	Agilent	N5182A	HTT-E026	May 23 2022	May 22 2023
27	Power sensor	Keysight	U2021XA	HTT-E027	May 23 2022	May 22 2023
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	May 23 2022	May 22 2023
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

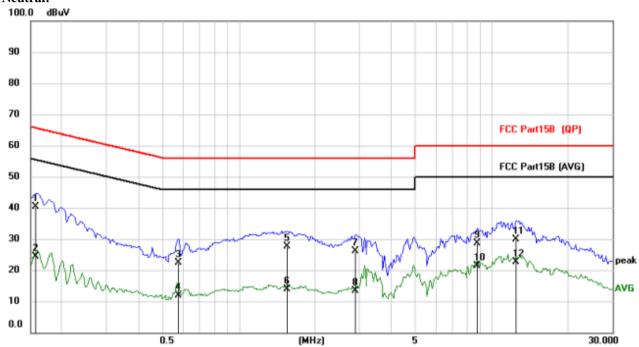
6. Test results and Measurement Data

6.1. Conducted Emissions


	· 				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013			
Test Frequency Range:	150KHz to 30MHz	150KHz to 30MHz			
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz,	RBW=9KHz, VBW=30KHz, Sweep time=auto			
Limit:	Fraguency range (MHz)	Limit	(dBuV)		
	Frequency range (MHz)	Quasi-peak		erage	
	0.15-0.5	66 to 56*	+	o 46*	
	0.5-5	56		46	
	* Decreases with the logarith	60		50	
Test setup:	Reference Plan				
Test procedure:	Remark E.U.T Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators line impedance stabilization 500hm/50uH coupling imp 2. The peripheral devices and table to provide a poor to be a second to be a seco	Filter — AC p EMI Receiver are connected to the on network (L.I.S.N.). To be also connected to the easo e also connected to the easo connected to the ea	This provide uring equipn ne main pow	s a nent. er through a	
	LISN that provides a 50oh termination. (Please refer photographs). 3. Both sides of A.C. line are interference. In order to fi positions of equipment an according to ANSI C63.10	to the block diagram of the checked for maximum emisted all of the interface c	of the test so m conducted sion, the rel ables must l	etup and d ative pe changed	
Test Instruments:	Refer to section 6.0 for detail	ls			
Test mode:	Refer to section 5.2 for detail	ls			
Test environment:	Temp.: 25 °C Hu	ımid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz	1	•	'	
Test results:	Pass				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



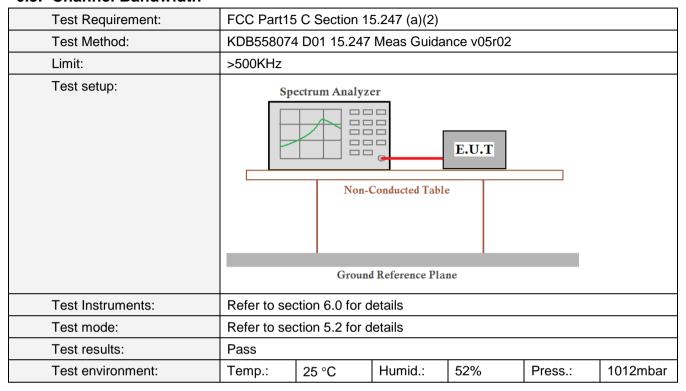
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1578	27.71	10.38	38.09	65.58	-27.49	QP
2		0.1578	12.44	10.38	22.82	55.58	-32.76	AVG
3	*	0.5633	18.34	10.54	28.88	56.00	-27.12	QP
4		0.5633	6.02	10.54	16.56	46.00	-29.44	AVG
5		2.8878	15.16	10.84	26.00	56.00	-30.00	QP
6		2.8878	4.84	10.84	15.68	46.00	-30.32	AVG
7		4.8563	13.67	11.03	24.70	56.00	-31.30	QP
8		4.8563	7.17	11.03	18.20	46.00	-27.80	AVG
9		10.4802	17.30	11.56	28.86	60.00	-31.14	QP
10		10.4802	11.29	11.56	22.85	50.00	-27.15	AVG
11		13.0386	16.86	11.86	28.72	60.00	-31.28	QP
12		13.0386	9.79	11.86	21.65	50.00	-28.35	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.1578	30.10	10.26	40.36	65.58	-25.22	QP
2		0.1578	14.20	10.26	24.46	55.58	-31.12	AVG
3		0.5790	11.96	10.47	22.43	56.00	-33.57	QP
4		0.5790	1.52	10.47	11.99	46.00	-34.01	AVG
5		1.5501	16.92	10.81	27.73	56.00	-28.27	QP
6		1.5501	3.08	10.81	13.89	46.00	-32.11	AVG
7		2.8995	15.36	10.84	26.20	56.00	-29.80	QP
8		2.8995	2.57	10.84	13.41	46.00	-32.59	AVG
9		8.7564	17.45	11.26	28.71	60.00	-31.29	QP
10		8.7564	10.23	11.26	21.49	50.00	-28.51	AVG
11		12.4926	17.95	11.85	29.80	60.00	-30.20	QP
12		12.4926	10.69	11.85	22.54	50.00	-27.46	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

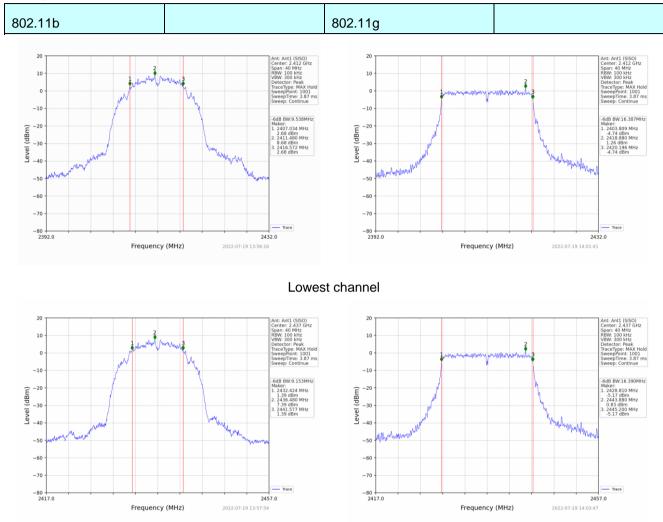
6.2. Conducted Peak Output Power


Test Requirement:	FCC Part15	FCC Part15 C Section 15.247 (b)(3)						
Test Method:	KDB558074	KDB558074 D01 15.247 Meas Guidance v05r02						
Limit:	30dBm							
Test setup:	Power sensor and Spectrum analyzer E.U.T Non-Conducted Table							
		Ground Reference Pla	ane					
Test Instruments:	Refer to se	ction 6.0 for c	letails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							

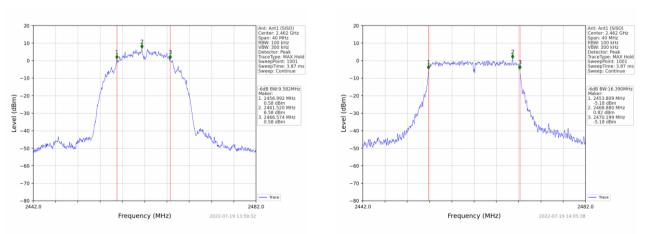
Measurement Data

		Peak Outp	out Power (dBm)		Limit/dDm) Door				
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(dBm)	Result			
Lowest	23.26	21.65	21.73	21.48					
Middle	22.02	21.24	21.25	20.93	30.00	Pass			
Highest	21.22	21.21	21.22	20.91					

6.3. Channel Bandwidth

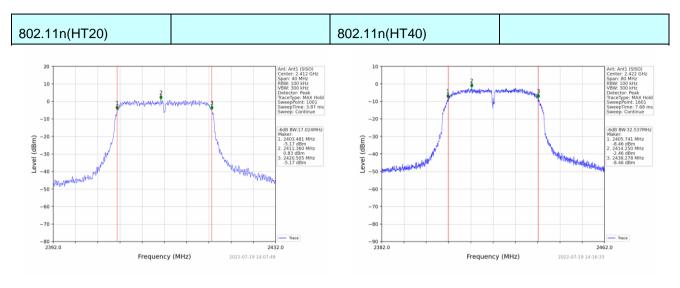


Measurement Data

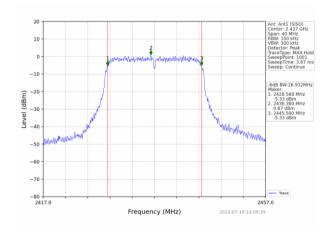

		Channel E	Bandwidth (MHz)		Limit/KHz\ Resu			
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	Limit(KHz)	Result		
Lowest	9.538	16.387	17.024	32.537				
Middle	9.153	16.390	16.932	31.968	>500	Pass		
Highest	9.582	16.390	17.017	31.973				

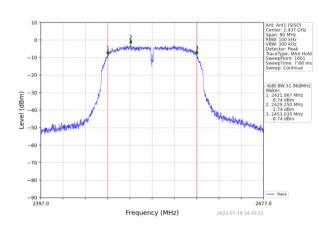
Test plot as follows:

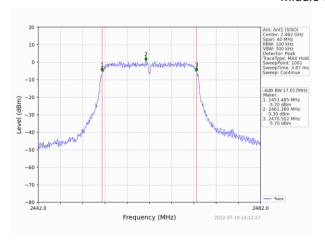
Middle channel

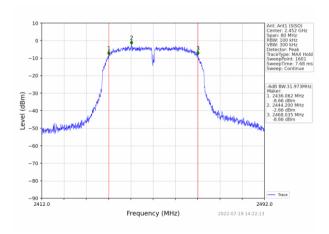


Highest channel

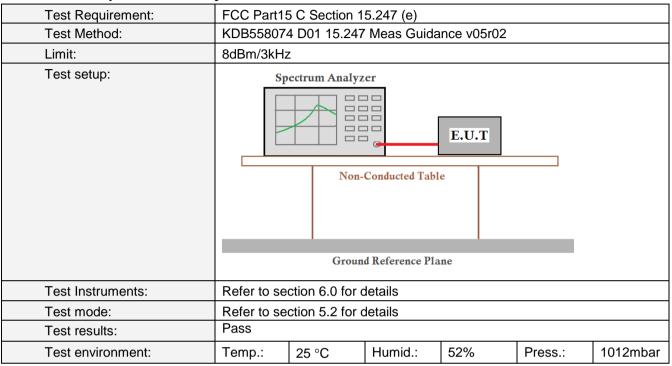

Shenzhen HTT Technology Co.,Ltd.


Tel: 0755-23595200 Fax: 0755-23595201




Lowest channel

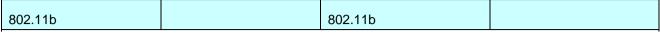
Middle channel

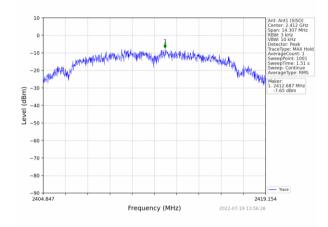

Highest channel

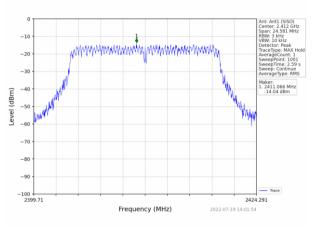
Shenzhen HTT Technology Co.,Ltd.

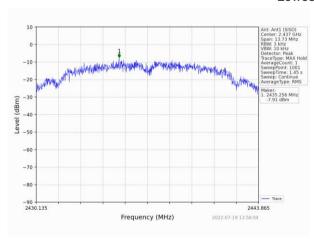
Tel: 0755-23595200 Fax: 0755-23595201

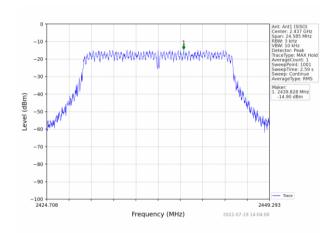
6.4. Power Spectral Density

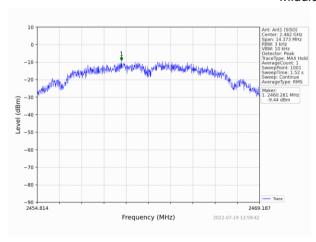

Measurement Data

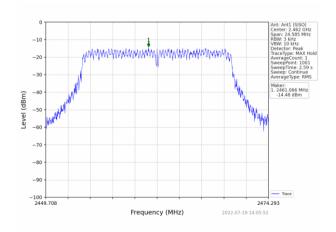

	mode di cinicite data									
		Power Spectra	al Density (dBm/3kl	⊣z)	Limit					
Test CH	802.11b	802.11g	802.11n(HT20)	802.11n(HT40)	(dBm/3kHz)	Result				
Lowest	-7.65	-14.04	-14.23	-14.64						
Middle	-7.91	-14.90	-14.29	-14.86	8.00	Pass				
Highest	-9.44	-14.48	-14.60	-14.34						

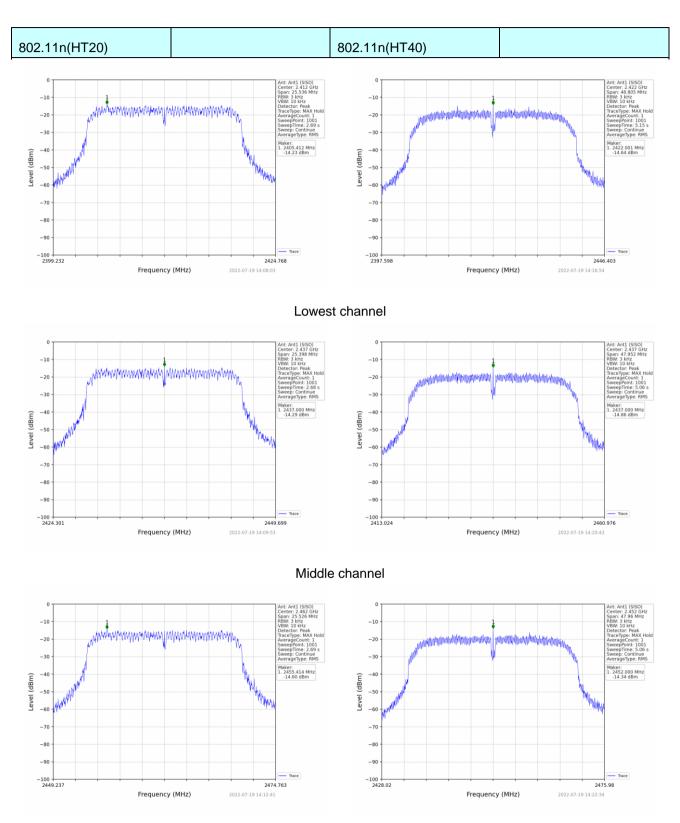

Remark: We have tested all mode at high, middle and low channel, and recorded worst case at middle


Test plot as follows:






Lowest channel

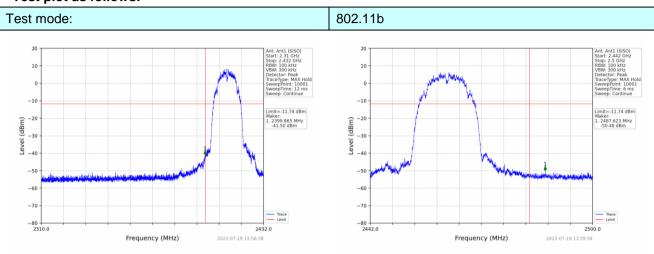

Middle channel

Highest channel

Highest channel

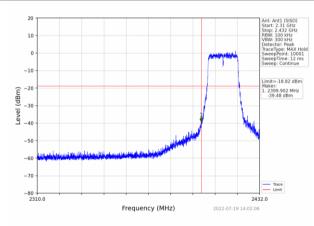
Shenzhen HTT Technology Co.,Ltd.

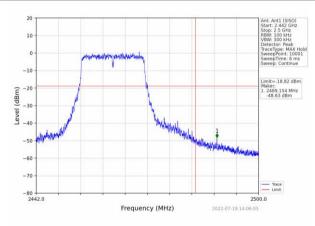
Tel: 0755-23595200 Fax: 0755-23595201


6.5. Band Edge

6.5.1. Conducted Emission Method

		C Section 15	5 247 (d)				
Test Method: K	<i>-</i>	FCC Part15 C Section 15.247 (d)					
	KDB558074 D01 15.247 Meas Guidance v05r02						
s _p	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to sec	tion 6.0 for d	etails				
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment: T	emp.:	25 °C	Humid.:	52%	Press.:	1012mbar	




Test plot as follows:

Lowest channel

Highest channel Test mode: 802.11g

Lowest channel

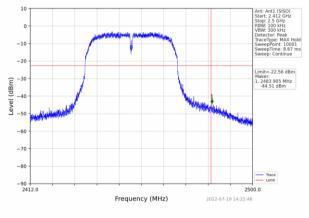
Highest channel

Test mode: 802.11n(HT20) Ant. Ant. (SISO) Since 2.437 Gifte Ribbi 100 kHz VBW: 300 kHz VBW: 300 kHz Trace Rype: MAX Hold Sweep/Tion: 10001 Sweep. Continue Limit=18.93 dBm L. 299 902 MHz L. 338.47 dBm L. 299 902 MHz L. 338.47 dBm L. 247.48 dBm

Lowest channel

Frequency (MHz)

BBW. 100 State Detector Pak Hall Trace Pipe MAX Hold Sweep Continue


| Continue | Contin

Highest channel

Test mode:

802.11n(HT40)

Lowest channel

Highest channel

6.5.2. Radiated Emission Method

0.5.2. Naulateu	Lillission Met	1104					
Test Requirement:	FCC Part15 (.209 and	15.205			
Test Method:	ANSI C63.10): 2013					
Test Frequency Range:	All of the res 2500MHz) da			ted, only	the wo	rst band's	(2310MHz to
Test site:	Measuremen	t Distance: 3	m				
Receiver setup:	Frequency	Frequency Detector		RBW	VBW		emark
	Above 1GH	z Peak		1MHz 1MHz	3MHz 10Hz		ak Value age Value
Limit:	Fred	quency	Lim	nit (dBuV/	m @3m		emark
	Abov	e 1GHz		54.0			age Value
Test setup:				74.0	0	Pea	ak Value
	Tum Table < 150cm >-	Test Antenna- Company Preamplifier- Receiver- Preamplifier-					
Test Procedure:							
	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or 						above the h. Both o make the worst case 4 meters is to find the and Specified wer than the values of the ot have 10dB
Test Instruments:	Refer to sect						
Test mode:	Refer to sect	ion 5.2 for de	etails				
Test results:	Pass	T			Г		1
Test environment:	Temp.:	25 °C	Humid.:	52%)	Press.:	1012mbar

Measurement Data

Remark: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

Test mode: 802.11b Test channel: Lowest

Horizontal (Worst case)

Frequency Meter Reading		Antenna		Preamp	Emission Level	Limits	Margin		
Frequency	weter Reading	Factor	Cable Loss	Factor	Ellission Level	LIIIIII	iviaigiii	Detector	
(MHz)	(dB _µ V)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
(1711 12)	(аБру)	(00/111)	(GD)	(GD)	(аБр ү/пі)	(аБрулп)	(GD)		
2390	61.35	26.20	5.72	33.30	59.97	74.00	-14.03	peak	
2000	01.00	20.20	0.72	00.00	00.01	74.00	14.00	pour	
2390	45.01	26.20	5.72	33.30	43.63	54.00	-10.37	AVG	
2390	45.01	20.20	5.72	33.30	43.03	34.00	-10.37	AVG	

Vertical:

Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2390	60.34	26.20	5.72	33.30	58.96	74.00	-15.04	peak
2390	44.98	26.20	5.72	33.30	43.60	54.00	-10.40	AVG

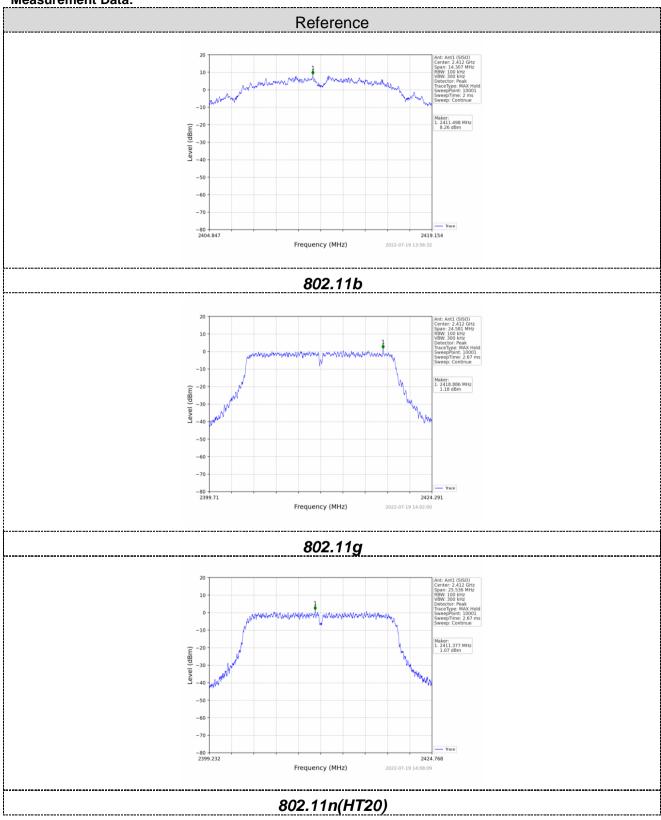
Test mode: 802.11b	Test channel:	Highest
--------------------	---------------	---------

Horizontal (Worst case)

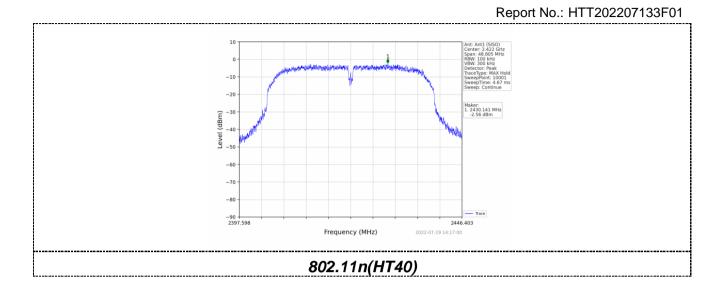
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	55.28	28.60	6.97	32.70	58.15	74.00	-15.85	peak
2483.5	43.15	28.60	6.97	32.70	46.02	54.00	-7.98	AVG

Vertical:

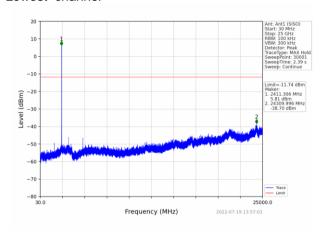
Frequency	Meter Reading	Antenna Factor	Cable Loss	Preamp Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
2483.5	57.41	28.60	6.97	32.70	60.28	74.00	-13.72	peak
2483.5	42.36	28.60	6.97	32.70	45.23	54.00	-8.77	AVG

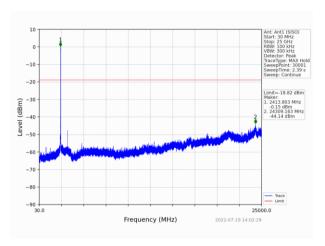

6.6. Spurious Emission

6.6.1. Conducted Emission Method

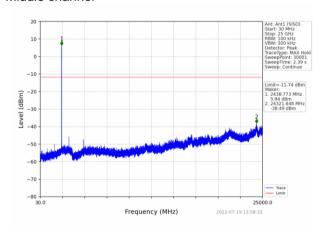

Test Requirement:	FCC Part15	C Section 1	5.247 (d)					
Test Method:	KDB558074	4 D01 15.247	Meas Guida	nce v05r02				
Limit:	spectrum in produced by 100 kHz ba	itentional rad y the intention andwidth with ower, based	iator is opera nal radiator s iin the band	e frequency beting, the radional be at least that contains an RF co	o frequency p st 20 dB belo s the highest	oower that is w that in the level of the		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane							
Test Instruments:	Refer to see	ction 6.0 for c	letails					
Test mode:	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Measurement Data:

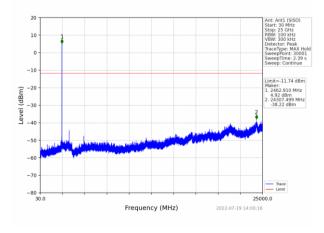


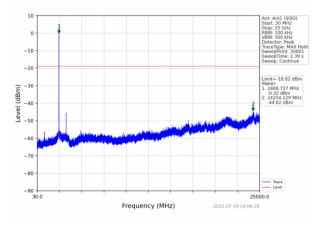


802.11b 802.11g


Lowest channel

30MHz~25GHz

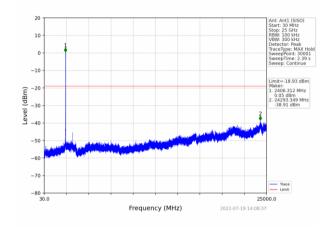

Middle channel

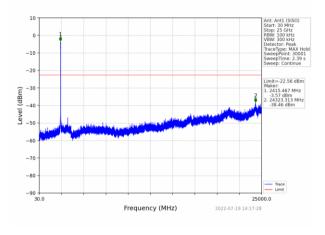


30MHz~25GHz

Highest channel

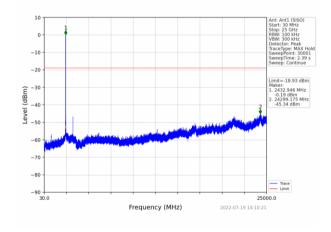
Shenzhen HTT Technology Co.,Ltd.

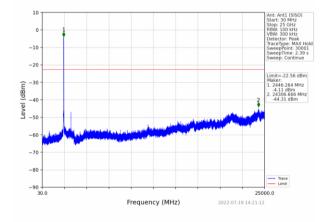

Tel: 0755-23595200 Fax: 0755-23595201



30MHz~25GHz

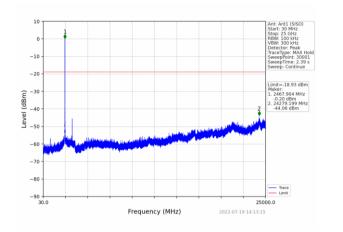
802.11n(HT20) 802.11n(HT40)

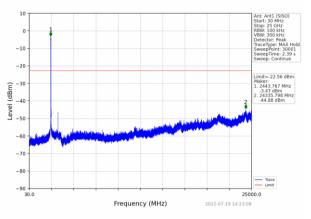

Lowest channel



30MHz~25GHz

Middle channel





30MHz~25GHz

Highest channel

30MHz~25GHz

6.6.2. Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209										
Test Method:	ANSI C63.10:2013										
Test Frequency Range:	9kHz to 25GHz										
Test site:	Measurement Distance: 3m										
Receiver setup:	Frequency		Detector	RB	W	VBW	Value				
	9KHz-150KHz	Qı	ıasi-peak	200	Hz	600Hz	Quasi-peak				
	150KHz-30MHz	Qı	ıasi-peak	9KI	Ηz	30KHz	z Quasi-peak				
	30MHz-1GHz	Qı	ıasi-peak	120k	(Hz	300KH	z Quasi-peak				
	Above 1GHz		Peak	1MI	Hz	3MHz	Peak				
	Above 1GHz		Peak		Hz	10Hz	Average				
Limit:	Frequency	Limit (u\		//m)	٧	'alue	Measurement Distance				
	0.009MHz-0.490M	Hz 2400/F((Hz)		QP	300m				
	0.490MHz-1.705M	Hz 24000/F((KHz)		QP	30m				
	1.705MHz-30MH	Z	30			QP	30m				
	30MHz-88MHz		100			QP					
	88MHz-216MHz		150			QP					
	216MHz-960MHz		200			QP	3m				
	960MHz-1GHz		500			QP	OIII				
	Above 1GHz		500		Average						
	7,0000 10112		5000)	F	Peak					

Test setup: For radiated emissions from 9kHz to 30MHz < 3m > Test Antenna EUT. Turn Table 1m< 80cm Turn Table+ For radiated emissions from 30MHz to1GHz < 3m > Test Antenna < 1m ... 4m > EUT Turn Table < 80cm > Turn Table√ Receiver+ Preamplifier. For radiated emissions above 1GHz < 3m > Test Antenna+ < 1m ... 4m > EUT. Turn Table+ <150cm> Preamplifier+ Test Procedure: 1. The EUT was placed on the top of a rotating table (0.8m for below 1G and 1.5m for above 1G) above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both

Shenzhen HTT Technology Co.,Ltd.

Tel: 0755-23595200 Fax: 0755-23595201

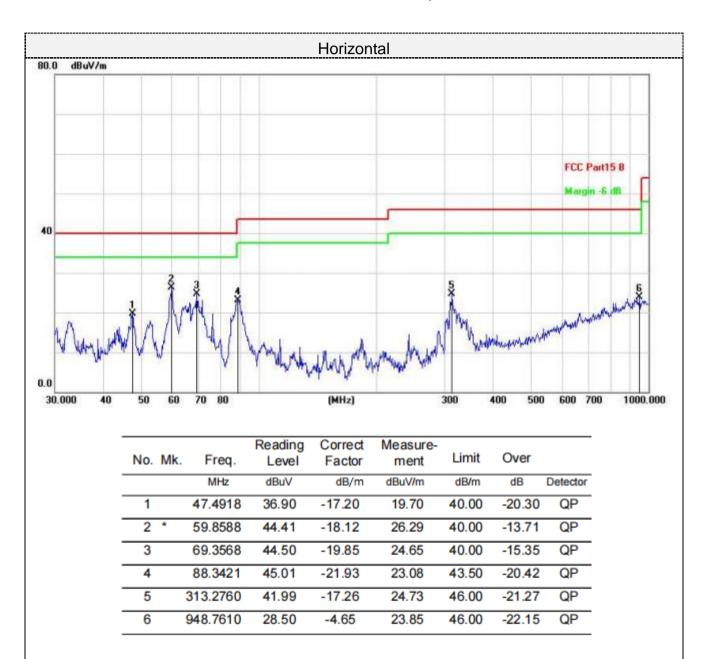
horizontal and vertical polarizations of the antenna are set to make the

				•				
	measure	ment.						
	and then the rota t	the antenna	was tuned to	EUT was arra heights from egrees to 360	1 meter to 4	1 meters and		
	The test-receiver system was set to Peak Detect Function and Specific Bandwidth with Maximum Hold Mode.							
	limit spec EUT wou margin w	cified, then te uld be reporte ould be re-te	sting could bed. Otherwise sted one by a	peak mode we stopped and the emission one using peaken the reported	d the peak vons that did not ak, quasi-pea	alues of the ot have 10dB ak or		
Test Instruments:	Refer to sec	ction 6.0 for c	letails					
Test mode:	Refer to sec	ction 5.2 for c	letails					
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar							
Test voltage:	AC 120V, 6	0Hz						
Test results:	Pass							

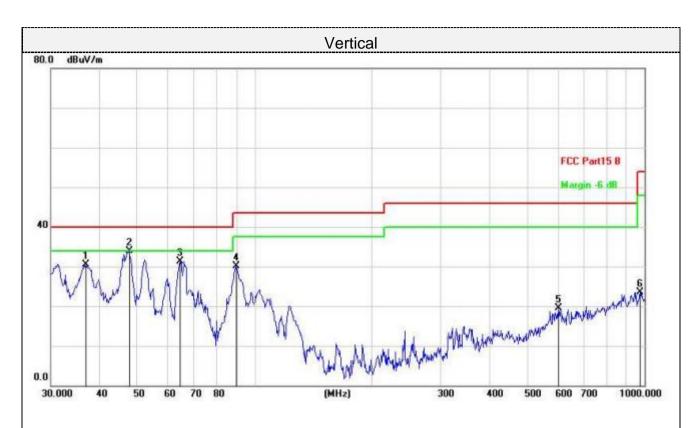
Remarks:

- 1. Only the worst case Main Antenna test data.
- 2.Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

Measurement data:


■ 9kHz~30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.


■ Below 1GHz

Pre-scan all test modes, found worst case at 802.11b 2437MHz, and so only show the test result of 802.11b 2437MHz

Final Level = Receiver Read level + Correct Factor

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		36.8953	48.36	-17.82	30.54	40.00	-9.46	QP
2	*	47.6586	51.11	-17.29	33.82	40.00	-6.18	QP
3		64.4331	50.33	-18.94	31.39	40.00	-8.61	QP
4		89.5899	51.96	-21.91	30.05	43.50	-13.45	QP
5		601.4265	29.71	-10.16	19.55	46.00	-26.45	QP
6		972.3374	27.96	-4.40	23.56	54.00	-30.44	QP

Final Level = Receiver Read level + Correct Factor

■ Above 1-25GHz

Note: During the test, pre-scan the 802.11b/802.11g/802.11n (H20)/802.11n (H40) modulation, and found the 802.11b modulation which it is worse case.

802.11b:Lowest

Horizontal:

	nzontai.							
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	52.37	31.40	8.18	31.50	60.45	74.00	-13.55	peak
4824	37.15	31.40	8.18	31.50	45.23	54.00	-8.77	AVG
	45.00	0= 00	40.00	04.40	00.40	- 4.00	40.54	
7236	45.23	35.80	10.83	31.40	60.46	74.00	-13.54	peak
7236	28.87	35.80	10.83	31.40	44.10	54.00	-9.90	AVG
1230	20.01	33.60	10.03	31.40	44.10	54.00	-9.90	AVG
Remark: Facto	or = Antenna Fact	tor + Cable Los	s - Pre-amplifier					

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4824	51.36	31.40	8.18	31.50	59.44	74.00	-14.56	peak
4824	35.89	31.40	8.18	31.50	43.97	54.00	-10.03	AVG
7236	44.28	35.80	10.83	31.40	59.51	74.00	-14.49	peak
7236	28.87	35.80	10.83	31.40	44.10	54.00	-9.90	AVG
Remark: Facto	or = Antenna Fac	tor + Cable Los	s – Pre-amplifie	r.				

802.11b:Middle

Horizontal:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4874	52.31	31.40	9.17	32.10	60.78	74.00	-13.22	peak
4874	37.14	31.40	9.17	32.10	45.61	54.00	-8.39	AVG
7311	44.39	35.80	10.83	31.40	59.62	74.00	-14.38	peak
7311	28.75	35.80	10.83	31.40	43.98	54.00	-10.02	AVG

Vertical:

		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.27	31.40	9.17	32.10	59.74	74.00	-14.26	nook
4874	51.27	31.40	9.17	32.10	59.74	74.00	-14.20	peak
4874	36.28	31.40	9.17	32.10	44.75	54.00	-9.25	AVG
7311	43.59	35.80	10.83	31.40	58.82	74.00	-15.18	peak
7311	29.37	35.80	10.83	31.40	44.60	54.00	-9.40	AVG
			•	•			•	

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

802.11b:Highest

Horizontal:

	Zoritar.	Antenna		Preamp			1	I
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
4924	50.11	31.40	9.17	32.10	58.58	74	-15.42	peak
4924	35.21	31.40	9.17	32.10	43.68	54	-10.32	AVG
7386	43.57	35.80	10.83	31.40	58.8	74	-15.2	peak
7386	29.07	35.80	10.83	31.40	44.3	54	-9.7	AVG
Remark: Facto	or = Antenna Fact	or + Cable Los	s – Pre-amplifier					

Vertical:

	iticai.							
		Antenna		Preamp				
Frequency	Meter Reading	Factor	Cable Loss	Factor	Emission Level	Limits	Margin	
								Detector
(MHz)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type
4924	51.32	31.40	9.17	32.10	59.79	74	-14.21	peak
4924	35.62	31.40	9.17	32.10	44.09	54	-9.91	AVG
7386	44.58	35.80	10.83	31.40	59.81	74	-14.19	peak
7386	29.86	35.80	10.83	31.40	45.09	54	-8.91	AVG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Remark

- (1) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (2) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

