

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202204-0202-1

Page: 1 of 28

FCC Radio Test Report

FCC ID: 2A628-CS-M1

Report No. : TBR-C-202204-0202-1

Applicant: Xiamen Yunhu Software Development Co.,Ltd

Equipment Under Test (EUT)

EUT Name: Transmitter

Model No. : CS-M1

CS-X1-N, CS-O1, CS-O3, CS-S1-N, CS-S3, CS-G3, CS-G6,

Series Model No. : CS-A86, CS-E6, CS-E1, CS-E2-S, CS-Z4, CS-E4, CS-T1, CS-A2-C,

CS-A2-S, CS-A2-L

Brand Name : WNKRUN

Sample ID : 202204-0202-1-1#& 202204-0202-1-2#

Receipt Date : 2022-05-23

Test Date : 2022-05-23 to 2022-06-09

Issue Date : 2022-06-09

Standards : FCC Part 15, Subpart C (15.231(a))

Test Method : ANSI C63.10:2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above,

The EUT technically complies with the FCC requirements

Test/Witness Engineer : Seven Wu

Engineer Supervisor : Ivan Su

Engineer Manager : TOB Ray Lai

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

COI	NIENIS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	6
	1.5 Description of Test Mode	6
	1.6 Description of Test Software Setting	7
	1.7 Measurement Uncertainty	7
	1.8 Test Facility	8
2.	TEST SUMMARY	8
3.	TEST SOFTWARE	8
4.	TEST EQUIPMENT	9
5.	CONDUCTED EMISSION TEST	10
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	11
	5.5 Test Data	11
6.	RADIATED EMISSION TEST	12
	6.1 Test Standard and Limit	12
	6.2 Test Setup	
	6.3 Test Procedure	15
	6.4 Deviation From Test Standard	15
	6.5 EUT Operating Condition	15
	6.6 Test Data	15
7.	BANDWIDTH	16
	7.1 Test Standard and Limit	16
	7.2 Test Setup	16
	7.3 Test Procedure	16
	7.4 Deviation From Test Standard	16
	7.5 EUT Operating Condition	16
	7.6 Test Data	16
8.	RELEASE TIME MEASUREMENT	17
	8.1 Test Standard and Limit	17
	8.2 Test Setup	
	8.3 Test Procedure	
	8.4 Deviation From Test Standard	
	8.5 EUT Operating Condition	17

Report No.: TBR-C-202204-0202-1 Page: 3 of 28

	8.6 Test Data	17
9.	DUTY CYCLE	18
	9.1 Test Standard and Limit	18
	9.2 Test Setup	18
	9.3 Test Procedure	18
	9.4 Deviation From Test Standard	18
	9.5 EUT Operating Condition	18
	9.6 Test Data	18
10.	ANTENNA REQUIREMENT	19
	10.1 Standard Requirement	19
	10.1 Deviation From Test Standard	
	10.2 Antenna Connected Construction	19
ATT	ACHMENT A RADIATED EMISSION TEST DATA	20
ATT	ACHMENT BBANDWIDTH DATA	25
	ACHMENT C RELEASE TIME MEASUREMENT DATA	
ATT	ACHMENT DDUTY CYCLE DATA	27

Report No.: TBR-C-202204-0202-1 Page: 4 of 28

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202204-0202-1	Rev.01	Initial issue of report	2022-06-09
TOWN TOWN		TOBY	2 2000
TOTAL TOTAL	4087	WALLES WALLES	MODE
TODY .			
0000			0033
	1	4000	O Guns
The state of the s	mnBY	E033	
		One of the same	
min si	1087	The state of the s	most
3 1000		THE PARTY OF THE P	

Page: 5 of 28

1. General Information about EUT

1.1 Client Information

Applicant	-5	Xiamen Yunhu Software Development Co.,Ltd
Address		Room 503, No.88, 2nd lane of jinhu, Huli District, Xiamen City, 361000 Fujian Province (China)
Manufacturer		XIAMEN JINCHAN ELETRONICS CO,.LTD.
Address	i	8/F,No.3, Xinglin North Industrial Zone,Zhongwan Road, Jimei District,Xiamen City, Fujian Province, 361000, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Transmitter	
Models No.			D1,CS-O3, CS-S1-N, CS-S3, CS-G3, CS-G6, I, CS-E2-S, CS-Z4, CS-E4, CS-T1, CS-A2-C,
Model Difference			entical in the same PCB, layout and electrical ce is appearance and model name.
	1/1	Operation Frequency:	433.92 MHz
Product Description		Output Power:	67.51 dBuV/m (PK Max.) 59.26 dBuV/m (AV Max.)
		Antenna Gain:	PCB Antenna(0 dBi)
		Modulation Type:	OOK
Power Rating	1	3V CR2025	
Software Version	:	V1.1	THE THE PARTY OF T
Hardware Version	3	V1.2	
Remark	:	The antenna gain provide	rided by the applicant, the verified for the RF d by TOBY test lab.

Note

(1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

TX Mode

Report No.: TBR-C-202204-0202-1

Page: 6 of 28

1.3 Block Diagram Showing the Configuration of System Tested

EUT

1.4 Description of Support Units

The EUT has been test as an independent unit.

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

Test Items	Note
Conducted Emission	Normal Mode
Radiated Emission	Continuously transmitting
Bandwidth	Continuously transmitting
Duty Cycle	Continuously transmitting
Release Time	Normal Mode

Note:

- (1) During the testing procedure, the continuously transmitting mode was programmed by the customer.
- (2) The EUT is considered a Mobile unit, and it was pre-tested on the positioned of each 3 axis: X axis, Y axis and Z axis. The worst case was found positioned on Z-plane. There for only the test data of this Z-plane were used for radiated emission measurement test.

Page: 7 of 28

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of transmitting mode.

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.20 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 8 of 28

1.8 Test Facility

The testing was performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at: 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an, Shenzhen, Guangdong, China.

At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number:CN1223.

IC Registration No.: (11950A-1)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A-1.

2. Test Summary

Test Sample(s)	Judgment	Remark
202204-0202-1-1#	PASS	N/A
202204-0202-1-2#	N/A	N/A
202204-0202-1-1#	PASS	N/A
202204-0202-1-2#	PASS	N/A
202204-0202-1-1#	PASS	N/A
202204-0202-1-1#	PASS	N/A
	202204-0202-1-1#	

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE

Report No.: TBR-C-202204-0202-1 Page: 9 of 28

4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
					180
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jul. 02, 2021	Jul. 01, 2022
RF Switching Unit	Compliance Direction Systems	RSU-A4	34403	Jul. 02, 2021	Jul. 01, 2022
	Inc		A HILL		
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jul. 02, 2021	Jul. 01, 2022
LISN	Rohde & Schwarz	ENV216	101131	Jul. 02, 2021	Jul. 01, 2022
Radiation Emission To	est				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
EMI Test Receiver	Rohde & Schwarz	ESPI	100010/007	Jul. 02, 2021	Jul. 01, 2022
Bilog Antenna	ETS-LINDGREN	3142E	00117537	Feb.27, 2022	Feb.26, 2023
Horn Antenna	ETS-LINDGREN	3117	00143207	Mar. 02, 2022	Mar. 01, 2023
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Mar. 02, 2022	Mar. 01, 2023
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jul. 06, 2021	Jul. 05, 2022
Pre-amplifier	SONOMA	310N	185903	Feb. 26, 2022	Feb.25, 2023
Pre-amplifier	HP	8449B	3008A00849	Feb. 26, 2022	Feb.25, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep. 03, 2021	Sep. 02, 2022
Antenna Conducted E	mission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jul. 02, 2021	Jul. 01, 2022
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jul. 02, 2021	Jul. 01, 2022
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Sep. 03, 2021	Sep. 02, 2022
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep. 03, 2021	Sep. 02, 2022
Analog Signal Generator	Agilent	N5181A	MY50141953	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Sep. 03, 2021	Sep. 02, 2022
DE Dawer Course	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep. 03, 2021	Sep. 02, 2022
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Sep. 03, 2021	Sep. 02, 2022
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Sep. 03, 2021	Sep. 02, 2022

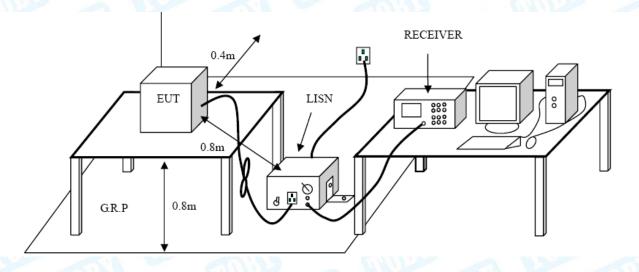
Page: 10 of 28

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Eroguanov	Maximum RF Line Voltage (dBμV)		
Frequency	Quasi-peak Level	Average Leve	
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *	
500kHz~5MHz	56	46	
5MHz~30MHz	60	50	

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 11 of 28

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

The EUT must be tested for all available U.S. voltages and frequencies (such as a nominal 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz) for which the device is capable of operation.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 Test Data

Not applicable.

Page: 12 of 28

6. Radiated Emission Test

6.1 Test Standard and Limit

6.1.1 Test Standard FCC 15.231

6.1.2 Test Limit

According to FCC 15.231(a) requirement:

In addition to the provisions of Section 15.205, the field strength of emissions from intentional radiators operated under this Section shall not exceed the following:

Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m	Field Strength of Spurious Emissions (microvolt/meter) at 3m
40.66~40.70	2250	225
70~130	1250	125
130~174	1250 to 3750(**)	125 to 375(**)
174~260	3750	375
260~470	3750 to 12500(**)	375 to 1250(**)
Above 470	12500	1250

^{**} Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:

- (1) for the band 130~174 MHz, uV/m at 3 meters= 56.81818(F)-6136.3636;
- (2) for the band 260~470 MHz, uV/m at 3 meter= 41.6667(F)-7083.3333.
- (3) The maximum permitted unwanted emissions level is 20 dB below the maximum permitted fundamental level. In addition field strength of any emissions which appear inside of the restriction band shall not exceed the general radiated emissions limits in FCC Part15.209.

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Page: 13 of 28

Note:

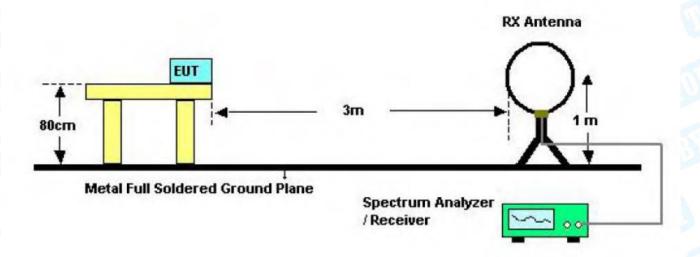
(1) The tighter limit applies at the band edges.

(2) For above 30MHz:

Emission Level(dBuV/m)=20log Emission Level(uV/m)

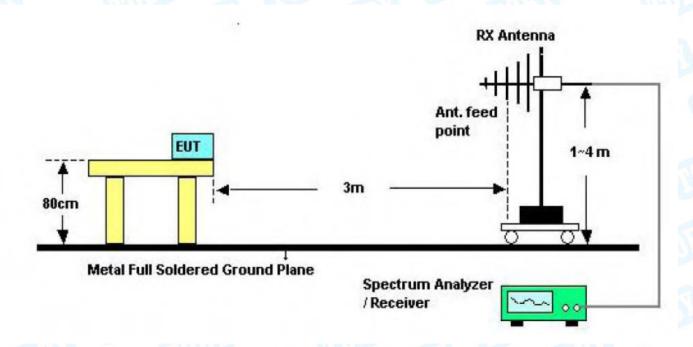
For 0.009~0.490MHz:

Emission Level(dBuV/m)=20log Emission Level(uV/m) +40log(300/3)

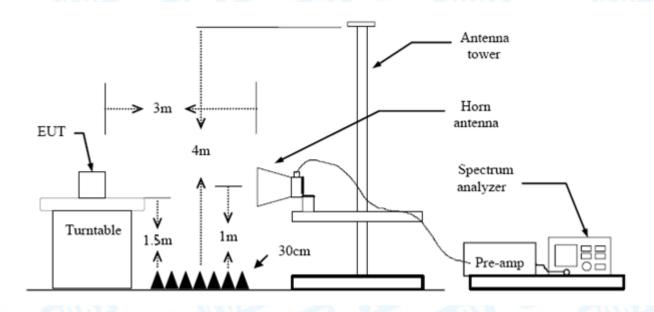

For 0.049~30MHz:

Emission Level(dBuV/m)=20log Emission Level(uV/m) +40log(30/3)

So the field strength of emission limits have been calculated in below table.


Fundamental Frequency (MHz)	Field Strength of Fundamental (microvolt/meter) at 3m		
433.92 MHz	80.82 (Average)		
433.92 MHz	100.82 (Peak)		

6.2 Test Setup



Below 30MHz Test Setup

TOBY

Bellow 1000MHz Test Setup

Above 1GHz Test Setup

Page: 15 of 28

6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz. The EUT was placed on a rotating 0.8m high above the ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- (3) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (4) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (5) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (6) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (7) Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- (8) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

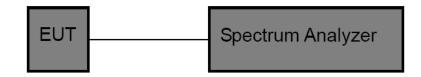
6.6 Test Data

Please refer to the Attachment A.

Page: 16 of 28

7. Bandwidth

7.1 Test Standard and Limit


7.1.1 Test Standard FCC 15.231

7.1.2 Test Limit

The 99%bandwidth of the emissions shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. So the emission bandwidth limits have been calculated in below table.

Fundamental Frequency	20 dB Bandwidth Limits (MHz)		
433.92MHz	1.0848		

7.2 Test Setup

7.3 Test Procedure

- (1) Set Spectrum Analyzer Center Frequency= Fundamental Frequency, RBW=10 kHz, VBW= 30 kHz, Span= 1 MHz.
- (2) Measured the spectrum width with power higher than 20 dB below carrier.

7.4 Deviation From Test Standard

No deviation

7.5 EUT Operating Condition

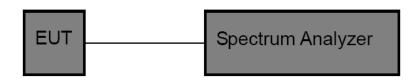
The Equipment Under Test was Programmed to be in continuously transmitting mode.

7.6 Test Data

Please refer to the Attachment B.

Page: 17 of 28

8. Release Time Measurement


8.1 Test Standard and Limit

8.1.1 Test Standard FCC 15.231

8.1.2 Test Limit

According to FCC 15.231a, A manually operated transmitter shall employ a switch that will automatically deactivate the transmitter within not more than 5 seconds of being released.

8.2 Test Setup

8.3 Test Procedure

- (1) Setup the EUT as show in the block diagram above.
- (2) Set Spectrum Analyzer Centre Frequency= Fundamental Frequency, RBW=100 kHz, VBW= 300 kHz, Span= 0 Hz. Sweep Time= 5 Seconds.
- (3) Setup the EUT as normal operation and press Transmitter button.
- (4) Set Spectrum Analyzer View, Delta Mark time.

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

The EUT was set to work in transmitting mode.

8.6 Test Data

Please refer to the Attachment C.

Page: 18 of 28

9. Duty Cycle

9.1 Test Standard and Limit

9.1.1 Test Standard FCC 15.231

9.2 Test Setup

9.3 Test Procedure

- (1) The EUT was placed on a turntable which is 0.8m above ground plane.
- (2) Set EUT operating in continuous transmitting mode.
- (3) Set the Spectrum Analyzer to the transmitter carrier frequency, and set the spectrum analyzer resolution bandwidth (RBW) to 100 kHz and video bandwidth (VBW) to 300 kHz, Span was set to 0 Hz.
- (4) The Duty Cycle was measured and recorded.

9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

The EUT was programmed to be in transmitting mode.

9.6 Test Data

Please refer to the Attachment D.

Page: 19 of 28

10. Antenna Requirement

10.1 Standard Requirement

10.1.1 Standard FCC Part 15.203

10.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

10.1 Deviation From Test Standard

No deviation

10.2 Antenna Connected Construction

The gains of the antenna used for transmitting is 0 dBi, and the antenna connector is de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

The EUT antenna is an PCB Antenna. It complies with the standard requirement.

Antenna Type					
	▶ Permanent attached antenna				
ann	□ Unique connector antenna				
	□ Professional installation antenna				

Page: 20 of 28

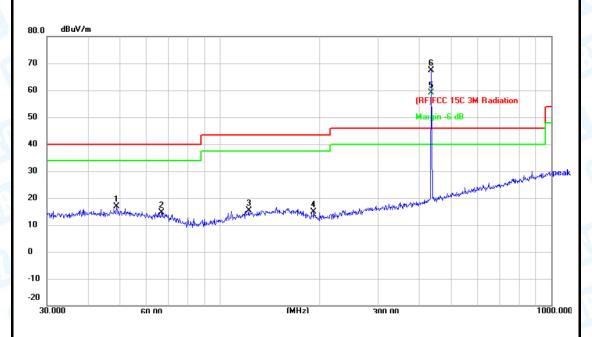
Attachment A-- Radiated Emission Test Data

9 KHz to 30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

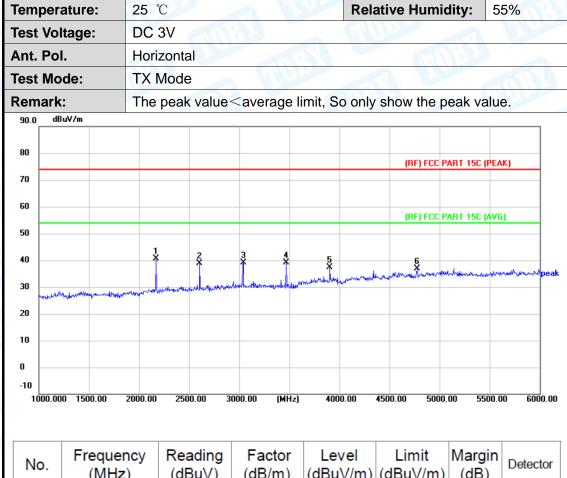
30MHz-1GHz


Tem	pera	ature:	25 °	C		CITI'S	Rela	ative Humid	lity: 55	5%
Test	t Vol	tage:	DC 3	3V	3	A Brown		V Comment		13.5
Ant.	. Pol	•	Horiz	zontal			CHILL		Alle	
Tes	t Mo	de:	TX	/lode				WILLIAM STATE		MAG
Remark:				eport for		emission v	vhich more t	han 10 dB b	elow the	
80.0 dBuV/m										
70 60								5 X 6	C 3M Radiation	
50	0							Margin -6 dE		
40				-						
30										peak
20 10	manhouse depresentation in management		en of the second	2	n frager denses (4)	waren 3	ordina spherikerpeissen spip führen sch	Compression de serviciones de la constitución de la	and Andrew Const.	
0										
-10										
-20 3	0.000		eu uu			(MHz)	300	nn		1000.000
N	lo.	Frequer (MHz	•	Read (dBu	_	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
•	1	48.842	27	39.4	41	-22.61	16.80	40.00	-23.20	peak
2	2	84.405	54	37.9	95	-26.59	11.36	40.00	-28.64	peak
3	3	155.36	42	37.0	65	-21.57	16.08	43.50	-27.42	peak
4	4	336.03	50	37.8	84	-19.96	17.88	46.00	-28.12	peak
5	*	434.06	49	84.9	97	-17.46	67.51	100.82	-33.31	peak
	Χ	434.06		76.		-17.46	59.26	80.82	-21.56	AVG

Emission Level= Read Level+ Correct Factor

Page: 21 of 28

Temperature:	25 ℃	Relative Humidity:	55%
Test Voltage:	DC 3V		
Ant. Pol.	Vertical		
Test Mode:	TX Mode		
Remark:	No report for the emission volume prescribed limit.	vhich more than 10 dB below	the


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	48.6719	39.53	-22.61	16.92	40.00	-23.08	peak
2	66.4989	38.71	-24.07	14.64	40.00	-25.36	peak
3	121.9754	38.59	-23.16	15.43	43.50	-28.07	peak
4	191.7450	38.45	-23.68	14.77	43.50	-28.73	peak
5 X	434.0649	76.70	-17.46	59.24	80.82	-21.58	AVG
6 *	434.0651	84.95	-17.46	67.49	100.82	-33.33	peak

Emission Level= Read Level+ Correct Factor

Page: 22 of 28

Above 1G

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	2170.000	66.51	-25.82	40.69	74.00	-33.31	peak
2	2605.000	63.61	-24.64	38.97	74.00	-35.03	peak
3	3040.000	62.09	-22.99	39.10	74.00	-34.90	peak
4	3470.000	61.97	-22.81	39.16	74.00	-34.84	peak
5	3905.000	59.08	-21.61	37.47	74.00	-36.53	peak
6	4775.000	55.58	-18.74	36.84	74.00	-37.16	peak

Emission Level= Read Level+ Correct Factor

Tempera	iture:	25 °C	3		Rela	tive Humid	ity: 5	5%
Test Vol	tage:	DC 3	3V	W A				
Ant. Pol		Verti	cal		a 13			
Test Mo	de:	TX N	/lode		33		1 Land	
Remark		The	peak value	<average li<="" th=""><th>imit, So only</th><th>show the pe</th><th>eak value</th><th>Э.</th></average>	imit, So only	show the pe	eak value	Э.
90.0 dBu	V/m							
80								
<u> </u>						(RF) FCC PA	RT 15C (PEA	K)
70								
60						(RF) FCC PA	RT 15C (AVG)
50							c	
40						5 .	www.No.a.	pea
30		- 1 *	2	3 4 X	and made	particions for the market	, , \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	LANN pea
20		marl	Vary more					
10	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							
0								
-10								
1000.000	1500.00	2000.00	2500.00 3	000.00 (MHz)	4000.00	4500.00 5000.0	00 5500.0	0 6000.00
1	1500.00 Freque		2500.00 3	Factor	4000.00 A		00 5500.0 Margin	
1000.000		ency		. ,	Level			o 6000.00
1	Freque	ency z)	Reading	Factor	Level	Limit	Margin	
No.	Freque (MHz	ency z)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
No.	Freque (MHz	ency z) 000	Reading (dBuV) 54.99	Factor (dB/m) -25.82	Level (dBuV/m) 29.17	Limit (dBuV/m) 74.00	Margin (dB) -44.83	Detector peak
No.	Freque (MHz 2170.0 2605.0	ency z) 000 000	Reading (dBuV) 54.99 56.10	Factor (dB/m) -25.82 -24.64	Level (dBuV/m) 29.17 31.46	Limit (dBuV/m) 74.00 74.00	Margin (dB) -44.83 -42.54	Detector peak peak
No.	Freque (MHz 2170.0 2605.0 3035.0	ency z) 000 000 000	Reading (dBuV) 54.99 56.10 53.60	Factor (dB/m) -25.82 -24.64 -23.00	Level (dBuV/m) 29.17 31.46 30.60	Limit (dBuV/m) 74.00 74.00 74.00	Margin (dB) -44.83 -42.54 -43.40	Detector peak peak peak

Emission Level= Read Level+ Correct Factor

Page: 24 of 28

Other harmonics emissions are lower than 20dB below the allowable limit.

Note: (1) All Readings are Peak Value and AV. And AV is calculated by the following:

Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.

Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values.

Average Values=Peak Values+20log (Duty Cycle)

- (2) Emission Level= Reading Level + Probe Factor +Cable Loss
- (3) Data of measurement within this frequency range shown " -- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

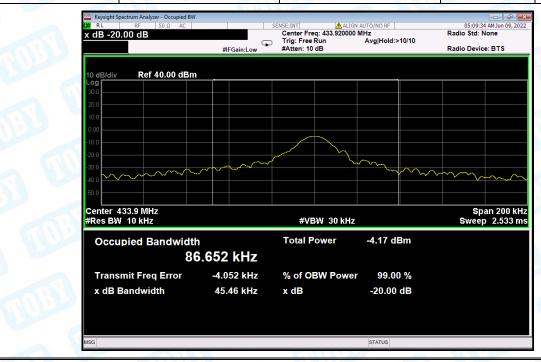
Pulse Desensitization Correction Factor

Note:

1)The Smallest Pulse Width (PW)= 0.4ms

(2) 2/PW=2/0.4(ms)=5kHz<100 kHz

Because 2/PW<RBW, so the PDCF is not needed.



Page: 25 of 28

Attachment B--Bandwidth Data

Temperature	:	25 ℃		
Relative Humidity		55 %	THE PERSON NAMED IN	
Pressure		1010 hPa		
Test Power		DC 3V		

Frequency (MHz)	20 dBc Bandwidth (kHz)	99% OBW (kHz)	Limit (kHz)	Result	
433.92	45.46	86.652	1084.8	PASS	

Center 433.9 MHz Res BW 820 kHz Page: 26 of 28

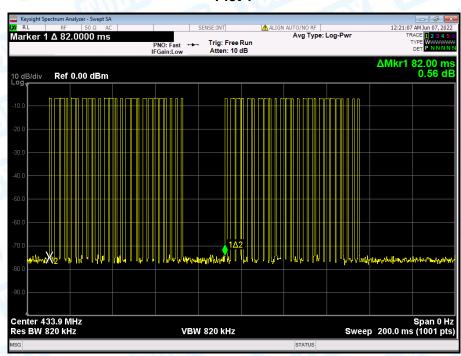
Span 0 Hz Sweep 5.000 s (1001 pts)

Attachment C-- Release Time Measurement Data

Temperature	:	25 ℃	
Relative Humidity	d	55 %	
Pressure		1010 hPa	
Test Power		DC 3V	
THURS .		3	
Release Time(s)	Limit (s)	Result
0.185		5	PASS
	RF	50 Ω AC SENSE:INT ▲ ALIGN AUTO/NO RF	12:24:58 AM Jun 07, 2022 Log-Pwr TRACE 2 3 4 5 6 TYPE WWWWW
10 dB/div	Ref 0.0	0 dBm	ΔMkr1 185.0 ms -0.27 dB
		nn i	
-10.0			

VBW 820 kHz

Page: 27 of 28


Attachment D--Duty Cycle Data

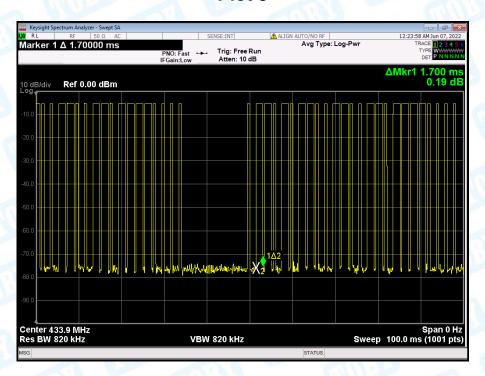
Please refer the following pages:

Plot 1/Plot 2: transmit once in 200ms, and each cycle is 82 ms there are two kinds of pulse in each cycle, the large pulses total 13, the little pulses total 12.

Plot 3: one large pulse in a time period of 1.700ms **Plot 5:** one little pulse in a time period of 0.800ms

Duty Cycle=ON/Total=(0.800*12+1.700*13)/82=31.7/82=38.65% 20 log(Duty Cycle)=-8.25 Average=Peak Value+ 20log(Duty Cycle), AV=PK-8.25 Plot 1





Page: 28 of 28

Plot 2

Plot 3

----END OF REPORT----