

FCC TEST REPORT

Test report
On Behalf of
Shenzhen Zhier Network Technology Co., Ltd.
For

wireless bridge Model No.: ZE-CPE820, ZE-CPE830, ZE-CPE710, ZE-CPE750, ZE-CPE920, ZE-CPE880, ZE-CPE835, ZE-CPE960

FCC ID: 2A5WF-ZE-CPE820

Prepared For: Shenzhen Zhier Network Technology Co., Ltd.

3rd Floor, Building C, No. 3, Jinyuan 2nd Road, Heao Community, Henggang

Street, Longgang District, Shenzhen, China

Prepared By: Shenzhen HUAK Testing Technology Co., Ltd.

1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Date of Test: Nov. 09, 2022 ~ Nov. 16, 2022

Date of Report: Nov. 16, 2022 Report Number: HK2211105040-E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEST RESULT CERTIFICATION

applicant's name	Shenzhen Zhi	ier Network 7	Technology (Co., Ltd.
------------------	--------------	---------------	--------------	-----------

3rd Floor, Building C, No. 3, Jinyuan 2nd Road, Heao

Report No.: HK2211105040-E

Address Community, Henggang Street, Longgang District, Shenzhen,

China

Manufacture's Name Shenzhen Zhier Network Technology Co., Ltd.

3rd Floor, Building C, No. 3, Jinyuan 2nd Road, Heao

China

Product description

Trade Mark: N/A

Product name wireless bridge

Model and/or type reference : ZE-CPE820, ZE-CPE830, ZE-CPE710, ZE-CPE750, ZE-CPE920, ZE-CPE880, ZE-CPE835, ZE-CPE960

FCC Rules and Regulations Part 15 Subpart E Section 15.407

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen HUAK Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen HUAK Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Date of Test.....:

Test Result Pass

Testing Engineer :

(Gary Qian)

Technical Manager

(Eden Hu)

Authorized Signatory

(Jason Zhou)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TABLE OF CONTENTS

1.	TEST RESULT SUMMARY	5
	1.1. TEST PROCEDURES AND RESULTS	5
	1.2. INFORMATION OF THE TEST LABORATORY	5
	1.3. MEASUREMENT UNCERTAINTY	6
2.		
	2.1. GENERAL DESCRIPTION OF EUT	
	2.2. OPERATION FREQUENCY EACH OF CHANNEL	8
	2.3. OPERATION OF EUT DURING TESTING	
	2.4. DESCRIPTION OF TEST SETUP	9
3.	GENERA INFORMATION	10
	3.1. TEST ENVIRONMENT AND MODE	10
	3.2. DESCRIPTION OF SUPPORT UNITS	11
4.	TEST RESULTS AND MEASUREMENT DATA	12
	4.1. CONDUCTED EMISSION	12
	4.2. MAXIMUM CONDUCTED OUTPUT POWER	
	4.3. 6DB EMISSION BANDWIDTH	
	4.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH	
	4.5. POWER SPECTRAL DENSITY	
	4.6. BAND EDGE	50
	4.7. SPURIOUS EMISSION	65
	4.8. FREQUENCY STABILITY MEASUREMENT	
	4.9. ANTENNA REQUIREMENT	85
5.	PHOTOGRAPHS OF TEST SETUP	86
000	DUOTOS OF THE FUT	00

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

** Modified History **

Revision	Description	Issued Data	Remark
Revision 1.0	Initial Test Report Release	Nov. 16, 2022	Jason Zhou
			9
-WG	TNG	TNG	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

1. TEST RESULT SUMMARY

1.1. TEST PROCEDURES AND RESULTS

Requirement	ment CFR 47 Section	
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(e)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	N/A HUMITES IN
Power Spectral Density	§15.407(a)	PASS
Band edge	§15.407(b)/15.209/15.205	PASS
Radiated Emission	§15.407(b)/15.209/15.205	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

1.2. INFORMATION OF THE TEST LABORATORY

Shenzhen HUAK Testing Technology Co., Ltd.

Add.: 1-2/F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Testing Laboratory Authorization:

A2LA Accreditation Code is 4781.01.

FCC Designation Number is CN1229.

Canada IC CAB identifier is CN0045.

CNAS Registration Number is L9589.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

1.3. MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
₁ G 1	Conducted Emission	±0.37dB
2	RF power, conducted	±3.35dB
3	Spurious emissions, conducted	±2.20dB
4	All emissions, radiated(<1G)	±3.90dB
5	All emissions, radiated(>1G)	±4.28dB
6	Temperature	±0.1°C
7	Humidity	±1.0%

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

2. EUT DESCRIPTION

2.1. GENERAL DESCRIPTION OF EUT

Equipment:	wireless bridge
Model Name:	ZE-CPE820
Serial Model:	ZE-CPE830, ZE-CPE710, ZE-CPE750, ZE-CPE920, ZE-CPE880, ZE-CPE835, ZE-CPE960
Model Difference:	All model's the function, software and electric circuit are the same, only with product model named different. Test sample model: ZE-CPE820.
Trade Mark:	N/A MIC STIME MARKET
FCC ID:	2A5WF-ZE-CPE820
Operation Frequency:	IEEE 802.11a/n/ac(HT20)5.745GHz-5.825GHz IEEE 802.11n/ac(HT40)5.755GHz-5.795GHz IEEE 802.11ac(HT80) 5.775GHz
Modulation Technology:	IEEE 802.11a/n/ac
Modulation Type:	CCK/OFDM/DBPSK/DAPSK
Antenna Type:	Internal Antenna
Antenna Gain:	Antenna 1: 6dBi Antenna 2: 6dBi MIMO: 9.01dBi
Power Source:	DC 24V From Switching Power Supply
Power Supply:	DC 24V From Switching Power Supply
Hardware Version:	V1.0
Software Version:	V1.0 TAK TESTING

Note: The EUT incorporates a MIMO function. Physically, it provides two completed transmitt ers and receivers(2T2R), two transmit signals are completely correlated, then, Direction gain=GANT + Array Gain(Array Gain=10 log(2) dB for power spectral density; Array Gain=0 for power measurement)

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.2. OPERATION FREQUENCY EACH OF CHANNEL

	02.11n(HT20) ac(HT20)		1n(HT40)/ ac(HT40)	802.11a	c(HT80)
Channel	Frequency	Channel	Frequency	Channel	Frequency
149	5745	151	5755	155	5775
153	5765	159	5790	AKTESTIN	.a.iG
157	5785		MAKTESTA	(a) 110	MAKTESTA
161	5805		45	.G	0
165	5825	lb a		AKTESTI	

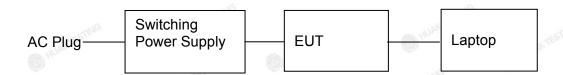
Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

2.3. OPERATION OF EUT DURING TESTING

Ва	Band IV (5725 - 5850 MHz)			
For	802.11a/n (HT20)/ac(l	HT20)		
Channel Number				
149	149 Low 5745			
157 Mid 5785				
165 High 5825				

For 802.11n (HT40)/ ac(HT40)			
Channel Channel Frequency (MHz)			
151 Low 575		5755	
159	High	5795	


For 802.11ac(HT80)		
Channel Number	Channel	Frequency (MHz)
155	I	5775

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

2.4. DESCRIPTION OF TEST SETUP

Operation of EUT during testing:

Switching Power Supply information Model: RP018-2400500CN

Input: 100-240V, 50/60Hz, 0.3A Max

Output: 24VDC, 0.5A

The sample was placed (0.8m below 1GHz, 1.5m above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. The worst case is X position

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

3. GENERA INFORMATION

3.1. TEST ENVIRONMENT AND MODE

Operating Environment:		
Temperature:	25.0 °C	HUAR TEST
Humidity:	56 % RH	
Atmospheric Pressure:	1010 mbar	TESTING
Test Mode:	, , , , , , , , , , , , , , , , , , , ,	
Engineering mode:	by select channel and moduvalue of duty cycle is 100%	ılations(The

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

mae me	ot ouooi		
TESTING	Mode	Data rate	
	802.11a	6 Mbps	
MG	802.11n(HT20)	MCS0	
	802.11n(HT40)	MCS0	
802.1	1ac(HT20)/ac(HT40)/ac(HT80)	MCS0	
802.1	1ax(HT20)/ax(HT40)/ax(HT80)	MCS0	
Final Te	est Mode:		
Oper	ration mode:	Keep the EUT in continuous transmitting	

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

with modulation

3.2. DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Laptop	TP00067A	is I	I HUAY TESTIN	Lenovo

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

4. TEST RESULTS AND MEASUREMENT DATA

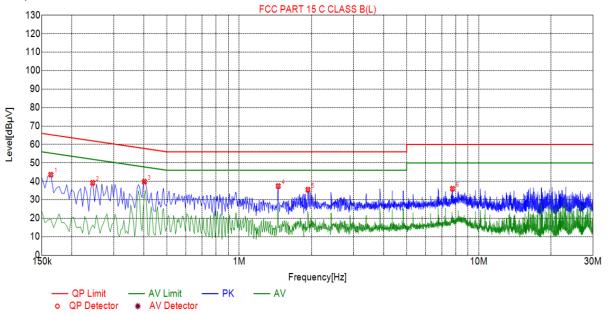
4.1. CONDUCTED EMISSION

4.1.1. Test Specification

TING	TING	ING	THE THE			
Test Requirement:	FCC Part15 C Section	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013				
Frequency Range:	150 kHz to 30 MHz	Maxico	AK TESTING			
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto			
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50			
Test Setup:	Test table/Insulation plan Remark E.U.T. Equipment Under Test	E.U.T AC power Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network				
Test Mode:	Tx Mode					
Test Procedure:	power through a line (L.I.S.N.). This proving impedance for the normal device power through a LIS coupling impedance refer to the block dia photographs). 3. Both sides of A.C. line conducted interferer emission, the relative the interface cables	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and 				
Test Result:	Pass	HUAKTES	HUAKTES			

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.1.2. Test Instruments


AUDIC 7.1. (20.538)		Alle YV	ALCOHOL:	All Art	(A) (A)		
Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Receiver	R&S	ESR-7	HKE-010	Feb. 18, 2022	Feb. 17, 2023		
LISN	R&S	ENV216	HKE-002	Feb. 18, 2022	Feb. 17, 2023		
Coax cable (9KHz-30MHz)	Times	381806-00 2	N/A	Feb. 18, 2022	Feb. 17, 2023		
Conducted test software	Tonscend	TS+ Rev 2.5.0.0	HKE-081	N/A	N/A		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.1.3. Test data

Sus	Suspected List									
NO.	Freq. [MHz]	Level [dBµ√]	Factor [dB]	Limit [dBµ∀]	Margin [dB]	Reading [dBµ√]	Detector	Туре		
1	0.1635	43.62	19.98	65.28	21.66	23.64	PK	L		
2	0.2445	39.20	20.03	61.94	22.74	19.17	PK	L		
3	0.4020	39.80	20.04	57.81	18.01	19.76	PK	L		
4	1.4550	37.42	20.10	56.00	18.58	17.32	PK	L		
5	1.9365	35.47	20.14	56.00	20.53	15.33	PK	L		

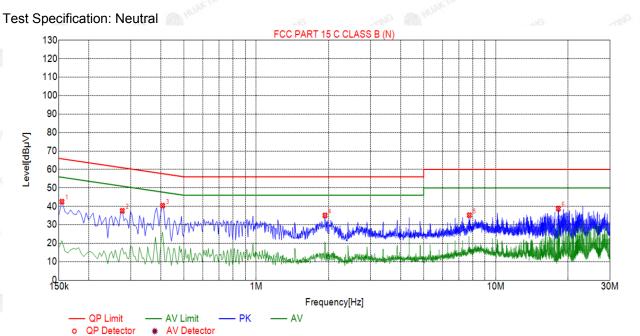
60.00

23.99

15.85

PΚ

Remark: Margin = Limit - Level

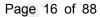

7.7640

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

36.01

20.16

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.



Suspected List Reading Limit Factor Margin Freq. Level NO. Detector Type [dBµV] [MHz] [dBµV] [dB] [dBµV] [dB] 0.1545 42.54 20.03 65.75 23.21 22.51 PΚ Ν 37.58 20.04 60.94 23.36 17.54 PΚ 0.2760 N 3 0.4065 40.37 20.03 57.72 17.35 20.34 PΚ Ν 4 1.9365 35.10 20.14 56.00 20.90 14.96 PΚ N 5 7.7550 35.22 20.16 60.00 24.78 15.06 PΚ 18.2445 38.74 20.04 60.00 21.26 18.70 PΚ N

Remark: Margin = Limit - Level

Correction factor = Cable lose + LISN insertion loss Level=Test receiver reading + correction factor

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TESTING TESTING

Report No.: HK2211105040-E

4.2. MAXIMUM CONDUCTED OUTPUT POWER

4.2.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407(a)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02.r01 Section E
Limit:	Frequency Band Limit
	5725-5850 1 W
Test Setup:	Power meter EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.
Test Result:	PASS
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.2.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
Power meter	Agilent	E4419B	HKE-085	Feb. 18, 2022	Feb. 17, 2023		
Power Sensor	Agilent	E9300A	HKE-086	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

Configuration Band IV (5725 - 5850 MHz)							
Mode	Test channel	Maximum Output Po	FCC Limit	Result			
	onamio.	Antenna port 1	Antenna port 2	(dBm)			
11a	CH149	12.08	10.73	30	PASS		
11a	CH157	10.95	10.35	30	PASS		
11a	CH165	11.54	10.57	30	PASS		
11n(HT20)	CH149	10.72	10.05	30	PASS		
11n(HT20)	CH157	10.77	9.81	30	PASS		
11n(HT20)	CH165	11.26	10.08	30	PASS		
11n(HT40)	CH151	11.15	11.61	30	PASS		
11n(HT40)	CH159	11.07	11.99	30 strike	PASS		
11ac(HT20)	CH149	10.75	10.67	30	PASS		
11ac(HT20)	CH157	10.76	10.48	30	PASS		
11ac(HT20)	CH165	11.22	10.99	30	PASS		
11ac(HT40)	CH151	11.30	11.00	30	PASS		
11ac(HT40)	CH159	11.13	11.00	30	PASS		
11ac(HT80)	CH155	11.29	11.39	30	PASS		

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

AFICATI

	Configura	tion Band IV (5725 - 5850 MHz)	
Mode	Test channel	Maximum Conducted Output Power (dBm)	FCC Limit	Result
		MIMO	(dBm)	
11n(HT20)	CH149	13.41	26.99	PASS
11n(HT20)	CH157	13.33	26.99	PASS
11n(HT20)	CH165	13.72	26.99	PASS
11n(HT40)	CH151	14.40	26.99	PASS
11n(HT40)	CH159	14.56	26.99	PASS
11ac(HT20)	CH149	13.72	26.99	PASS
11ac(HT20)	CH157	13.63	26.99	PASS
11ac(HT20)	CH165	14.12	26.99	PASS
11ac(HT40)	CH151	14.16	26.99	PASS
11ac(HT40)	CH159	14.08	26.99	PASS
11ac(HT80)	CH155	14.35	26.99	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3. 6DB EMISSION BANDWIDTH

4.3.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v01r04 Section C
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS CANCEL OF THE CONTROL OF THE CO

4.3.2. Test Instruments

RF Test Room						
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due	
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023	
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023	
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023	

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.3.3. Test data

ANT 1

Band IV (5725	Band IV (5725 - 5850 MHz)						
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result		
11a	CH149	5745	15.080	0.5	PASS		
11a	CH157	5785	15.120	0.5	PASS		
11a	CH165	5825	15.080	0.5	PASS		
11n(HT20)	CH149	5745	15.120	0.5	PASS		
11n(HT20)	CH157	5785	15.120	0.5	PASS		
11n(HT20)	CH165	5825	15.080	0.5	PASS		
11n(HT40)	CH151	5755	35.040	0.5	PASS		
11n(HT40)	CH159	5795	35.040	0.5	PASS		
11ac(HT20)	CH149	5745	15.120	0.5	PASS		
11ac(HT20)	CH157	5785	15.120	0.5	PASS		
11ac(HT20)	CH165	5825	15.080	0.5	PASS		
11ac(HT40)	CH151	5755	35.040	0.5	PASS		
11ac(HT40)	CH159	5795	35.040	0.5	PASS		
11ac(HT80)	CH155	5775	75.520	0.5	PASS		

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Band IV (5725 - 5850 MHz) 802.11a PNO: Fast --- Trig: Free Run Stop Fre 5,737 48 GHz -1,534 dBm 5,746 24 GHz 2,336 dBm 15,08 MHz (Δ) -1,215 dB Low PNO: Fast --- Trig: Free Run IFGain:Low #Atten: 30 dB Ref Offset 10.03 dB Ref 20.00 dBm Mid

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

High

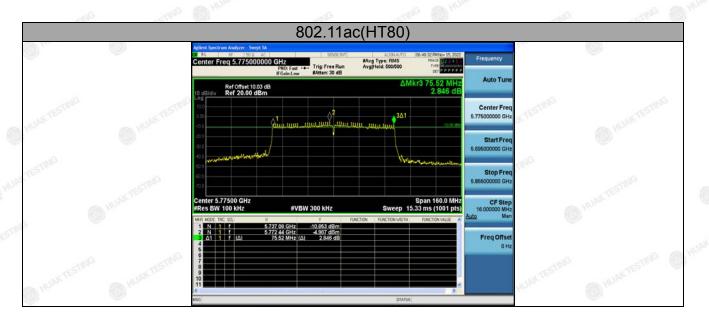
The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

High

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

High

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HAME TO THE SHAPE OF THE PARTY OF THE STANDARD OF THE STANDARD

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

ANT 2

W Allen	O. C.	AL TALL	L)**	" LAN	The Allient		
Band IV (5725 - 5850 MHz)							
Mode	Test channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (MHz)	Result		
11a 💮	CH149	5745	15.080	0.5	PASS		
11a	CH157	5785	15.080	0.5	PASS		
11a	CH161	5825	15.080	0.5	PASS		
11n(HT20)	CH149	5745	15.080	0.5	PASS		
11n(HT20)	CH157	5785	15.080	0.5	PASS		
11n(HT20)	CH161	5825	15.080	0.5	PASS		
11n(HT40)	CH151	5755	35.040	0.5	PASS		
11n(HT40)	CH159	5795	35.040	0.5	PASS		
11ac(HT20)	CH149	5745	15.120	0.5	PASS		
11ac(HT20)	CH157	5785	15.120	0.5	PASS		
11ac(HT20)	CH165	5825	15.080	0.5	PASS		
11ac(HT40)	CH151	5755	35.040	0.5	PASS		
11ac(HT40)	CH159	5795	35.040	0.5	PASS		
11ac(HT80)	CH155	5775	75.520	0.5	PASS		
Alexanda .	-	00.201			W .		

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannot be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK,

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.4. 26DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

4.4.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C						
Limit:	No restriction limits						
Test Setup:	Spectrum Analyzer EUT						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth RBW = 1% EBW, VBW≥3RBW, In order to make an accurate measurement. Measure and record the results in the test report. 						
Test Result:	N/A TESTING						

4.4.2. Test Instruments

RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.4.3. Test Result

N/A

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

4.5. POWER SPECTRAL DENSITY

4.5.1. Test Specification

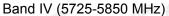
Test Requirement:	FCC Part15 E Section 15.407 (a)						
Test Method:	KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F						
Limit:	≤30.00dBm/500KHz for Band IV 5725MHz-5850MHz						
Test Setup:	EUT.						
	Spectrum Analyzer						
Test Mode:	Transmitting mode with modulation						
Test Procedure:	1. Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. 2. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. 3. Allow the sweeps to continue until the trace stabilizes. 4. Use the peak marker function to determine the maximum amplitude level. 5. The E.I.R.P spectral density used radiated test method. At a test site that has been validated using the procedures of ANSI C63.4 or the latest CISPR 16-1-4 for measurements above 1 GHz, so as to simulate a near free-space environment.						
Test Result:	PASS						

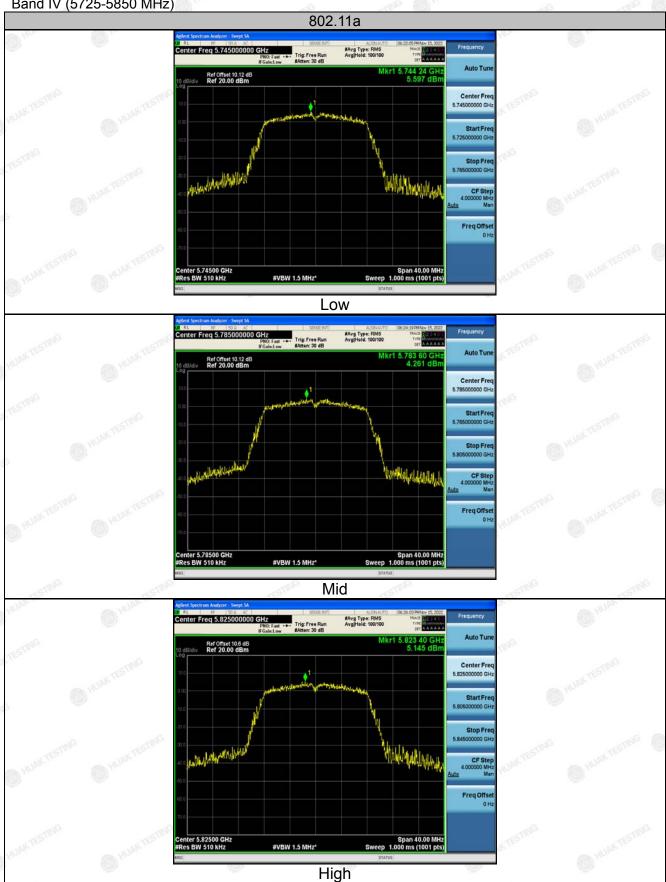
4.5.2. Test Instruments

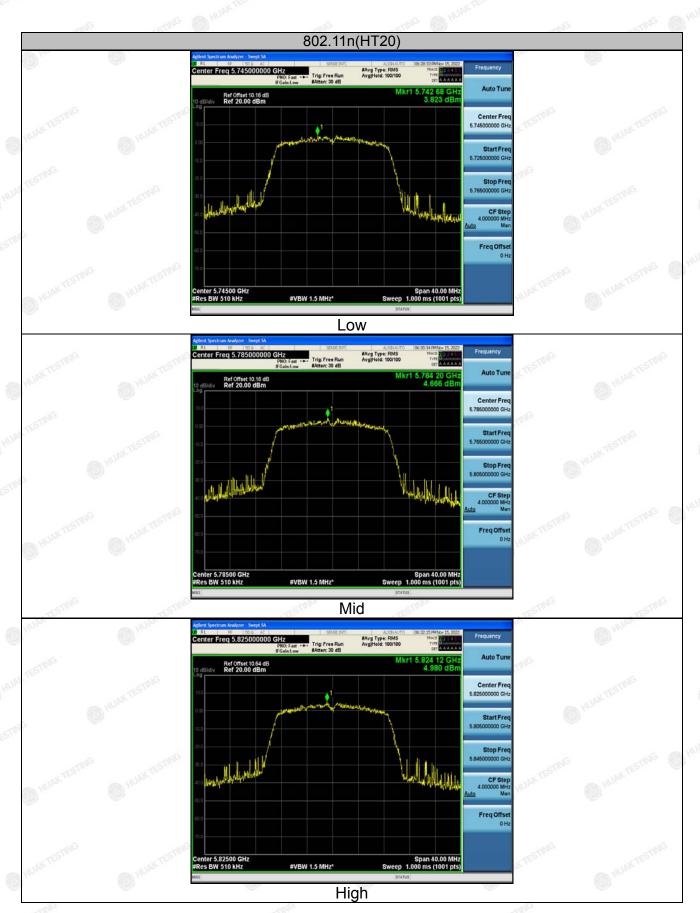
RF Test Room							
Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due		
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023		
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023		
RF automatic control unit	Tonscend	JS0806-2	HKE-060	Feb. 18, 2022	Feb. 17, 2023		

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com


4.5.3. Test data


ANT 1


Configuration Band IV (5725 - 5850 MHz)									
Mode	Test channel	Level [dBm/510kHz]	10log(500/ 510)	Power Spectral Density	Limit (dBm/500kH z)	Result			
11a	CH149	5.6	-0.086	5.514	30	PASS			
11a	CH157	4.26	-0.086	4.174	30	PASS			
11a	CH165	5.15	-0.086	5.064	30	PASS			
11n HT20	CH149	3.82	-0.086	3.734	30	PASS			
11n HT20	CH157	4.67	-0.086	4.584	30	PASS			
11n HT20	CH165	4.98	-0.086	4.894	30	PASS			
11n HT40	CH151	1.38	-0.086	1.294	30	PASS			
11n HT40	CH159	1.23	-0.086	1.144	30	PASS			
11ac HT20	CH149	4.22	-0.086	4.134	30	PASS			
11ac HT20	CH157	4.3	-0.086	4.214	30	PASS			
11ac HT20	CH165	5.06	-0.086	4.974	30	PASS			
11ac HT40	CH151	1.59	-0.086	1.504	30	PASS			
11ac HT40	CH159	1.14	-0.086	1.054	30	PASS			
11ac HT80	CH155	-1.3	-0.086	-1.386	30	PASS			

Note: Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))

Test plots as follows:

ter 5.77500 GHz s BW 510 kHz

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

ANT 2

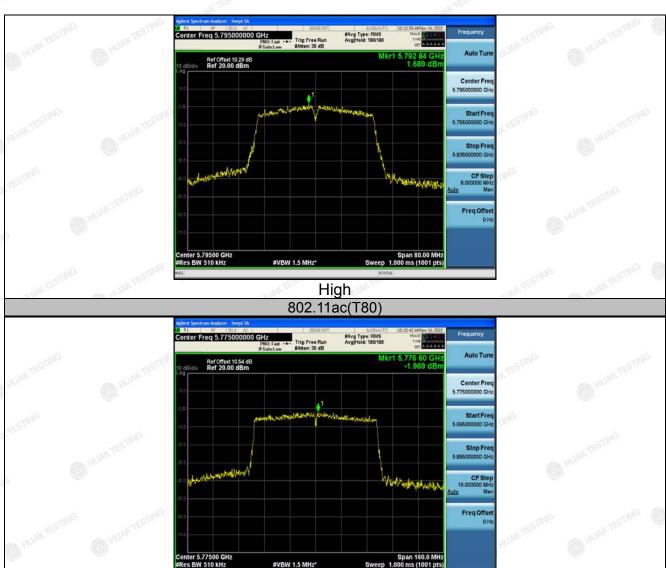
· Alle	476	ANI Z		471-	all				
Configuration Band IV (5725 - 5850 MHz)									
Test channel	Level [dBm/510kHz]	Level 10log(500/5 5		Limit (dBm/500kH z)	Result				
CH149	4.28	-0.086	4.194	30	PASS				
CH157	3.72	-0.086	3.634	70 ¹⁰ 30	PASS				
CH161	3.93	-0.086	3.844	30	PASS				
CH149	3.78	-0.086	3.694	30	PASS				
CH157	3.41	-0.086	3.324	30	PASS				
CH161	4.04	-0.086	3.954	30	PASS				
CH151	1.55	-0.086	1.464	30	PASS				
CH159	1.96	-0.086	1.874	30	PASS				
CH149	4.63	-0.086	4.544	30	PASS				
CH157	4.61	-0.086	4.524	30	PASS				
CH161	5.21	-0.086	5.124	mic 30	PASS				
CH151	1.27	-0.086	1.184	30	PASS				
CH159	1.69	-0.086	1.604	30	PASS				
CH155	-1.97	-0.086	-2.056	30	PASS				
	Test channel CH149 CH157 CH161 CH157 CH161 CH157 CH161 CH159 CH159 CH149 CH157 CH161 CH157 CH161 CH157	Test channel [dBm/510kHz] CH149 4.28 CH157 3.72 CH161 3.93 CH149 3.78 CH157 3.41 CH161 4.04 CH151 1.55 CH159 1.96 CH149 4.63 CH157 4.61 CH161 5.21 CH151 1.27 CH159 1.69	Test channel [dBm/510kHz] 10log(500/5 10) CH149 4.28 -0.086 CH157 3.72 -0.086 CH161 3.93 -0.086 CH157 3.41 -0.086 CH157 3.41 -0.086 CH151 1.55 -0.086 CH159 1.96 -0.086 CH157 4.61 -0.086 CH157 4.61 -0.086 CH151 5.21 -0.086 CH151 1.27 -0.086 CH159 1.69 -0.086	Test channel Level [dBm/510kHz] 10log(500/5 10) Power Spectral Density CH149 4.28 -0.086 4.194 CH157 3.72 -0.086 3.634 CH161 3.93 -0.086 3.844 CH149 3.78 -0.086 3.694 CH157 3.41 -0.086 3.324 CH161 4.04 -0.086 3.954 CH151 1.55 -0.086 1.464 CH159 1.96 -0.086 1.874 CH149 4.63 -0.086 4.544 CH157 4.61 -0.086 4.524 CH161 5.21 -0.086 5.124 CH151 1.27 -0.086 1.184 CH159 1.69 -0.086 1.604	Test channel [dBm/510kHz] 10log(500/5 10) Power Spectral Density (dBm/500kH z) CH149 4.28 -0.086 4.194 30 CH157 3.72 -0.086 3.634 30 CH161 3.93 -0.086 3.844 30 CH157 3.78 -0.086 3.694 30 CH157 3.41 -0.086 3.324 30 CH161 4.04 -0.086 3.954 30 CH151 1.55 -0.086 1.464 30 CH159 1.96 -0.086 1.874 30 CH149 4.63 -0.086 4.544 30 CH157 4.61 -0.086 4.524 30 CH161 5.21 -0.086 5.124 30 CH151 1.27 -0.086 1.184 30 CH159 1.69 -0.086 1.184 30 CH159 1.69 -0.086 1.184 30				

Note: Power Spectral Density= Level [dBm/510kHz]+ (10log(Limit RBW/Test RBW))

Test plots as follows:

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

For MIMO antenna port 1+antenna port 2

" I AIL	WAY TE	I Die The	" AKTEL	" I Pil Tes
Mode	Test channel	Power Density (dBm)	Limit (dBm)	Result
11n(HT20)	CH149	6.72	26.99	PASS
11n(HT20)	CH157	7.01	26.99	PASS
11n(HT20)	CH161	7.46	26.99	PASS
11n(HT40)	CH151	4.39	26.99	PASS
11n(HT40)	CH159	4.53	26.99	PASS
11ac(HT20)	CH149	7.35	26.99	PASS
11ac(HT20)	CH157	7.38	26.99	PASS
11ac(HT20)	CH161	8.06	26.99	PASS
11ac(HT40)	CH151	4.36	26.99	PASS
11ac(HT40)	CH159	4.35	26.99	PASS
11ac(HT80)	CH155	1.30	26.99	PASS

Note: This product supports antenna 1 and antenna 2 launch, but only support 802.11 n/ac for MIMO mode, not support 802.11 a for MIMO mode.

4.6. BAND EDGE

4.6.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407
Test Method:	ANSI C63.10 2013
Limit:	(1)For transmitters operating in the 5.725-5.85 GHz band: (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. The limit of frequency below 1GHz and which fall in restricted bands should complies 15.209.
Test Setup:	Ant. feed point Tam Table Ground Plane Receiver Amp.
Test Mode:	Transmitting mode with modulation
Test Procedure:	1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. 3. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

	6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi peak or average method as specified and then reported in a data sheet.
Test Result:	PASS

4.6.2. Test Instruments

	Ra	diated Emission	Test Site (966	5)	
Name of Equipment	Manutacturer		Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESRP3	HKE-005	Feb. 18, 2022	Feb. 17, 2023
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 18, 2022	Feb. 17, 2023
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 18, 2022	Feb. 17, 2023
Preamplifier	Agilent	83051A	HKE-016	Feb. 18, 2022	Feb. 17, 2023
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 18, 2022	Feb. 17, 2023
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 18, 2022	Feb. 17, 2023
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 18, 2022	Feb. 17, 2023
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 18, 2022	Feb. 17, 2023
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable (9KHz-1GHz)	Times	381806-001	N/A	N/A	N/A
Hf antenna	Schwarzbeck	LB-180400-KF	HKE-031	Feb. 18, 2022	Feb. 17, 2023
RF cable	Tonscend	1-18G	HKE-099	Feb. 18, 2022	Feb. 17, 2023
RF cable	Times	1-40G	HKE-034	Feb. 18, 2022	Feb. 17, 2023
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 18, 2022	Feb. 17, 2023
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 18, 2022	Feb. 17, 2023

Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

4.6.3. Test Data

All schemas have been tested, and the report reflects only the worst schema: ANT.2

Operation Mode: 802.11a Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.98	-2.06	45.92	68.2	-22.28	peak
5700	68.51	-1.96	66.55	105.2	-38.65	peak
5720	90.62	-2.87	87.75	110.8	-23.05	peak
5725	98.34	-2.14	96.2	122.2	-26	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	48.19	-2.06	46.13	68.2	-22.07	peak
5700	69.08	-1.96	67.12	105.2	-38.08	peak
5720	90.31	-2.87	87.44	110.8	-23.36	peak
5725	98.56	-2.14	96.42	122.2	-25.78	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.41	-1.97	97.44	122.2	-24.76	peak
5855	80.52	-2.13	78.39	110.8	-32.41	peak
5875	84.89	-2.65	82.24	105.2	-22.96	peak
5925	97.04	-2.28	94.76	68.2	26.56	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	102.78	-1.97	100.81	122.2	-21.39	peak
5855	89.53	-2.13	87.4	110.8	-23.4	peak
5875	84.29	-2.65	81.64	105.2	-23.56	peak
5925	46.13	-2.28	43.85	68.2	-24.35	peak
	•	100000			(6)*/	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

STING STING

Operation Mode: 802.11n20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data stay Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	48.07	-2.06	46.01	68.2	-22.19	peak
5700	70.82	-1.96	68.86	105.2	-36.34	peak
5720	89.16	-2.87	86.29	110.8	-24.51	peak
5725	99.95	-2.14	97.81	122.2	-24.39	peak
Domarki Castor	r – Antenna Factor	. Cabla I ass	Dra amplification	100	STINE	TESTAIG

Remark: Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.78	-2.06	45.72	68.2	-22.48	peak
5700	69.54	-1.96	67.58	105.2	-37.62	peak
5720	90.32	-2.87	87.45	110.8	-23.35	peak
5725	99.16	-2.14	97.02	122.2	-25.18	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

TSTING TSTING

Report No.: HK2211105040-E

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	D. L. L. ZSTIN
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.51	-1.97	97.54	122.2	-24.66	peak
5855	90.78	-2.13	88.65	110.8	-22.15	peak
5875	87.09	-2.65	84.44	105.2	-20.76	peak
5925	46.25	-2.28	43.97	68.2	-24.23	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAK TES
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	99.43	-1.97	97.46	122.2	-24.74	peak
5855	89.97	-2.13	87.84	110.8	-22.96	peak
5875	84.82	-2.65	82.17	105.2	-23.03	peak
5925	49.15	-2.28	46.87	68.2	-21.33	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11n40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ataw Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
§ 5650	47.38	-2.06	45.32	68.2	-22.88	peak
5700	70.29	-1.96	68.33	105.2	-36.87	peak
5720	91.06	-2.87	88.19	110.8	-22.61	peak
5725	98.93	-2.14	96.79	122.2	-25.41	peak
TING	= Antenna Factor		INC CINY	122.2	ZO.TI	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.51	-2.06	45.45	68.2	-22.75	peak
5700	68.32	-1.96	66.36	105.2	-38.84	peak
5720	91.68	-2.87	88.81	110.8	-21.99	peak
5725	100.34	-2.14	98.2	122.2	-24	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

TES	requency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ata K.T. una
0	(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
NG	5850	97.15	-1.97	95.18	122.2	-27.02	peak
	5855	89.78	-2.13	87.65	110.8	-23.15	peak
	5875	85.02	-2.65	82.37	105.2	-22.83	peak
	5925	47.36	-2.28	45.08	68.2	-23.12 ₃	peak

Vertical:

Meter Reading	Factor	Emission Level	Limits	Margin	HUAK TE
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
98.51	-1.97	96.54	122.2	-25.66	peak
89.94	-2.13	87.81	110.8	-22.99	peak
86.32	-2.65	83.67	105.2	-21.53	peak
48.89	-2.28	46.61	68.2	-21.59	peak
	(dBµV) 98.51 89.94 86.32	(dBµV) (dB) 98.51 -1.97 89.94 -2.13 86.32 -2.65	(dBμV) (dB) (dBμV/m) 98.51 -1.97 96.54 89.94 -2.13 87.81 86.32 -2.65 83.67	(dBμV) (dB) (dBμV/m) (dBμV/m) 98.51 -1.97 96.54 122.2 89.94 -2.13 87.81 110.8 86.32 -2.65 83.67 105.2	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 98.51 -1.97 96.54 122.2 -25.66 89.94 -2.13 87.81 110.8 -22.99 86.32 -2.65 83.67 105.2 -21.53

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: 802.11ac20 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data et a TSTING
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.36	-2.06	45.3	68.2	-22.9	peak
5700	69.13	-1.96	67.17	105.2	-38.03	peak
5720	90.89	-2.87	88.02	110.8	-22.78	peak
5725	99.21	-2.14	97.07	122.2	-25.13	peak
Remark: Factor	= Antenna Factor	+ Cable Loss -	Pre-amplifier.		NY TESTING	MAKTESTAL

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	48.84	-2.06	46.78	68.2	-21.42	peak
5700	69.15	-1.96	67.19	105.2	-38.01	peak
5720	91.29	-2.87	88.42	110.8	-22.38	peak
5725	98.38	-2.14	96.24	122.2	-25.96	peak
25	7 (4)		175		200	11 (42)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequenc	y Meter Reading	Factor	Emission Level	Limits	Margin	Data ata X Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	98.06	-1.97	96.09	122.2	-26.11	peak
5855	90.77	-2.13	88.64	110.8	-22.16	peak
5875	84.24	-2.65	81.59	105.2	-23.61	peak
5925	46.13	-2.28	43.85	68.2	-24.35	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Eroguenov	Meter Reading	Factor	Emission Level	Limits	Margin	MAKTESTIL
Frequency	Weter Reading	racioi	Emission Level	LIIIIIII	Waigiii	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
5850	98.66	-1.97	96.69	122.2	-25.51	peak
5855	90.03	-2.13	87.9	110.8	-22.9	peak
5875	84.1	-2.65	81.45	105.2	-23.75	peak
5925	46.35	-2.28	44.07	68.2	-24.13	peak
-		(1)	-		693	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

A FICATION

Operation Mode: 802.11ac40 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
§ 5650	46.13	-2.06	44.07	68.2	-24.13	peak
5700	69.84	-1.96	67.88	105.2	-37.32	peak
5720	90.92	-2.87	88.05	110.8	-22.75	peak
5725	98.05	-2.14	95.91	122.2	-26.29	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	49.78	-2.06	47.72	68.2	-20.48	peak
5700	70.31	-1.96	68.35	105.2	-36.85	peak
5720	91.26	-2.87	88.39	110.8	-22.41	peak
5725	99.53	-2.14	97.39	122.2	-24.81	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency		Meter Reading	ing Factor Emission Level		Limits	Margin	Detector Type
	(MHz)	MHz) $(dB\mu V)$ (dB) $(dB\mu V/m)$		(dBµV/m)	(dB)		
MG	5850	99.51	-1.97	97.54	122.2	-24.66	peak
	5855	90.23	-2.13	88.1	110.8	-22.7	peak
	5875	86.69	-2.65	84.04	105.2	-21.16	peak
	5925	45.84	-2.28	43.56	68.2	-24.64	peak

Vertical:

-TIII-	-TII-	177		1		-TIII-
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	The lector Type
5850	97.12	-1.97	95.15	122.2	-27.05	peak
5855	89.39	-2.13	87.26	110.8	-23.54	peak
5875	84.07	-2.65	81.42	105.2	-23.78	peak
5925	46.52	-2.28	44.24	68.2	-23.96	peak
		(10.9)			(39)	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11ac80 Mode with 5.8G TX CH Low

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data ataw Tura
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	48.36	-2.06	46.3	68.2	-21.9	peak
5700	69.77	-1.96	67.81	105.2	-37.39	peak
5720	91.94	-2.87	89.07	110.8	-21.73	peak
5725	99.29	-2.14	97.15	122.2	-25.05	peak
Zamarki Fastar	= Δntenna Factor -	. Cabla Laga	Dro amplifiar		ESTINE	TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5650	47.35	-2.06	45.29	68.2	-22.91	peak
5700	68.02	-1.96	66.06	105.2	-39.14	peak
5720	90.17	-2.87	87.3	110.8	-23.5	peak
5725	100.95	-2.14	98.81	122.2	-23.39	peak
155	11/10	- 6	ESTI		165	W. The

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Operation Mode: TX CH High with 5.8G

Horizontal

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
5850	97.96	-1.97	95.99	122.2	-26.21	peak
5855	91.83	-2.13	89.7	110.8	-21.1	peak
5875	83.15	-2.65	80.5	105.2	-24.7	peak
5925	47.29	-2.28	45.01	68.2	-23.19	peak

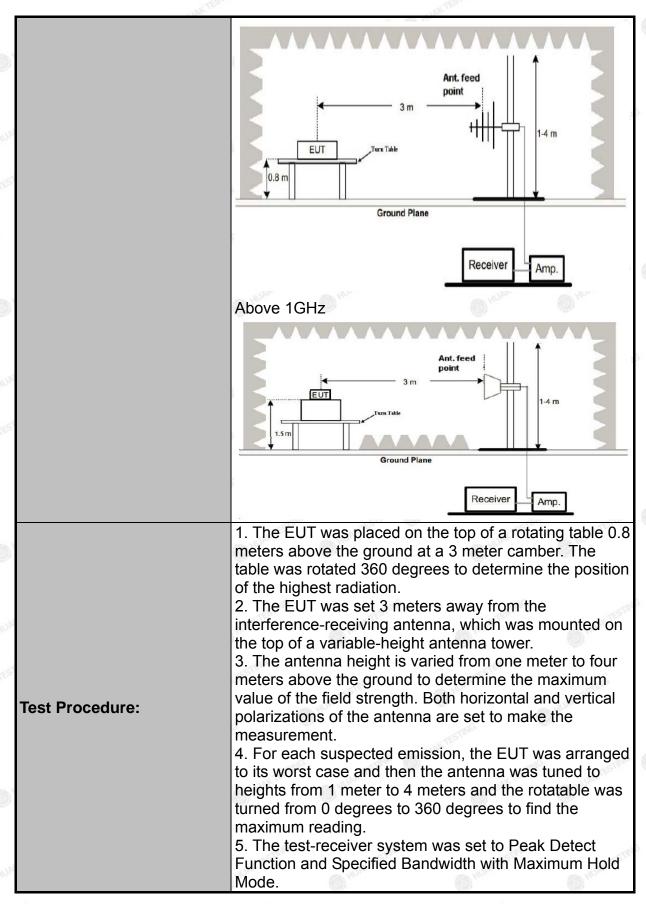
Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

TEOTHE	TESTILL	REST	46		760	7507
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	The lector Type
5850	97.04	-1.97	95.07	122.2	-27.13	peak
5855	91.17	-2.13	89.04	110.8	-21.76	peak
5875	85.28	-2.65	82.63	105.2	-22.57	peak
5925	45.39	-2.28	43.11	68.2	-25.09	peak
		(9)93			(6)33	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

4.7. SPURIOUS EMISSION

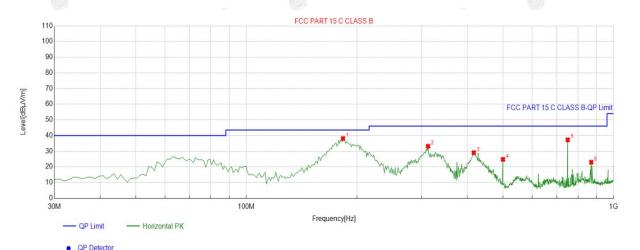

4.7.1.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 Se	ction 15.	407 & 1	5.209 & 15.205
Test Method:	KDB 789033	D02 v02r0	1 (HUAN	HUAN
Frequency Range:	9kHz to 40G	Hz		STING	
Measurement Distance:	3 m	AKTESTING	(a) HI	VK.	OK TESTING
Antenna Polarization:	Horizontal &	Vertical			
Operation mode:	Transmitting	mode with	modulat	ion	
Receiver Setup:	Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz	Detector Quasi-peak Quasi-peak Quasi-peak Peak Peak	RBW 200Hz 9kHz 120KHz 1MHz 1MHz	VBW 1kHz 30kHz 300KHz 3MHz 10Hz	Remark Quasi-peak Value Quasi-peak Value Quasi-peak Value Peak Value Average Value
Limit:	an e.i.r.p. of -2 (2) For transm emissions outs an e.i.r.p. of -2 (3) For transm emissions outs an e.i.r.p. of -2 (4) For transm (i) All emission MHz or more a to 10 dBm/MH from 25 MHz a to a level of 15 edge, and from linearly to a lev	side of the 5. 27 dBm/MHz itters operaticide of the 5. 27 dBm/MHz itters operaticide of the 5. 27 dBm/MHz itters operaticide of the 5. 27 dBm/MHz itters operaticis shall be limited be or belowed or belowed of 25 dBm/MHz in 5 MHz above of 27 dBm quency belowed by the belowed belowed belowed by the belowed belowed by the belowed belowed by the belowed belowed by the belowe	15-5.35 G . ng in the { 15-5.35 G . ng in the { 47-5.725 c . ng in the { nited to a l ow the bar above or above or at 5 MHz we or below n/MHz at 1 w 1GHz a	Hz band : 5.25-5.35 Hz band : 5.47-5.725 GHz band : 5.725-5.85 evel of -2 nd edge in the band edge in the ba	Shall not exceed GHz band: All shall not exceed GHz band: All shall not exceed GHz band: All shall not exceed GHz band: At 75 acreasing linearly band edge, and acreasing linearly below the band d edge increasing
Test setup:	For radiated Output Output	3 m		RX Antenn	TIESTING ATTESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

		6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
Test results	s:	PASS

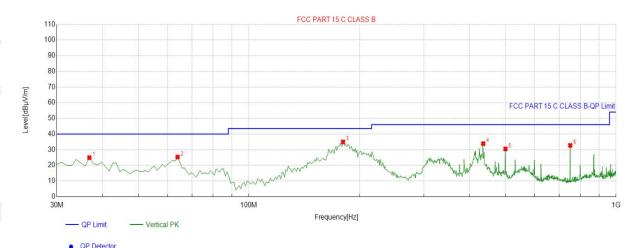

4.7.2. Test Data

Test mode: TX 802.11a 5745MHz

All the test modes completed for test. The worst case of Radiated Emission; the test data of this mode was reported.

Below 1GHz

Horizontal



Suspected List Freq. Factor Reading Level Limit Margin Height Angle NO Polarity [MHz] [dB] [dBµV/m] [dB μ V/m] $[dB\mu V/m]$ [dB] [cm] [°] 5.37 183.4134 -16.65 54.78 38.13 43.50 100 Horizontal 2 312.5526 -11.7744.96 33.19 46.00 12.81 100 82 Horizontal 416.4464 -8.86 37.91 29.05 46.00 16.95 100 Horizontal 3 98 499.9500 -7.07 31.87 24.80 46.00 21.20 100 41 Horizontal 4 -2.95 40.20 100 5 750.4605 37.25 46.00 8.75 292 Horizontal 869.8899 -1.03 24.03 23.00 46.00 23.00 100 Horizontal

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Vertical

Susp	Suspected List											
NO	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	Dalarit			
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	36.7968	-15.71	40.63	24.92	40.00	15.08	100	272	Vertical			
2	63.9840	-14.68	40.02	25.34	40.00	14.66	100	139	Vertical			
3	180.5005	-17.08	52.07	34.99	43.50	8.51	100	44	Vertical			
4	434.8949	-8.16	42.04	33.88	46.00	12.12	100	296	Vertical			
5	499.9500	-7.07	37.59	30.52	46.00	15.48	100	263	Vertical			
6	750.4605	-2.95	35.71	32.76	46.00	13.24	100	346	Vertical			

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level

Harmonics and Spurious Emissions

Frequency Range (9 kHz-30MHz)

5	Frequency (MHz)		Level@3m (dBµV/m)	Limit	Limit@3m (dBµV/m)		
	TSTNG	HUAK	ESTING	HUAK .	ESTING		
	HUAK -	3	HUAK	9	- HUAK		
	<u></u>	-m ^G		TING			
	····AX	60		MAKTES		11/12	

Note: 1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Above 1GHz

RADIATED EMISSION TEST

LOW CH 149 (802.11 a Mode with 5.8G)/5745 All modes of operation were investigated and the worst-case of Ant 1 are reported.

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Tuna	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type	
3368	50.19	-4.59	45.6	68.2	-22.6	peak	
11096	48.32	4.21	52.53	74	-21.47	peak	
11096	35.68	4.21	39.89	54	-14.11	AVG	

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data star Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	50.51	-4.59	45.92	68.2	-22.28	peak
11096	46.34	4.21	50.55	74	-23.45	peak
11096	35.89	4.21	40.1	54	-13.9	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH157 (802.11 a Mode with 5.8G)/5785

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Time
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	49.52	-4.59	44.93	68.2	-23.27	peak
10523	47.34	4.21	51.55	68.2	-16.65	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.96	-4.59	48.37	68.2	-19.83	peak
10523	51.07	4.21	55.28	68.2	-12.92	peak

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH 165 (802.11a Mode with 5.8G)/5825

Horizontal:

Meter Reading	Factor	Emission Level	Limits	Margin	Data attal Tuna
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
56.69	-4.59	52.1	74	-21.9	peak
36.84	-4.59	32.25	54	-21.75	AVG
48.13	4.84	52.97	74	-21.03	peak
26.95	4.84	31.79	54	-22.21	AVG
	(dBµV) 56.69 36.84 48.13	(dBµV) (dB) 56.69 -4.59 36.84 -4.59 48.13 4.84	(dBμV) (dB) (dBμV/m) 56.69 -4.59 52.1 36.84 -4.59 32.25 48.13 4.84 52.97	(dBμV) (dB) (dBμV/m) (dBμV/m) 56.69 -4.59 52.1 74 36.84 -4.59 32.25 54 48.13 4.84 52.97 74	(dBμV) (dB) (dBμV/m) (dBμV/m) (dBμV/m) 56.69 -4.59 52.1 74 -21.9 36.84 -4.59 32.25 54 -21.75 48.13 4.84 52.97 74 -21.03

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Deta WANTESTI
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.32	-4.59	49.73	74	-24.27	peak
2705	35.78	-4.59	31.19	54	-22.81	AVG
11717	46.62	4.84	51.46	74	-22.54	peak
11717	23.29	4.84	28.13	54	-25.87	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n20 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

LOW CH 149

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	51.11	-4.59	46.52	68.2	-21.68	peak
11096	46.95	4.21	51.16	74	-22.84	peak
11096	30.72	4.21	34.93	54	-19.07	AVG

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	50.38	-4.59	45.79	68.2	-22.41	peak
11096	45.19	4.21	49.4	74	-24.6	peak
11096	29.26	4.21	33.47	54	-20.53	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.47	-4.59	47.88	68.2	-20.32	peak
10523	46.51	4.21	50.72	68.2	-17.48	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	49.32	-4.59	44.73	68.2	-23.47	peak
10523	46.64	4.21	50.85	68.2	-17.35	peak

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data at AW Trus
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.13	-4.59	49.54	74	-24.46	peak
2705	33.89	-4.59	29.3	54	-24.7	AVG
11717	47.06	4.84	51.9	74	-22.1	peak
11717	23.28	4.84	28.12	54	-25.88	AVG

Vertical:

-nIG	Olm		-010	-NG	Olm	200
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	— Detector Type
2705	55.91	-4.59	51.32	74	-22.68	peak
2705	34.45	-4.59	29.86	54	-24.14	AVG
11717	48.29	4.84	53.13	74	-20.87	peak
11717	26.38	4.84	31.22	54	-22.78	AVG
10%	476	47.	. 11 11		10/2	11 1 1 1 1

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11n40 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

LOW CH 151

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	(a) ""
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	51.66	-4.59	47.07	68.2	-21.13	peak
11096	46.78	4.21	50.99	74	-23.01	peak
11096	32.51	4.21	36.72	54	-17.28	AVG

Vertical:

75571113	NA LATES IN LEGISLATION OF THE PARTY OF THE	- 15	(a)	Jug.	ESTING.	TESTRA
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Bottootor Type
3368	52.94	-4.59	48.35	68.2	-19.85	peak
11096	45.07	4.21	49.28	74	-24.72	peak
11096	32.29	4.21	36.5	54 TEST	-17.5	AVG
	al Man Ho.			IG AND HO.		JG.

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

MID CH159

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	51.89	-4.59	47.3	68.2	-20.9	peak
10523	42.34	4.21	46.55	68.2	-21.65	peak

Vertical:

VK EZ,	" Iby	7.87	"IAIL		W. K.	11/21-76
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	52.32	-4.59	47.73	68.2	-20.47	peak
10523	43.98	4.21	48.19	68.2	-20.01	peak

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac20 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

LOW CH 149

Horizontal:

Jan.	6 P 4471	Will Line	State Apply		Apple.	Will Approx
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	49.11	-4.59	44.52	68.2	-23.68	peak
11096	45.85	4.21	50.06	74	-23.94	peak
11096	32.06	4.21	36.27	54	-17.73	AVG

Vertical:

- 163	2/63		- NO	010		100
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	46.17	-4.59	41.58	68.2	-26.62	peak
11096	47.44	4.21	51.65	74	-22.35	peak
11096	32.52	4.21	36.73	54	-17.27	AVG
	C A HO			C MAN HOL		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

MID CH157

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	49.18	-4.59	44.59	68.2	-23.61	peak
10523	40.59	4.21	44.8	68.2	-23.4	peak

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	HUAR
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3172	49.32	-4.59	44.73	68.2	-23.47	peak
10523	49.18	4.21	53.39	68.2	-14.81	peak

HIGH CH165

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Data atan Tuna
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	53.51	-4.59	48.92	74	-25.08	peak
2705	33.34	-4.59	28.75	54	-25.25	AVG
11717	46.95	4.84	51.79	74	-22.21	peak
11717	23.86	4.84	28.7	54	-25.3	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2705	54.13	-4.59	49.54	74	-24.46	peak
2705	36.52	-4.59	31.93	54	-22.07	AVG
11717	47.99	4.84	52.83	74	-21.17	peak
11717	26.87	4.84	31.71	54	-22.29	AVG
10/2	11/100	10.0	470	-	10%	" I be

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

5.8G 802.11ac40 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

LOW CH 151

Horizontal:

	3207	(1029)	(1939)	600	9	(1239)
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	49.29	-4.59	44.7	68.2	-23.5	peak
11096	45.18	4.21	49.39	74	-24.61	peak
11096	32.57	4.21	36.78	54	-17.22	AVG
10		All House			No.	(60)

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	46.34	-4.59	41.75	68.2	-26.45	peak
11096	47.29	4.21	51.5	74	₅ -22.5	peak
11096	32.36	4.21	36.57	54	-17.43	AVG
STILL	TES		STILL		SIL	165

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

5.8G 802.11ac80 Mode

All modes of operation were investigated and the worst-case of MIMO are reported.

CH 155

Horizontal:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Datastar Typa
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	49.13	-4.59	44.54	68.2	-23.66	peak
11096	45.26	4.21	49.47	74	-24.53	peak
11096	32.44	4.21	36.65	54 _m (EST	-17.35	AVG
Pemark: Factor	= Antenna Factor	+ Cable Loss	_ Pre_amplifier	ing D	TESTING	W TESTING

Vertical:

Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
3368	46.98	-4.59	42.39	68.2	-25.81	peak
11096	47.21	4.21	51.42	74	-22.58	peak
11096	32.35	4.21	36.56	54	-17.44	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier.

Remark:

- (1) Measuring frequencies from 1 GHz to the 40 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) The emissions are attenuated more than 20dB below the permissible limits are not record in the report.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

4.8. FREQUENCY STABILITY MEASUREMENT

4.8.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g)
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 35 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	N/A ANTESTING HUMETESTING OF HUMETESTING OF HUMETESTING

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Result as follows:

Mode	Voltage (V)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
	4.5V	5745.023	23	5825.003	3
5.8G Band	5V ,,,,,,,,,	5745.019	19	5825.016	16
MINAK !	5.5V	5745.025	25	5825.033	33

Mode	Temperature (°C)	FHL (5745MHz)	Deviation (KHz)	FHH (5825MHz)	Deviation (KHz)
G	-30	5745.026	26	5825.028	28
	-20	5744.913	-87	5825.034	34
	-10	5744.982	-18	5824.957	-43
	O HUANTE	5744.975	-25	5825.006	6
5.8G Band	10	5744.944	-56	5824.976	-24
	20	5745.011	11	5825.021	21
	30	5745.007	TESTING 7 OF THE	5824.979	-21
	40	5745.015	15	5825.043	43
	50	5744.989	-11	5825.021	21

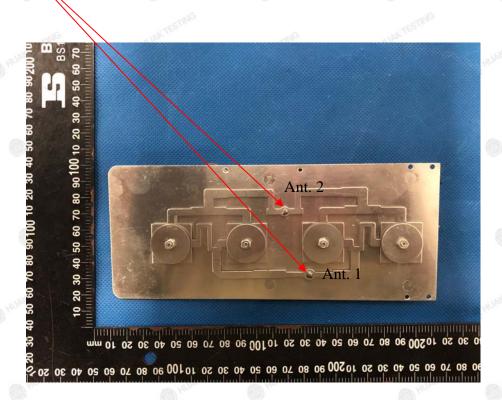
HUAN TESTING HUAN TESTING HUAN TESTING HUAN TESTING

TNG

4.9. ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.249, if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

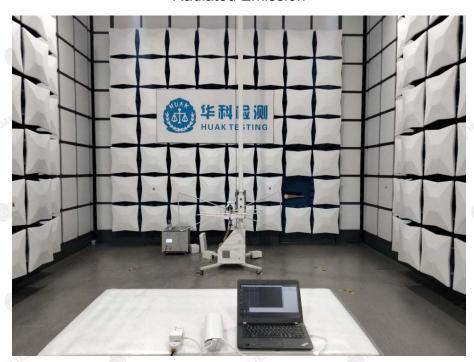

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Internal Antenna, need professional installation. It conforms to the standard requirements. and the best case gain of the antenna is Antenna port 1: 6dBi and Antenna port 2: 6dBi

ANTENNA

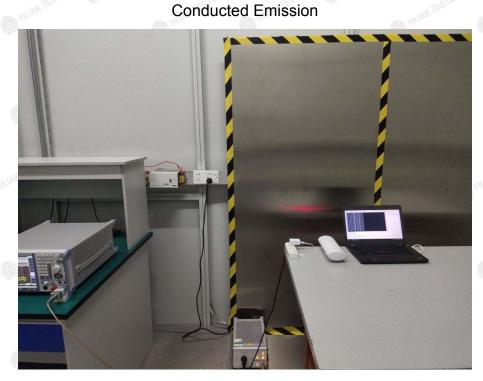


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannon be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

5. PHOTOGRAPHS OF TEST SETUP

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.


TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Add: 1-2F., Building B2, Junfeng Zhongcheng Zhizao Innovation Park, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

6. PHOTOS OF THE EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos

End of test report-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.