Page: 1 of 45

# Radio Test Report

FCC ID: 2A5NN-LLR064

**Original Grant** 

Report No. : TBR-C-202202-0180-1

**Applicant**: Shenzhen Youwen E-Commerce co.,Ltd

**Equipment Under Test (EUT)** 

**EUT Name** : USB-Powered Speaker, vertical computer speaker,

plug-in bluetooth speaker

Model No. : LLR064

Series Model No. : XKX064, VZ064, YF064

Brand Name : ----

Sample ID : 202202-0180\_1-01& 202202-0180\_1-02

**Receipt Date** : 2022-02-25

**Test Date** : 2022-02-25 to 2022-03-11

Issue Date : 2022-03-11

Standards : FCC Part 15 Subpart C 15.247

**Test Method** : ANSI C63.10: 2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Witness Engineer :

Engineer Supervisor : WW SV

Engineer Manager :

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0



# Contents

| CON | NTENTS                                                       | 2  |
|-----|--------------------------------------------------------------|----|
| 1.  | GENERAL INFORMATION ABOUT EUT                                | 5  |
|     | 1.1 Client Information                                       | 5  |
|     | 1.2 General Description of EUT (Equipment Under Test)        |    |
|     | 1.3 Block Diagram Showing the Configuration of System Tested | 7  |
|     | 1.4 Description of Support Units                             |    |
|     | 1.6 Description of Test Software Setting                     | 9  |
|     | 1.7 Measurement Uncertainty                                  | 9  |
|     | 1.8 Test Facility                                            | 10 |
| 2.  | TEST SUMMARY                                                 | 11 |
| 3.  | TEST SOFTWARE                                                | 11 |
| 4.  | TEST EQUIPMENT                                               | 12 |
| 5.  | CONDUCTED EMISSION                                           |    |
|     | 5.1 Test Standard and Limit                                  | 13 |
|     | 5.2 Test Setup                                               |    |
|     | 5.3 Test Procedure                                           |    |
|     | 5.4 Deviation From Test Standard                             |    |
|     | 5.5 EUT Operating Mode                                       | 14 |
|     | 5.6 Test Data                                                | 14 |
| 6.  | RADIATED AND CONDUCTED UNWANTED EMISSIONS                    | 15 |
|     | 6.1 Test Standard and Limit                                  | 15 |
|     | 6.2 Test Setup                                               | 15 |
|     | 6.3 Test Procedure                                           |    |
|     | 6.4 Deviation From Test Standard                             | 18 |
|     | 6.5 EUT Operating Mode                                       | 18 |
|     | 6.6 Test Data                                                | 18 |
| 7.  | EMISSIONS IN RESTRICTED BANDS                                | 19 |
|     | 7.1 Test Standard and Limit                                  | 19 |
|     | 7.2 Test Setup                                               | 19 |
|     | 7.3 Test Procedure                                           | 20 |
|     | 7.4 Deviation From Test Standard                             |    |
|     | 7.5 EUT Operating Mode                                       | 21 |
|     | 7.6 Test Data                                                |    |
| 8.  | 99% OCCUPIED AND 20DB BANDWIDTH                              | 22 |
|     | 8.1 Test Standard and Limit                                  | 22 |
|     | 8.2 Test Setup                                               | 22 |
|     | 8.3 Test Procedure                                           |    |
|     | 8.4 Deviation From Test Standard                             |    |
|     | 8.5 EUT Operating Mode                                       |    |
|     | 8.6 Test Data                                                | 23 |



| 9.  | PEAK OUTPUT POWER TEST                 | 24 |
|-----|----------------------------------------|----|
|     | 9.1 Test Standard and Limit            | 24 |
|     | 9.2 Test Setup                         |    |
|     | 9.3 Test Procedure                     | 24 |
|     | 9.4 Deviation From Test Standard       | 25 |
|     | 9.5 EUT Operating Mode                 | 25 |
|     | 9.6 Test Data                          | 25 |
| 10. | CARRIER FREQUENCY SEPARATION           | 26 |
|     | 10.1 Test Standard and Limit           | 26 |
|     | 10.2 Test Setup                        | 26 |
|     | 10.3 Test Procedure                    | 26 |
|     | 10.4 Deviation From Test Standard      | 27 |
|     | 10.5 Antenna Connected Construction    | 27 |
|     | 10.6 Test Data                         | 27 |
| 11. | TIME OF OCCUPANCY (DWELL TIME)         | 28 |
|     | 11.1 Test Standard and Limit           | 28 |
|     | 11.2 Test Setup                        | 28 |
|     | 11.3 Test Procedure                    | 28 |
|     | 11.4 Deviation From Test Standard      | 29 |
|     | 11.5 Antenna Connected Construction    | 29 |
|     | 11.6 Test Data                         |    |
| 12. | NUMBER OF HOPPING FREQUENCIES          | 30 |
|     | 12.1 Test Standard and Limit           | 30 |
|     | 12.2 Test Setup                        | 30 |
|     | 12.3 Test Procedure                    | 30 |
|     | 12.4 Deviation From Test Standard      | 31 |
|     | 12.5 Antenna Connected Construction    | 31 |
|     | 12.6 Test Data                         | 31 |
| 13. | ANTENNA REQUIREMENT                    | 32 |
|     | 13.1 Test Standard and Limit           | 32 |
|     | 13.2 Deviation From Test Standard      | 32 |
|     | 13.3 Antenna Connected Construction    | 32 |
|     | 13.4 Test Data                         | 32 |
| ATT | ACHMENT A CONDUCTED EMISSION TEST DATA | 33 |
| ATT | ACHMENT R-HNWANTED EMISSIONS DATA      | 35 |



Report No.: TBR-C-202202-0180-1 Page: 4 of 45

# **Revision History**

| Report No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Version    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Issued Date |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| TBR-C-202202-0180-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Rev.01     | Initial issue of report                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2022-03-11  |
| ETTER A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 400        | TO DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 33         | TOTAL TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| 4003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401.       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MOBY        |
| 27 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2          | OB TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |
| MUDIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MILL STATE | A COUNTY OF THE PARTY OF THE PA | MODE        |
| The state of the s |            | MUE MUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 (1)       |
| TOWN !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ( District  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | LOSS AGENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| mn33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | The state of the s |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0):5      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |



Page: 5 of 45

## 1. General Information about EUT

## 1.1 Client Information

| Applicant : Shenzhen Youwen E-Commerce co.,Ltd                                                                        |  | Shenzhen Youwen E-Commerce co.,Ltd                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------|--|----------------------------------------------------------------------------------------------------------------------------|
| Address : 401, 11th Building, Shaxia Industrial Park, Minzhi Co<br>Minzhi Street, Longhua District, Shezhen, Guadongo |  | 401, 11th Building, Shaxia Industrial Park, Minzhi Community, Minzhi Street, Longhua District, Shezhen, Guadongdong, China |
| Manufacturer                                                                                                          |  | Shenzhen Fullwill Technology Co.,Ltd                                                                                       |
| Address                                                                                                               |  | 4th Floor, Fanshen Industrial Building, 3rd Lane, Liuxian 1st Road, Xin'an Street, Bao'an DistriCity, Guangdong, China     |

## 1.2 General Description of EUT (Equipment Under Test)

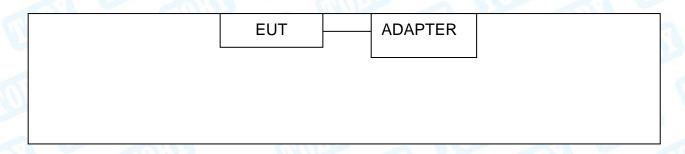
| <b>)</b> : | USB-Powered Speaker, vertical computer speaker, plug-in bluetooth speaker |                                                                                                                                                                                                                                                                                                                        |  |  |  |
|------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            | LLR064, XKX064, VZ0                                                       | LLR064, XKX064, VZ064, YF064                                                                                                                                                                                                                                                                                           |  |  |  |
|            | All PCB boards and cir difference is the name.                            | All PCB boards and circuit diagrams are the same, the only lifference is the name.                                                                                                                                                                                                                                     |  |  |  |
|            | Operation Frequency:                                                      | Bluetooth 5.0: 2402MHz~2480MHz                                                                                                                                                                                                                                                                                         |  |  |  |
|            | Number of Channel:                                                        | 79 channels                                                                                                                                                                                                                                                                                                            |  |  |  |
|            | Antenna Gain:                                                             | 1.2dBi PCB Antenna                                                                                                                                                                                                                                                                                                     |  |  |  |
|            | Modulation Type:                                                          | GFSK(1Mbps) π /4-DQPSK(2Mbps) 8-DPSK(3Mbps)                                                                                                                                                                                                                                                                            |  |  |  |
| 7          | V13                                                                       |                                                                                                                                                                                                                                                                                                                        |  |  |  |
| R          |                                                                           |                                                                                                                                                                                                                                                                                                                        |  |  |  |
| :          |                                                                           |                                                                                                                                                                                                                                                                                                                        |  |  |  |
|            |                                                                           | <ul> <li>plug-in bluetooth speal</li> <li>LLR064, XKX064, VZ0</li> <li>All PCB boards and cir difference is the name.</li> <li>Operation Frequency:         <ul> <li>Number of Channel:</li> </ul> </li> <li>Antenna Gain:         <ul> <li>Modulation Type:</li> </ul> </li> <li>Input: DC 5V</li> <li>V13</li> </ul> |  |  |  |

- (1) The antenna gain and adapter provided by the applicant, the verified for the RF conduction test provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.

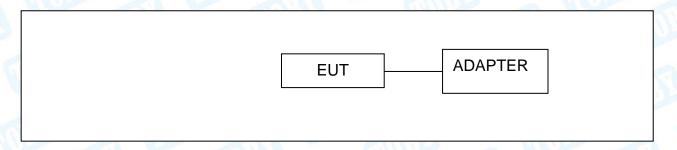


Report No.: TBR-C-202202-0180-1 Page: 6 of 45

# (4) Channel List:


|         | Bluetooth Channel List |         |                    |         |                    |  |  |  |
|---------|------------------------|---------|--------------------|---------|--------------------|--|--|--|
| Channel | Frequency<br>(MHz)     | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |  |  |  |
| 00      | 2402                   | 27      | 2429               | 54      | 2456               |  |  |  |
| 01      | 2403                   | 28      | 2430               | 55      | 2457               |  |  |  |
| 02      | 2404                   | 29      | 2431               | 56      | 2458               |  |  |  |
| 03      | 2405                   | 30      | 2432               | 57      | 2459               |  |  |  |
| 04      | 2406                   | 31      | 2433               | 58      | 2460               |  |  |  |
| 05      | 2407                   | 32      | 2434               | 59      | 2461               |  |  |  |
| 06      | 2408                   | 33      | 2435               | 60      | 2462               |  |  |  |
| 07      | 2409                   | 34      | 2436               | 61      | 2463               |  |  |  |
| 08      | 2410                   | 35      | 2437               | 62      | 2464               |  |  |  |
| 09      | 2411                   | 36      | 2438               | 63      | 2465               |  |  |  |
| 10      | 2412                   | 37      | 2439               | 64      | 2466               |  |  |  |
| 11      | 2413                   | 38      | 2440               | 65      | 2467               |  |  |  |
| 12      | 2414                   | 39      | 2441               | 66      | 2468               |  |  |  |
| 13      | 2415                   | 40      | 2442               | 67      | 2469               |  |  |  |
| 14      | 2416                   | 41      | 2443               | 68      | 2470               |  |  |  |
| 15      | 2417                   | 42      | 2444               | 69      | 2471               |  |  |  |
| 16      | 2418                   | 43      | 2445               | 70      | 2472               |  |  |  |
| 17      | 2419                   | 44      | 2446               | 71      | 2473               |  |  |  |
| 18      | 2420                   | 45      | 2447               | 72      | 2474               |  |  |  |
| 19      | 2421                   | 46      | 2448               | 73      | 2475               |  |  |  |
| 20      | 2422                   | 47      | 2449               | 74      | 2476               |  |  |  |
| 21      | 2423                   | 48      | 2450               | 75      | 2477               |  |  |  |
| 22      | 2424                   | 49      | 2451               | 76      | 2478               |  |  |  |
| 23      | 2425                   | 50      | 2452               | 77      | 2479               |  |  |  |
| 24      | 2426                   | 51      | 2453               | 78      | 2480               |  |  |  |
| 25      | 2427                   | 52      | 2454               |         |                    |  |  |  |
| 26      | 2428                   | 53      | 2455               |         |                    |  |  |  |




Page: 7 of 45

# 1.3 Block Diagram Showing the Configuration of System Tested

## **Conducted Test**



## **Radiated Test**



# 1.4 Description of Support Units

| Equipment Information                       |                   |              |        |           |  |  |  |  |
|---------------------------------------------|-------------------|--------------|--------|-----------|--|--|--|--|
| Name Model FCC ID/VOC Manufacturer Used "√" |                   |              |        |           |  |  |  |  |
| Adapter                                     | N                 |              |        | V         |  |  |  |  |
|                                             | Cable Information |              |        |           |  |  |  |  |
| Number                                      | Shielded Type     | Ferrite Core | Length | Note      |  |  |  |  |
| Cable 1                                     | Yes               | NO           | 0.4M   | Accessory |  |  |  |  |



Page: 8 of 45

## 1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

| For Conducted Test                     |                                      |  |  |  |  |  |
|----------------------------------------|--------------------------------------|--|--|--|--|--|
| Final Test Mode                        | Description                          |  |  |  |  |  |
| Mode 1                                 | Charging + TX GFSK Mode Channel 00   |  |  |  |  |  |
|                                        | For Radiated Test                    |  |  |  |  |  |
| Final Test Mode Description            |                                      |  |  |  |  |  |
| Mode 1                                 | TX GFSK Mode Channel 00              |  |  |  |  |  |
| Mode 2 TX Mode (GFSK) Channel 00/39/78 |                                      |  |  |  |  |  |
| Mode 3                                 | TX Mode (π/4-DQPSK) Channel 00/39/78 |  |  |  |  |  |
| Mode 4                                 | TX Mode (8-DPSK) Channel 00/39/78    |  |  |  |  |  |
| Mode 5 Hopping Mode (GFSK)             |                                      |  |  |  |  |  |
| Mode 6 Hopping Mode ( π /4-DQPSK)      |                                      |  |  |  |  |  |
| Mode 7                                 | Hopping Mode (8-DPSK)                |  |  |  |  |  |

#### Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: GFSK (1 Mbps)
TX Mode:  $\pi$  /4-DQPSK (2 Mbps)

TX Mode:8-DPSK (3 Mbps)

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.



Page: 9 of 45

## 1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

| Test Software Version | are Version APK |         |          |
|-----------------------|-----------------|---------|----------|
| Frequency             | 2402 MHz        | 2441MHz | 2480 MHz |
| GFSK                  | DEF             | DEF     | DEF      |
| π /4-DQPSK            | DEF             | DEF     | DEF      |
| 8-DPSK                | DEF             | DEF     | DEF      |

## 1.7 Measurement Uncertainty

The reported uncertainty of measurement  $y \pm U$ , where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

| Test Item          | Parameters                                  | Expanded Uncertainty (U <sub>Lab</sub> ) |
|--------------------|---------------------------------------------|------------------------------------------|
| Conducted Emission | Level Accuracy: 9kHz~150kHz 150kHz to 30MHz | ±3.50 dB<br>±3.10 dB                     |
| Radiated Emission  | Level Accuracy:<br>9kHz to 30 MHz           | ±4.60 dB                                 |
| Radiated Emission  | Level Accuracy:<br>30MHz to 1000 MHz        | ±4.50 dB                                 |
| Radiated Emission  | Level Accuracy:<br>Above 1000MHz            | ±4.20 dB                                 |



Page: 10 of 45

## 1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F.,Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

### **CNAS (L5813)**

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

#### A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

### IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.



Report No.: TBR-C-202202-0180-1 Page: 11 of 45

# 2. Test Summary

| Standard Section       | Test Item                                  | Toot Sample(s)   | ludament | Domori |
|------------------------|--------------------------------------------|------------------|----------|--------|
| FCC                    | Test item                                  | Test Sample(s)   | Judgment | Remark |
| FCC 15.207(a)          | Conducted Emission                         | 202202-0180_1-01 | PASS     | N/A    |
| FCC 15.209 & 15.247(d) | Radiated Unwanted Emissions                | 202202-0180_1-01 | PASS     | N/A    |
| FCC 15.203             | Antenna Requirement                        | 202202-0180_1-02 | PASS     | N/A    |
| FCC 15.247(a)          | 99% Occupied Bandwidth & 20dB<br>Bandwidth | 202202-0180_1-02 | PASS     | N/A    |
| FCC 15.247(b)(1)       | Peak Output Power                          | 202202-0180_1-02 | PASS     | N/A    |
| FCC 15.247(a)(1)       | Carrier frequency separation               | 202202-0180_1-02 | PASS     | N/A    |
| FCC 15.247(a)(1)       | Time of occupancy                          | 202202-0180_1-02 | PASS     | N/A    |
| FCC 15.247(a)(1)       | Number of Hopping<br>Frequency             | 202202-0180_1-02 | PASS     | N/A    |
| FCC 15.247(d)          | Band Edge                                  | 202202-0180_1-02 | PASS     | N/A    |
| FCC 15.207(a)          | Conducted Unwanted Emissions               | 202202-0180_1-02 | PASS     | N/A    |
| FCC 15.205             | Emissions in Restricted Bands              | 202202-0180_1-02 | PASS     | N/A    |
| 711000                 | On Time and Duty Cycle                     | 202202-0180_1-02 | 1        | N/A    |

Note: N/A is an abbreviation for Not Applicable.

# 3. Test Software

| Test Item                | Test Software | Manufacturer | Version No.  |
|--------------------------|---------------|--------------|--------------|
| Conducted Emission       | EZ-EMC        | EZ           | CDI-03A2     |
| Radiation Emission       | EZ-EMC        | EZ           | FA-03A2RE    |
| RF Conducted Measurement | MTS-8310      | MWRFtest     | V2.0.0.0     |
| RF Test System           | JS1120        | Tonscend     | V2.6.88.0336 |



Report No.: TBR-C-202202-0180-1 Page: 12 of 45

# 4. Test Equipment

| Equipment               | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due<br>Date |
|-------------------------|----------------------------------|-------------------|---------------|---------------|------------------|
| EMI Test Receiver       | Rohde & Schwarz                  | ESCI              | 100321        | Jul. 02, 2021 | Jul. 01, 2022    |
| RF Switching Unit       | Compliance Direction Systems Inc | RSU-A4            | 34403         | Jul. 02, 2021 | Jul. 01, 2022    |
| AMN                     | SCHWARZBECK                      | NNBL 8226-2       | 8226-2/164    | Jul. 02, 2021 | Jul. 01, 2022    |
| LISN                    | Rohde & Schwarz                  | ENV216            | 101131        | Jul. 02, 2021 | Jul. 01, 2022    |
| Radiation Emission T    | est                              |                   |               |               |                  |
| Equipment               | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due<br>Date |
| Spectrum Analyzer       | Agilent                          | E4407B            | MY45106456    | Jul. 02, 2021 | Jul. 01, 2022    |
| EMI Test Receiver       | Rohde & Schwarz                  | ESPI              | 100010/007    | Jul. 02, 2021 | Jul. 01, 2022    |
| Spectrum Analyzer       | Rohde & Schwarz                  | FSV40-N           | 102197        | Jul. 02, 2021 | Jul. 01, 2022    |
| Bilog Antenna           | ETS-LINDGREN                     | 3142E             | 00117537      | Feb. 28, 2022 | Feb. 27, 202     |
| Horn Antenna            | ETS-LINDGREN                     | 3117              | 00143207      | Feb. 28, 2022 | Feb. 27, 202     |
| Horn Antenna            | ETS-LINDGREN                     | BBHA 9170         | BBHA9170582   | Feb. 28, 2022 | Feb. 27, 202     |
| Loop Antenna            | SCHWARZBECK                      | FMZB 1519 B       | 1519B-059     | Jul. 06, 2021 | Jul. 05, 2022    |
| Pre-amplifier           | Sonoma                           | 310N              | 185903        | Feb. 24, 2022 | Feb. 23, 202     |
| Pre-amplifier           | HP                               | 8449B             | 3008A00849    | Feb. 24, 2022 | Feb. 23, 202     |
| Pre-amplifier           | SKET                             | LNPA_1840G-50     | SK201904032   | Feb. 24, 2022 | Feb. 23, 202     |
| Cable                   | HUBER+SUHNER                     | 100               | SUCOFLEX      | Feb. 24, 2022 | Feb. 23, 202     |
| Positioning Controller  | ETS-LINDGREN                     | 2090              | N/A           | N/A           | N/A              |
| Antenna Conducted E     | Emission                         |                   |               |               |                  |
| Equipment               | Manufacturer                     | Model No.         | Serial No.    | Last Cal.     | Cal. Due<br>Date |
| Spectrum Analyzer       | Agilent                          | E4407B            | MY45106456    | Jul. 02, 2021 | Jul. 01, 2022    |
| Spectrum Analyzer       | Rohde & Schwarz                  | FSV40-N           | 102197        | Jul. 02, 2021 | Jul. 01, 2022    |
| MXA Signal Analyzer     | Agilent                          | N9020A            | MY49100060    | Sep. 10, 2021 | Sep. 09, 202     |
| Vector Signal Generator | Agilent                          | N5182A            | MY50141294    | Sep. 10, 2021 | Sep. 09, 202     |
| Analog Signal Generator | Agilent                          | N5181A            | MY50141953    | Sep. 10, 2021 | Sep. 09, 202     |
|                         | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO26 | Sep. 10, 2021 | Sep. 09, 202     |
| DE Dower Caraca         | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO29 | Sep. 10, 2021 | Sep. 09, 202     |
| RF Power Sensor         | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO31 | Sep. 10, 2021 | Sep. 09, 202     |
|                         | DARE!! Instruments               | RadiPowerRPR3006W | 17I00015SNO33 | Sep. 10, 2021 | Sep. 09, 202     |



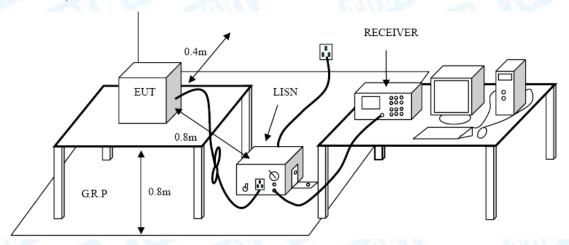
Page: 13 of 45

## 5. Conducted Emission

#### 5.1 Test Standard and Limit

#### 5.1.1 Test Standard

#### FCC Part 15.207


#### 5.1.2 Test Limit

| Fraguency     | Maximum RF Line Voltage (dBμV) |               |  |
|---------------|--------------------------------|---------------|--|
| Frequency     | Quasi-peak Level               | Average Level |  |
| 150kHz~500kHz | 66 ~ 56 *                      | 56 ~ 46 *     |  |
| 500kHz~5MHz   | 56                             | 46            |  |
| 5MHz~30MHz    | 60                             | 50            |  |

#### Notes:

- (1) \*Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

## 5.2 Test Setup



#### 5.3 Test Procedure

- ●The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.
- Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- ●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- ●LISN at least 80 cm from nearest part of EUT chassis.
- The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.



Page: 14 of 45

## 5.4 Deviation From Test Standard

No deviation

## 5.5 EUT Operating Mode

Please refer to the description of test mode.

## 5.6 Test Data

Please refer to the Attachment A inside test report.

Page: 15 of 45

## 6. Radiated and Conducted Unwanted Emissions

#### 6.1 Test Standard and Limit

6.1.1 Test Standard

FCC Part 15.209 & FCC Part 15.247(d)

6.1.2 Test Limit

| Genera             | General field strength limits at frequencies Below 30MHz |                               |  |  |  |
|--------------------|----------------------------------------------------------|-------------------------------|--|--|--|
| Frequency<br>(MHz) | Field Strength (microvolt/meter)**                       | Measurement Distance (meters) |  |  |  |
| 0.009~0.490        | 2400/F(KHz)                                              | 300                           |  |  |  |
| 0.490~1.705        | 24000/F(KHz)                                             | 30                            |  |  |  |
| 1.705~30.0         | 30                                                       | 30                            |  |  |  |

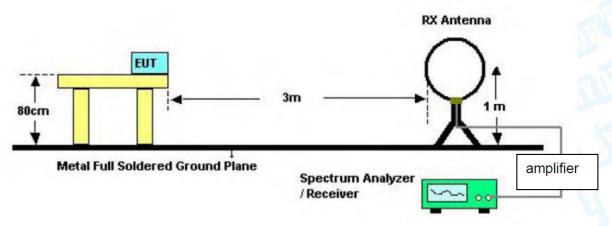
**Note:** 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

| General field      | General field strength limits at frequencies above 30 MHz |                               |  |  |  |  |
|--------------------|-----------------------------------------------------------|-------------------------------|--|--|--|--|
| Frequency<br>(MHz) | Field strength<br>(µV/m at 3 m)                           | Measurement Distance (meters) |  |  |  |  |
| 30~88              | 100                                                       | 3                             |  |  |  |  |
| 88~216             | 150                                                       | 3                             |  |  |  |  |
| 216~960            | 200                                                       | 3                             |  |  |  |  |
| Above 960          | 500                                                       | 3                             |  |  |  |  |

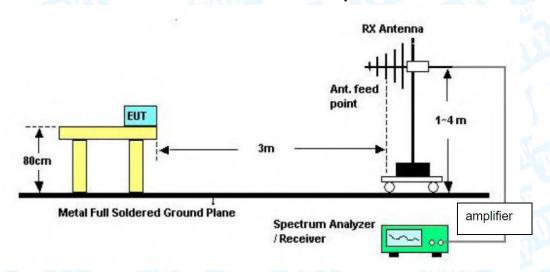
| General field strength limits at frequencies Above 1000MHz |                         |         |  |  |
|------------------------------------------------------------|-------------------------|---------|--|--|
| Frequency                                                  | Distance of 3m (dBuV/m) |         |  |  |
| (MHz)                                                      | Peak                    | Average |  |  |
| Above 1000                                                 | 74                      | 54      |  |  |

#### Note:

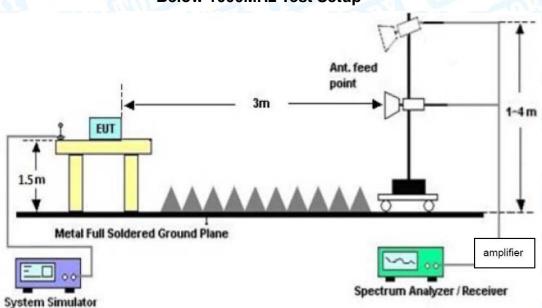
- (1) The tighter limit applies at the band edges.
- (2) Emission Level(dBuV/m)=20log Emission Level(uV/m)


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

## 6.2 Test Setup


#### Radiated measurement

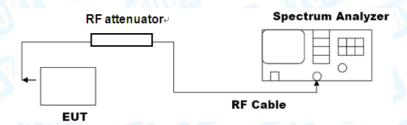



Page: 16 of 45



### **Below 30MHz Test Setup**




### **Below 1000MHz Test Setup**



Above 1GHz Test Setup Conducted measurement



Page: 17 of 45



### 6.3 Test Procedure

#### ---Radiated measurement

- The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.
- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- ●Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.



Page: 18 of 45

#### --- Conducted measurement

#### Reference level measurement

Establish a reference level by using the following procedure:

- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3\*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

#### Emission level measurement

Establish an emission level by using the following procedure:

- a) Set the center frequency and span to encompass frequency range to be measured.
- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3\*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.
- h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

#### 6.4 Deviation From Test Standard

No deviation

## 6.5 EUT Operating Mode

Please refer to the description of test mode.

#### 6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix A.



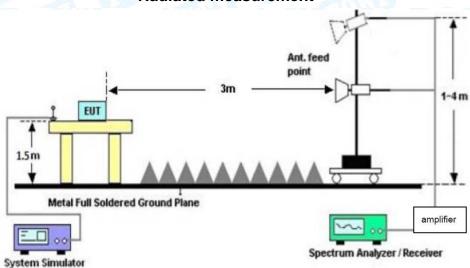
Page: 19 of 45

## 7. Emissions in Restricted Bands

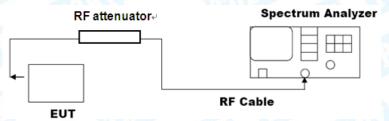
#### 7.1 Test Standard and Limit

## 7.1.1 Test Standard

### FCC Part 15.205 & FCC Part 15.247(d)


#### 7.1.2 Test Limit

| Restricted Frequency | Distance Meters(at 3m) |                          |  |  |
|----------------------|------------------------|--------------------------|--|--|
| Band (MHz)           | Peak (dBuV/m)          | Average (dBuV/m)         |  |  |
| 2310 ~2390           | 74                     | 54                       |  |  |
| 2483.5 ~2500         | 74                     | 54                       |  |  |
|                      | Peak (dBm)see 7.3 e)   | Average (dBm) see 7.3 e) |  |  |
| 2310 ~2390           | -41.20                 | -21.20                   |  |  |
| 2483.5 ~2500         | -41.20                 | -21.20                   |  |  |


Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

## 7.2 Test Setup

#### Radiated measurement



#### **Conducted measurement**





Page: 20 of 45

#### 7.3 Test Procedure

#### ---Radiated measurement

- Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.
- The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- ●The Peak Value and average value both need to comply with applicable limit above 1 GHz.
- Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.
- For the actual test configuration, please see the test setup photo.

#### --- Conducted measurement

- a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).
- b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).
- c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies ≤30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).
- d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).
- e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$ 

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

- f) Compare the resultant electric field strength level with the applicable regulatory limit.
- g) Perform the radiated spurious emission test.



Page: 21 of 45

## 7.4 Deviation From Test Standard

No deviation

## 7.5 EUT Operating Mode

Please refer to the description of test mode.

### 7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

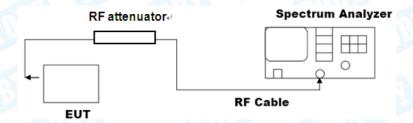
Please refer to the Appendix A section.



Page: 22 of 45

## 8. 99% Occupied and 20dB Bandwidth

#### 8.1 Test Standard and Limit


8.1.1 Test Standard

FCC Part 15.205 & FCC Part 15.247(a)

8.1.2 Test Limit

For an FHSS system operating in the 2400 to 2483.5 MHz band, there are no limits for 20dB bandwidth and 99% occupied bandwidth.

## 8.2 Test Setup



## 8.3 Test Procedure

- The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:
- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.
- c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.
- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.



Page: 23 of 45

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

## 8.4 Deviation From Test Standard

No deviation

## 8.5 EUT Operating Mode

Please refer to the description of test mode.

### 8.6 Test Data

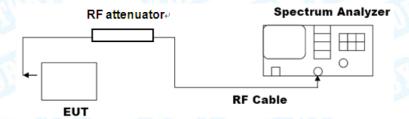
Please refer to the Appendix A section.



Page: 24 of 45

# 9. Peak Output Power Test

#### 9.1 Test Standard and Limit


9.1.1 Test Standard

FCC Part 15.247(b)(1)

9.1.2 Test Limit

| Test Item         | Limit                                       | Frequency Range(MHz) |
|-------------------|---------------------------------------------|----------------------|
|                   | P <sub>max-pk</sub> ≤ 1 W                   |                      |
|                   | N <sub>ch</sub> ≥ 75                        |                      |
|                   | f ≥ MAX { 25 kHz, BW20dB }                  |                      |
|                   | max. BW20dB not specified                   |                      |
|                   | tch ≤ 0.4 s for $T = 0.4*N$ ch              |                      |
| Peak Output Power | <i>P</i> max-pk ≤ 0.125 W                   | 2400~2483.5          |
|                   | Nch ≥ 15                                    |                      |
|                   | f ≥ [ MAX{25 kHz, 0.67*BW <sub>20dB</sub> } |                      |
|                   | OR MAX{25 kHz, BW20dB} ]                    |                      |
|                   | max. BW20dB not specified                   |                      |
|                   | <i>t</i> ch ≤ 0.4 s for $T = 0.4*N_{ch}$    |                      |

9.2 Test Setup



f = hopping channel carrier frequency separation

#### 9.3 Test Procedure

- This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test:
- a) Use the following spectrum analyzer settings:
  - 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
  - 2) RBW > 20 dB bandwidth of the emission being measured.
  - 3) VBW≥ RBW.
  - 4) Sweep: Auto.
  - 5) Detector function: Peak.
  - 6) Trace: Max hold.
- b) Allow trace to stabilize.
- c) Use the marker-to-peak function to set the marker to the peak of the emission.
- d) The indicated level is the peak output power, after any corrections for external



Page: 25 of 45

attenuators and cables.

e) A plot of the test results and setup description shall be included in the test report.

NOTE-A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

### 9.4 Deviation From Test Standard

No deviation

## 9.5 EUT Operating Mode

Please refer to the description of test mode.

## 9.6 Test Data

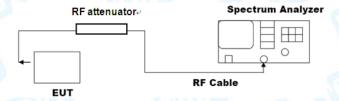
Please refer to the Appendix A.



Page: 26 of 45

# 10. Carrier frequency separation

### 10.1 Test Standard and Limit


10.1.1 Test Standard

FCC Part 15.247(a)(1)

10.1.2 Test Limit

| Test Item         | Limit                                       | Frequency Range(MHz) |
|-------------------|---------------------------------------------|----------------------|
| CALL'S            | P <sub>max-pk</sub> ≤ 1 W                   |                      |
|                   | <i>N</i> <sub>ch</sub> ≥ 75                 |                      |
|                   | f ≥ MAX { 25 kHz, BW <sub>20dB</sub> }      |                      |
|                   | max. BW20dB not specified                   |                      |
| 0                 | $t$ ch $\leq 0.4$ s for $T = 0.4*N$ ch      |                      |
| Carrier frequency | <i>P</i> max-pk ≤ 0.125 W 2400~2483         | 2400~2483.5          |
| separation        | Nch ≥ 15                                    | William William      |
| MULL              | f ≥ [ MAX{25 kHz, 0.67*BW <sub>20dB</sub> } |                      |
|                   | OR MAX{25 kHz, BW20dB}]                     |                      |
|                   | max. BW20dB not specified                   | 373                  |
|                   | $t$ ch $\leq 0.4$ s for $T = 0.4*N$ ch      |                      |

## 10.2 Test Setup



f = hopping channel carrier frequency separation

#### 10.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Wide enough to capture the peaks of two adjacent channels.
- b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel.
- c) Video (or average) bandwidth (VBW) ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

Use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.



Page: 27 of 45

## 10.4 Deviation From Test Standard

No deviation

## 10.5 Antenna Connected Construction

Please refer to the description of test mode.

## 10.6 Test Data

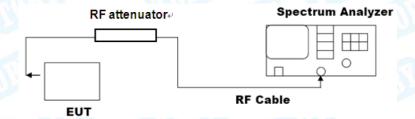
Please refer to the Appendix A.

Page: 28 of 45

#### Time of occupancy (dwell time) 11.

#### 11.1 Test Standard and Limit

11.1.1 Test Standard


FCC Part 15.247(a)(1)

11.1.2 Test Limit

| Test Item         | Limit                                               | Frequency Range(MHz) |
|-------------------|-----------------------------------------------------|----------------------|
|                   | P <sub>max-pk</sub> ≤ 1 W                           |                      |
|                   | <i>N<sub>ch</sub></i> ≥ 75                          |                      |
|                   | f ≥ MAX { 25 kHz, BW20dB }                          |                      |
|                   | max. BW20dB not specified                           |                      |
|                   | <i>t</i> ch ≤ 0.4 s for <i>T</i> = 0.4* <i>N</i> ch |                      |
| Time of occupancy | <i>P</i> max-pk ≤ 0.125 W                           | 2400~2483.5          |
| (dwell time)      | Nch ≥ 15                                            |                      |
|                   | f ≥ [ MAX{25 kHz, 0.67*BW <sub>20dB</sub> }         |                      |
|                   | OR MAX{25 kHz, BW <sub>20dB</sub> } ]               |                      |
|                   | max. BW20dB not specified                           |                      |
|                   | tch ≤ 0.4 s for $T = 0.4*N$ ch                      |                      |

*f* = hopping channel carrier frequency separation

## 11.2 Test Setup



#### 11.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: Zero span, centered on a hopping channel.
- b) RBW shall be □ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel.
- d) Detector function: Peak.
- e) Trace: Max hold.

Use the marker-delta function to determine the transmit time per hop. If this value varies



Page: 29 of 45

with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation:

(Number of hops in the period specified in the requirements) =

(number of hops on spectrum analyzer)x(period specified in the requirements / analyzer sweep time)

The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.

The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

#### 11.4 Deviation From Test Standard

No deviation

#### 11.5 Antenna Connected Construction

Please refer to the description of test mode.

#### 11.6 Test Data

Please refer to the Appendix A.

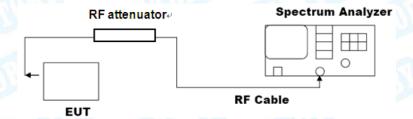


Page: 30 of 45

# 12. Number of hopping frequencies

### 12.1 Test Standard and Limit

12.1.1 Test Standard


FCC Part 15.247(a)(1)

12.1.2 Test Limit

| Test Item         | Limit                                       | Frequency Range(MHz) |
|-------------------|---------------------------------------------|----------------------|
|                   | <i>P</i> max-pk ≤ 1 W                       |                      |
|                   | <i>N<sub>ch</sub></i> ≥ 75                  |                      |
| CHILD TO          | f ≥ MAX { 25 kHz, BW20dB }                  |                      |
|                   | max. BW20dB not specified                   |                      |
| Comion from Long  | $t$ ch $\leq 0.4$ s for $T = 0.4*N$ ch      |                      |
| Carrier frequency | <i>P</i> max-pk ≤ 0.125 W                   | 2400~2483.5          |
| separation        | Nch ≥ 15                                    |                      |
|                   | f ≥ [ MAX{25 kHz, 0.67*BW <sub>20dB</sub> } |                      |
|                   | OR MAX{25 kHz, BW20dB} ]                    |                      |
|                   | max. BW20dB not specified                   |                      |
|                   | <i>t</i> ch ≤ 0.4 s for $T = 0.4*N_{ch}$    |                      |

 $t_{ch}$  = average time of occupancy; T = period;  $N_{ch}$  = # hopping frequencies; BW = bandwidth; f = hopping channel carrier frequency separation

## 12.2 Test Setup



#### 12.3 Test Procedure

- The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:
- a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- c) VBW ≥ RBW.
- d) Sweep: Auto.
- e) Detector function: Peak.
- f) Trace: Max hold.
- g) Allow the trace to stabilize.

It might prove necessary to break the span up into subranges to show clearly all of the



Page: 31 of 45

hopping frequencies.

Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

## 12.4 Deviation From Test Standard

No deviation

## 12.5 Antenna Connected Construction

Please refer to the description of test mode.

## 12.6 Test Data

Please refer to the Appendix A.



Page: 32 of 45

## 13. Antenna Requirement

#### 13.1 Test Standard and Limit

#### 11.1.1 Test Standard

#### FCC Part 15.203

#### 11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

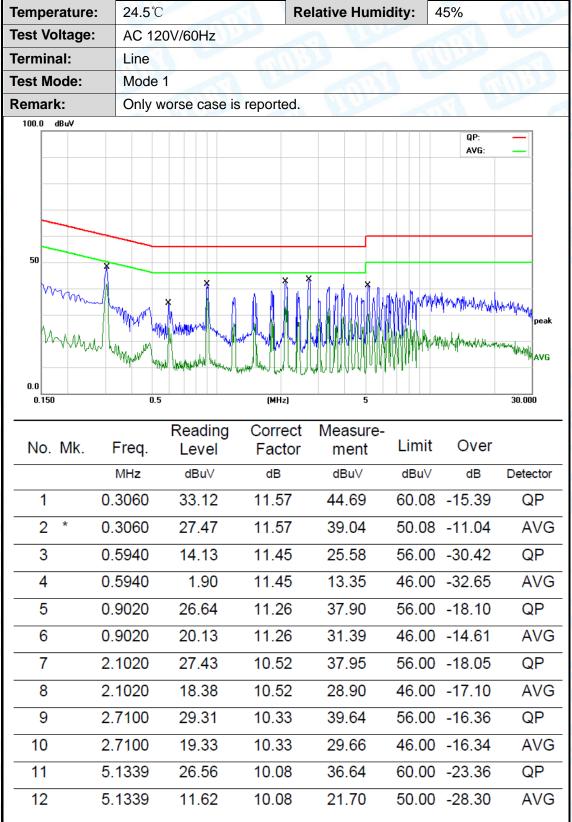
#### 13.2 Deviation From Test Standard

No deviation

### 13.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 1.2dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

#### 13.4 Test Data


The EUT antenna is a PCB Antenna. It complies with the standard requirement.

|      | Antenna Type                       |      |
|------|------------------------------------|------|
| 1133 | ⊠Permanent attached antenna        |      |
| J Gu | Unique connector antenna           | 33   |
|      | ☐Professional installation antenna | 4000 |



Page: 33 of 45

## **Attachment A-- Conducted Emission Test Data**



- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)





| emperat                         | ure:                                                         | <b>24.5</b> ℃                                 |                                                            |                                                             | Relative Hu                                                 | midity:                                                     | 45%                                                                |                                     |
|---------------------------------|--------------------------------------------------------------|-----------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------|
| est Volta                       | age:                                                         | AC 12                                         | 0V/60Hz                                                    |                                                             |                                                             |                                                             |                                                                    | CAIR.                               |
| erminal:                        |                                                              | Neutra                                        |                                                            |                                                             | 1                                                           |                                                             | MI                                                                 |                                     |
| est Mod                         | e:                                                           | Mode                                          |                                                            | MIL                                                         |                                                             | P. P.                                                       | N. C.                                                              |                                     |
| Remark:                         |                                                              | Only w                                        | orse case                                                  | e is reported.                                              | - ATTI                                                      |                                                             |                                                                    |                                     |
|                                 | WWW WAY                                                      | d soften                                      | Applicate property designs on the superconstant            | (MHz)                                                       | X X X X X X X X X X X X X X X X X X X                       |                                                             | QP:<br>AVG:                                                        | peal AVG                            |
| U.15U                           |                                                              |                                               | Reading                                                    | Correct                                                     | Measure-                                                    |                                                             |                                                                    | 30.000                              |
| No. M                           | lk. Fr                                                       | req.                                          | Level                                                      | Factor                                                      | ment                                                        | Limit                                                       | Over                                                               |                                     |
|                                 | M                                                            | Hz                                            | dBu∀                                                       | dB                                                          | dBu∨                                                        | dBu∨                                                        | dB                                                                 | Detector                            |
| 1                               | 0.29                                                         | 980                                           | 32.28                                                      | 11.58                                                       | 43.86                                                       | 60.30                                                       | -16.44                                                             | QP                                  |
| 2 *                             | 0.0                                                          |                                               |                                                            |                                                             |                                                             |                                                             |                                                                    |                                     |
| 2 *                             | 0.2                                                          | 980                                           | 25.61                                                      | 11.58                                                       | 37.19                                                       | 50.30                                                       | -13.11                                                             | AVG                                 |
| 3                               | 0.29                                                         |                                               | 25.61<br>24.25                                             | 11.58<br>11.27                                              | 37.19<br>35.52                                              |                                                             | -13.11<br>-20.48                                                   | AVG<br>QP                           |
|                                 | 0.89                                                         |                                               |                                                            |                                                             |                                                             | 56.00                                                       |                                                                    | AVG<br>QP<br>AVG                    |
| 3                               | 0.89                                                         | 980                                           | 24.25                                                      | 11.27                                                       | 35.52                                                       | 56.00<br>46.00                                              | -20.48                                                             | QP                                  |
| 3                               | 0.89<br>0.89<br>1.79                                         | 980<br>980                                    | 24.25<br>17.42                                             | 11.27<br>11.27                                              | 35.52<br>28.69                                              | 56.00<br>46.00<br>56.00                                     | -20.48<br>-17.31                                                   | QP<br>AVG<br>QP                     |
| 3<br>4<br>5                     | 0.89<br>0.89<br>1.79<br>1.79                                 | 980<br>980<br>980                             | 24.25<br>17.42<br>15.67                                    | 11.27<br>11.27<br>10.61                                     | 35.52<br>28.69<br>26.28                                     | 56.00<br>46.00<br>56.00<br>46.00                            | -20.48<br>-17.31<br>-29.72                                         | QP<br>AVG<br>QP                     |
| 3<br>4<br>5<br>6                | 0.89<br>0.89<br>1.79<br>1.79<br>2.13                         | 980<br>980<br>980<br>980                      | 24.25<br>17.42<br>15.67<br>5.14                            | 11.27<br>11.27<br>10.61<br>10.61                            | 35.52<br>28.69<br>26.28<br>15.75                            | 56.00<br>46.00<br>56.00<br>46.00<br>56.00                   | -20.48<br>-17.31<br>-29.72<br>-30.25                               | QP<br>AVG<br>QP<br>AVG              |
| 3<br>4<br>5<br>6<br>7           | 0.89<br>0.89<br>1.79<br>1.79<br>2.13<br>2.13                 | 980<br>980<br>980<br>980<br>980<br>380        | 24.25<br>17.42<br>15.67<br>5.14<br>28.48                   | 11.27<br>11.27<br>10.61<br>10.61<br>10.42                   | 35.52<br>28.69<br>26.28<br>15.75<br>38.90                   | 56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>46.00          | -20.48<br>-17.31<br>-29.72<br>-30.25<br>-17.10                     | QP<br>AVG<br>QP<br>AVG<br>QP        |
| 3<br>4<br>5<br>6<br>7<br>8      | 0.89<br>0.89<br>1.79<br>1.79<br>2.13<br>2.13<br>2.70         | 980<br>980<br>980<br>980<br>980<br>380        | 24.25<br>17.42<br>15.67<br>5.14<br>28.48<br>14.39          | 11.27<br>11.27<br>10.61<br>10.61<br>10.42<br>10.42          | 35.52<br>28.69<br>26.28<br>15.75<br>38.90<br>24.81          | 56.00<br>46.00<br>56.00<br>46.00<br>56.00<br>56.00          | -20.48<br>-17.31<br>-29.72<br>-30.25<br>-17.10<br>-21.19           | QP<br>AVG<br>QP<br>AVG<br>QP<br>AVG |
| 3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.89<br>0.89<br>1.79<br>1.79<br>2.13<br>2.13<br>2.70<br>2.70 | 980<br>980<br>980<br>980<br>980<br>380<br>380 | 24.25<br>17.42<br>15.67<br>5.14<br>28.48<br>14.39<br>30.16 | 11.27<br>11.27<br>10.61<br>10.61<br>10.42<br>10.42<br>10.26 | 35.52<br>28.69<br>26.28<br>15.75<br>38.90<br>24.81<br>40.42 | 56.00<br>46.00<br>56.00<br>46.00<br>46.00<br>56.00<br>46.00 | -20.48<br>-17.31<br>-29.72<br>-30.25<br>-17.10<br>-21.19<br>-15.58 | QP AVG AVG QP AVG QP AVG            |

2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)





Page: 35 of 45

## **Attachment B--Unwanted Emissions Data**

#### ---Radiated Unwanted Emissions

#### 9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB

Below the permissible value has no need to be reported.

#### 30MHz~1GHz

| empe                            | rature:                              | 24.3                                    | $^{\circ}$               | 1 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |
|---------------------------------|--------------------------------------|-----------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| est Vo                          | oltage:                              | AC 1                                    | 20V/60H                  | Iz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHILL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | N. N.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |
| nt. Po                          | ol.                                  | Horiz                                   | zontal                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | W. P.                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1 01                    |
| est M                           | ode:                                 | Mod                                     | e 2                      | ARO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| Remar                           | k:                                   | Only                                    | worse ca                 | ase is reporte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | d.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | HALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         |
| 80.0                            | BuV/m                                |                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 70                              |                                      |                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 70                              |                                      |                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 60                              |                                      |                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (RF)FCC 1                                  | 5C 3M Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                       |
| 50                              |                                      |                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Margin -6                                  | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
| 40                              |                                      |                                         | ++                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 30                              |                                      |                                         | <u> </u>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6<br>X-M-peak           |
|                                 |                                      |                                         |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 20                              |                                      | _                                       | 2                        | 3 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5<br>Maladandaria                          | all the state of t |                         |
| 20<br>10                        | harsthornwan                         | hatmadamudd                             | 2                        | Marine State Marine Mar | My farmer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5<br>Haring haland and harange der la      | a feel from the specific of th |                         |
| 10                              | handthorphorpe                       | hormonden                               |                          | My May Now May May My May May May May May May May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | White desired                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -Markethalman and Markethal                | ahad para da san da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |
| 10                              | handler on organ                     | in marken world                         |                          | man summer 3 1 mg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | What I want                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5. San | afinfarens egen frakeiger N. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |
| 10                              | handhronannegar                      | hat made mudd                           | Mumm                     | Mary Commission of the State of | What the same of t | 5. San | aglad general september 1989 agr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |
| 10                              |                                      | 60.00                                   |                          | MH:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O.OO                                       | aghad percent specific  | 1000.000                |
| 10 -10 -20                      |                                      | 60.00                                   |                          | (мн                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2) 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                       | A. Sear Sear Sear Sear Sear Sear Sear Sear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         |
| 10 -10 -20                      | Fred                                 |                                         |                          | мн:<br>ng Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                            | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         |
| 10 0<br>-10 -20 30.000          | Fred<br>(N                           | 60.00<br>quency                         | Readii                   | ng Factor<br>/) (dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o.oo<br>Limit                              | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1000.000                |
| 10<br>0<br>-10<br>-20<br>30.000 | Frec (N                              | quency<br>(1Hz)                         | Readii<br>(dBu\          | ng Factor<br>/) (dB/m)<br>5 -22.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Level (dBuV/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit (dBuV/m                              | Margin<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1000.000                |
| 10<br>0<br>-10<br>-20<br>30.000 | Fred<br>(N<br>49.                    | 60.00<br>quency<br>1Hz)<br>7068         | Readii (dBu\             | ng Factor<br>/) (dB/m)<br>5 -22.56<br>0 -24.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level<br>(dBuV/m)<br>16.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>(dBuV/m<br>40.00                  | Margin<br>(dB)<br>-23.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Detector peak           |
| 10<br>0<br>-10<br>-20<br>30.000 | Fred<br>(N<br>49.<br>71.             | quency<br>(Hz)<br>7068<br>0803          | Readii<br>(dBu\<br>39.09 | ng Factor<br>/) (dB/m)<br>5 -22.56<br>0 -24.56<br>3 -21.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Level<br>(dBuV/m)<br>16.49<br>19.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limit<br>(dBuV/m<br>40.00<br>40.00         | Margin<br>(dB)<br>-23.51<br>-20.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Detector peak peak      |
| 10<br>0<br>-10<br>-20<br>30.000 | Fred<br>(N<br>49<br>71<br>141<br>237 | quency<br>(Hz)<br>7068<br>0803<br>.8262 | Readii (dBu\) 39.00      | mg Factor<br>/) (dB/m)<br>5 -22.56<br>0 -24.56<br>3 -21.98<br>5 -22.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level<br>(dBuV/m)<br>16.49<br>19.44<br>17.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit (dBuV/m 40.00 40.00 43.50            | Margin<br>(dB)<br>-23.51<br>-20.56<br>-26.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Detector peak peak peak |

<sup>\*:</sup>Maximum data x:Over limit !:over margin

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB $\mu$ V/m)-Limit QPK(dB $\mu$ V/m)





| Tem                                         | npera                              | ature:                               | 24.3°                                             | C                                 |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relative Hu                                          | ımidity:                                             | 45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                              |
|---------------------------------------------|------------------------------------|--------------------------------------|---------------------------------------------------|-----------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Tes                                         | t Vol                              | tage:                                | AC 1                                              | 20V/6                             | 60Hz                         | 21 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAR                          |
| Ant                                         | . Pol                              | •                                    | Vertic                                            | al                                |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Tes                                         | t Mo                               | de:                                  | Mode                                              | 2                                 |                              | THE STATE OF THE S |                                                      | - W                                                  | The same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                              |
| Ren                                         | nark                               |                                      | Only                                              | worse                             | e case i                     | s reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                      | 33                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MID .                        |
| 80.0                                        | dBu                                | V/m                                  |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 70                                          |                                    |                                      |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 70                                          |                                    |                                      |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 60                                          |                                    |                                      |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | (RF)FCC                                              | 15C 3M Radiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |
| 50                                          |                                    |                                      |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      | Margin -                                             | 6 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H                            |
| 40                                          |                                    |                                      |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 30                                          | 3                                  | Ļ                                    |                                                   |                                   |                              | 4<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5<br>X                                               |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | www.peak                     |
| 20                                          | MANA                               | Mymba                                | 2<br>X                                            | 3<br>X                            |                              | /huh <sub>uri_/hij</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 444 M                                                | ng Perdan Mercandel Add                              | and the state of t | Market                       |
| 10                                          |                                    | Mahier                               | Carlo Market                                      | March                             | Munder                       | ward level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | " Y Wake worker                                      | Applicated the second                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|                                             |                                    |                                      |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 0                                           |                                    |                                      |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| -10                                         |                                    |                                      |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| -20                                         | 1                                  |                                      |                                                   |                                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| 30                                          | 0.000                              |                                      | 60.00                                             |                                   |                              | (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30                                                   | 00.00                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000.000                     |
| 31                                          | 0.000                              |                                      |                                                   |                                   | 1.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1000.000                     |
|                                             | 0.000<br>lo.                       | Frequ                                | iency                                             |                                   | ading                        | Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Level                                                | Limit                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Detector                     |
| N                                           | lo.                                | (MI                                  | iency<br>Hz)                                      | (dl                               | BuV)                         | Factor<br>(dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Level<br>(dBuV/m                                     | Limit<br>n) (dBuV/r                                  | m) (dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Detector                     |
| N 1                                         | lo.                                | (MI<br>36.6                          | iency<br>Hz)                                      | (dl                               | 3uV)<br>0.64                 | Factor (dB/m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Level<br>(dBuV/m<br>27.58                            | Limit<br>(dBuV/i                                     | m) (dB)<br>-12.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Detector<br>peak             |
| N 1                                         | lo.<br>  *<br> 2                   | (MI<br>36.6<br>54.6                  | iency<br>Hz)<br>375<br>429                        | (dl<br>50<br>43                   | 3.83<br>BuV)                 | Factor (dB/m) -23.06 -23.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Level<br>(dBuV/m<br>27.58<br>20.79                   | Limit<br>(dBuV/i<br>40.00                            | m) (dB)<br>-12.42<br>-19.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Detector<br>peak<br>peak     |
| N 1                                         | lo.<br>  *  <br> 2                 | 36.6<br>54.6<br>73.6                 | nency<br>Hz)<br>375<br>429                        | (dl<br>50<br>43<br>47             | 3uV)<br>0.64<br>3.83<br>7.02 | Factor<br>(dB/m)<br>-23.06<br>-23.04<br>-25.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level<br>(dBuV/m<br>27.58<br>20.79<br>21.84          | Limit<br>(dBuV/i<br>40.00<br>40.00                   | m) (dB)<br>-12.42<br>-19.21<br>-18.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Detector peak peak peak      |
| 1 2 3                                       | lo.<br>  *  <br> 2  <br> 3  <br> 4 | (MH<br>36.6<br>54.6<br>73.6<br>147.9 | iency<br>Hz)<br>375<br>429<br>170                 | (dl<br>50<br>43<br>47<br>50       | 3.83<br>7.02<br>0.07         | Factor<br>(dB/m)<br>-23.06<br>-23.04<br>-25.18<br>-21.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Level<br>(dBuV/m<br>27.58<br>20.79<br>21.84<br>28.27 | Limit<br>(dBuV/i<br>40.00<br>40.00<br>40.00<br>43.50 | m) (dB)<br>-12.42<br>-19.21<br>-18.16<br>-15.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector peak peak peak peak |
| 1 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | lo.<br>  *  <br> 2                 | 36.6<br>54.6<br>73.6                 | iency<br>Hz)<br>375<br>429<br>170<br>9214<br>4904 | (dl<br>50<br>43<br>47<br>50<br>54 | 3uV)<br>0.64<br>3.83<br>7.02 | Factor<br>(dB/m)<br>-23.06<br>-23.04<br>-25.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Level<br>(dBuV/m<br>27.58<br>20.79<br>21.84          | Limit<br>(dBuV/i<br>40.00<br>40.00                   | m) (dB)<br>-12.42<br>-19.21<br>-18.16<br>-15.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Detector peak peak peak      |

#### Remark:

\*:Maximum data

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
   QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)

x:Over limit !:over margin

3. Margin (dB) = QuasiPeak (dB $\mu$ V/m)-Limit QPK(dB $\mu$ V/m)





Page: 37 of 45

#### Above 1-25GHz

| Temperature:  | 23.5℃                | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46%    |
|---------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Test Voltage: | DC 5V                | CALL TO SERVICE OF THE PARTY OF | - 130- |
| Ant. Pol.     | Horizontal           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1333   |
| Test Mode:    | TX GFSK Mode 2402MHz |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |

| No | o. Mł | c. Freq. | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBu∀             | dB/m  | dBu√/m           | dBuV/m | dB     | Detector |
| 1  |       | 4803.912 | 41.53            | 12.31 | 53.84            | 74.00  | -20.16 | peak     |
| 2  | *     | 4805.522 | 28.28            | 12.32 | 40.60            | 54.00  | -13.40 | AVG      |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                | Relative Humidity: | 46% |
|---------------|----------------------|--------------------|-----|
| Test Voltage: | DC 5V                | THU THE            |     |
| Ant. Pol.     | Vertical             | William Control    |     |
| Test Mode:    | TX GFSK Mode 2402MHz |                    |     |

| No | . M | k. Freq. |       |       | Measure-<br>ment | Limit  | Over   |          |
|----|-----|----------|-------|-------|------------------|--------|--------|----------|
|    |     | MHz      | dBu∀  | dB/m  | dBu∀/m           | dBu∀/m | dB     | Detector |
| 1  | *   | 4802.324 | 28.32 | 12.30 | 40.62            | 54.00  | -13.38 | AVG      |
| 2  |     | 4803.280 | 41.09 | 12.30 | 53.39            | 74.00  | -20.61 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 38 of 45

| MI I MADE TO BE AND THE PERSON OF THE PERSON |                |                    |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------|--------|
| Temperature:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23.5℃          | Relative Humidity: | 46%    |
| Test Voltage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DC 5V          |                    | Ullive |
| Ant. Pol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Horizontal     |                    |        |
| Test Mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TX GFSK Mode 2 | 2441MHz            | U.S.   |

| No | . Mk | . Freq.  | _     | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|-------|-------------------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∀  | dB/m              | dBuV/m           | dBu∀/m | dB     | Detector |
| 1  |      | 4881.963 | 41.57 | 12.81             | 54.38            | 74.00  | -19.62 | peak     |
| 2  | *    | 4882.463 | 29.12 | 12.81             | 41.93            | 54.00  | -12.07 | AVG      |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                | Relative Humidity: | 46%    |
|---------------|----------------------|--------------------|--------|
| Test Voltage: | DC 5V                |                    |        |
| Ant. Pol.     | Vertical             |                    |        |
| Test Mode:    | TX GFSK Mode 2441MHz |                    | A TIVE |

| No | . Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∀             | dB/m  | dBu√/m           | dBuV/m | dB     | Detector |
| 1  | *    | 4882.000 |                  | 12.81 | 42.10            | 54.00  | -11.90 | AVG      |
| 2  |      | 4883.625 | 43.39            | 12.81 | 56.20            | 74.00  | -17.80 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 39 of 45

| Temperature:  | 23.5℃                | Relative Humidity: | 46%   |
|---------------|----------------------|--------------------|-------|
| Test Voltage: | DC 5V                |                    | Unite |
| Ant. Pol.     | Horizontal           | 1 10               |       |
| Test Mode:    | TX GFSK Mode 2480MHz | THE WAY            |       |

| No | . Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBu∀             | dB/m  | dBuV/m           | dBuV/m | dB     | Detector |
| 1  |       | 4958.993 | 41.83            | 13.29 | 55.12            | 74.00  | -18.88 | peak     |
| 2  | *     | 4960.397 | 28.66            | 13.30 | 41.96            | 54.00  | -12.04 | AVG      |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                | Relative Humidity: | 46%   |
|---------------|----------------------|--------------------|-------|
| Test Voltage: | DC 5V                |                    |       |
| Ant. Pol.     | Vertical             |                    |       |
| Test Mode:    | TX GFSK Mode 2480MHz |                    | M. C. |

| No | o. N | Лk. | Freq.    | _     | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|------|-----|----------|-------|-------------------|------------------|--------|--------|----------|
|    |      |     | MHz      | dBu∨  | dB/m              | dBu∀/m           | dBu∀/m | dB     | Detector |
| 1  | *    |     | 4959.228 | 28.97 | 13.29             | 42.26            | 54.00  | -11.74 | AVG      |
| 2  |      |     | 4960.015 | 41.27 | 13.29             | 54.56            | 74.00  | -19.44 | peak     |

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
   Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 40 of 45

| Temperature:  | 23.5℃            | Relative Humidity: | 46%  |
|---------------|------------------|--------------------|------|
| Test Voltage: | DC 5V            |                    | CHI) |
| Ant. Pol.     | Horizontal       |                    |      |
| Test Mode:    | TX π /4-DQPSK Mo | ode 2402MHz        |      |

| No | 0. | Mk. | Freq.    |       |       | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----|----------|-------|-------|------------------|--------|--------|----------|
|    |    |     | MHz      | dBu∨  | dB/m  | dBuV/m           | dBu∀/m | dB     | Detector |
| 1  | 7  | *   | 4803.169 | 28.42 | 12.30 | 40.72            | 54.00  | -13.28 | AVG      |
| 2  |    |     | 4803.750 | 40.53 | 12.31 | 52.84            | 74.00  | -21.16 | peak     |

#### Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                  | Relative Humidity: | 46% |  |  |  |  |
|---------------|------------------------|--------------------|-----|--|--|--|--|
| Test Voltage: | DC 5V                  | DC 5V              |     |  |  |  |  |
| Ant. Pol.     | Vertical               |                    |     |  |  |  |  |
| Test Mode:    | TX π /4-DQPSK Mode 240 | 2MHz               |     |  |  |  |  |

| No | o. Mk | . Freq.  | _     | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|-------|-------------------|------------------|--------|--------|----------|
|    |       | MHz      | dBu∀  | dB/m              | dBu∀/m           | dBuV/m | dB     | Detector |
| 1  |       | 4802.309 | 41.61 | 12.30             | 53.91            | 74.00  | -20.09 | peak     |
| 2  | *     | 4803.324 | 28.23 | 12.30             | 40.53            | 54.00  | -13.47 | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 41 of 45

| Temperature:  | 23.5℃                | Relative Humidity: | 46%   |
|---------------|----------------------|--------------------|-------|
| Test Voltage: | DC 5V                |                    | CHILD |
| Ant. Pol.     | Horizontal           |                    |       |
| Test Mode:    | TX π /4-DQPSK Mode 2 | 2441MHz            |       |

| No | ٥. | Mk. | Freq.    | _     | Correct<br>Factor | Measure-<br>ment | Limit  | Over   |          |
|----|----|-----|----------|-------|-------------------|------------------|--------|--------|----------|
|    |    |     | MHz      | dBu∨  | dB/m              | dBu∀/m           | dBu∀/m | dB     | Detector |
| 1  | •  | *   | 4881.890 | 29.42 | 12.81             | 42.23            | 54.00  | -11.77 | AVG      |
| 2  |    |     | 4882.794 | 42.84 | 12.81             | 55.65            | 74.00  | -18.35 | peak     |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                   | Relative Humidity: | 46%          |  |  |  |
|---------------|-------------------------|--------------------|--------------|--|--|--|
| Test Voltage: | DC 5V                   |                    |              |  |  |  |
| Ant. Pol.     | Vertical                | TORY.              |              |  |  |  |
| Test Mode:    | TX π /4-DQPSK Mode 2441 | MHz                | THE STATE OF |  |  |  |

| N | o. <b>I</b> | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|---|-------------|-----|----------|------------------|-------|------------------|--------|--------|----------|
|   |             |     | MHz      | dBu∨             | dB/m  | dBu∀/m           | dBu∀/m | dB     | Detector |
| 1 | *           |     | 4881.728 |                  | 12.81 | 41.99            | 54.00  | -12.01 | AVG      |
| 2 |             |     | 4882.684 | 42.00            | 12.81 | 54.81            | 74.00  | -19.19 | peak     |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 42 of 45

| Temperature:  | 23.5℃                 | Relative Humidity: | 46%     |
|---------------|-----------------------|--------------------|---------|
| Test Voltage: | DC 5V                 |                    | CHID Se |
| Ant. Pol.     | Horizontal            |                    |         |
| Test Mode:    | TX π /4-DQPSK Mode 24 | 80MHz              |         |

| N | 0. | Mk. | Freq.    | _     |       | Measure-<br>ment | Limit  | Over   |          |
|---|----|-----|----------|-------|-------|------------------|--------|--------|----------|
|   |    |     | MHz      | dBu∨  | dB/m  | dBuV/m           | dBu∀/m | dB     | Detector |
| 1 | 1  | *   | 4959.536 | 28.95 | 13.29 | 42.24            | 54.00  | -11.76 | AVG      |
| 2 |    |     | 4959.758 | 41.93 | 13.29 | 55.22            | 74.00  | -18.78 | peak     |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                    | Relative Humidity: | 46%     |
|---------------|--------------------------|--------------------|---------|
| Test Voltage: | DC 5V                    |                    |         |
| Ant. Pol.     | Vertical                 |                    | NO      |
| Test Mode:    | TX π /4-DQPSK Mode 2480M | Hz                 | CALL TO |

| No | . Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∨             | dB/m  | dBu∀/m           | dBuV/m | dB     | Detector |
| 1  |      | 4959.758 | 41.93            | 13.29 | 55.22            | 74.00  | -18.78 | peak     |
| 2  | *    | 4959.946 | 28.80            | 13.29 | 42.09            | 54.00  | -11.91 | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 43 of 45

| Temperature:  | 23.5℃                  | Relative Humidity: | 46% |  |  |  |  |
|---------------|------------------------|--------------------|-----|--|--|--|--|
| Test Voltage: | DC 5V                  |                    |     |  |  |  |  |
| Ant. Pol.     | Horizontal             | Horizontal         |     |  |  |  |  |
| Test Mode:    | TX 8-DPSK Mode 2402MHz |                    |     |  |  |  |  |

| No | o. Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBu∀             | dB/m  | dBu\/m           | dBuV/m | dB     | Detector |
| 1  | *     | 4803.824 | 28.26            | 12.31 | 40.57            | 54.00  | -13.43 | AVG      |
| 2  |       | 4804.254 | 42.22            | 12.31 | 54.53            | 74.00  | -19.47 | peak     |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated 1-26.5 GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                 | Relative Humidity:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 46%   |
|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Test Voltage: | DC 5V                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| Ant. Pol.     | Vertical              | THE STATE OF THE S |       |
| Test Mode:    | TX 8-DPSK Mode 2402MF | Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | All I |

| No. | . Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|------|----------|------------------|-------|------------------|--------|--------|----------|
|     |      | MHz      | dBu∨             | dB/m  | dBu∀/m           | dBu∀/m | dB     | Detector |
| 1   |      | 4803.770 | 40.80            | 12.31 | 53.11            | 74.00  | -20.89 | peak     |
| 2   | *    | 4804.500 | 28.01            | 12.32 | 40.33            | 54.00  | -13.67 | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG(dBμV/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 44 of 45

| Temperature:  | 23.5℃          | Relative Humidity: | 46%        |  |  |  |
|---------------|----------------|--------------------|------------|--|--|--|
| Test Voltage: | DC 5V          |                    | CATALON TO |  |  |  |
| Ant. Pol.     | Horizontal     | Horizontal         |            |  |  |  |
| Test Mode:    | TX 8-DPSK Mode | 2441MHz            |            |  |  |  |

| - | No. Mk | . Freq.  |       |       | Measure-<br>ment | Limit  | Over   |          |
|---|--------|----------|-------|-------|------------------|--------|--------|----------|
|   |        | MHz      | dBu∨  | dB/m  | dBu∀/m           | dBu∀/m | dB     | Detector |
| 1 |        | 4881.934 | 42.00 | 12.81 | 54.81            | 74.00  | -19.19 | peak     |
| 2 | *      | 4882.162 | 29.24 | 12.81 | 42.05            | 54.00  | -11.95 | AVG      |

#### Remark

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                  | 46%      |              |  |  |  |
|---------------|------------------------|----------|--------------|--|--|--|
| Test Voltage: | DC 5V                  |          |              |  |  |  |
| Ant. Pol.     | Vertical               | Vertical |              |  |  |  |
| Test Mode:    | TX 8-DPSK Mode 2441MHz |          | THE STATE OF |  |  |  |

| No | . Mk | . Freq.  | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|------|----------|------------------|-------|------------------|--------|--------|----------|
|    |      | MHz      | dBu∨             | dB/m  | dBu√/m           | dBu∀/m | dB     | Detector |
| 1  |      | 4881.514 | 42.53            | 12.81 | 55.34            | 74.00  | -18.66 | peak     |
| 2  | *    | 4882.274 | 29.39            | 12.81 | 42.20            | 54.00  | -11.80 | AVG      |

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.





Page: 45 of 45

| Temperature:  | 23.5℃             | Relative Humidity: | 46%  |
|---------------|-------------------|--------------------|------|
| Test Voltage: | DC 5V             |                    | MILL |
| Ant. Pol.     | Horizontal        |                    |      |
| Test Mode:    | TX 8-DPSK Mode 24 | 180MHz             |      |

| No. | Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|-----|-----|----------|------------------|-------|------------------|--------|--------|----------|
|     |     | MHz      | dBu∨             | dB/m  | dBu∀/m           | dBu∀/m | dB     | Detector |
| 1   |     | 4959.872 | 42.39            | 13.29 | 55.68            | 74.00  | -18.32 | peak     |
| 2   | *   | 4959.940 | 28.97            | 13.29 | 42.26            | 54.00  | -11.74 | AVG      |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

| Temperature:  | 23.5℃                  | Relative Humidity: | 46%     |
|---------------|------------------------|--------------------|---------|
| Test Voltage: | DC 5V                  |                    |         |
| Ant. Pol.     | Vertical               | United the second  | THU     |
| Test Mode:    | TX 8-DPSK Mode 2480MHz |                    | CALL DE |

| No | . Mk. | Freq.    | Reading<br>Level |       | Measure-<br>ment | Limit  | Over   |          |
|----|-------|----------|------------------|-------|------------------|--------|--------|----------|
|    |       | MHz      | dBu∨             | dB/m  | dBu∀/m           | dBu∀/m | dB     | Detector |
| 1  |       | 4959.872 | 42.39            | 13.29 | 55.68            | 74.00  | -18.32 | peak     |
| 2  | *     | 4960.198 | 28.75            | 13.29 | 42.04            | 54.00  | -11.96 | AVG      |

#### Remark:

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. Peak/AVG (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = Peak/AVG (dB $\mu$ V/m)-Limit PK/AVG(dB $\mu$ V/m)
- 4. The tests evaluated1-26.5GHz,The testing has been conformed to the 10th harmonic of the highest fundamental frequency.
- 5. No report for the emission which more than 20dB below the prescribed limit.

#### ----END OF REPORT-----