

FCC ID::	2A525-M600	(C)	(C
Test Report No::	TCT240508E018		
Date of issue::	Jul. 02, 2024	<i>C</i> ₈ .	
Testing laboratory:	SHENZHEN TONGCE TESTING	LAB	
Testing location/ address:	2101 & 2201, Zhenchang Factory Subdistrict, Bao'an District, Shen People's Republic of China	•	
Applicant's name::	Jiangsu Zhong Heng Pet Articles	Joint-stock CO., LTD	
Address:	NO.1388 Century Avenue, Yandı Jiangsu, China	u District, Yancheng City,	
Manufacturer's name:	Jiangsu Zhong Heng Pet Articles	Joint-stock CO., LTD	
Address:	NO.1388 Century Avenue, Yandı Jiangsu, China	u District, Yancheng City,	
Standard(s):	FCC CFR Title 47 Part 15 Subpa KDB 662911 D01 Multiple Transi KDB 789033 D02 General U-NII	mitter Output v02r01	es

TEST REPORT

Model/Type reference:	Meno
Model/ Type Telefelice	INDOC

Trade Mark::

Adapter Information:

Rating(s)....:

| Model: TEKA-TD120150US | Input: AC 100–240V, 50/60Hz, 0.7A MAX | Output: DC 12.0V, 1.5A

Product Name.....: SMARTO M600 Automatic cat litter box

N/A

Date of receipt of test item May 08, 2024

Date (s) of performance of test...... : May 08, 2024 ~ Jul. 02, 2024

Tested by (+signature) ... : Yannie ZHONG

Check by (+signature)....: Beryl ZHAO

Approved by (+signature): Tomsin

General disclaimer:

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

1.	General Product Information		3
	1.1. EUT description		
	1.2. Model(s) list		3
	1.3. Test Frequency		4
2.	Test Result Summary		5
3.	General Information		6
	3.1. Test environment and mode		6
	3.2. Description of Support Units		7
4.	Facilities and Accreditations		88
	4.1. Facilities		8
	4.2. Location		8
	4.3. Measurement Uncertainty		
5.	Test Results and Measurement Data		9
	5.1. Antenna requirement		9
	5.2. Conducted Emission		
	5.3. Maximum Conducted Output Power		10
	5.4. 6dB Emission Bandwidth		16
	5.5. 26dB Bandwidth and 99% Occupied Bandwidth		17
	5.6. Power Spectral Density	(0)	18
	5.7. Band edge		19
	5.8. Unwanted Emissions		
	5.9. Frequency Stability Measurement	<u> </u>	46
1	Appendix A: Test Result of Conducted Test		
X \ I	Appendix B: Photographs of Test Setup		
	Appendix C: Photographs of EUT		

1. General Product Information

1.1. EUT description

Product Name:	SMARTO M600 Automatic cat litter box		
Model/Type reference:	M600		
Sample Number:	TCT240508E017-0101		
Operation Frequency:	Band 1: 5180 MHz ~ 5240 MHz Band 2A: 5260 MHz ~ 5320 MHz Band 2C: 5500 MHz ~ 5700 MHz Band 3: 5745 MHz ~ 5825 MHz		
Channel Bandwidth:	802.11a: 20MHz 802.11n: 20MHz, 40MHz		
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM)		
Modulation Type:	64QAM, 16QAM, BPSK, QPSK		
Antenna Type:	PCB Antenna		
Antenna Gain:	Band 1: 1.97dBi Band 2A: 1.08dBi Band 2C: 1.60dBi Band 3: -0.84dBi		
Rating(s):	Adapter Information: Model: TEKA-TD120150US Input: AC 100–240V, 50/60Hz, 0.7A MAX Output: DC 12.0V, 1.5A		

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

Page 3 of 147

1.3. Test Frequency

Band 1

20MHz		40MHz	
Channel	Frequency	Channel	Frequency
36	5180	38	5190
40	5200	46	5230
48	5240		

Band 2A

20MHz		40MHz		
Channel	Frequency	requency Channel		
52	5260	54	5270	
60	5300	62	5310	
64	5320		(0)	

Band 2C

20MHz		40MHz	
Channel	Frequency	Channel	Frequency
100	5500	102	5510
120	5600	118	5590
140	5700	134	5670

Band 3

20N	1Hz		40MHz
Channel	Frequency	Channel	Frequency
149	5745	151	5755
157	5785	159	5795
165	5825		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Report No.: TCT240508E018

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	N/A
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS

§15.407(g)

Note:

1. PASS: Test item meets the requirement.

Frequency Stability

- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25 GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 147

Report No.: TCT240508E018

PASS

3. General Information

3.1. Test environment and mode

Out and the or First transport	
Operating Environment:	
Temperature:	25.0 °C
Humidity:	56 % RH
Atmospheric Pressure:	1010 mbar
Test Software:	
Software Information:	AmebaD_mptool_2V1
Power Level:	100
Test Mode:	
Engineer mode:	Keep the EUT in continuous transmitting by select channel and modulations with max. duty cycle.

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate		
802.11a	6 Mbps		
802.11n(HT20)	6.5 Mbps		
802.11n(HT40)	13.5 Mbps		

Page 6 of 147


3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/	/	1	/	1

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 147

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT240508E018

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

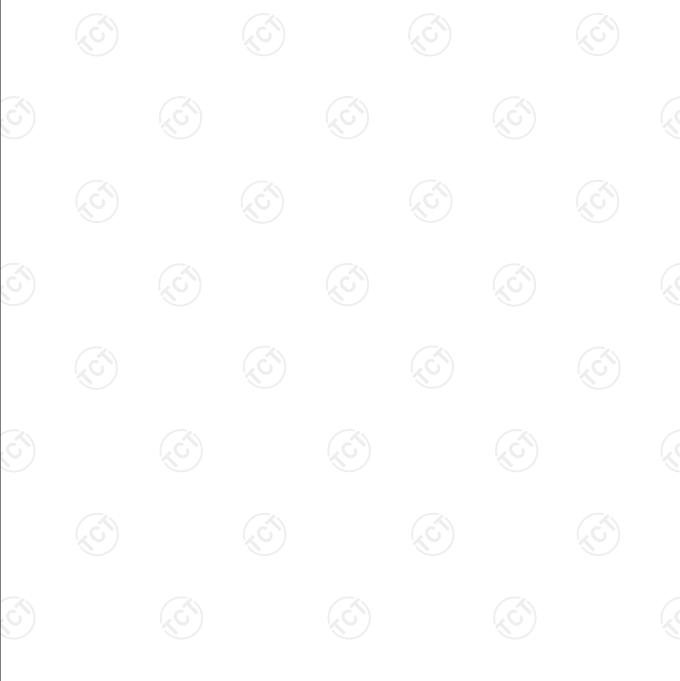
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 1.97dBi at UNII-B1.

Page 9 of 147

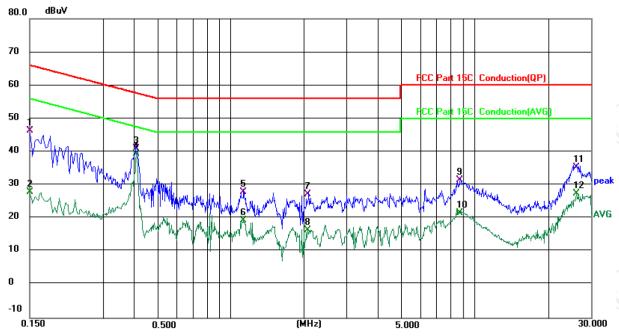
5.2. Conducted Emission


5.2.1. Test Specification

To all Daniello	F00 D : (45 0 0 : 1)	45.007					
Test Requirement:	FCC Part15 C Section	15.207					
Test Method:	ANSI C63.10:2013	(0)	(20)				
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz					
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto						
	Frequency range	Limit (c	dBuV)				
	(MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Reference	e Plane					
Test Setup:	Test table/Insulation plane Remark: E.U.T: Equipment Under Test	Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network					
Test Mode:	Charging						
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 						
Test Result:	PASS						
1/0/	$ (26^{\circ})$	(,0)					

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESCI3	100898	Jun. 27, 2025	
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025	
Line-5	TCT	CE-05	1 6	Jun. 27, 2025	
EMI Test Software	Shurple Technology	EZ-EMC	1	1	



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 24.5 (°C)

Humidity: 56 %

Report No.: TCT240508E018

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1500	36.39	10.02	46.41	66.00	-19.59	QP	
2		0.1500	17.90	10.02	27.92	56.00	-28.08	AVG	
3		0.4100	31.60	9.42	41.02	57.65	-16.63	QP	
4	*	0.4100	29.99	9.42	39.41	47.65	-8.24	AVG	
5		1.1300	18.05	9.91	27.96	56.00	-28.04	QP	
6		1.1300	9.45	9.91	19.36	46.00	-26.64	AVG	
7		2.0659	17.27	10.04	27.31	56.00	-28.69	QP	
8		2.0659	6.29	10.04	16.33	46.00	-29.67	AVG	
9		8.6940	20.84	10.58	31.42	60.00	-28.58	QP	
10		8.6940	11.04	10.58	21.62	50.00	-28.38	AVG	
11		26.2620	24.49	10.89	35.38	60.00	-24.62	QP	
12		26.2620	16.54	10.89	27.43	50.00	-22.57	AVG	

Note:

Freq. = Emission frequency in MHz

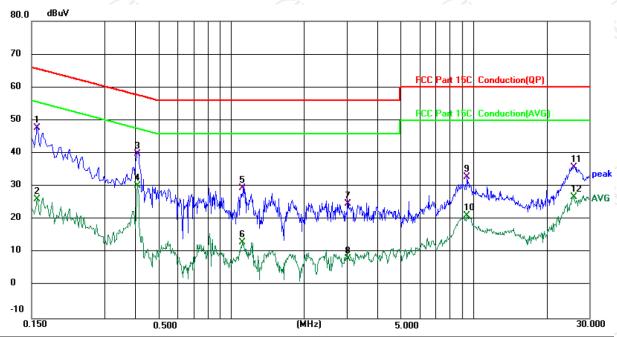
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: N

Temperature: 24.5 (°C)

Humidity: 56 %

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∀	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1580	37.62	10.01	47.63	65.57	-17.94	QP	
2		0.1580	16.05	10.01	26.06	55.57	-29.51	AVG	
3		0.4100	30.45	9.40	39.85	57.65	-17.80	QP	
4	*	0.4100	20.80	9.40	30.20	47.65	-17.45	AVG	
5		1.1140	19.65	9.87	29.52	56.00	-26.48	QP	
6		1.1140	3.21	9.87	13.08	46.00	-32.92	AVG	
7		3.0379	14.72	10.11	24.83	56.00	-31.17	QP	
8		3.0379	-1.89	10.11	8.22	46.00	-37.78	AVG	
9		9.4016	22.31	10.60	32.91	60.00	-27.09	QP	
10		9.4016	10.60	10.60	21.20	50.00	-28.80	AVG	
11		25.8856	24.93	10.80	35.73	60.00	-24.27	QP	
12		25.8856	15.91	10.80	26.71	50.00	-23.29	AVG	

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a,
802.11n(HT20), 802.11n(HT40) and the worst case Mode (Highest channel and 802.11a) was submitted only.

5.3. Maximum Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 E Section 2.1046	on 15.407(a)& Part 2 J Section		
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E			
	Frequency Band (MHz)	Limit		
	5180 - 5240	24dBm(250mW) for client device		
Limit:	5260 - 5320	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz		
	5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz		
	5745 - 5825	30dBm(1W)		
Test Setup:	Power meter EUT			
Test Mode:	Transmitting mode w	vith modulation		
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 			
Test Result:	PASS			
Remark:	Conducted output power= measurement power +10log(1/x) X is duty cycle=1, so 10log(1/1)=0 Conducted output power= measurement power			

5.3.2. Test Instruments

			/ A	
Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2025
Power Meter	Agilent	E4418B	MY45100357	Jun. 27, 2025
Power Sensor	Agilent	8481A	MY41091497	Jun. 27, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

Page 15 of 147

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C				
Limit:	>500kHz				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 				
Test Result:	PASS				

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2025
Combiner Box	Ascentest	AT890-RFB	1	/

Page 16 of 147

5.5. 26dB Bandwidth and 99% Occupied Bandwidth

5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D			
Limit:	No restriction limits			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 			
Test Result:	PASS			

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

Page 17 of 147

5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)		
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F		
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470- 5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz		
Test Setup:	Spectrum Analyzer EUT		
Test Mode:	Transmitting mode with modulation		
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes 3. Use the peak marker function to determine the maximum amplitude level. 		
Test Result:	PASS		

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2025
Combiner Box	Ascentest	AT890-RFB	1	7

Page 18 of 147

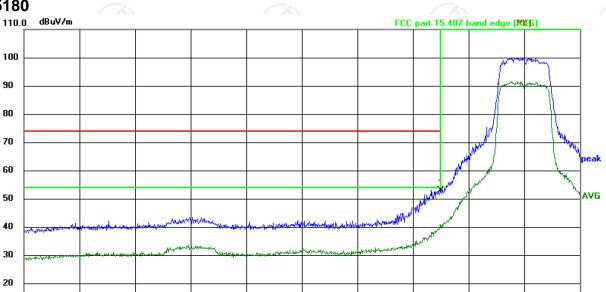
5.7. Band edge

5.7.1. Test Specification

•		/		=======================================			
Test Requirement:	FCC CFR47 Pa	rt 15E Sectio	n 15.407				
Test Method:	ANSI C63.10 20)13					
	In un-restricted ba For Band 1&2A&2 For Band 3:		Z	(0)			
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)			
	< 5650	-27	5850~5855	27~15.6			
Limit:	650~5700	-27~10	5855~5875	15.6~10			
Lillit.	5700~5720	10~15.6	5875~5925	10~-27			
	5720~5725	15.6~27	> 5925	-27			
	E[dBµV/m] = EIR In restricted band:	(0)		(C°)			
	Detect		Limit@				
	Peal		74dBµ				
	AVG		54dBµ	V/III			
Test Setup:	Transmitting mode with modulation						
Test Mode:	Transmitting mo	de with modu	ulation				
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a varia. The antennameters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 returned from 0 demaximum readings. The test-received from and Spreadings above the sustant of the su	ne ground at a degrees to degree	a 3 meter camb letermine the p s away from the la, which was r ntenna tower. ed from one me determine the rooth horizontal a are set to make ion, the EUT was e antenna was ters and the root degrees to fin	per. The table position of the			

Report No.: TCT240508E018

	10dB lo stopped reported 10dB m quasiped	ower than th d and the pe d. Otherwise nargin would	eak values o e the emissi d be re-teste age method	fied, then te f the EUT w ons that did d one by on	sting could be ould be not have le using peak	
Test Result:	PASS					


5.7.2. Test Instruments

	Radiated Er	mission Test Sit	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 27, 2025
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 27, 2025
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 27, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 27, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 27, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 27, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RC-18G-N-M	9) /	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
Antenna Mast	Keleto	CC-A-4M	1 (3)	/
EMI Test Software	Shurple Technology	EZ-EMC	1	/

5.7.3. Test Data n20-5180

10.0

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.3(°C) Humidity: 52 %

(MHz)

5080.00

Limit: FCC part 15.407 band edge (PK)

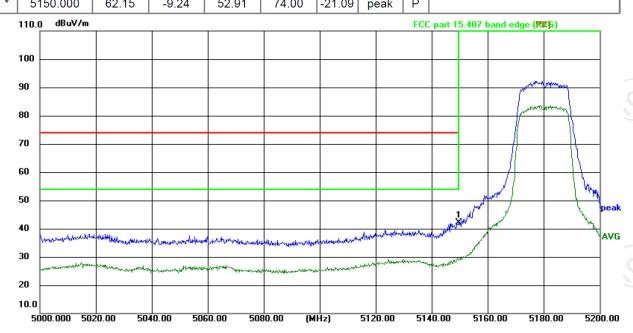
5040.00

5060.00

5000.000 5020.00

Power:AC 120 V/60 Hz

5120.00


5140.00

5160.00

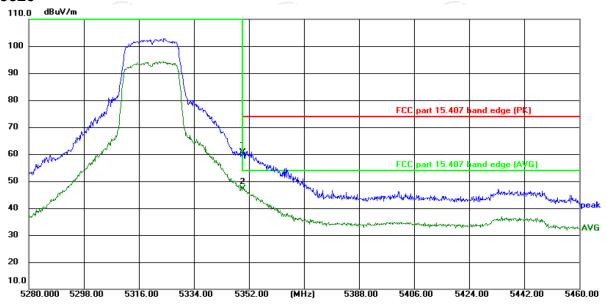
5180.00

5200.00

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	1 *	5150 000	62 15	0.24	52.01	74.00	21.00	neak	Ь	

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.3(°C) Humidity: 52 %

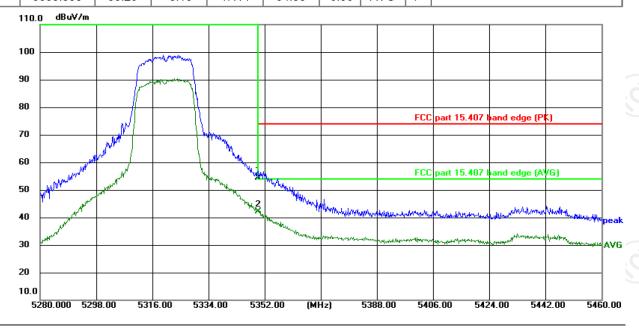
Limit: FCC part 15.407 band edge (PK)


Frequency Reading Factor Level Limit Margin Detector P/F No. Remark (dBuV) (dBuV/m) (dBuV/m) (MHz) (dB/m) (dB) 5150.000 51.27 -9.24 42.03 74.00 -31.97 peak

Power: AC 120 V/60 Hz

Report No.: TCT240508E018

n20-5320

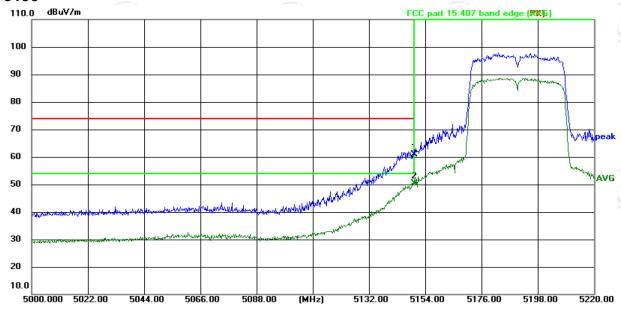


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

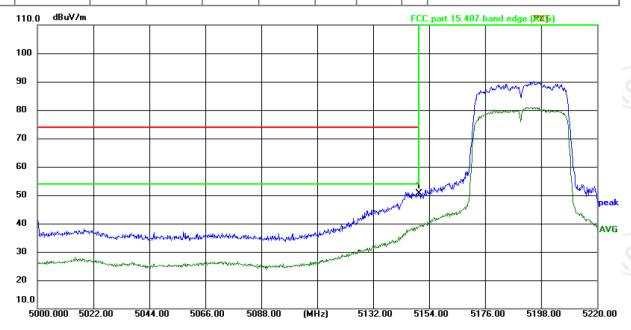
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	68.79	-8.15	60.64	74.00	-13.36	peak	Р	
ſ	2 *	5350.000	55.29	-8.15	47.14	54.00	-6.86	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
	1	5350.000	62.51	-8.15	54.36	74.00	-19.64	peak	Р		
١	2 *	5350.000	50.35	-8.15	42.20	54.00	-11.80	AVG	Р		

n40-5190

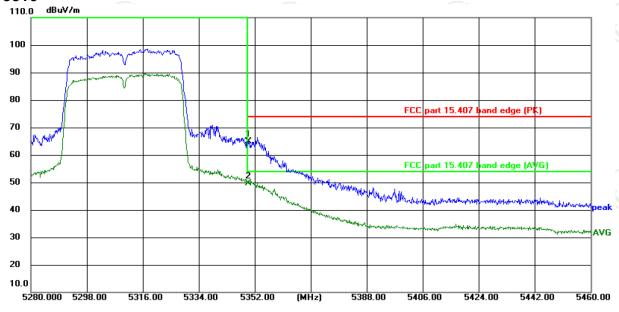


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.3(℃) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

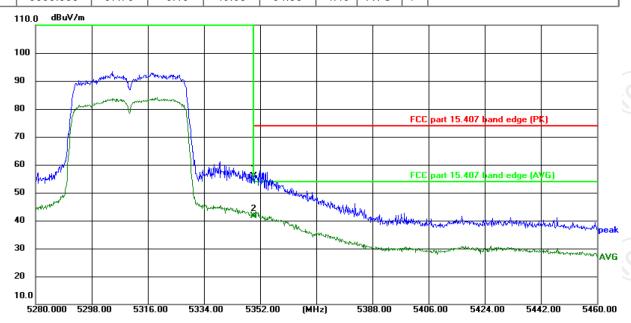
No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5150.000	70.07	-9.24	60.83	74.00	-13.17	peak	Р	
2 *	5150.000	59.54	-9.24	50.30	54.00	-3.70	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1 *	5150.000	59.97	-9.24	50.73	74.00	-23.27	peak	Р		

n40-5310

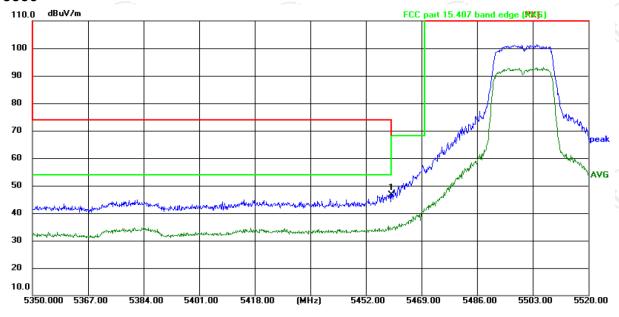


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

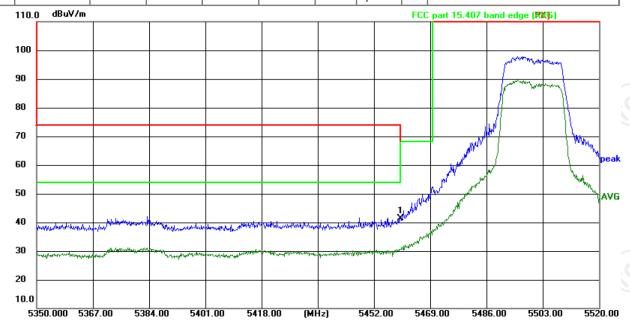
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	72.93	-8.15	64.78	74.00	-9.22	peak	Р	
ľ	2 *	5350.000	57.75	-8.15	49.60	54.00	-4.40	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	64.06	-8.15	55.91	74.00	-18.09	peak	Р	
2 *	5350.000	49.81	-8.15	41.66	54.00	-12.34	AVG	Р	

n20-5500

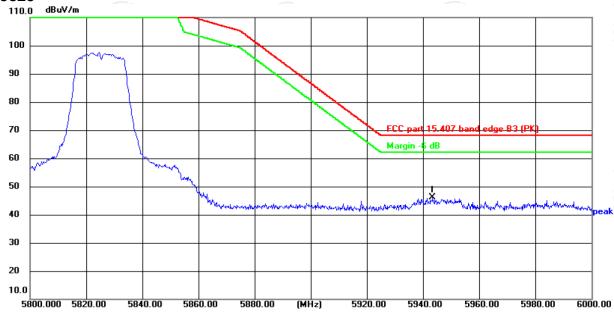


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

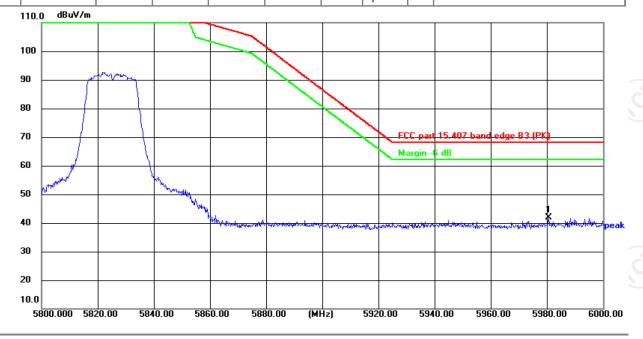
Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5460.000	54.88	-8.20	46.68	68.20	-21.52	peak	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1 *	5460.000	49.67	-8.20	41.47	68.20	-26.73	peak	Р		ı

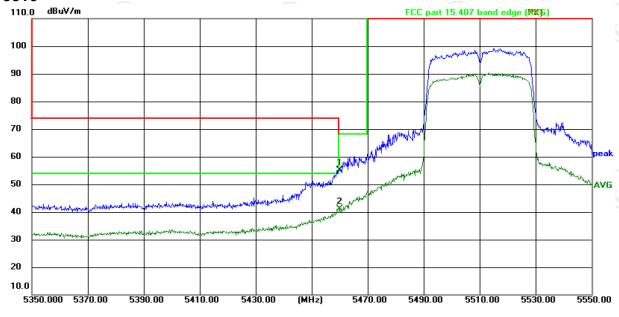


Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.3(℃) Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:AC 120 V/60 Hz

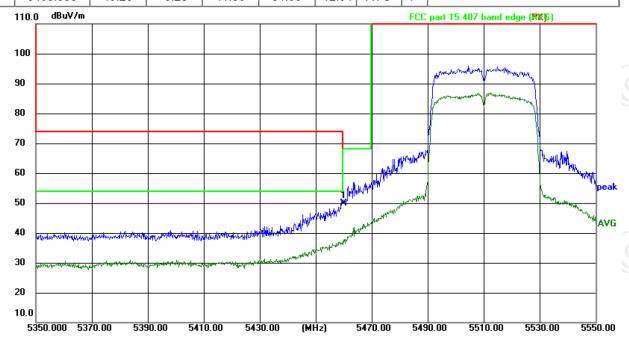
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
- 1	1 *	5943 500	52.87	-6.81	46.06	68.20	-22.14	peak	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.3(℃) Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK) Power:AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5980.740	48.38	-6.62	41.76	68.20	-26.44	peak	Р	

n40-5510

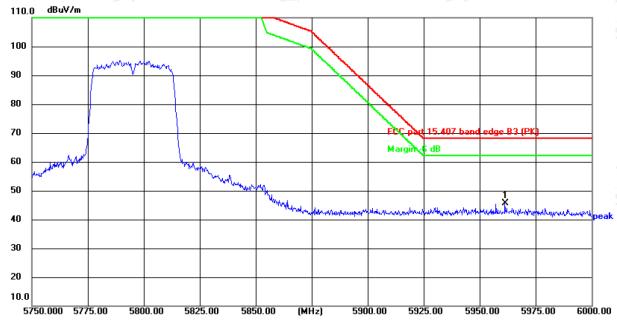


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

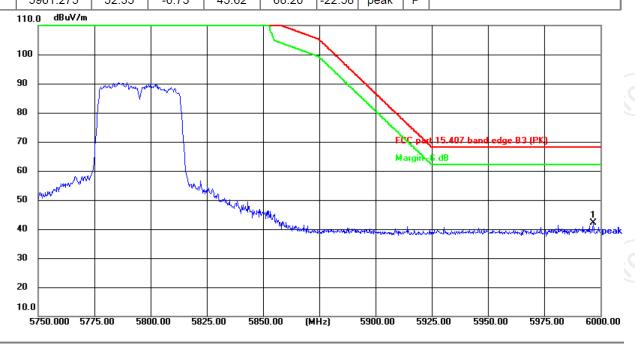
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5460.000	63.22	-8.20	55.02	68.20	-13.18	peak	Р	
2 *	5460.000	49.26	-8.20	41.06	54.00	-12.94	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1 *	5460.000	58.08	-8.20	49.88	68.20	-18.32	peak	Р	

n40-5795



Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 23.3(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

Power:AC 120 V/60 Hz

ĺ	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
- [1 *	5061 275	52.35	6.73	45.62	68.20	22.58	noak	Ъ	

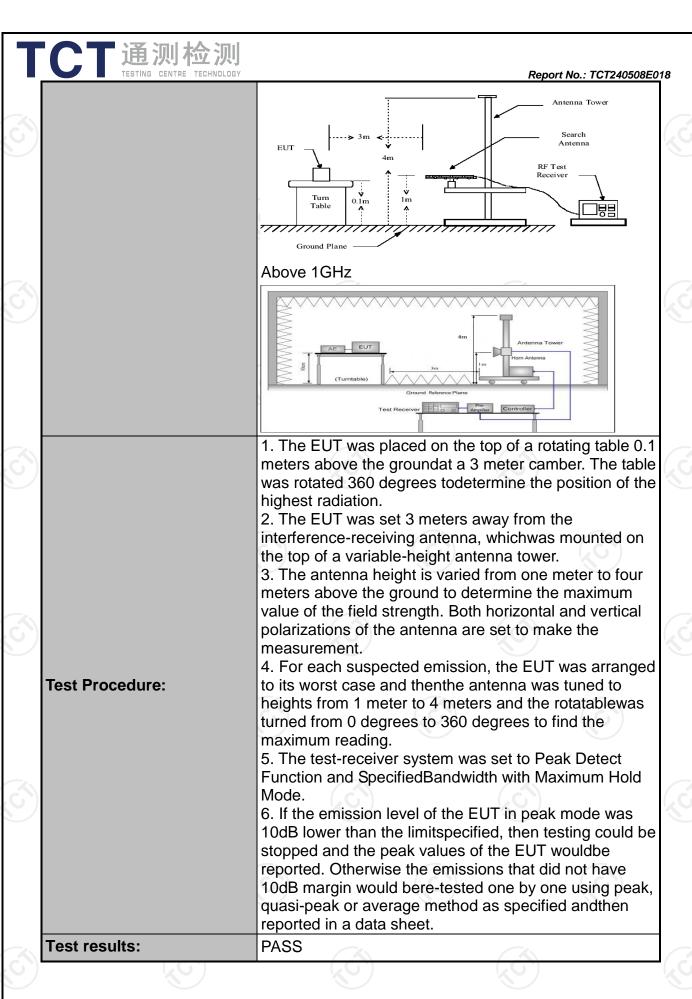
Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.3(℃) Humidity: 52 %

Limit: FCC part 15.407 band edge B3 (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5996.925	48.75	-6.51	42.24	68.20	-25.96	peak	Р	

Note: All modulation (802.11a, 802.11n) have been tested, only the worst case in 802.11n be reported.

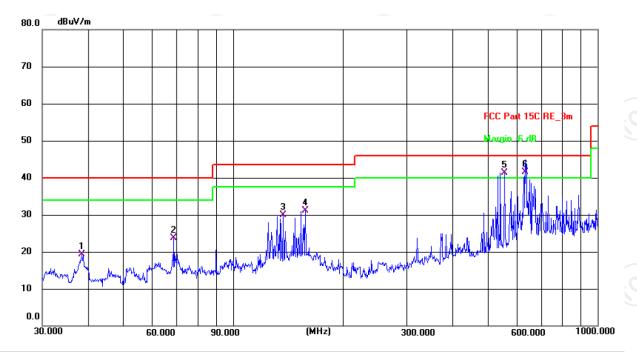


5.8. Unwanted Emissions

5.8.1. Test Specification

Test Requirement:	FCC CFR47	Part 15 S	Section 15.	407 & 1	5.209 & 15.205			
Test Method:	KDB 789033							
Frequency Range:	9kHz to 40G	Hz	(7)		(G)			
Measurement Distance:	3 m	*	ith modulation RBW VBW Remark ak 200Hz 1kHz Quasi-peak Va ak 9kHz 30kHz Quasi-peak Va ak 120KHz 300KHz Quasi-peak Va 1MHz 3MHz Peak Value 1MHz 10Hz Average Value missions fallen in restricted bar shall comply with the h limits set forth in § 15.209 Detector Limit@3m Peak 74dBµV/m AVG 54dBµV/m Field Strength Measurement					
Antenna Polarization:	Horizontal &	Vortical		Total State of the computer of				
		X .						
Operation mode:	Transmitting	mode wit	h modulat	ion				
	Frequency	Detector						
	9kHz- 150kHz	Quasi-peal	k 200Hz	1kHz	Quasi-peak Value			
Receiver Setup:	150kHz- 30MHz	Quasi-peal	k 9kHz	30kHz	Quasi-peak Value			
	30MHz-1GHz	Quasi-peal	k 120KHz	300KHz	Quasi-peak Value			
	Above 1GHz	Peak	1MHz	3MHz	Peak Value			
	10000 10112	Peak	1MHz	10Hz	Average Value			
	general field strength limits set forth in § 15.209 below table, In restricted bands: Detector Limit@3m							
	7.0010							
Limit:	Frequency		-		Measurement Distance (meters)			
	0.009-0.490							
	0.490-1.705							
	1.705-30							
	30-88 88-216							
	216-960							
	Above 960							
				//m				
Test setup:		Distance = 3m Turn table	v lm	OMHz	Pre -Amplifier			

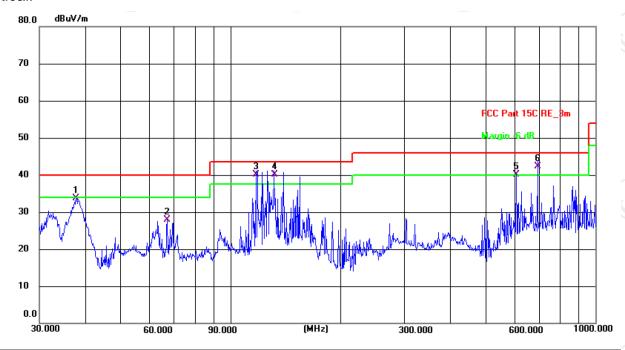
Report No.: TCT240508E018



5.8.2. Test Data

Please refer to following diagram for individual Below 1GHz

Horizontal:


Site 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.1(C) Humidity: 52 %

Limit: FCC Part 15C RE_3m

No	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	38.4808	37.75	-18.43	19.32	40.00	-20.68	QP	Р	
2	68.8721	43.86	-20.07	23.79	40.00	-16.21	QP	Р	
3	137.4200	47.89	-17.89	30.00	43.50	-13.50	QP	Р	
4	158.1123	48.02	-16.87	31.15	43.50	-12.35	QP	Р	
5	556.7743	52.31	-10.96	41.35	46.00	-4.65	QP	Р	
6	633.9071	50.14	-8.58	41.56	46.00	-4.44	QP	Р	_

Vertical:

Temperature: 24.1(C) Humidity: 52 % Site 3m Anechoic Chamber Polarization: Vertical

1	_imit: F	FCC Part 15C F	RE_3m				Power:	AC 120 \	//60 H	z
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	37.8121	52.21	-18.57	33.64	40.00	-6.36	QP	Р	
	2	67.2021	47.65	-19.82	27.83	40.00	-12.17	QP	Р	
	3 *	117.7724	59.38	-19.27	40.11	43.50	-3.39	QP	Р	
	4!	131.7574	58.18	-18.07	40.11	43.50	-3.39	QP	Р	
	5 !	607.7866	49.50	-9.38	40.12	46.00	-5.88	QP	Р	
П	6 !	694.4174	50.06	-7.71	42.35	46.00	-3.65	QP	Р	

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40) and the worst case Mode (Highest channel and 802.11a) was submitted only.
- 3.Measurement (dBµV) = Reading level + Correction Factor , correction Factor = Antenna Factor + Cable loss -Pre-amplifier.

			N		ype: Band	1			
				11a CH36:	5180MHz				
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor	Emissio		Peak limit	AV limit	Margin
(MHz)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.22		8.02	46.24		68.2	/ .c1	-21.96
15540	Н	38.14		9.87	48.01		74	54	-5.99
	Н								
10360	V	38.99		8.02	47.01		68.2		-21.19
15540	V	38.21		9.87	48.08		74	54	-5.92
	V			0	/				
				11a CH40	: 5200MHz				
	Ant Dal	Peak	AV	Correctio	Emissis	on Level	Da alı limit	A \ /	NA i -
Frequency	Ant. Pol. H/V	reading	reading	n Factor	EIIIISSIC		Peak limit		Margin
(MHz)	□/ V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
					(dBµV/m)	(dBµV/m)			
10400	Н	39.89		7.97	47.86		68.2		-20.34
15600	Н	38.75		9.83	48.58		74	54	-5.42
	Н	()		(, 0			()		
10400	V	40.32		7.97	48.29		68.2		-19.91
15600	V	38.49		9.83	48.32		74	54	-5.68
	V		- K			A		X	
				11a CH48	: 5240MHz				
Eroguenov	Ant. Pol.	Peak	AV	Correctio	Emissio	on Level	Peak limit	AV limit	Morgin
Frequency (MHz)	H/V	reading	reading	n Factor			(dBµV/m)		Margin (dB)
(1011 12)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	` ' '	(ασμν/ιιι)	(db)
10480	Н	38.55		7.97	46.52		68.2		-21.68
15720	Н	37.64		9.83	47.47		74	54	-6.53
	Н								
				•			•		7.
10480	V	38.23	(-:-()	7.97	46.2	.C	68.2	- (.c)	-22
15720	V	36.42	1.1	9.83	46.25		74	54	-7.75
	V								
			11	n(HT20) CI	H36: 5180N	1Hz		_	
Frequency	Ant. Pol.	Peak	AV	Correctio n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(αυμν)	(αυμν)	(ub/iii)	(dBµV/m)	(dBµV/m)			
10360	Н	41.99		8.02	50.01		68.2		-18.19
15540	Ж	37.14	<i></i> ()	9.87	47.01	47	74	54	-6.99
🐰	9)H		(20)			(O_)		170	
				· ·	· ·				
10360	V	42.16		8.02	50.18		68.2		-18.02
10300			T		T				
15540	V	37.25		9.87	47.12		74	54	-6.88

10460

15690

٧

٧

41.55

38.39

Report No.: TCT240508E018 11n(HT20) CH40: 5200MHz Peak ΑV Correctio Ant. Pol. **Emission Level** Peak limit **AV limit** Frequency Margin reading reading n Factor H/V $(dB\mu V/m)$ (dB) (MHz) $(dB\mu V/m)$ AV (dBµV) (dBµV) (dB/m) Peak (dBµV/m) $(dB\mu V/m)$ 10400 Н 40.59 7.97 48.56 68.2 -19.64 15600 Η 38.14 ---9.83 47.97 ---74 54 -6.03 Н 77-10400 V 40.45 7.97 48.42 68.2 -19.78 15600 37.27 9.83 47.1 74 54 -6.9 ٧ ----------44 ------11n(HT20) CH48: 5240MHz Peak ΑV Correctio Frequency Ant. Pol. **Emission Level** Peak limit **AV limit** Margin reading n Factor reading H/V (dBµV/m) (dBµV/m) (dB) (MHz) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10480 41.88 ---7.97 Н 49.85 68.2 -18.35 15720 Н 39.14 9.83 48.97 74 54 -5.03 ---Н ------------------------10480 40.51 7.97 68.2 48.48 -19.72٧ 15720 39.23 ---9.83 49.06 74 54 -4.94 ٧ 11n(HT40) CH38: 5190MHz Peak AV Correctio Ant. Pol. **Emission Level AV** limit Peak limit Frequency Margin reading n Factor reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV (dBµV) (dB/m) Peak (dBµV) (dBµV/m) (dBµV/m) 10380 Н 39.18 7.75 46.93 ---68.2 -21.27 15570 Η 37.53 74 9.87 47.4 54 -6.6 Η ------------" ---------------7.75 10380 40.36 48.11 68.2 -20.09 15570 ٧ 37.2 ---9.87 47.07 ---54 -6.9374 11n(HT40) CH46: 5230MHz Peak ΑV Correctio **Emission Level** Frequency Ant. Pol. Peak limit **AV limit** Margin reading n Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ 10460 Η 41.66 7.97 49.63 68.2 -18.57 15690 Н 38.14 9.83 ---47.97 74 -6.03 54 Н

54

-18.68

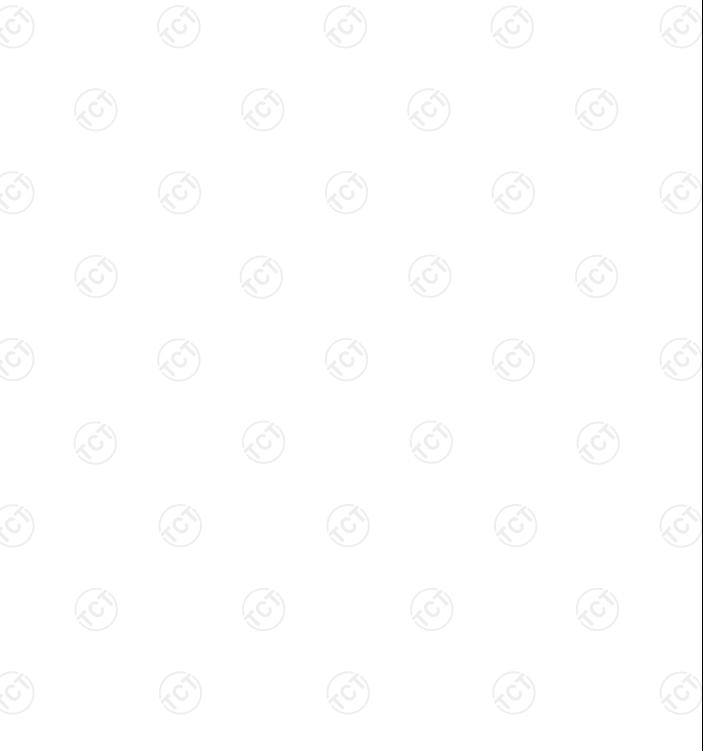
-5.78

68.2

74

7.97

9.83


49.52

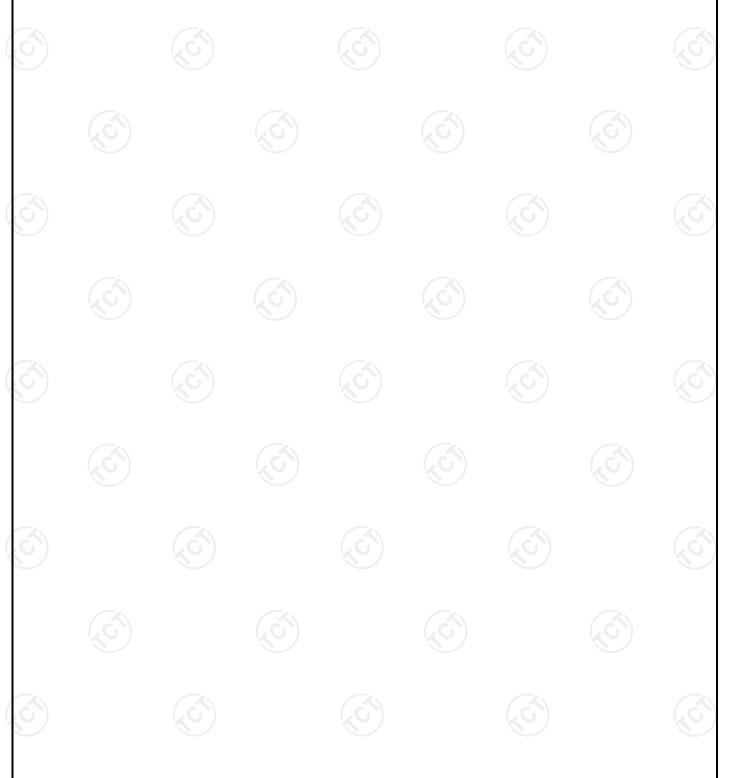
48.22

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 36 of 147

			М	odulation T	ype: Band 2	2A			
					: 5260MHz				
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit (dBµV/m)		Margin
(MHz)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(dBµV/m)	(dB)
10520	Н	38.66	(7.97	46.63		68.2	+6	-21.57
15780	Н	36.87		9.83	46.7	<i></i>	74	54	-7.3
	Н								
10520	V	41.09		7.97	49.06		68.2		-19.14
15780	V	38.38		9.83	48.21		74	54	-5.79
	V			@	/				
				11a CH60:	: 5300MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor	Emissic Peak	sion Level Peak limit		AV limit (dBµV/m)	Margin (dB)
, ,		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	AV (dBµV/m)	,		, ,
10600	Н	38.59		7.98	46.57		74	54	-7.43
15900	Н	38.32		9.85	48.17		74	54	-5.83
	I			(, c					
10600	V	39.65		7.98	47.63		74	54	-6.37
15900	V	37.74		9.85	47.59		74	54	-6.41
	V		<i>/</i>			A			
				11a CH64	5320MHz				
Fraguenavi	Ant Dol	Peak	AV	Correctio	Emissic	on Level	Peak limit	Λ\/ limit	Morgin
Frequency (MHz)	Ant. Pol. H/V	reading	reading	n Factor			(dBµV/m)		Margin (dB)
(IVII IZ)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(αΒμ ۷/111)	(ub)
10640	Н	40.99		7.98	48.97		74	54	-5.03
15960	Н	37.18		9.85	47.03		74	54	-6.97
	Н								
10640	V	39.04		7.98	47.02		74	54	-6.98
1.63			1 4 4 1	7.00	47.02				
15960	V	35.23	2	9.85		<u></u>	74	54	-8.92
15960	V	35.23			45.08	\sim	74 	54 	-8.92
				9.85 	45.08 				
		 Peak	 11 AV	9.85 n(HT20) C Correctio	45.08 52: 5260MF				
	V		 11	9.85 n(HT20) C	45.08 52: 5260MF	 z			
Frequency (MHz)	V Ant. Pol. H/V	Peak reading (dBµV)	 11 AV reading	9.85 n(HT20) C Correctio n Factor (dB/m)	45.08 52: 5260Mh Emission Peak (dBµV/m)	 Hz on Level	Peak limit	AV limit	Margin (dB)
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	9.85 n(HT20) C Correctio n Factor (dB/m) 7.97	45.08 52: 5260Mh Emissic Peak (dBµV/m) 49.07	 Hz on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	 Margin (dB)
Frequency (MHz)	V Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	9.85 n(HT20) C Correctio n Factor (dB/m)	45.08 52: 5260Mh Emission Peak (dBµV/m)	 Hz on Level AV (dBµV/m)	Peak limit	AV limit (dBµV/m)	Margin (dB)
Frequency (MHz) 10520 15780	Ant. Pol. H/V	Peak reading (dBµV) 41.1 38.96	AV reading (dBµV)	9.85 n(HT20) C Correctio n Factor (dB/m) 7.97 9.83	45.08 52: 5260Mh Emissic Peak (dBµV/m) 49.07 48.79	 Hz on Level AV (dBµV/m) 	Peak limit (dBµV/m) 68.2 74	AV limit (dBµV/m)	 Margir (dB) -19.13 -5.21
Frequency (MHz) 10520 15780	Ant. Pol. H/V	Peak reading (dBµV) 41.1 38.96	AV reading (dBµV)	9.85 n(HT20) C Correctio n Factor (dB/m) 7.97 9.83	45.08 52: 5260Mh Emissic Peak (dBµV/m) 49.07 48.79	 Hz on Level AV (dBµV/m) 	Peak limit (dBµV/m)	AV limit (dBµV/m)	 Margir (dB) -19.13


	TESTING	CENTRE TECHNO	_DGY				Rep	ort No.: TC12	40508E01
			11	n(HT20) CH	H60: 5300M	lHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emissic Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10600	Н	38.26		7.98	46.24		74	54	-7.76
15900	H	37.21		9.85	47.06		74	54	-6.94
(Н				/			4-63	\
					· ·				
10600	V	40.58		7.98	48.56		74	54	-5.44
15900	V	39.69		9.85	49.54		74	54	-4.46
	V	(A)			<		(X)		
			111	n(HT20) CF	164: 5320M	lHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)		on Level	Peak limit (dBµV/m)		Margin (dB)
10640	⊃ /H	37.13		7.98	45.11	(O.)	74	54	-8.89
15960	Н	35.98		9.85	45.83	<u> </u>	74	54	-8.17
	Н								
					7.	•			
10640	V	39.56		7.98	47.54		74	54	-6.46
15960	V	39.71		9.85	49.56		74	54	-4.44
	V								
			111	n(HT40) CH	154: 5270M	lHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10540	Н	37.85		7.97	45.82		68.2		-22.38
15810	Н	37.21		9.83	47.04		74	54	-6.96
)	Н	(<u>J</u>)			P)				
10540	V	38.66		7.97	46.63		68.2		-21.57
	V	36.44		9.83	46.27		74	54	-7.73
15810									

			11r	n(HT40) CH	l62: 5310M	Hz			
Frequency	Ant. Pol.	Peak reading	AV Correctio Emission Level Peak limit	Emission Level			Margin		
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak AV		(aBhv/m)	(dBµV/m)	(dB)
		,		, ,	(dBµV/m)	(dBµV/m)			
10620	Н	40.41		7.98	48.39		74	54	-5.61
15930	Н	38.05		9.85	47.9		74	54	-6.1
(Н								
X			ZO)			(0)		ZO.	
10620	V	38.69		7.98	46.67		74	54	-7.33
15930	V	36.57		9.85	46.42		74	54	-7.58
	V	-							

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

Page 39 of 147

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

			M	odulation T	ype: Band 2	2C			
): 5500MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11000	H	39.65		8.03	47.68		74	54	-6.32
16500	Н	39.14	(A-	9.76	48.9	<i>-</i> /-	68.2		-19.3
	Н								
11000	V	40.21		8.03	48.24		74	54	-5.76
16500	V	40.87		9.76	50.63		68.2		-17.57
	V	40.07							-17.57
	V): 5600MHz				
		Dook	AV		7. 36001VITIZ			1	
Frequency	Ant. Pol.	Peak reading	reading	Correction n Factor	Emissio	on Level Peak lim		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(ubµv)	(ион у)	(ub/iii)	(dBµV/m)				
11200	Н	40.02		8.04	48.06		74	54	-5.94
16800	Н	40.02		9.74					
10000	Н	40.17			49.91		68.2		-18.29
	П	$\langle C \rangle$			<u> </u>				
44000	1.7	00.00		0.04	10.7		7.1	- 4	
11200	V	38.66		8.04	46.7		74	54	-7.3
16800	V	39.88		9.74	49.62		68.2		-18.58
	V		7-1						
				11a CH140): 5/00MHZ				
Frequency	Ant. Pol.	Peak	AV	Correctio	Emissio	n Level	Peak limit	AV limit	Margir
(MHz)	H/V	reading (dBµV)	reading (dBµV)	n Factor (dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11400	Н	38.13		8.05	46.18		74	54	-7.82
17100	Н	40.31		9.72	50.03		68.2		-18.17
	Н								
11400	V	38.68		8.05	40.70		74	F4 4	7.07
	V	40.11	<u> </u>		46.73	<u> </u>	74	54 	-7.27 -18.37
17100	V	1 40.11			40.00				/ -18.37
17100	17			9.72	49.83		68.2		
17100	V						68.2		
	V		 11n	 (HT20) CH					
		 Peak	 11r AV	 (HT20) CH Correctio	 100: 5500N				
		Peak reading	 11r AV reading	 (HT20) CH Correctio n Factor	 100: 5500N Emissio	/Hz on Level		AV limit	
 Frequency	Ant. Pol.	 Peak	 11r AV	 (HT20) CH Correctio	 100: 5500N	 ИНz	Peak limit	AV limit	 Margin
 Frequency	Ant. Pol.	Peak reading	 11r AV reading	 (HT20) CH Correctio n Factor	100: 5500N Emissio	AV	Peak limit	AV limit	 Margir
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	 (HT20) CH Correctio n Factor (dB/m)	 100: 5500N Emissic Peak (dBµV/m)	 MHz on Level AV (dBµV/m)	Peak limit	AV limit (dBµV/m)	 Margir (dB)
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	 (HT20) CH Correctio n Factor (dB/m)	 100: 5500N Emissio Peak (dBµV/m) 48.26	AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	 Margir (dB)
 Frequency (MHz) 11000 16500	Ant. Pol. H/V	Peak reading (dBµV) 40.23 34.52	AV reading (dBµV)	(HT20) CH Correctio n Factor (dB/m) 8.03 9.76	 100: 5500N Emissio Peak (dBµV/m) 48.26 44.28	AV (dBµV/m)	Peak limit (dBµV/m) 74 68.2	AV limit (dBµV/m) 54	 Margir (dB) -5.74 -23.92
Frequency (MHz) 11000 16500	Ant. Pol. H/V	Peak reading (dBµV) 40.23 34.52	AV reading (dBµV)	n(HT20) CH Correctio n Factor (dB/m) 8.03 9.76	 100: 5500N Emissic Peak (dBµV/m) 48.26 44.28	AV (dBµV/m)	Peak limit (dBµV/m) 74 68.2	AV limit (dBµV/m)	 Margin (dB) -5.74 -23.92

	TESTING	CENTRE TECHNO	LOGY				Rep	ort No.: TCT2	240508E018
			11r	(HT20) CH	120: 5600N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correctio n Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
11200	Н	39.1		8.04	47.14		74	54	-6.86
16800	_, H	40.58		9.74	50.32		68.2		-17.88
(Н		(/			4-6	
11200	V	39.51		8.04	47.55		74	54	-6.45
16800	V	39.42		9.74	49.16		68.2		-19.04
	V	(*			·				
			11r	(HT20) CH	140: 5700N	ЛНz			
_		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11400	J /H	39.46		8.05	47.51	(O.)	74	54	-6.49
17100	Н	40.31		9.72	50.03	<u> </u>	68.2		-18.17
	Н								
					-2.	•			
11400	V	38.89		8.05	46.94		74	54	-7.06
17100	V	39.91		9.72	49.63		68.2		-18.57
	V								
			11r	(HT40) CH	102: 5510N	ЛНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11020	Н	39.82		8.03	47.85		74	54	-6.15
16530	Н	39.19		9.76	48.95		68.2		-19.25
)	Н								
11020	V	39.91		8.03	47.94		74	54	-6.06
16530	_ V	37.09		9.76	46.85		68.2		-21.35
(V					237			
			11r	(HT40) CH	118: 5590N	ЛНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11180	Н	39.81		8.04	47.85		74	54	-6.15
16770	Н	39.72		9.74	49.46		68.2		-18.74
	H								
11180	V	37.29	(<u>2</u> C)	8.04	45.33	<u>(O.)</u>	74	54	-8.67
16770	V	41.14		9.74	50.88		68.2		-17.32
	V								-17.52
	V	<u> </u>		<u> </u>	<u>I</u>	<u> </u>	<u> </u>		

	TESTING CENTRE TECHNOLOGY Report No.: TCT240508E018										
			11n	(HT40) CH	134: 5670N	ЛHz					
Frequency		Peak reading	AV reading	Correctio n Factor	Peak AV		Peak limit		Margin		
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)			(aBµv/m)	(dBµV/m)	(dB)		
		, , ,	` ' '	, ,	(dBµV/m)	(dBµV/m)					
11340	Н	40.63		8.05	48.68		74	54	-5.32		
17010	_, Н	40.11	-	9.72	49.83		68.2		-18.37		
(, (Н							+:			
					· ·						
11340	V	39.22		8.05	47.27		74	54	-6.73		
17010	V	38.06		9.72	47.78		68.2		-20.42		
	V				<				/		

Note:

- Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	1odulation 1	Гуре: Band	3			
): 5745MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(IVII IZ)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(αΒμ ۷/111)	(ub)
11490	Н	37.14		8.09	45.23		74	54	-8.77
17235	Н	37.43	4-	9.67	47.1	<i>-</i> /-	68.2		-21.1
	Н								
11490	V	40.55		8.09	48.64		74	54	-5.36
17235	V	38.79		9.67	48.46		68.2		-19.74
	V				/				
				11a CH157	': 5785MHz				
		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		` '	` ' '	, ,	(dBµV/m)	(dBµV/m)			
11570	Н	39.01		8.10	47.11		74	54	-6.89
17355	Н	38.83		9.65	48.48		68.2		-19.72
\	Н			(\ \\				
		707)		Ky)		
11570	V	38.87		8.10	46.97		74	54	-7.03
17355	V	39.65		9.65	49.3		68.2		-18.9
	V								
				11a CH165	5: 5825MHz			/ //	
		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
				, ,	(dBµV/m)	(dBµV/m)			
11650	Н	37.54		8.12		(dBµV/m)	74	54	-8.34
11650 17475	H H			, ,	(dBµV/m) 45.66	, , ,		54 	
		37.54 36.19		8.12	(dBµV/m)	, , ,	74 68.2 		
17475 	H H	36.19		8.12 9.62 	(dBµV/m) 45.66 45.81		68.2		-22.39
17475 11650	H H	36.19		8.12 9.62 8.12	(dBµV/m) 45.66 45.81 46.6		68.2 74	 54	-22.39 -7.4
17475 11650 17475	H H V V	36.19 38.48 38.55		8.12 9.62 8.12 9.62	(dBµV/m) 45.66 45.81 46.6 48.17		68.2 74 68.2	54 	-22.39 -7.4 -20.03
17475 11650	H H	36.19		8.12 9.62 8.12 9.62 	(dBµV/m) 45.66 45.81 46.6 48.17		68.2 74	 54	-22.39 -7.4
17475 11650 17475	H H V V	36.19 38.48 38.55 	 11r	8.12 9.62 8.12 9.62 0(HT20) CH	(dBµV/m) 45.66 45.81 46.6 48.17 149: 5745N	 //Hz	74 68.2 	54 	-22.39 -7.4 -20.03
17475 11650 17475 Frequency	H H V V V	36.19 38.48 38.55 	 11r	8.12 9.62 8.12 9.62 (HT20) CH Correctio	(dBµV/m) 45.66 45.81 46.6 48.17 149: 5745N		68.2 74 68.2 	54 	-22.39 -7.4 -20.03
17475 11650 17475 	H H V V	36.19 38.48 38.55 Peak reading	 11r AV reading	8.12 9.62 8.12 9.62 (HT20) CH Correction n Factor	(dBµV/m) 45.66 45.81 46.6 48.17 149: 5745N Emissio	MHz	74 68.2 	54 	-22.39 -7.4 -20.03
17475 11650 17475 Frequency	H H V V V	36.19 38.48 38.55 	 11r	8.12 9.62 8.12 9.62 (HT20) CH Correctio	(dBµV/m) 45.66 45.81 46.6 48.17 149: 5745N	MHz AV	68.2 74 68.2 	54 	-22.39 -7.4 -20.03
17475 11650 17475 Frequency (MHz)	H H V V V Ant. Pol. H/V	36.19 38.48 38.55 Peak reading (dBµV)	 11r AV reading	8.12 9.62 8.12 9.62 (HT20) CH Correctio n Factor (dB/m)	(dBµV/m) 45.66 45.81 46.6 48.17 149: 5745N Emission Peak (dBµV/m)	MHz AV	74 68.2 Peak limit (dBµV/m)	54 AV limit (dBµV/m)	-22.39 -7.4 -20.03 Margin (dB)
17475 11650 17475 Frequency (MHz)	H H V V V Ant. Pol. H/V	36.19 38.48 38.55 Peak reading (dBµV) 38.28	11r AV reading (dBµV)	8.12 9.62 8.12 9.62 (HT20) CH Correction n Factor (dB/m) 8.09	(dBµV/m) 45.66 45.81 46.6 48.17 149: 5745N Emissic Peak (dBµV/m) 46.37	MHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m)	54 	-22.39 -7.4 -20.03 Margin (dB)
17475 11650 17475 Frequency (MHz)	H H V V V Ant. Pol. H/V	36.19 38.48 38.55 Peak reading (dBµV)	11r AV reading (dBµV)	8.12 9.62 8.12 9.62 (HT20) CH Correctio n Factor (dB/m)	(dBµV/m) 45.66 45.81 46.6 48.17 149: 5745N Emission Peak (dBµV/m)	MHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m)	54 AV limit (dBµV/m)	-22.39 -7.4 -20.03 Margin (dB)
17475 11650 17475 Frequency (MHz) 11490 17235	H H V V V Ant. Pol. H/V	36.19 38.48 38.55 Peak reading (dBµV) 38.28 38.16	11r AV reading (dBµV)	8.12 9.62 8.12 9.62 (HT20) CH Correction n Factor (dB/m) 8.09 9.67 	(dBµV/m) 45.66 45.81 46.6 48.17 149: 5745N Emissic Peak (dBµV/m) 46.37 47.83	MHz on Level AV (dBµV/m)	68.2 74 68.2 Peak limit (dBμV/m) 74 68.2 	54 AV limit (dBµV/m) 54 	-22.39 -7.4 -20.03 Margir (dB) -7.63 -20.37
17475 11650 17475 Frequency (MHz) 11490 17235	H H V V V Ant. Pol. H/V	36.19 38.48 38.55 Peak reading (dBµV) 38.28 38.16	11r AV reading (dBµV)	8.12 9.62 8.12 9.62 (HT20) CH Correctio n Factor (dB/m) 8.09 9.67	(dBµV/m) 45.66 45.81 46.6 48.17 149: 5745N Emission Peak (dBµV/m) 46.37 47.83	MHz on Level AV (dBµV/m)	74 68.2 Peak limit (dBµV/m) 74 68.2	54 AV limit (dBµV/m)	-22.39 -7.4 -20.03 Margin (dB) -7.63 -20.37

				(HT20) CH	157: 5785N	ЛHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correctio n Factor		on Level	Peak limit (dBµV/m)		Margin (dB)
(IVII IZ)	1 1/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμ ν/ιιι)	(αΒμ ۷/ΙΙΙ)	(ub)
11570	Н	38.69	-	8.10	46.79		74	54	-7.21
17355	H	39.77		9.65	49.42		68.2	- -	-18.78
\	Н					<i>J</i> -			/
11570	V	38.25		8.10	46.35		74	54	-7.65
17355	V	39.94		9.65	49.59		68.2		-18.61
	V	39.94		9.03	49.59				-10.01
	V	120-1		(HT20) CH	165· 5825N	/Hz	12-0		
		Peak	AV	Correctio					
Frequency	Ant. Pol.	reading	reading	n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	38.25		8.12	46.37		74	54	-7.63
17475	Н	37.44		9.62	47.06		68.2		-21.14
	Н	-							
				(c		•			
11650	V	38.17		8.12	46.29		74	54	-7.71
17475	V	39.03		9.62	48.65		68.2		-19.55
	V								
			11n	(HT40) CH	151: 5755N	ЛHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correctio n Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	40.69		8.09	48.78		74	54	-5.22
17265	Н	37.03		9.67	46.7		68.2		-21.5
	Н								
· · · · · · · · ·				T	I	·			
11510	V	41.95		8.09	50.04		74	54	-3.96
17265	V	38.54	(9.67	48.21	. C ²)	68.2	-t.č	-19.99
	V		-						/
				(HT40) CH	159: 5795N	ЛHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction n Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
		(αΒμν)	(αΒμν)	(ab/iii)	(dBµV/m)				
11590	Н	38.98		8.10	47.08		74	54	-6.92
17385	Н	38.54		9.65	48.19		68.2		-20.01
(ΛH		<i></i>			/-			
1/2	J')		KO.)			(0)		KO	
11590	V	38.71		8.10	46.81		74	54	-7.19
17385	V	37.02		9.65	46.67		68.2		-21.53
	V				1	i			

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. $Margin (dB) = Emission Level (Peak) (dB\mu V/m)-Average limit (dB\mu V/m)$
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

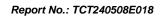
Page 45 of 147

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.9. Frequency Stability Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
Test Method:	ANSI C63.10: 2013
Limit:	The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Test Setup:	Spectrum Analyzer EUT AC/DC Power supply
Test Procedure:	The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. b. Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f. The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
Test Result:	PASS
Remark:	Pre-scan was performed at all models(11a,11n), the worst case (11n) was found and test data was shown in this report.



Test plots as follows:

Test mode:	802.11n	(HT20)	Freque	ency(MHz):	5180	
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta	Resul	
Temperature (C)	voitage(v _{AC})	Frequen	cy(MHz)	Frequency(F	Hz)	ı
45		518	0.16	160000	PASS	3
35		518	0.16	160000	PASS	3
25	120V	518	0.16	160000	PASS	3
15	1200	518	0.16	160000	PASS	3
5		518	0.16	160000	PASS	3
0		518	0.16	160000	PASS	3
	102V	518	0.16	160000	PASS	3
25	120V	518	0.16	160000	PASS	3
	138V	518	0.16	160000	PASS	3

							_
Test mode:	802.11n(l	HT20)	Freque	ency(MHz):		5200	
Tomporoturo (°C)	Voltage(V _{AC})	Measur	ement	Delta		Result	
Temperature (°C)	voitage(v _{AC})	Frequenc	cy(MHz) Frequency(H		Hz)	Result	
45		5200	.16	160000		PASS	
35		5200	.16	160000		PASS	
25	1201/	5200	.16	160000		PASS	
15	120V	5200	.16	160000		PASS	
5		5200	.16	160000		PASS	
0		5200	.16	160000		PASS	
	102V	5200	.16	160000		PASS	
25	120V	5200	.16	160000		PASS	
	138V		.16	160000		PASS	

Test mode:	802.11n(l	HT20)	Freque	ency(MHz):		5240	
Temperature (°C)	Voltage(V _{AC})	Measur	ement	Delta		Result	
remperature (C)	voltage(v _{AC})	Frequenc	cy(MHz)	Frequency(Hz)		Result	
45		5240).16	160000		PASS	
35		5240).16	160000		PASS	
25	120V	5240.16		160000		PASS	
15	1200	5240).16	160000		PASS	
5		5240.16		160000		PASS	
0		5240).16	160000	(,)	PASS	
	102V	5240).16	160000		PASS	
25	120V	5240).16	160000		PASS	
	138V	5240).16	160000		PASS	

Test mode:	802.11n(HT20)	Freque	ency(MHz):	5745		
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta		Result	
remperature (C)	voitage(v _{AC})	Frequen	cy(MHz)	Frequency(H	Hz)	Resuit	
45		574	5.16	160000		PASS	
35		574	5.16	160000		PASS	
25	120V	574	5.16	160000		PASS	
15	1200	574	5.16	160000		PASS	
5		574	5.16	160000		PASS	
0		574	5.16	160000		PASS	
	102V	574	5.14	140000		PASS	
25	120V	574	5.16	160000	5)	PASS	K
	138V	574	5.16	160000		PASS	

Test mode:	802.11n	(HT20)	Frequency(MHz):		5785	
Temperature (°C)	Voltage(V _{AC})	Measur	rement	Delta		Result
remperature (C)	voitage(v _{AC})	Frequenc	cy(MHz)	Frequency(I	Hz)	Nesuit
45		5785	5.16	160000		PASS
35		5785	5.16	160000		PASS
25	120V	5785	5.16	160000	C')	PASS
15	1200	5785	5.16	160000		PASS
5		5785	5.16	160000		PASS
0		5785	5.16	160000		PASS
(.6)	102V	5785	5.16	160000		PASS
25	120V	5785	5.16	160000		PASS
	138V	5785	5.16	160000		PASS

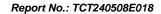
Test mode:	802.11n(HT20) Freque	ency(MHz):	5825
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5825.16	160000	PASS
35		5825.16	160000	PASS
25	120V	5825.16	160000	PASS
15		5825.16	160000	PASS
5		5825.16	160000	PASS
0		5825.18	180000	PASS
()	102V	5825.16	160000	PASS
25	120V	5825.16	160000	PASS
	138V	5825.16	160000	PASS

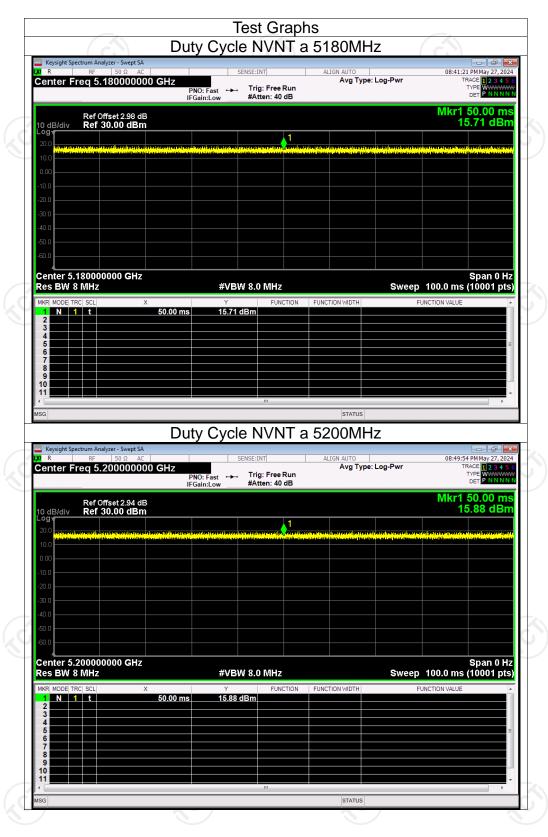
Test mode:		802.11n(F	HT40)	Freque	Frequency(MHz):		5190		
Temperature (°C)	\/c	oltage(V _{AC})	Measurement		Delta			Result	
Temperature (C)	VC	nage(v _{AC})	Frequency(MHz)		Freque	ency(Hz))	Result	
45			5190	0.16	16	0000		PASS	
35	1		5190	0.16	16	0000		PASS	
25	400)/	120V	5190	0.16	16	0000		PASS	
15		1200	5190	0.16	16	0000	No.	PASS	
5			5190	0.16	16	0000		PASS	
0	0		5190	0.16	16	0000		PASS	
	102		5190	0.16	16	0000	\	PASS	
25	KO	120V	5190	0.16	16	0000)	PASS	K
		138V	5190	0.16	16	0000		PASS	

Test mode:	802.11n(HT40)	Frequency(MHz):			5230
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta		Result
remperature (C)	voitage(v _{AC})	Frequen	cy(MHz)	Frequency(I	Hz)	Nesuit
45		5230	0.16	160000		PASS
35		5230	0.16	160000		PASS
25	120V	5230	0.16	160000	J')	PASS
15	1200	5230	0.16	160000		PASS
5		5230	0.12	120000		PASS
0		5230	0.12	120000		PASS
(.6)	102V	5230	0.16	160000		PASS
25	120V	5230	0.12	120000		PASS
	138V	5230	0.12	120000		PASS

Test mode:	802.11n	(HT40) Freque	ency(MHz):	5755
Temperature (°C)	Voltage(V _{AC})	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5755.16	160000	PASS
35		5755.16	160000	PASS
25	120V	5755.16	160000	PASS
15		5755.20	200000	PASS
5		5755.16	160000	PASS
0		5755.16	160000	PASS
()	102V	5755.16	160000	PASS
25	120V	5755.16	160000	PASS
	138V	5755.16	160000	PASS

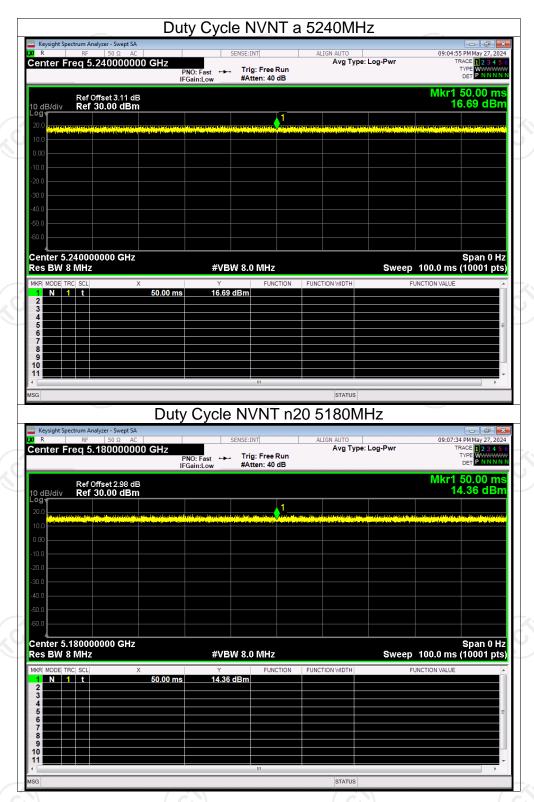
Test mode:		802.11n(H	HT40)	Freque	ency(MHz	z):	5795	
Temperature (°C)	Voltaç	ge(V _{AC})	Measurement Delta Frequency(MHz) Frequency(I				Result	
45			5795	,		000	PASS	
35			5795	5.16	160	000	PASS	
25	4.0	120V	5795	5.16	160	000	PASS	
15	1200	200	5795	5.16	160	000	PASS	
5			5795	5.16	160	000	PASS	
0			5795	5.16	160	000	PASS	
	10)2V	5795	5.16	160	000	PASS	
25	12	20V	5795	5.16	160	000	PASS	K
	13	88V	579	5.2	200	000	PASS	

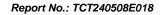


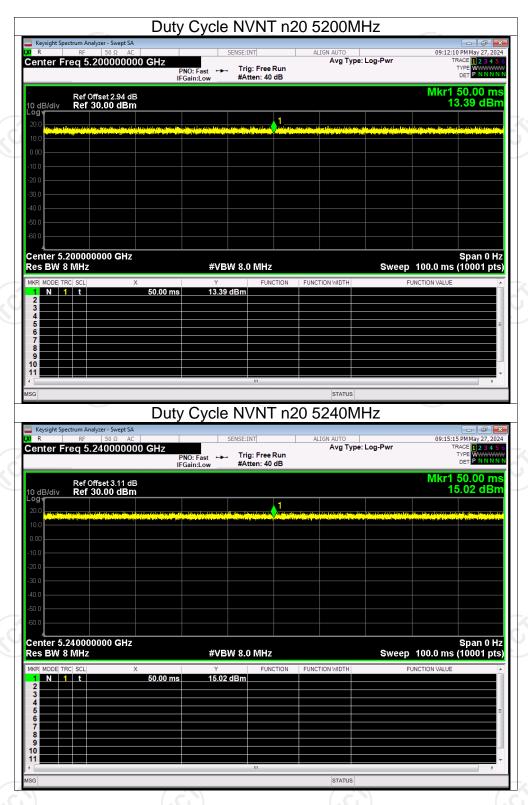

Appendix A: Test Result of Conducted Test

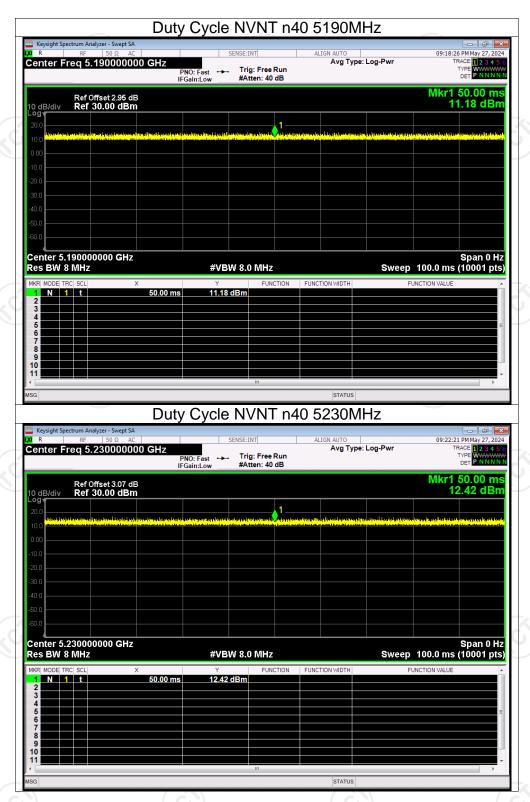
Duty Cycle

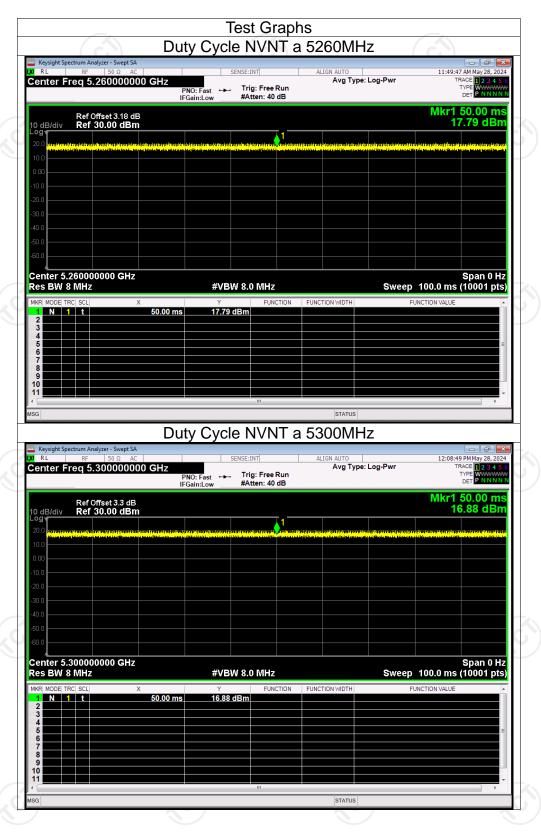
Duty Cycle									
Condition	Mode	Frequency (MHz)	Duty Cycle (%)						
NVNT	а	5180	100						
NVNT	а	5200	100						
NVNT	а	5240	100						
NVNT	n20	5180	100						
NVNT	n20	5200	100						
NVNT	n20	5240	100						
NVNT	n40	5190	100						
NVNT	n40	5230	100						
NVNT	а	5260	100						
NVNT	а	5300	100						
NVNT	а	5320	100						
NVNT	n20	5260	100						
NVNT	n20	5300	100						
NVNT	n20	5320	100						
NVNT	n40	5270	100						
NVNT	n40	5310	100						
NVNT	а	5500	100						
NVNT	а	5580	100						
NVNT	а	5600	100						
NVNT	а	5700	100						
NVNT	n20	5500	100						
NVNT	n20	5580	100						
NVNT	n20	5600	100						
NVNT	n20	5700	100						
NVNT	n40	5510	100						
NVNT	n40	5590	100						
NVNT	n40	5670	100						
NVNT	а	5745	100						
NVNT	а	5785	100						
NVNT	а	5825	100						
NVNT	n20	5745	100						
NVNT	n20	5785	100						
NVNT	n20	5825	100						
NVNT	n40	5755	100						
NVNT	n40	5795	100						



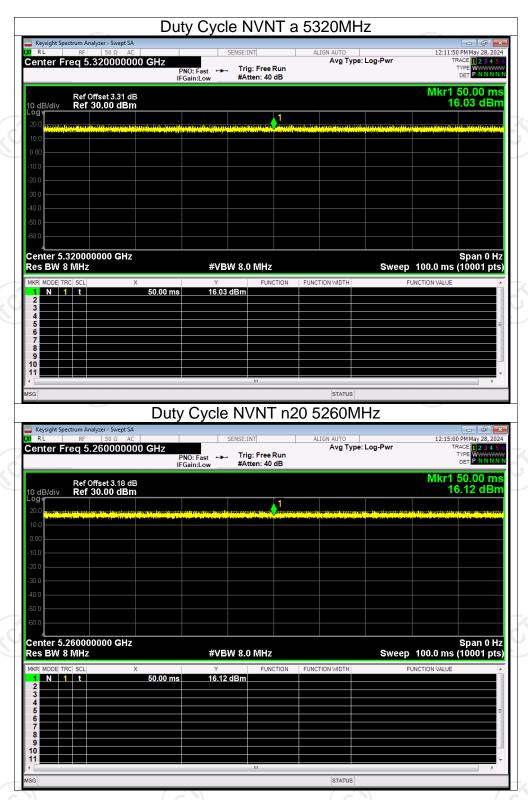


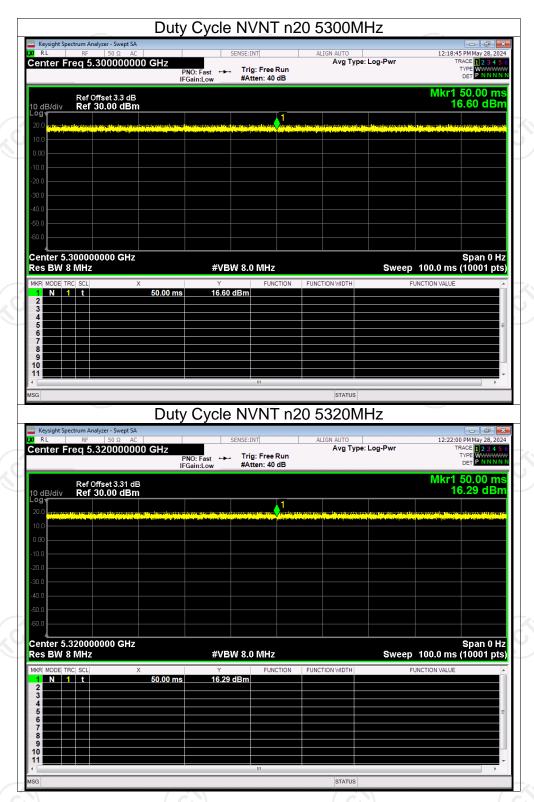


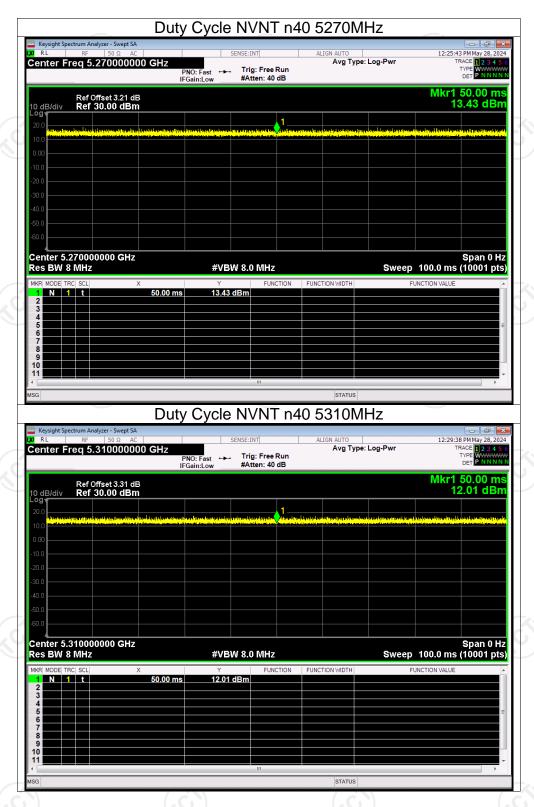


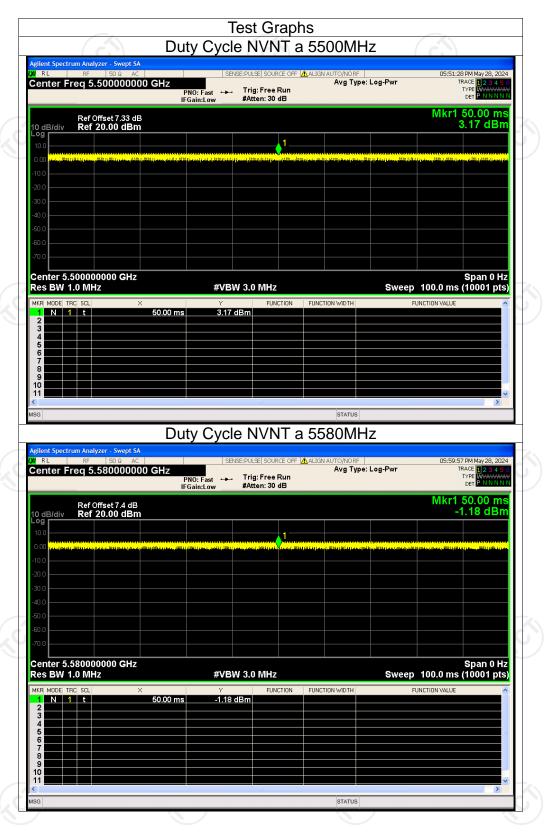


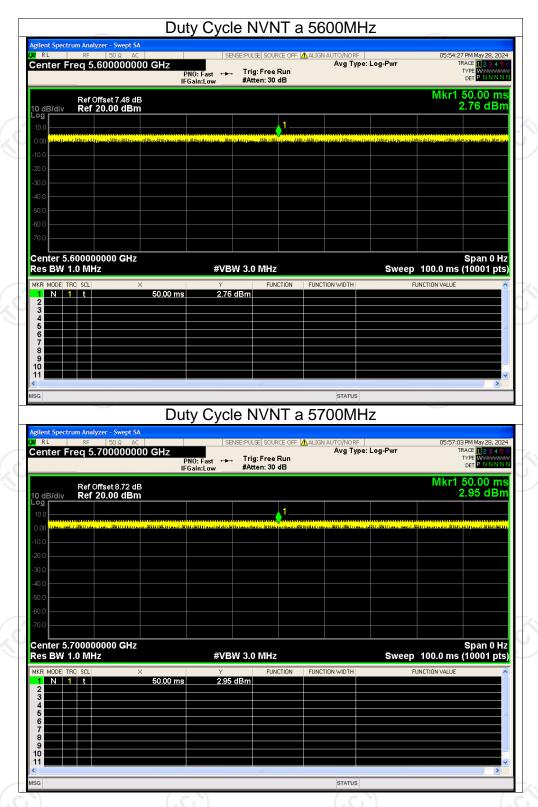


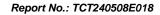


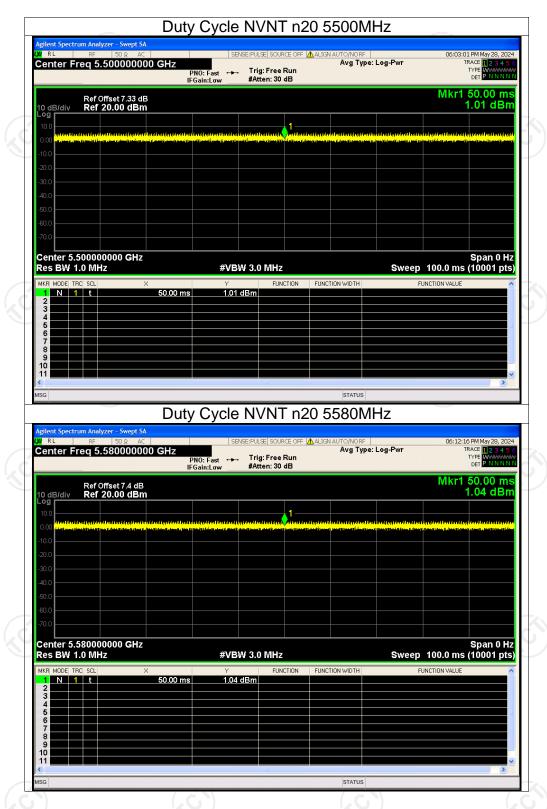


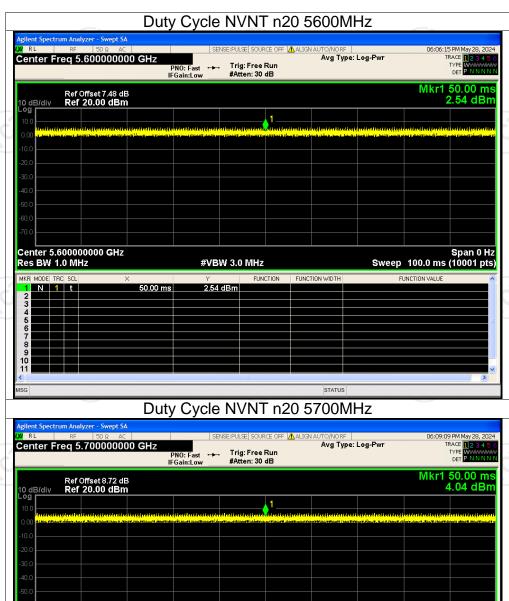


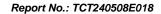


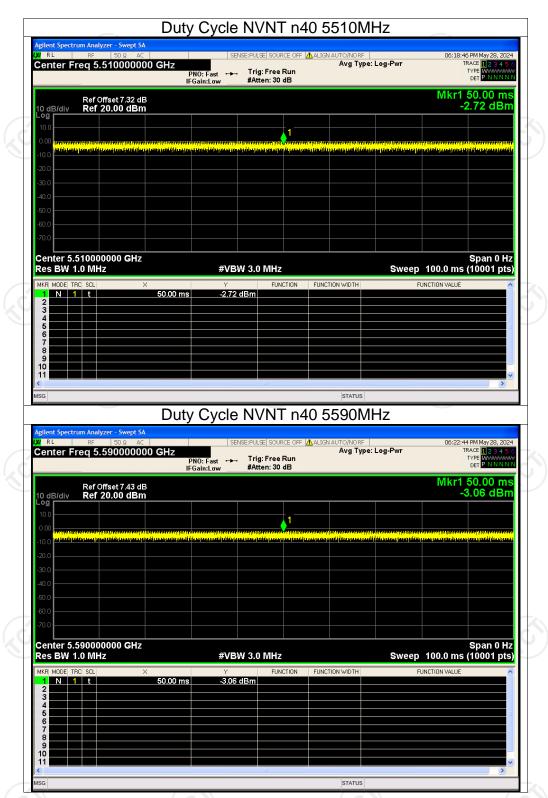


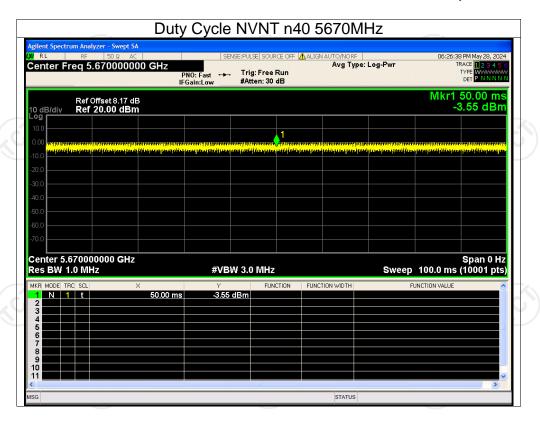


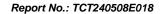


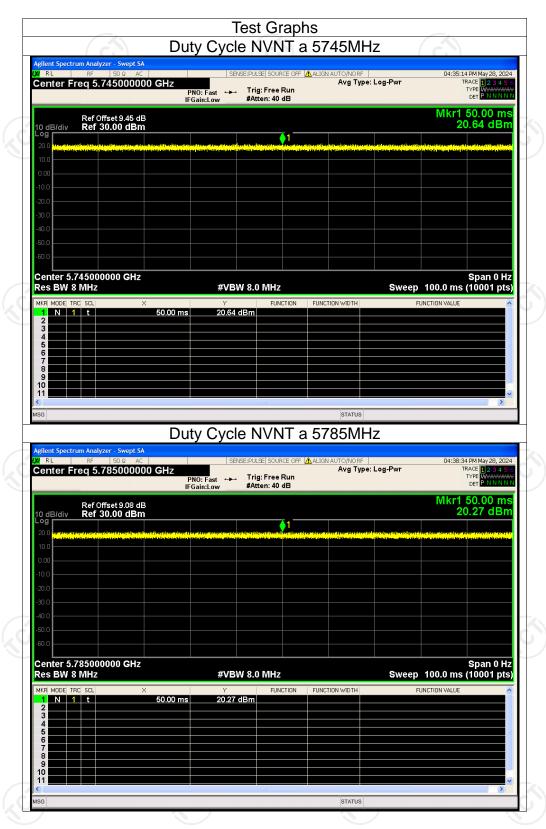


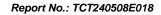


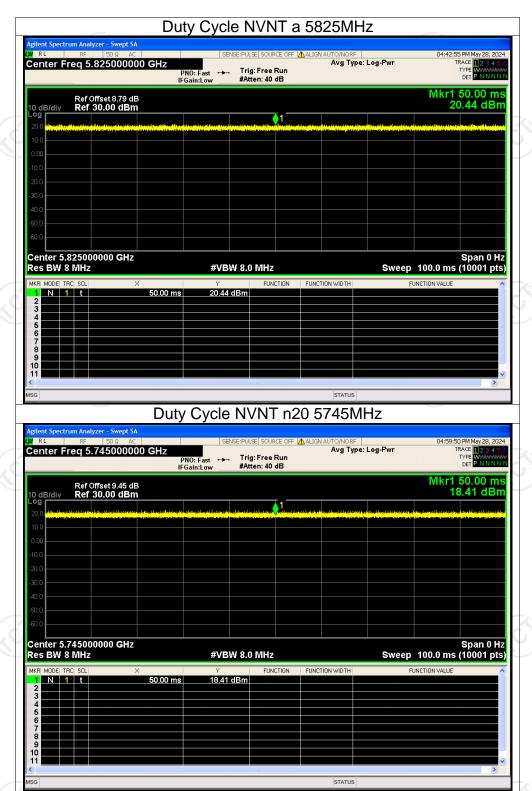


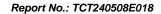


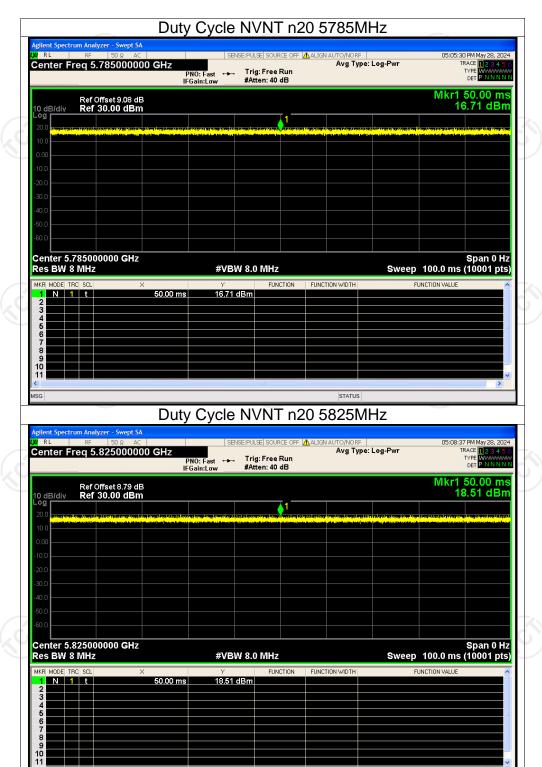


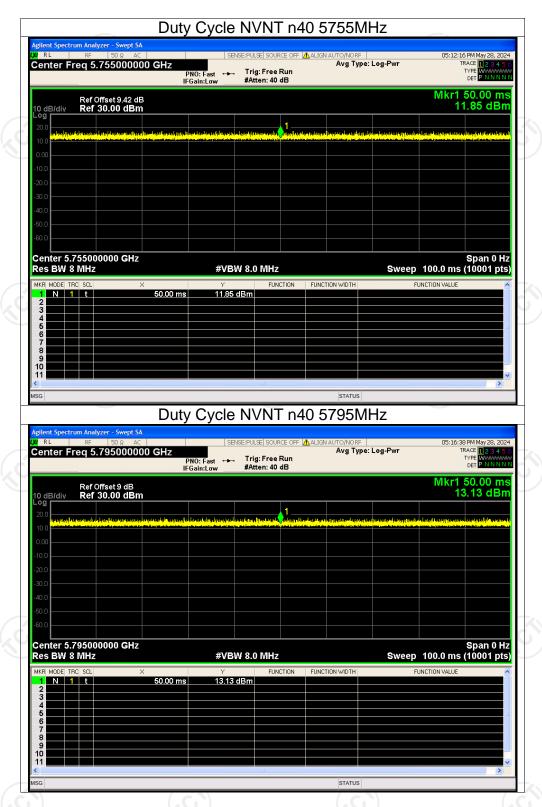


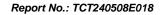












Maximum Conducted Output Power

	waximum Conducted Output Power											
Condition	Mode	Frequency	Conducted	Limit	Verdict							
NI) /NIT	_	(MHz)	Power (dBm)	(dBm)	D							
NVNT	а	5180	11.93	24	Pass							
NVNT	а	5200	12.48	24	Pass							
NVNT	a	5240	13.12	24	Pass							
NVNT	n20	5180	11.40	24	Pass							
NVNT	n20	5200	11.99	24	Pass							
NVNT	n20	5240	12.60	24	Pass							
NVNT	n40	5190	11.60	24	Pass							
NVNT	n40	5230	12.33	24	Pass							
NVNT	a	5260	13.68	24	Pass							
NVNT	а	5300	13.99	24	Pass							
NVNT	а	5320	13.26	24	Pass							
NVNT	n20	5260	13.48	24	Pass							
NVNT	n20	5300	13.99	24	Pass							
NVNT	n20	5320	13.29	24	Pass							
NVNT	n40	5270	13.96	24	Pass							
NVNT	n40	5310	13.69	24	Pass							
NVNT	а	5500	9.33	24	Pass							
NVNT	а	5580	8.45	24	Pass							
NVNT	а	5600	9.98	24	Pass							
NVNT	а	5700	10.51	24	Pass							
NVNT	n20	5500	9.19	24	Pass							
NVNT	n20	5580	8.59	24	Pass							
NVNT	n20	5600	9.63	24	Pass							
NVNT	n20	5700	10.49	24	Pass							
NVNT	n40	5510	10.30	24	Pass							
NVNT	n40	5590	8.80	24	Pass							
NVNT	n40	5670	10.50	24	Pass							
NVNT	а	5745	14.21	30	Pass							
NVNT	а	5785	13.45	30	Pass							
NVNT	а	5825	14.46	30	Pass							
NVNT	n20	5745	14.54	30	Pass							
NVNT	n20	5785	12.68	30	Pass							
NVNT	n20	5825	12.15	30	Pass							
NVNT	n40	5755	12.19	30	Pass							
NVNT	n40	5795	12.62	30	Pass							

