

FCC TEST REPORT

Client Name : Intuition Robotics

Address : 3 ha-yetsira street (floor 15) Ramat Gan Israel

Product Name : Tablet

Date : May 24, 2022

Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002

Contents

	neral Information	
	.1. Client Information	in _{ot} ,
	.2. Description of Device (EUT)	
	.3. Auxiliary Equipment Used During Test	An
	4. Operation State	
	.5. Environmental Conditions	
	.6. Test Equipment List	.Vo
	7. Measurement Uncertainty	
	.8. Description of Test Facility	bote
2. St	mmary of Test	X
	2.1. Summary of test result	
3. C	nducted Output Power Test	
	8.1. Test Standard and Limit	
	3.2. Test Setup	eΚ
	3.3. Test Procedure	.,,,,,
	8.4. Test Data	
4. Pe	ak-Average Ratio	Anb
	.1. Test Standard and Limit	
	-2. Test Setup	
	.3. Test Procedure	
	.4. Test Data	
5. M	dulation Characteristicdulation Characteristic	otel
6. 99	% Occupied Bandwidth & 26 dB Bandwidth	
	1. Test Standard and Limit	
	5.2. Test Setup	P
	5.2. Test Setup	
	6.4. Test Data	6
7. C	nducted Spurious Emission	
	7.1. Test Standard and Limit	
	'.2. Test Setup	doo,
	7.2. Test Setup	
	4. Test Data	bo
8. Ba	nd Edge 3.1. Test Standard and Limit	
	3.1. Test Standard and Limit	
	3.2. Test Setup	Yo.k
	3.3. Test Procedure	
	3.4 Test Data	
9. Ra	diated Spurious Emission	أعو
	0.1. Test Standard and Limit	
	0.2. Test Setup	

Page 2 of 27

Report No.: 18220WC10264305	FCC ID: 2A3XD-TAB-002	Page 3 of 27
9.3. Test Procedure	ok obotek Anbo, An	16
9.4. Test Data	n Albore Re	18
10. ERP and EIRP	, poly	20
10. ERP and EIRP 10.1. Test Standard and Limit	abotek Anbo Jr Francisk	20
10.2. Test Setup	hotek Anbors All sek	20
10.3. Test Procedure	American Andrew American	20
10.4. Test Data	Kugo, Wallage Williams	22
11. Frequency stability VS Temperature	e measurement	23
11.1 Test Standard and Limit		wotek Ambo' 23
11.2. Test Setup	Anbour Amborek	23
11.3. Test Procedure	Anbore Ar. stek amborer	23
11.4. Test Data	asurement	24
12.1. Test Standard and Limit	w otek Aupote, Mun	24
12.2. Test Setup	is Ann tolk shotel Anti-	24
12.3. Test Procedure	hotek Anbo. A. Atek	24
12.4. Test Data	botek Andrough Americk A	24
APPENDIX I TEST SETUP PHOTOG	GRAPH	25
APPENDIX II EXTERNAL PHOTOGI		
APPENDIX III INTERNAL PHOTOGI		26
APPENDIX IV - Appendix Test Data		tek Ambores Ame

Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002 Page 4 of 27

TEST REPORT

Applicant : Intuition Robotics

Manufacturer : Huafun International (China) Development Co., Ltd

Product Name : Tablet
Model No. : TAB-002

Trade Mark : N.A

Rating(s) : Input: DC 5V2A (with DC 3.7V, 4000mAh Battery inside)

Test Standard(s) : FCC PART 2, FCC Part 22(H), FCC Part 24(E)

ANSI C63.26-2015

Test Method(s) : KDB 971168 D01 Power Meas License Digital Systems v03r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the FCC Part 22, FCC Part 24 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt		Nov 30 2021

Date of Test: Nov. 30, 2021~Mar. 28, 2022

Prepared by:

W 7u Hong

(TuTu Hong)

An Lotek Amboten Ambo

Approved & Authorized Signer : (Kingkong Jin)

1. General Information

1.1. Client Information

Applicant	: Intuition Robotics
Address	3 ha-yetsira street (floor 15) Ramat Gan Israel
Manufacturer	Huafun International (China) Development Co., Ltd
Address	Room B548, Gangshen International center, Xinniu Road, Minzhi Street, Longhua New District, Shenzhen, China
Factory	: Huafun International (China) Development Co., Ltd
Address	Room B548, Gangshen International center, Xinniu Road, Minzhi Street, Longhua New District, Shenzhen, China

1.2. Description of Device (EUT)

Product Name	:	Tablet	Anbotek Anbotek Anbotek Anbotek
Model No.	:	TAB-002	Anbotek Anbotek Anbotek Anbotek
Trade Mark		N.A	ek Anbotek Anbotek Anbotek Anbote
Test Power Supply	:	DC 3.7V Battery inside	poter, Pupotek, Pupotek, Pupotek, Pup
Test Sample No.	:	1-2-1(Normal Sample)	, 1-2-2(Engineering Sample)
		Transmit Frequency: Receive Frequency:	FDD Band II: 1852.40MHz~1907.60MHz FDD Band V: 826.40MHz~846.60MHz FDD Band II: 1932.40MHz~1987.60MHz FDD Band V: 871.40MHz~891.60MHz
		Modulation Type	QPSK MOODEL MOODEL
Product Description	:	Power Class	Class 3
		Antenna Type	FPC antenna
		Antenna Gain(Peak):	FDD Band II: 0.8 dBi (Provided by customer) FDD Band V: 0.8 dBi (Provided by customer)
		Adapter	N.A. Anbotek Anbotek Anbotek Anbotek

Remark: 1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual. 2) This report is for WCDMA module.

Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002 Page 6 of 27

1.3. Auxiliary Equipment Used During Test

d	N.A.	:	h.	tek	Anbore	Ann	rek	anbotek	Anbo	hotek

1.4. Operation State

Test frequency list:

FDD E	Band II	FDD E	Band V	
Channel	Channel Frequency (MHz)		Frequency (MHz)	
9262	1852.40	4132	826.40	
9400	1880.00	4183	836.60	
9538	1907.60	4233	846.60	

Test mode:

Antenna port conducted and radiated test items were performed according to KDB 971168 D01 Power Meas. License Digital Systems v03 and ANSI C63.26-2015 with maximum output power.

Radiated measurements were performed with rotating EUT in different three orthogonal test planes to find the maximum emission.

Radiated emissions were investigated as following frequency range:

30 MHz to 10th harmonic for FDD Band II, Band V.

All modes and data rates and positions were investigated.

Test modes are chosen to be reported as the worst case configuration below:

Test modes							
Band	Radiated	Conducted					
FDD Band II	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link					
FDD Band V	■ RMC 12.2Kbps Link	■ RMC 12.2Kbps Link					

1.5. Environmental Conditions

Temperature range:	21-25℃					Ann
Humidity range:	40-75%	Motek	Aupor	hotek	Anboten	Aup
Pressure range:	86-106kPa	Anbotek	Anbo	ak abotek	Anbotes	Anbo

1.6. Test Equipment List

	Cot Equipment E	Arra C				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Spectrum Analysis	Agilent	E4407B	US39390582	Oct. 22, 2021	1 Year
2.	Preamplifier	SKET Electronic	BK1G18G30D	KD17503	Oct. 22, 2021	1 Year
3. 🖂	EMI Test Receiver	Rohde & Schwarz	ESPI3	101604	Oct. 22, 2021	1Year
4.	Double Ridged Horn Antenna	Instruments corporation	GTH-0118	351600	Oct. 22, 2021	2 Year
5.ek	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Oct. 22, 2021	2 Year
6.	Pre-amplifier	SONOMA	310N	186860	Oct. 22, 2021	1 Year
7. №	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	N/A orek	N/A
8.	MXA Spectrum Analysis	Agilent	N9020A	MY51170037	Oct. 22, 2021	1 Year
9.	MXG RF Vector Signal Generator	Agilent	N5182A	MY48180656	Oct. 22, 2021	1 Year
10.	DC Power Supply	LW	TPR-6420D	374470	Oct. 22, 2021	1 Year
11. ek	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ-KHWS80B	N/A	Oct. 22, 2021	1 Year
12.	Universal Radio Communication Tester	Rohde & Schwarz	CMU 200	117888	Oct. 22, 2021	1 Year
13.	Wideband Radio Communication Tester	Rohde & Schwarz	CMW 500	104209	Oct. 22, 2021	1 Year
14.	High-Pass Filter	CDKMV	ZHPF-BM1100 -4000-0730	B2015094550	Oct. 22, 2021	1 Year
15.	High-Pass Filter	CDKMV	ZHPF-M3.5 -18G-3834	1307006523	Oct. 22, 2021	1 Year
16.	4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW54063507	Oct. 22, 2021	1 Year
17.	4 Ch. Simultaneous Sampling 14 Bits 2 MS/s	Agilent	U2531A	TW54063513	Oct. 22, 2021	1 Year

1.7. Measurement Uncertainty

Maximum measurement uncertainty

Parameter	Uncertainty		
RF output power, conducted	±1,5 dB		
Power Spectral Density, conducted	±3 dB		
Unwanted Emissions, conducted	±3 dB		
All emissions, radiated	±6 dB		
Temperature	±1 °C		
Humidity	±5 %		
DC and low frequency voltages	±3 %		
Anbound Hotel Time nbote And otek	±5 %		
Confidence interval: 95%. (Confidence factor:k=2		

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

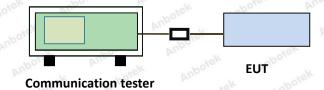
1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518102

2. Summary of Test

2.1. Summary of test result

FCC Rules	Description of Test	Result
Part 2.1046 Part 22.913(a) Part 24.232(c)	Conducted Output Power	Compliance
Part 24.232	Peak-Average Ratio	Compliance
§ 2.1047	Modulation Characteristics	N/A
Part 2.1049	99% Occupied Bandwidth & 26 dB Bandwidth	Compliance
Part 2.1051	ibo Anbotek Anbotek Anb	Anbotek
Part 22.917 Part 24.238	Conducted Spurious Emission	Compliance
Part 2.1051	And stek Anbotek Anbo. All	potek Aupote
Part 22.917	Band Edge	Compliance
Part 24.238	ek Anbore k Anborek Anboren	And tek
Part 2.1055(a)(1)(b)	hotek Anbote Ann otek anbotek	Anbo
Part 22.355	Frequency stability VS. temperature	Compliance
Part 24.235	Anbore Anbore	ek Anbotek
Part 2.1055(d)(1)(2)	Anbor Anborek Anborek Anb	tek abotek
Part 22.355	Frequency stability VS. voltage	Compliance
Part 24.235	ak abotek Anboo K All notek	Anboten Anb
Part 2.1046	k hotek Anbote And	abotek Anbr
Part 22.913(a)	ERP and EIRP	Compliance
Part 24.232(b)	Anbotek Anbo ak hotek Anbotes	Ann
Part 2.1053	botek Anbote An stek mot	an Aupo.
Part 22.917	Radiated Spurious Emission	Compliance
Part 24.238	And Lak abotek Anbote An	wotek Anbotek
25		-117

Note: Testing was performed by configuring EUT to maximum output power status, the declared output power class for different



3. Conducted Output Power Test

3.1. Test Standard and Limit

	Applicable Standard:	Part 2.1046	Anbotel	VUDO.	abotek	Aupor	worek.
v		Part 22.913(a)					And
		Part 24.232(c)	hotek	Anbore	Ant	anbotek	Anbo.
C	Limit:	N/A	D.U.	ek vupoje	Aupo	ok botel	K Anbo

3.2. Test Setup

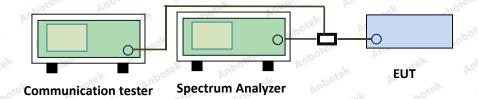
3.3. Test Procedure

- 1. The EUT output port was connected to communication tester.
- 2. Set EUT at maximum power through communication tester.
- 3. Select lowest, middle, and highest channels for each band and different modulation.
- 4. Measure the maximum burst average power.

3.4. Test Data

Pass

Please refer to Appendix A of the Appendix Test Data.


Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002 Page 11 of 27

4. Peak-Average Ratio

4.1. Test Standard and Limit

Applicable Standard:	Part 24.232	Anboten	Anbo	abotek	Vupore or	Pur Potek
Limit:	13dB	abotek	Aupo.	hotek	Anbore	Vur.

4.2. Test Setup

4.3. Test Procedure


According with KDB 971168 D01 Section 5.7:

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter.
- 2. Set EUT in maximum power output.
- 3. Center Frequency = Carrier frequency, RBW > Emission bandwidth of signal.
- 4. The signal analyzer was set to collect one million samples to generate the CCDF curve.
- 5. The measurement interval was set depending on the type of signal analyzed.
 - i. For continuous signals (>98% duty cycle), the measurement interval was set to 1ms.
 - ii. For burst transmissions, the spectrum analyzer is set to use an internal "RF Burst" trigger that is synced with an incoming pulse and the measurement interval is set to less than the duration of the "on time" of one burst to ensure that energy is only captured during a time in which the transmitter is operating at maximum power
- 6. Record the maximum PAPR level associated with a probability of 0.1%.

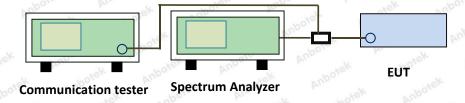
4.4. Test Data

Pass

Please refer to Appendix B of the Appendix Test Data.

5. Modulation Characteristic

According to FCC § 2.1047(d), Part 22H, Part 24E there is no specific requirement for digital modulation, therefore modulation characteristic is not presented.


Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002 Page 13 of 27

6. 99% Occupied Bandwidth & 26 dB Bandwidth

6.1. Test Standard and Limit

Applicable Standard:	Part 2.1049	Anbote	Pup.	abotek	Anbo.	hotek hotek
Limit:	N/A	anbotek	Anbo	Potek	Anbore	YU.

6.2. Test Setup

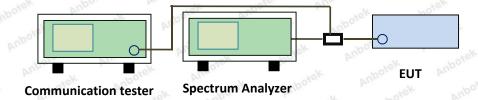
6.3. Test Procedure

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter.
- 2. Set EUT in maximum power output.
- Spectrum analyzer setting as follow: Center Frequency= Carrier frequency, RBW=1% to 5% of anticipated OBW, VBW= 3 * RBW, Detector=Peak, Trace maximum hold.
- 4. Record the value of 99% Occupied bandwidth and -26dB bandwidth.

6.4. Test Data

Pass

Please refer to Appendix C of the Appendix Test Data.



7. Conducted Spurious Emission

7.1. Test Standard and Limit

Applicable Standard:	Part 2.1051	Anbote	Aug	abotek	Aupo,	hotek .
	Part 22.917					
	Part 24.238					
Limit:	Part 24.238 an the authorized transmitting po	operating freq	uency ranges	must be atter	uated below	
	The specification (P) by at least 4 0.001 W) to -13 and relative to dBm) the mining this way a trans	43 + 10 log (P 3 dBm. At 1 W a 30 dBm (1 W num attenuatio) dB, translate the specified V) carrier beco on is 13 dB, wh	s in the releva minimum atte mes a limit of nich again yiel	ant power ran nuation beco -13 dBm. At lds a limit of -	ge (1 to mes 43 dB 0.001 W (0 13 dBm. In
	carried out.		Her Anbo			

7.2. Test Setup

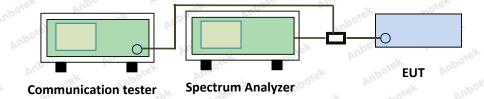
7.3. Test Procedure

- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter.
- 2. Set EUT in maximum power output.
- Spectrum analyzer setting as follow:
 Below 1GHz, RBW=100KHz, VBW = 300KHz, Detector=Peak, Sweep time= Auto
 Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peak, Sweep time= Auto
 Scan frequency range up to 10th harmonic.
- 4. Record the test plot.

7.4. Test Data

Pass

Please refer to Appendix E of the Appendix Test Data.



8. Band Edge

8.1. Test Standard and Limit

O'U.	and the second are the second and the second and the second and the second are th
Applicable Standard:	Part 2.1051
	Part 22.917
	Part 24.238
Limit:	Part 24.238 and Part 22.917 specify that the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
	The specification that emissions shall be attenuated below the transmitter power (P) by at least 43 + 10 log (P) dB, translates in the relevant power range (1 to 0.001 W) to -13 dBm. At 1 W the specified minimum attenuation becomes 43 dB and relative to a 30 dBm (1 W) carrier becomes a limit of -13 dBm. At 0.001 W (0 dBm) the minimum attenuation is 13 dB, which again yields a limit of -13 dBm. In this way a translation of the specification from relative to absolute terms is carried out.

8.2. Test Setup

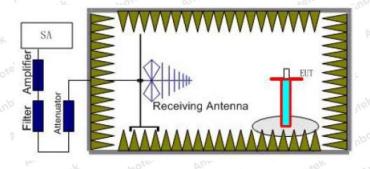
8.3. Test Procedure

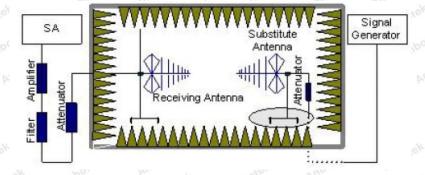
- 1. The EUT was connected to the spectrum analyzer and communication tester via a power splitter.
- 2. Set EUT in maximum power output.
- 3. The band edges of low and high channels were measured.
- Spectrum analyzer setting as follow:
 RBW=3KHz, VBW = 10KHz, Sweep time= Auto
- 5. Record the test plot.

8.4. Test Data

Pass

Please refer to Appendix D of the Appendix Test Data.


Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002 Page 16 of 27


9. Radiated Spurious Emission

9.1. Test Standard and Limit

Applicable Standard:	Part 2.1053	anbotell	Augo	botek	Anbore	in otek
	Part 22.917					Anbe
	Part 24.238	Ai.	Anboren	And	anbotek	Anbo.
Limit:	-13dBm	And	ek noboje	k Aupo	ok hotel	k Anbo

9.2. Test Setup

9.3. Test Procedure

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002 Page 17 of 27

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- 6. Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
- 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

9.4. Test Data


Pass

Note: Worst case at WCDMA Band II/ WCDMA Band V

			WCDMA	Band II			
	Fraguanay		Spurious	Emission		Limit	
Channel	Frequency (MHz)	Polarization	reading (dBm)	factor (dB)	Level (dBm)	(dBm)	Result
rek Ant	3704.80	Vertical	-48.83	13.26	-35.57	Auporg	work.
	5557.20	V	-55.85	16.62	-39.23	<-13.00	PASS
	7409.60	Ans Viek	-58.18	17.84	-40.34	Anbotein	
9262	3704.80	Horizontal	-50.38	13.26	-37.12	ek Anbote	Ant
Anbore	5557.20	Huppe	-57.31	16.62	-40.69	<-13.00	PASS
	7409.60	H Anbo	-59.42	17.84	-41.58	notek of	
Aug	3760.00	Vertical	-47.67	13.27	-34.40	<-13.00	PASS
	5640.00	Viodo	-54.62	16.49	-38.13		
nbotek	7520.00	Viel	-57.27	17.96	-39.31		
9400	3760.00	Horizontal	-48.97	13.27	-35.70	Anbo	ok pa
	5640.00	H hote	-56.03	16.49	-39.54	<-13.00	PASS
	7520.00	H	-58.44	17.96	-40.48	abotek A	
otek p	3815.20	Vertical	-46.00	13.59	-32.41	- abotek	Aupore
	5722.80	AnboreV	-53.01	16.69	-36.32	<-13.00	PASS
upotek	7630.40	AntoVier	-55.54	17.95	-37.59	k hotek	
9538	3815.20	Horizontal	-48.59	13.59	-35.00	rk ro	ek a
Anboten	5722.80	ek H _{Anbote}	-55.57	16.69	-38.88	<-13.00	PASS
	7630.40	ido. H vas	-57.87	17.95	-39.92	Aposen An	

Remark:

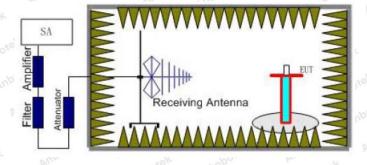
- 1. The emission behaviour belongs to narrowband spurious emission.
- 2. The emission levels of not record in the report are very lower than the limit and not show in test report.

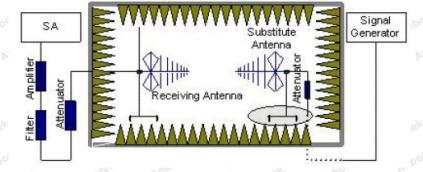
Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002 Page 19 of 27

			WCDMA	Band V					
	Frequency		Spurious	Emission		Limit			
Channel	(MHz)	Polarization	reading (dBm)	factor (dB)	Level (dBm)	(dBm)	Result		
Anboten	1652.80	Vertical	-38.55	5.62	-32.93	Aupa	ek nb		
	2479.20	v V botek	-46.83	9.32	-37.51	<-13.00	PASS		
4132	3305.60	V V	-52.78	12.69	-40.09	botek An			
4132 Kel ^k	1652.80	Horizontal	-40.14	5.62	-34.52	anbotek	Aupor		
	2479.20	Inpose H A	-48.32	9.32	-39.00	<-13.00	PASS		
	3305.60	Anbore	-54.18	12.69	-41.49	Al abotek			
Aupo, ok	1673.20	Vertical	-39.30	7.69	-31.61	ryc hope	PASS		
	2509.80	V _{inbotel}	-45.73	9.46	-36.27	<-13.00			
4400	3346.40	tek V Anboli	-51.19	12.26	-38.93	Pose, Aur			
4183	1673.20	Horizontal	-41.12	7.69	-33.43	Aupole	Yup- Olek		
	2509.80	W. H.	-47.43	9.46	-37.97	<-13.00	PASS		
	3346.40	Hupo, H'ek	-52.78	12.26	-40.52	Anbotek			
Anbotek	1693.20	Vertical	-38.32	8.26	-30.06	k Anbore	Vupe.		
	2539.80	N _{/porc}	-44.46	9.65	-34.81	<-13.00	PASS		
Anbo.	3386.40	lek A Vupou	-49.97	12.41	-37.56	o. W.			
4233	1693.20	Horizontal	-40.40	8.26	-32.14	Vupor b	Anbotek		
	2539.80	Hotor	-46.41	9.65	-36.76	<-13.00	PASS		
	3386.40	Hek	-51.79	12.41	-39.38	Anbore.			

Remark:

- 3. The emission behaviour belongs to narrowband spurious emission.
- 4. The emission levels of not record in the report are very lower than the limit and not show in test report.




10. ERP and EIRP

10.1. Test Standard and Limit

	DV. FO.		. W.	to U	100	360	-07
	Applicable Standard:	Part 2.1046					hotek .
		Part 22.913(a)					YUR TO
		Part 24.232(b)	, hotek	Anbore	And	anbotek	Anbo.
C	Limit:	WCDMA Band II:	2W (33dBm)	EIRP NOON	Anbo	ok hot	ek Anb
		WCDMA Band V:	7W (38.45dE	Bm) ERP	otek Anbo	Ame	otek o

10.2. Test Setup

10.3. Test Procedure

- 1. Place the EUT in the center of the turntable.
 - a) For radiated emissions measurements performed at frequencies less than or equal to 1 GHz, the EUT shall be placed on a RF-transparent table at a nominal height of 80 cm above the reference ground plane
 - b) For radiated measurements performed at frequencies above 1 GHz, the EUT shall be placed on an RF transparent table at a nominal height of 1.5 m above the ground plane.
- Unless the EUT uses an integral antenna, the EUT shall be terminated with a non-radiating transmitter load. In cases where the EUT uses an adjustable antenna, the antenna shall be adjusted through typical positions and lengths to maximize emissions levels.
- 3. The EUT shall be tested while operating on the frequency per manufacturer specification. Set the transmitter to operate in continuous transmit mode.
- 4. Receiver or Spectrum set as follow:

Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002 Page 21 of 27

Below 1GHz, RBW=100kHz, VBW=300kHz, Detector=Peak, Sweep time=Auto Above 1GHz, RBW=1MHz, VBW=3MHz, Detector=Peck, Sweep time=Auto

- 5. Each emission under consideration shall be evaluated:
 - a) Raise and lower the measurement antenna from 1 m to 4 m, as necessary to enable detection of the maximum emission amplitude relative to measurement antenna height.
 - b) Rotate the EUT through 360° to determine the maximum emission level relative to the axial position.
 - c) Return the turntable to the azimuth where the highest emission amplitude level was observed.
 - d) Vary the measurement antenna height again through 1 m to 4 m again to find the height associated with the maximum emission amplitude.
 - e) Record the measured emission amplitude level and frequency
- Repeat step 5 for each emission frequency with the measurement antenna oriented in both the horizontal and vertical polarizations to determine the orientation that gives the maximum emissions amplitude.
- Set-up the substitution measurement with the reference point of the substitution antenna located as near as possible to where the center of the EUT radiating element was located during the initial EUT measurement.
- 8. Maintain the previous measurement instrument settings and test set-up, with the exception that the EUT is removed and replaced by the substitution antenna.
- 9. Connect a signal generator to the substitution antenna; locate the signal generator so as to minimize any potential influences on the measurement results. Set the signal generator to the frequency where emissions are detected, and set an output power level such that the radiated signal can be detected by the measurement instrument, with sufficient dynamic range relative to the noise floor.
- 10. For each emission that was detected and measured in the initial test
 - a) Vary the measurement antenna height between 1 m to 4 m to maximize the received (measured) signal amplitude.
 - b) Adjust the signal generator output power level until the amplitude detected by the measurement instrument equals the amplitude level of the emission previously measured directly in step 5 and step 6.
 - c) Record the output power level of the signal generator when equivalence is achieved in step b).
- 11. Repeat step 8 through step 10 with the measurement antenna oriented in the opposite polarization.
 - 12. Calculate the emission power in dBm referenced to a half-wave dipole using the following equation:

Pe = Ps(dBm) - cable loss (dB) + antenna gain (dBd)

where

Pe = equivalent emission power in dBm

Ps = source (signal generator) power in dBm

NOTE—dBd refers to the measured antenna gain in decibels relative to a half-wave dipole.

13. Correct the antenna gain of the substitution antenna if necessary to reference the emission power to a half-wave dipole. When using measurement antennas with the gain specified in dBi, the equivalent dipole-referenced gain can be determined from:

gain (dBd) = gain (dBi) - 2.15 dB.

If necessary, the antenna gain can be calculated from calibrated antenna factor information

14. Provide the complete measurement results as a part of the test report.

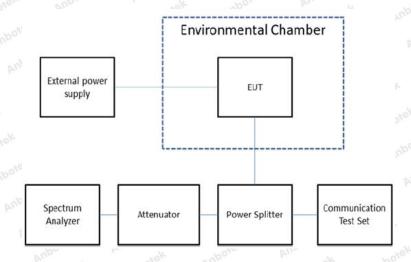
Shenzhen Anbotek Compliance Laboratory Limited

10.4. Test Data

Pass

Mode	Channel	EIRP (dBm)	Limit (dBm)	Result	
Mode	Channel	Vertical	Horizontal	Limit (dbin)	Result	
Anbore	9262	22.87	21.22	<33	hotek Anbo	
WCDMA Band II	9400	23.36	19.74		PASS	
otek Anboten	9538 22.47		20.84	ak Anboten	Anb	

Mada	Champal	ERP (dBm)	Limit (dDas)	Result	
Mode	Channel	Vertical	Horizontal	Limit (dBm)		
k Aupora	4132	20.85	19.78	Anbort	hotek An	
WCDMA Band V	4183	21.20	18.44	<38.45	PASS	
abotek Anbote	4233	20.06	19.33	otek Anboten	And	



11. Frequency stability VS Temperature measurement

11.1. Test Standard and Limit

	Applicable Standard:	Part 2.1055(a)(1)(b)	poter	Augo	abotek	Aupor	Pu, Potek
		Part 22.355					And
		Part 24.235	Pi. Potek	Anbore	Anti	anbotek	Anbo.
00	Limit:	2.5ppm	Vier	ek Anbor	Aupo.	ok hote	anb

11.2. Test Setup

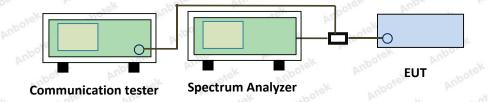

11.3. Test Procedure

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber.
- 4. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency.
- Repeat step 4 measure with 10°C increased per stage until the highest temperature of +50°C reached.

11.4. Test Data

Pass

Please refer to Appendix G of the Appendix Test Data


Report No.: 18220WC10264305 FCC ID: 2A3XD-TAB-002 Page 24 of 27

12. Frequency stability VS Voltage measurement

12.1. Test Standard and Limit

	Applicable Standard:	Part 2.1055(d)(1)(2)	bye. b	up. rek	abotek	Vupo,	potek.
		Part 22.355					And
		Part 24.235	hotek	Anbore	And	anbotek	Aupo.
00	Limit:	2.5ppm	Anz	- Anborel	Anbo	ok -hote	K Anb

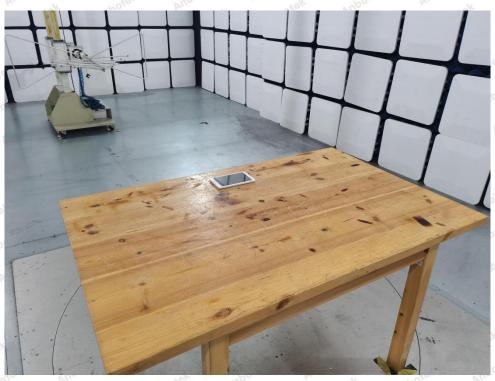
12.2. Test Setup

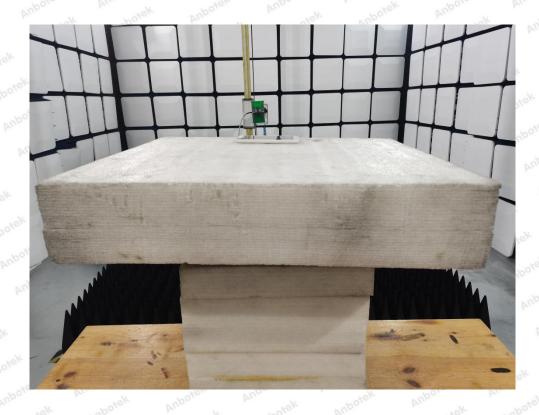
12.3. Test Procedure

- 1. The equipment under test was connected to an external DC power supply and input rated voltage.
- 2. The EUT output port was connected to communication tester.
- 3. The EUT was placed inside the temperature chamber at 25°C.
- 4. The power supply voltage to the EUT was varied ±15% of the nominal value measured at the input to the EUT.
- 5. Record the maximum frequency change.

12.4. Test Data

Pass


Please refer to Appendix F of the Appendix Test Data.



APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Radiation Emission Test

Shenzhen Anbotek Compliance Laboratory Limited

APPENDIX II -- EXTERNAL PHOTOGRAPH

Reference to the test report 18220WC10264301.

APPENDIX III -- INTERNAL PHOTOGRAPH

Reference to the test report 18220WC10264301.

APPENDIX IV – Appendix Test Data

