

RF TEST REPORT

For

ShenZhen Powerful Photoelectron Co., Ltd Product Name: Projector

Test Model(s): X5

Report Reference No. : DACE250815004RL001

FCC ID : 2A3DJ-X5

Applicant's Name : ShenZhen Powerful Photoelectron Co., Ltd

Address 01 5/F, 3/F H2 Building, Hongfa Science Park Tangtou Community,

Shiyan Street, Baoan District Shenzhen, China

Testing Laboratory : Shenzhen DACE Testing Technology Co., Ltd.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park,

Address : Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen,

Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : August 15, 2025

Date of Test : August 15, 2025 to August 23, 2025

Data of Issue : August 23, 2025

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen DACE Testing Technology Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 62

Apply for company information

Applicant's Name	:	ShenZhen Powerful Photoelectron Co., Ltd
Address	:	01 5/F, 3/F H2 Building,Hongfa Science Park Tangtou Community, Shiyan Street,Baoan District Shenzhen,China
Product Name	:	Projector
Test Model(s)	i	X5
Series Model(s)		Q5,Q5-M7, V7,X35,V6, T5, Q9
Test Specification Standard(s)	7	47 CFR Part 15.247

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by: Supervised by:

Keren Huang & Long

Keren Huang / Test Engineer Ben Tang / Project Engineer

August 23, 2025 August 23, 2025

Machael Mo / Manager

Approved by:

August 23, 2025

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

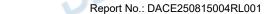
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 62

DAG

Report No.: DACE250815004RL001

Revision History Of Report

Version Description		on Description REPORT No.	
V1.0	Original	DACE250815004RL001	August 23, 2025
	1		


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 3 of 62

DAG

V1.0

CONTENTS

1 TEST SUMMARY	6
1.1 Test Standards	
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	7
2.1 CLIENT INFORMATION	7
2.2 DESCRIPTION OF DEVICE (EUT)	7
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.7 IDENTIFICATION OF TESTING LABORATORY	11
2.8 Announcement	11
3 EVALUATION RESULTS (EVALUATION)	12
3.1 ANTENNA REQUIREMENT	12
3.1.1 Conclusion:	12
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	13
4.1 CONDUCTED EMISSION AT AC POWER LINE	
4.1.1 E.U.T. Operation:	13
4.1.2 Test Setup Diagram:	13
4.1.3 Test Data:	
4.2 6DB BANDWIDTH	
4.2.1 E.U.T. Operation:	16
4.2.2 Test Setup Diagram:	16
4.2.3 Test Data:	
4.3 MAXIMUM CONDUCTED OUTPUT POWER	
4.3.1 E.U.T. Operation:	
4.3.2 Test Setup Diagram:	
4.3.3 Test Data:	
4.4 POWER SPECTRAL DENSITY	19
4.4.1 E.U.T. Operation:	19
4.4.2 Test Setup Diagram:	
4.5 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.5.1 E.U.T. Operation:	
4.5.3 Test Data:	
4.0.3 Test Data	
4.6.1 E.U.T. Operation:	
4.6.2 Test Setup Diagram:	
4.6.3 Test Data:	
4.7 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.7.1 E.U.T. Operation:	
4.7.2 Test Data:	
4.8 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	
4.8.1 E.U.T. Operation:	
4.8.2 Test Data:	

DAG

V1.0

5 TEST SETUP PHOTOS	36
6 PHOTOS OF THE EUT	
APPENDIX	
16DB BANDWIDTH	48
2. 99% OCCUPIED BANDWIDTH	
3. Duty Cycle	52
4. Peak Output Power	54
5. Power Spectral Density	56
6. BANDEDGE	58
7. Spurious Emission	60

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 62

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
6dB Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	47 CFR Part 15.247	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d)	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 62

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name: ShenZhen Powerful Photoelectron Co., Ltd

Address : 01 5/F, 3/F H2 Building, Hongfa Science Park Tangtou Community, Shiyan

Street, Baoan District Shenzhen, China

Manufacturer : ShenZhen Powerful Photoelectron Co., Ltd

Address : 01 5/F, 3/F H2 Building, Hongfa Science Park Tangtou Community, Shiyan

Street, Baoan District Shenzhen, China

2.2 Description of Device (EUT)

Product Name:	Projector
Model/Type reference:	X5
Series Model:	Q5,Q5-M7, V7,X35,V6, T5, Q9
Model Difference:	The product has many models, only the model name and color is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	N/A
Power Supply:	AC100-240V~ 50/60Hz
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	PCB
Antenna Gain:	0.58dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark:The Antenna Gain is supplied by the customer.DACE is not responsible for This data and the related calculations associated with it)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402 MHz	11	2422 MHz	21	2442 MHz	31	2462 MHz
2	2404 MHz	12	2424 MHz	22	2444 MHz	32	2464 MHz
3	2406 MHz	13	2426 MHz	23	2446 MHz	33	2466 MHz
4	2408 MHz	14	2428 MHz	24	2448 MHz	34	2468 MHz
5	2410 MHz	15	2430 MHz	25	2450 MHz	35	2470 MHz
6	2412 MHz	16	2432 MHz	26	2452 MHz	36	2472 MHz
7	2414 MHz	17	2434 MHz	27	2454 MHz	37	2474 MHz
8	2416 MHz	18	2436 MHz	28	2456 MHz	38	2476 MHz
9	2418 MHz	19	2438 MHz	29	2458 MHz	39	2478 MHz
10	2420 MHz	20	2440 MHz	30	2460 MHz	40	2480 MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 7 of 62

below:

Test shannel	Frequency (MHz)
Test channel	BLE
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz

Report No.: DACE250815004RL001

2.3 Description of Test Modes

No	Title	Description
TM1	Lowest channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM2	Middle channel	Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.
TM3 Highest channel		Keep the EUT connect to AC power line and works in continuously transmitting mode with GFSK modulation.

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
PC	HP	TPC-W032-SF	N/A

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613 Page 8 of 62 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

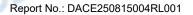
2.5 Equipments Used During The Test

Conducted Emission at AC power line						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	/	2025-04-23	2026-04-22	
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	2025-04-18	2026-04-17	
Cable	SCHWARZ BECK	101	1	2025-04-18	2026-04-17	
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05	
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/	
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	1164.6607K03 -102109-MH	2025-04-25	2026-04-24	
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2025-04-18	2026-04-17	
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2025-04-18	2026-04-17	
Pulse Limiter	CYBERTEK	EM5010A	1	2024-09-27	2025-09-26	
EMI test software	EZ -EMC	EZ	V1.1.42		1	

6dB Bandwidth

Maximum Conducted Output Power

Power Spectral Density


Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	1	1
Power divider	MIDEWEST	PWD-2533	SMA-79	2025-04-18	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	1	1
Wideband radio communication tester	R&S	CMW500	113410	2025-04-25	2026-04-24
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 9 of 62 E-mail: service@dace-lab.com

Web: http://www.dace-lab.com

Tel: +86-755-23010613

Band edge emissions (Radiated)
Emissions in frequency bands (below 1GHz)
Emissions in frequency bands (above 1GHz)

Emissions in requericy bands (above 1912)										
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date					
EMI Test software	Farad EZ -EMC		V1.1.42	1	/					
Positioning Controller	MF	MF-7802	61	1	1					
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2024-04-26	2027-04-25					
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2024-04-26	2027-04-25					
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2025-04-28	2026-04-27					
Cable(LF)#2	Schwarzbeck	1	1	2024-12-19	2025-12-18					
Cable(LF)#1	Schwarzbeck	1	1	2024-12-19	2025-12-18					
Cable(HF)#2	Cable(HF)#2 Schwarzbeck		96250	2025-04-25	2026-04-24					
Cable(HF)#1	able(HF)#1 Schwarzbeck			2025-04-25	2026-04-24					
Power amplifier(LF)	Schwarzbeck BBV9743		9743-151	2025-04-29	2026-04-28					
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2025-04-29	2026-04-28					
Wideband radio communication tester	R&S	CMW500	113410	2025-04-25	2026-04-24					
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2025-04-18	2026-04-17					
Test Receiver	R&S	ESCI 3	1166.5950K03 -101431-Jq	2025-04-18	2026-04-17					
Horn Antenna	Sunol Sciences	DRH-118	A091114	2025-04-21	2026-04-20					
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27					

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 62

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.					
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China					
Phone Number:	+86-13267178997					
Fax Number:	86-755-29113252					
Designation Number:	CN1342					
Test Firm Registration Number:	778666					
A2LA Certificate Number:	6270.01					

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 62

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

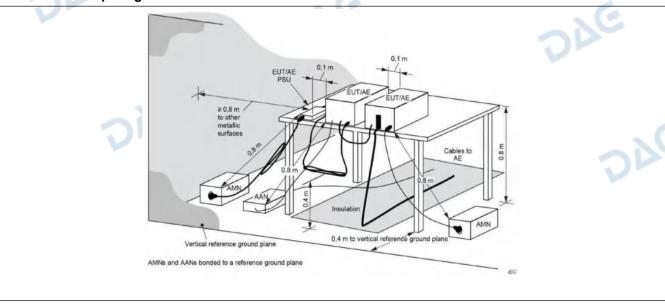
Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 62

4 Radio Spectrum Matter Test Results (RF)


4.1 Conducted Emission at AC power line

Test Requirement: Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto t AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 µH/50 ohms line impedance stabilization network (LISN).									
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)								
		Quasi-peak	Average						
	0.15-0.5	66 to 56*	56 to 46*						
	0.5-5	56	46						
	5-30	60	50						
\	*Decreases with the logarithm of the	frequency.							
Test Method:	ANSI C63.10-2013 section 6.2								
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices								

4.1.1 E.U.T. Operation:

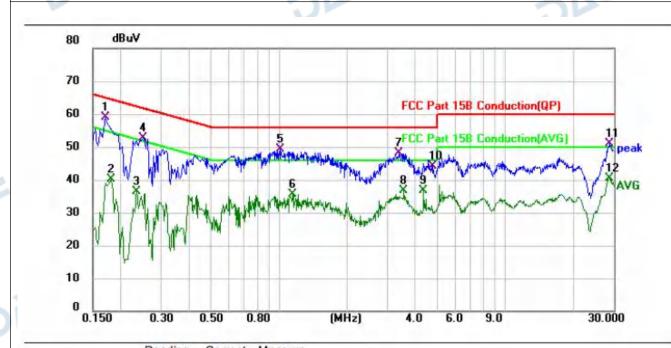
Operating Environment:										
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa				
Pretest mode: T										
Final test mode:										

4.1.2 Test Setup Diagram:

Web: http://www.dace-lab.com

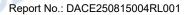
Tel: +86-755-23010613

E-mail: service@dace-lab.com

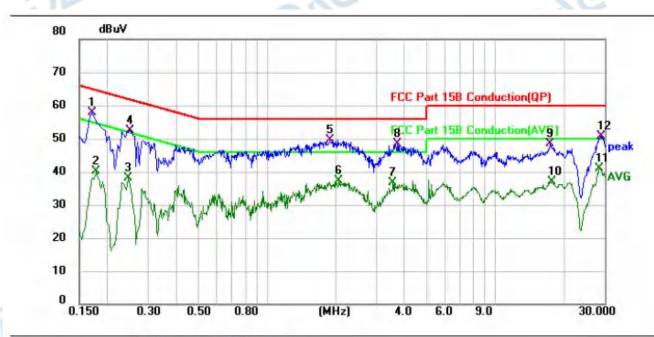

Page 13 of 62

4.1.3 Test Data:

TM1 / Line: Line / Band: 2400-2483.5 MHz / BW: 1 / CH: L


V1.0

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1700	48.86	10.10	58.96	64.96	-6.00	QP	
2		0.1819	30.12	10.10	40.22	54.40	-14.18	AVG	
3		0.2340	26.42	10.09	36.51	52.31	-15.80	AVG	
4		0.2500	42.67	10.09	52.76	61.76	-9.00	QP	
5		1.0180	39.25	10.11	49.36	56.00	-6.64	QP	
6		1.1500	25.52	10.10	35.62	46.00	-10.38	AVG	
7		3.3820	37.95	10.10	48.05	56.00	-7.95	QP	
8		3.5500	26.53	10.11	36.64	46.00	-9.36	AVG	
9		4.3420	26.56	10.17	36.73	46.00	-9.27	AVG	
10		4.7740	33.95	10.18	44.13	56.00	-11.87	QP	
11		28.7660	40.08	11.04	51.12	60.00	-8.88	QP	
12		28.7660	29.53	11.04	40.57	50.00	-9.43	AVG	


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

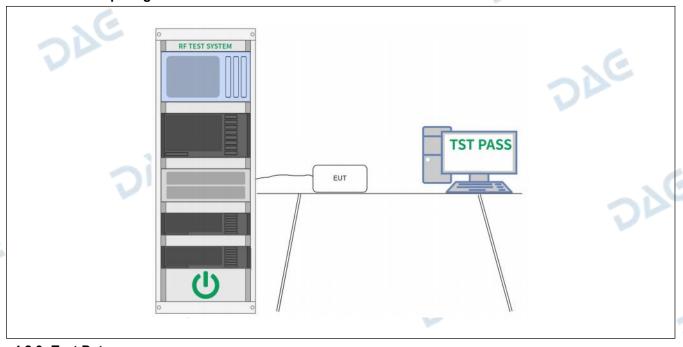
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 62

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1700	47.89	10.08	57.97	64.96	-6.99	QP	
2		0.1780	30.03	10.08	40.11	54.58	-14.47	AVG	
3		0.2460	28.04	10.08	38.12	51.89	-13.77	AVG	
4		0.2500	42.43	10.08	52.51	61.76	-9.25	QP	
5	*	1.8900	39.55	10.01	49.56	56.00	-6.44	QP	
6		2.0620	27.27	10.00	37.27	46.00	-8.73	AVG	
7		3.5540	26.55	10.12	36.67	46.00	-9.33	AVG	
8		3.7300	38.19	10.13	48.32	56.00	-7.68	QP	
9		17.4420	38.03	10.53	48.56	60.00	-11.44	QP	
10		17.7220	26.33	10.56	36.89	50.00	-13.11	AVG	
11		28.5260	29.91	11.08	40.99	50.00	-9.01	AVG	
12		29.0780	39.72	11.12	50.84	60.00	-9.16	QP	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 15 of 62

E-mail: service@dace-lab.com

Web: http://www.dace-lab.com


4.2 6dB Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) Set RBW = 100 kHz. b) Set the VBW >= [3 × RBW]. c) Detector = peak. d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.2.1 E.U.T. Operation:

Operating Environment:									
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa			
Pretest mode: TM1, TI			TM2, TM3			C			
Final test mode: TM1, 1			TM2, TM3						

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 16 of 62

4.3 Maximum Conducted Output Power

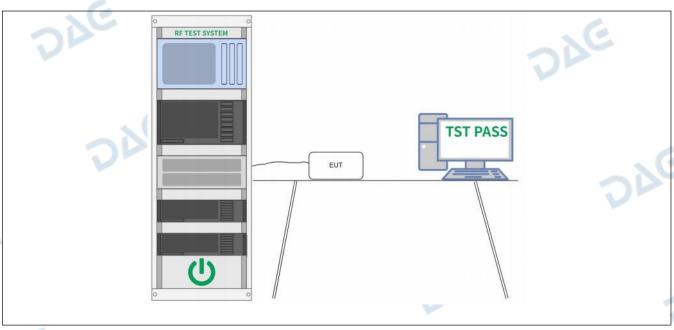
Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2013, section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

Report No.: DACE250815004RL001

4.3.1 E.U.T. Operation:

Operating Environment:									
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure:		102 kPa	- 2/	
Pretest mode:		TM1,	TM2, TM3					5	
Final test mode:		TM1,	TM2, TM3						

4.3.2 Test Setup Diagram:


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Web: http://www.dace-lab.com
Tel: +86-755-23010613
E-mail: service@dace-lab.com
Page 17 of 62

DIE

DAG

DAG

DAG

4.3.3 Test Data:

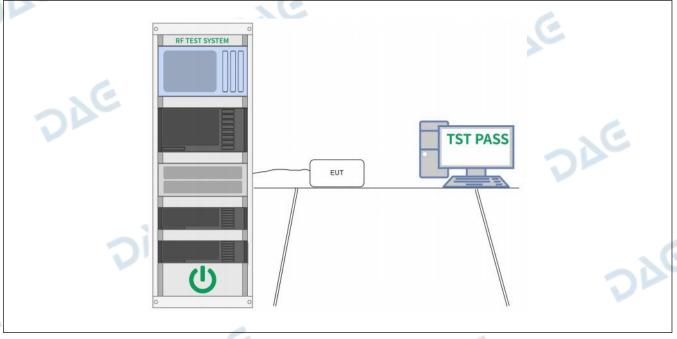
DAG

DAG

Please Refer to Appendix for Details.

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 62


4.4 Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2013, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013, section 11.10, Maximum power spectral density level in the fundamental emission

4.4.1 E.U.T. Operation:

Operating Environment:								
Temperature:	22.5 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa		
Pretest mode: TM1, TM2, TM3			TM2, TM3		V	4		
Final test mode: TM1, TM2, TM3			TM2, TM3					

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

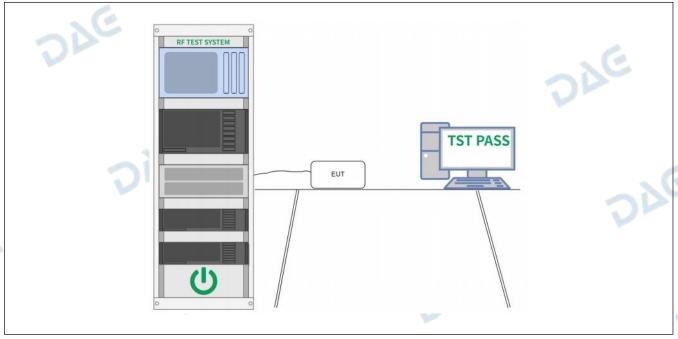
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 19 of 62


4.5 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d)
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2013 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

Operating Environment:							
Temperature:	: 22.5 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode: TM1, TM2, T			TM2, TM3			Co	
Final test mode: TM1, TM2, TM			TM2, TM3				

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.

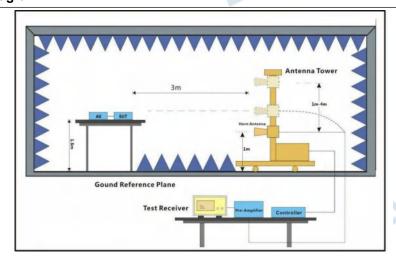
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 20 of 62

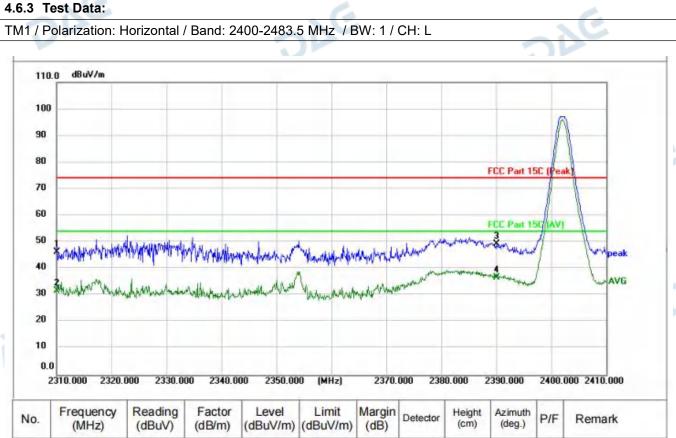

4.6 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as define), In addition, radiated emissions wed in § 15.205(a), must also comply a § 15.209(a)(see § 15.205(c)).`				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
1	Above 960	500	3			
Ve	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2013 section					
Dua addusta	KDB 558074 D01 15.247					
Procedure:	ANSI C63.10-2013 section	10.10.5.2	- XC			

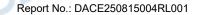
4.6.1 E.U.T. Operation:

Operating Environment:							
Temperature:	22.5 °C	-	Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode: TM1			TM2, TM3		. 6		
Final test mode:	10	TM1,	TM3				

4.6.2 Test Setup Diagram:



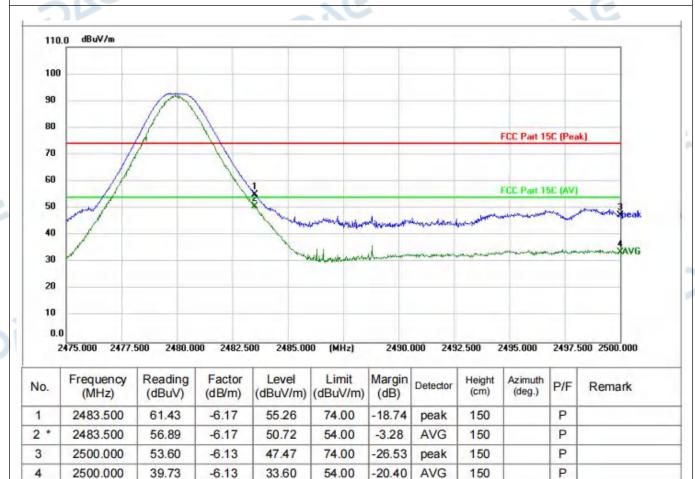
Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 21 of 62

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	2310.000	52.86	-6.63	46.23	74.00	-27.77	peak			Р	
2	2310.000	38.36	-6.63	31.73	54.00	-22.27	AVG			Р	
3	2390.000	55.83	-6.42	49.41	74.00	-24.59	peak			Р	
4 *	2390.000	43.26	-6.42	36.84	54.00	-17.16	AVG			Р	



TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

DAG

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 62

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

DAG

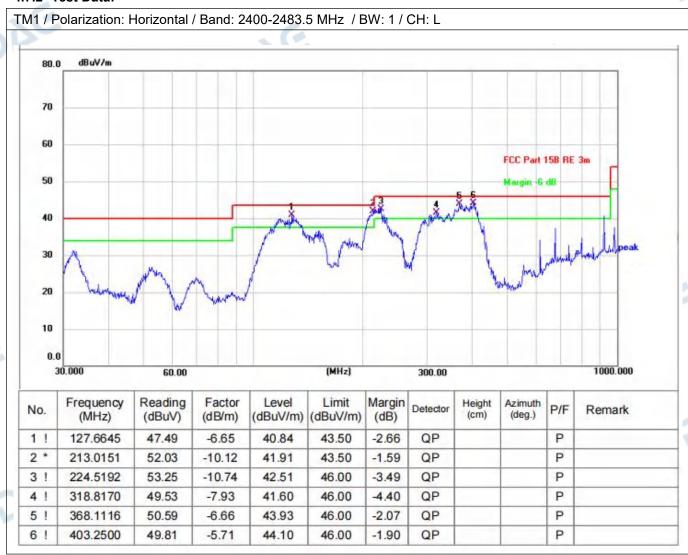
Report No.: DACE250815004RL001

4.7 Emissions in f	requency bands (belo	ow 1GHz)	Ca					
Test Requirement:	restricted bands, as defin	d), In addition, radiated emissions ed in § 15.205(a), must also com n § 15.209(a)(see § 15.205(c)).`						
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
Ve	54-72 MHz, 76-88 MHz, 7 these frequency bands is and 15.241. In the emission table abo The emission limits show employing a CISPR quas 110–490 kHz and above	this section shall not be located 174-216 MHz or 470-806 MHz. H permitted under other sections ove, the tighter limit applies at the n in the above table are based or i-peak detector except for the fre 1000 MHz. Radiated emission liments employing an average detection 170-180 MHz.	owever, operation within of this part, e.g., §§ 15.231 band edges. In measurements quency bands 9–90 kHz, nits in these three bands					
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02							
Procedure:	a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotate 360 degrees to determine the position of the highest radiation. b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. g. If the emission level of the EUT in peak mode was 10dB lower than the limit							
DAG	specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. h. Test the EUT in the lowest channel, the middle channel, the Highest channel. i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. j. Repeat above procedures until all frequencies measured was complete. Remark: 1) For emission below 1GHz, through pre-scan found the worst case is the lowest							

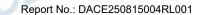
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 62

channel. Only the worst case is recorded in the report.

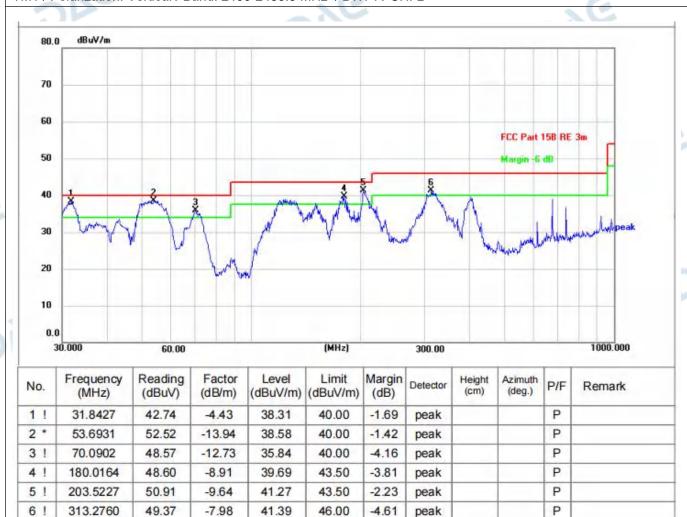

2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.


4.7.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.5 °C			Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode: TM1			TM2, TM3		. 6		
Final test mode: TM1					270		

4.7.2 Test Data:



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 27 of 62

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

DAG

Report No.: DACE250815004RL001

4.8 Emissions in frequency bands (above 1GHz)

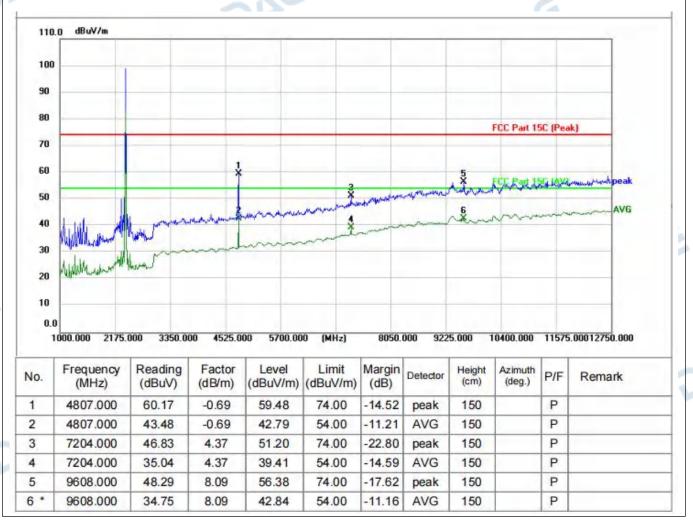
	restricted bands, as defined	in addition, radiated emissions whin § 15.205(a), must also comply § 15.209(a)(see § 15.205(c)).` Field strength (microvolts/meter) 2400/F(kHz)	
Test Limit:	0.009-0.490 0.490-1.705	(microvolts/meter)	distance
	0.490-1.705	2400/F(kHz)	,,
		2400/1 (KI 12)	300
	1.705-30.0	24000/F(kHz)	30
		30	30
	30-88	100 **	3
	88-216	150 **	3
1	216-960	200 **	3
	Above 960	500	3
Test Method: Procedure:	radiators operating under thi 54-72 MHz, 76-88 MHz, 174 these frequency bands is per and 15.241. In the emission table above, The emission limits shown in employing a CISPR quasi-per 110–490 kHz and above 100 are based on measurements ANSI C63.10-2013 section 6 KDB 558074 D01 15.247 Mer as For below 1GHz, the EUT above the ground at a 3 or 1 360 degrees to determine the b. For above 1GHz, the EUT	eas Guidance v05r02 was placed on the top of a rotatin 0 meter semi-anechoic chamber. e position of the highest radiation. was placed on the top of a rotatin	ne frequency bands ever, operation within s part, e.g., §§ 15.231 d edges. easurements easurements for these three bands are table 0.8 meters. The table was rotated and table 1.5 meters.
) AG	degrees to determine the poc. The EUT was set 3 or 10 which was mounted on the tod. The antenna height is varidetermine the maximum valupolarizations of the antenna e. For each suspected emission the antenna was tuned to he below 30MHz, the antenna was turned from 0 degrees to f. The test-receiver system was turned from 0 degrees to f	e EUT in peak mode was 10dB low be stopped and the peak values of ssions that did not have 10dB man lk, quasi-peak or average method t channel, the middle channel, the ats are performed in X, Y, Z axis po	e-receiving antenna, wer. above the ground to ontal and vertical t. worst case and then or the test frequency of the rotatable table m reading. Ind Specified wer than the limit of the EUT would be agin would be reas specified and then Highest channel.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 29 of 62

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

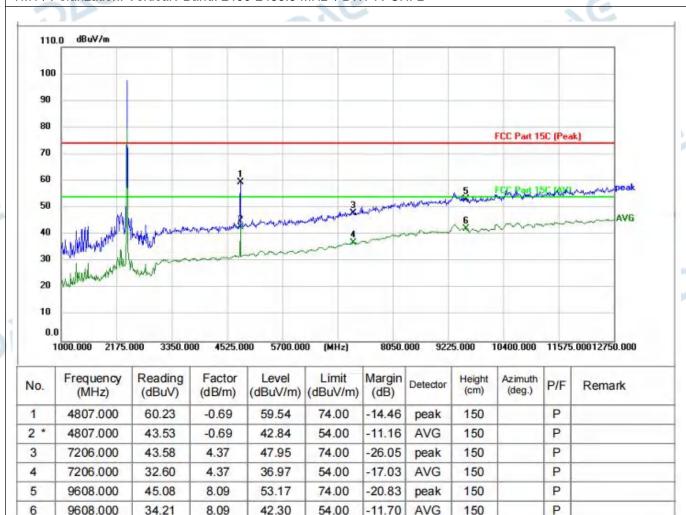
Report No.: DACE250815004RL001


- 2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading + Antenna Factor + Cable Factor "C Preamplifier Factor
- 3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

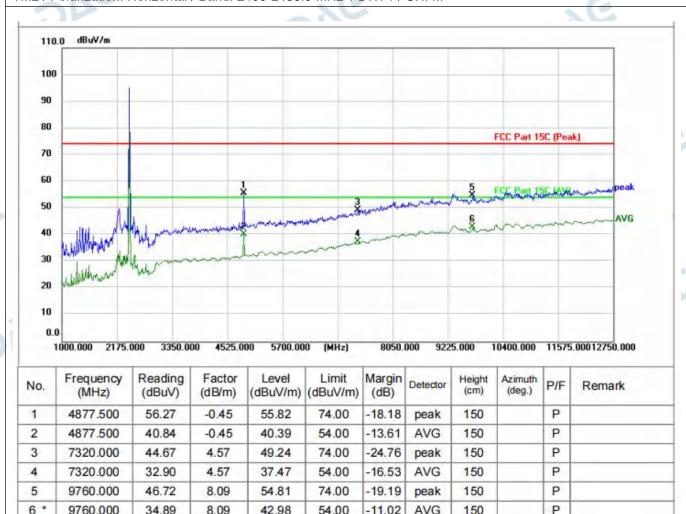
4.8.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.5 °C			Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode: TM1, TM2, TM3				21/6			
Final test mode: TM1			2)	4			

4.8.2 Test Data:


TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 30 of 62

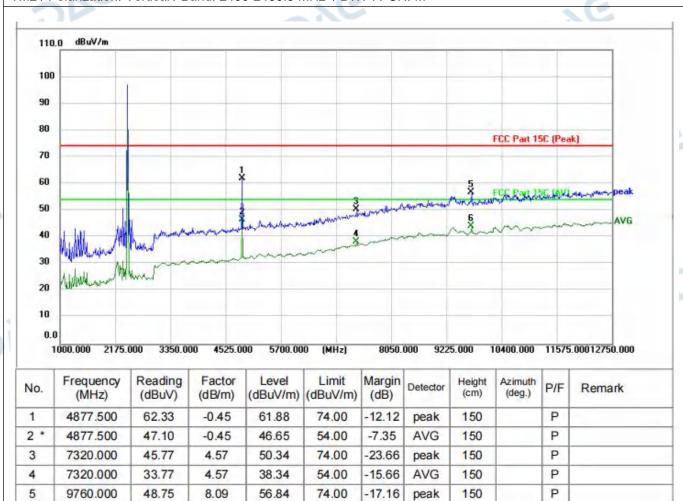

TM1 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: L

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 62

TM2 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: M

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

6


9760.000

36.11

8.09

44.20

TM2 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: M

54.00

-9.80

AVG

150

P

4

5

6 *

7440.000

9920.000

9920.000

32.85

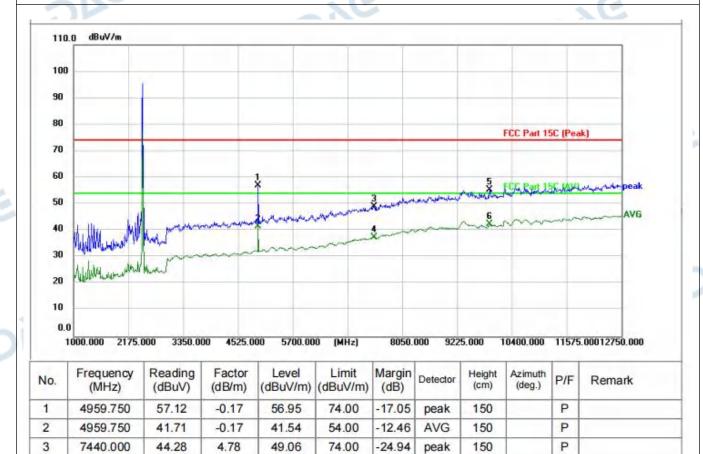
47.44

34.43

4.78

8.08

8.08


37.63

55.52

42.51

TM3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: H

54.00

74.00

54.00

-16.37

-18.48

-11.49

AVG

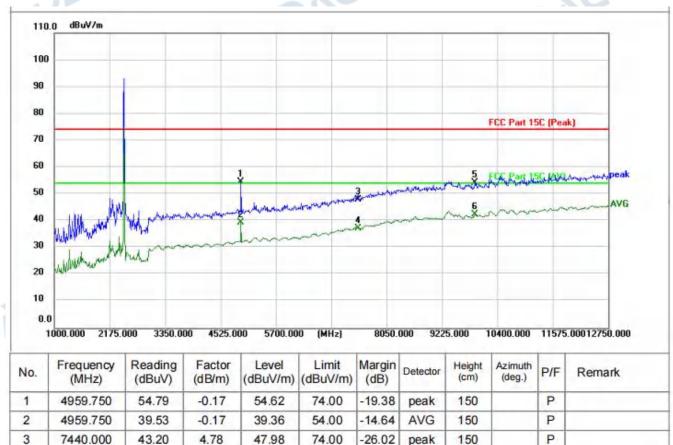
peak

150

150

150

P

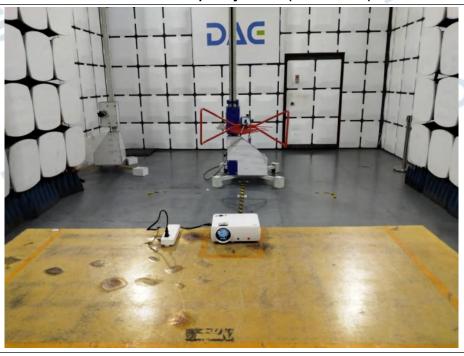

P

P

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 34 of 62

TM3 / Polarization: Vertical / Band: 2400-2483.5 MHz / BW: 1 / CH: H

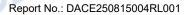
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 35 of 62



5 TEST SETUP PHOTOS

Conducted Emission at AC power line

Emissions in frequency bands (below 1GHz)

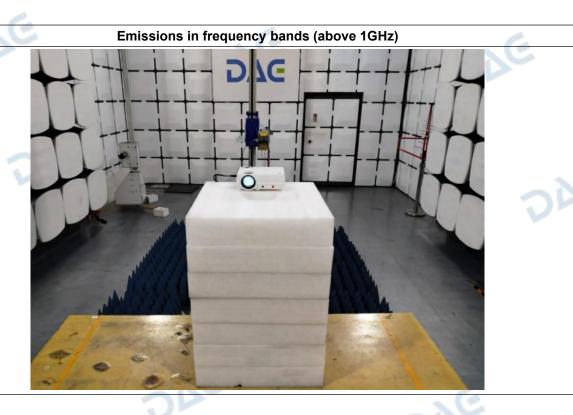

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 36 of 62



DAG

DAG

DAG

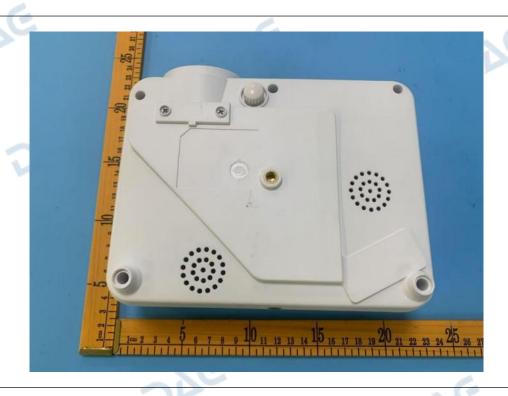
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 37 of 62

DAG

6 PHOTOS OF THE EUT

External

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 38 of 62

Tel: +86-755-23010613 Page 39 of 62 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

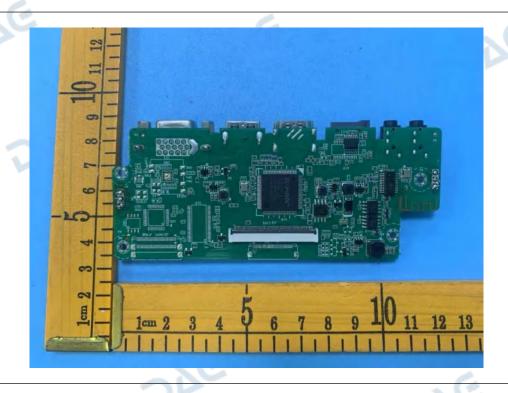
Web: http://www.dace-lab.com

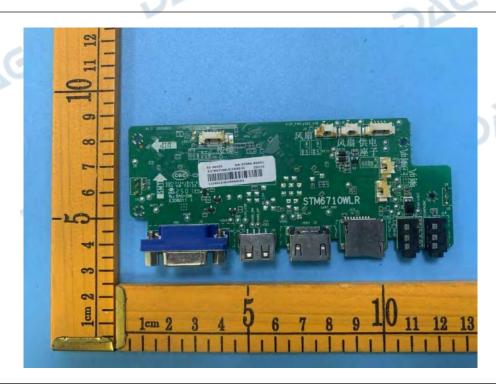
Tel: +86-755-23010613

E-mail: service@dace-lab.com

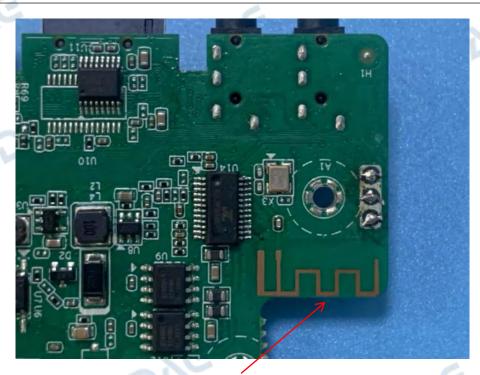
Page 40 of 62

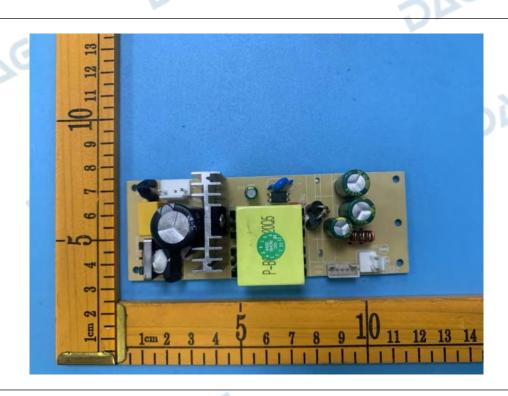
V1.0



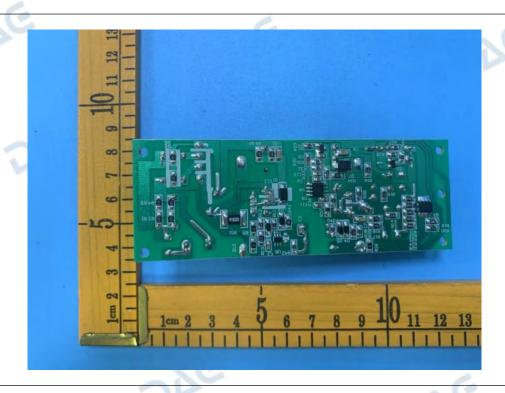

Internal

V1.0



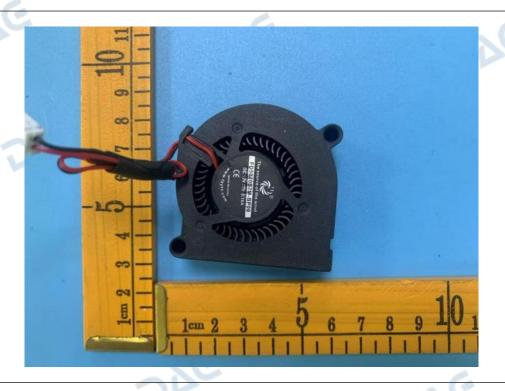

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

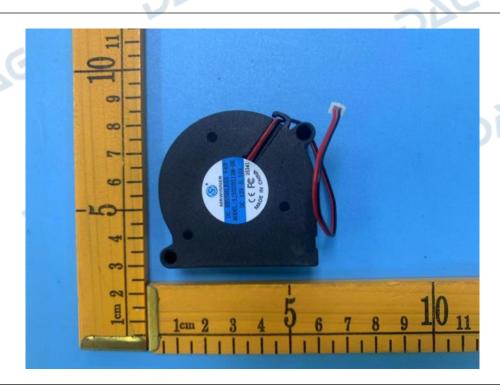
Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 42 of 62


<u>ANT</u>

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 43 of 62

V1.0

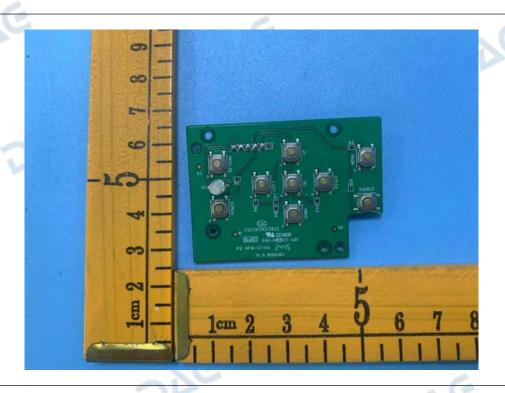


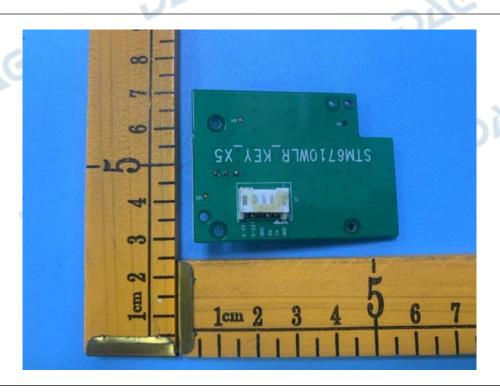

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 44 of 62

V1.0

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China


Web: http://www.dace-lab.com


Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 45 of 62

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 46 of 62

DAG

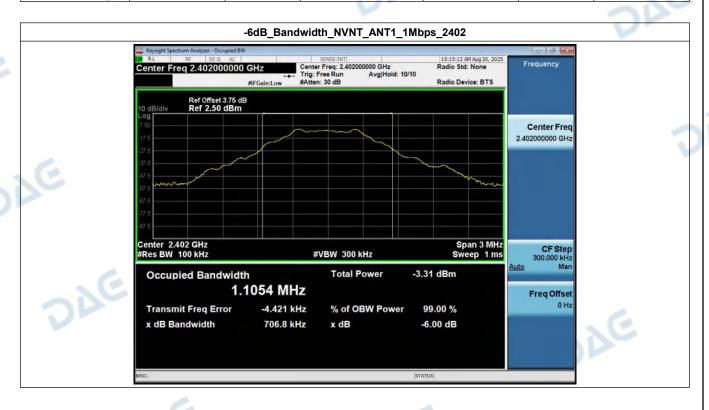
DAG

Report No.: DACE250815004RL001

Appendix

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 47 of 62

DAG

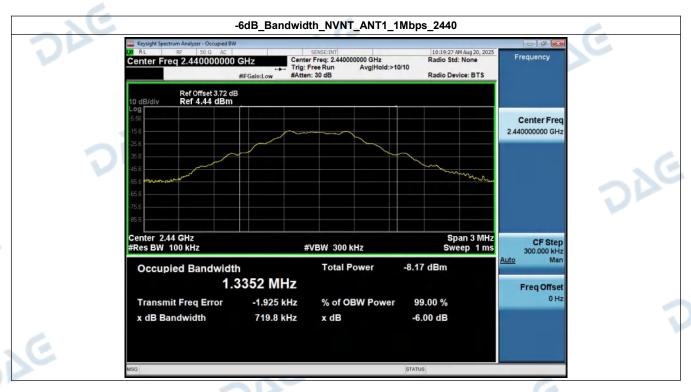


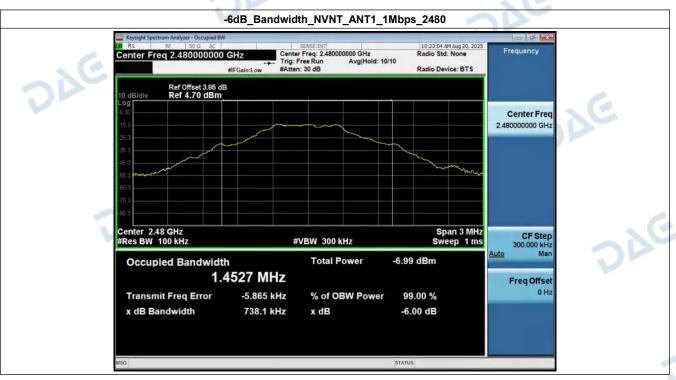
HT250815004--X5--FCC ID FCC_BLE (Part15.247) Test Data

1. -6dB Bandwidth

V1.0

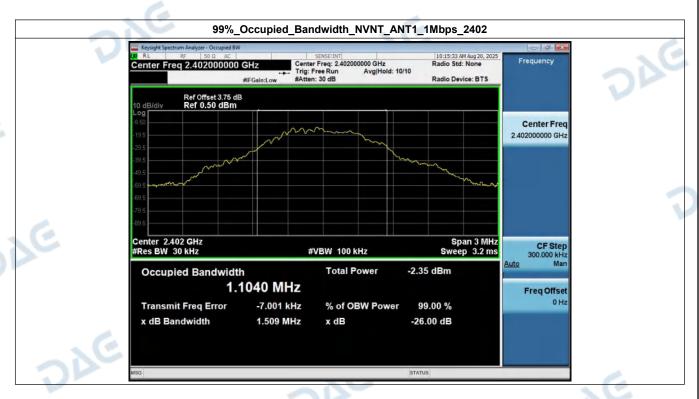
Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
NVNT	ANT1	1Mbps	2402.00	706.80	500	Pass
NVNT	ANT1	1Mbps	2440.00	719.82	500	Pass
NVNT	ANT1	1Mbps	2480.00	738.12	500	Pass

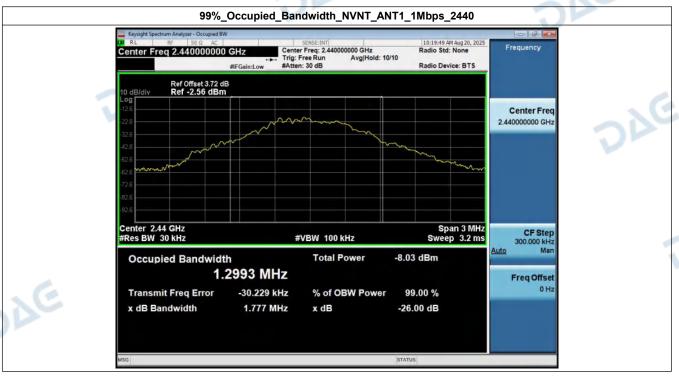



Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 48 of 62

DIE

V1.0

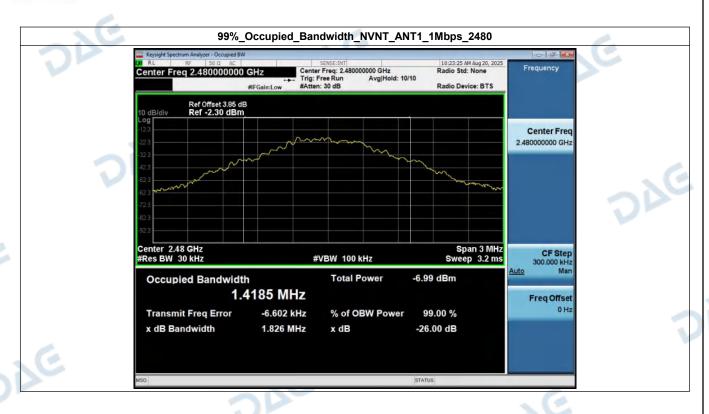

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 49 of 62



2. 99% Occupied Bandwidth

V1.0

Condition	Condition Antenna		Frequency (MHz)	99%%BW(MHz)	
NVNT	ANT1	1Mbps	2402.00	1.104	
NVNT	ANT1	1Mbps	2440.00	1.299	
NVNT	ANT1	1Mbps	2480.00	1.418	



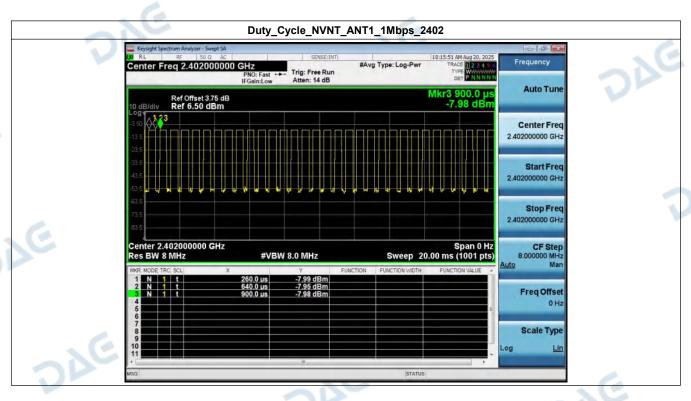
DAG

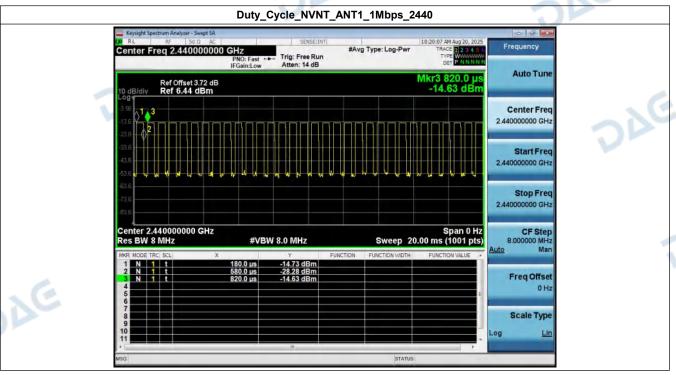
DAG

DAG

V1.0

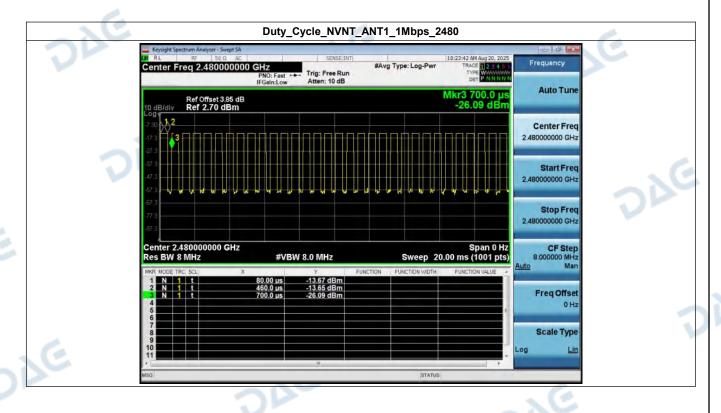
DAG


DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 51 of 62

3. Duty Cycle

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	62.50	2.04
NVNT	ANT1	1Mbps	2440.00	62.50	2.04
NVNT	ANT1	1Mbps	2480.00	61.29	2.13


Report No.: DACE250815004RL001

DAG

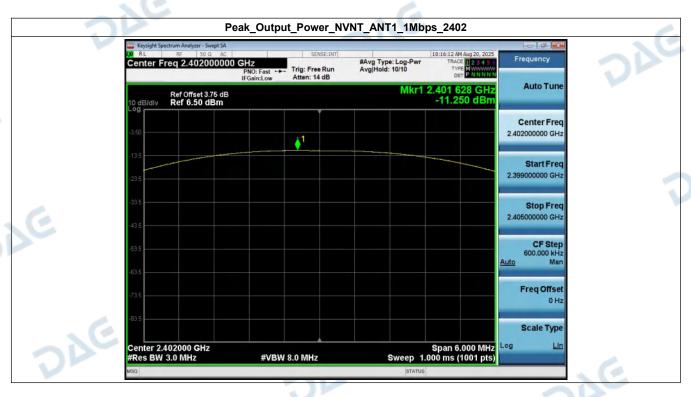
DAG

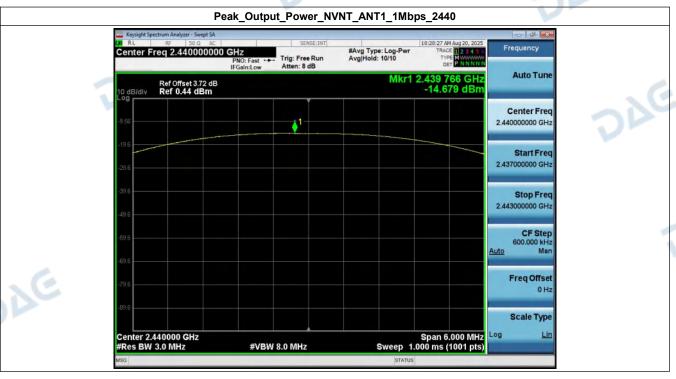
DAG

DAG

DAG

DAG


DAG

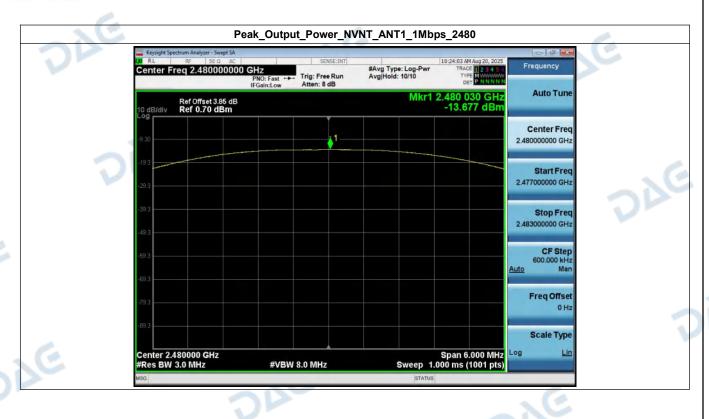

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 53 of 62

V1.0

4. Peak Output Power

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	-11.25	0.07	1000	Pass
NVNT	ANT1	1Mbps	2440.00	-14.68	0.03	1000	Pass
NVNT	ANT1	1Mbps	2480.00	-13.68	0.04	1000	Pass

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 54 of 62



DAG

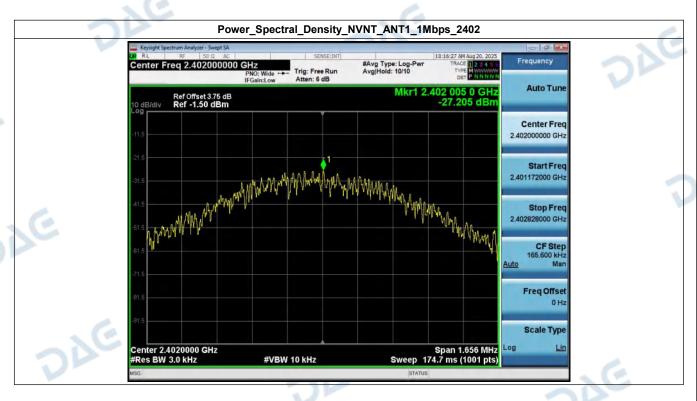
DAG

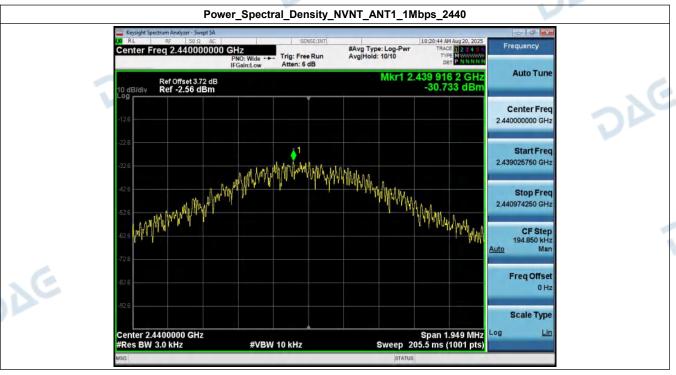
DAG

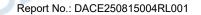
Report No.: DACE250815004RL001

DAG

DAG

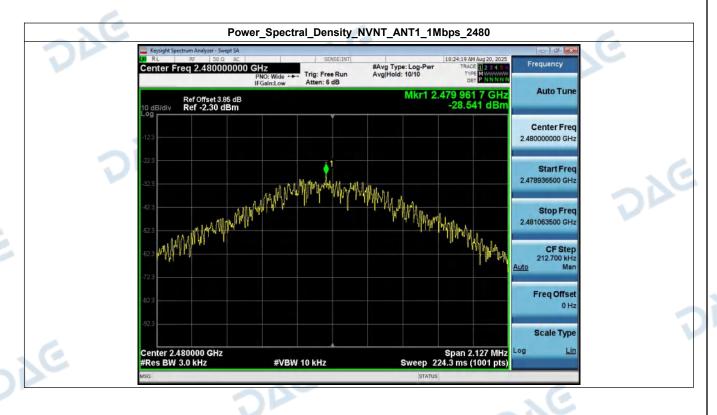

DAG


DAG


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 55 of 62

5. Power Spectral Density

Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm/3kHz)	Limit(dBm/3kHz)	
NVNT	ANT1	1Mbps	2402.00	-27.20	8	Pass
NVNT	ANT1	1Mbps	2440.00	-30.73	8	Pass
NVNT	ANT1	1Mbps	2480.00	-28.54	8	Pass



DAG

DAG

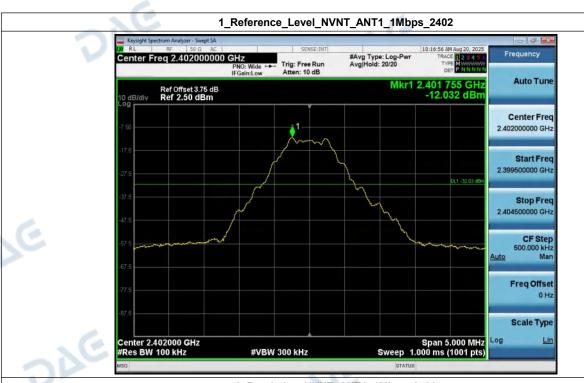
DAG

DAG

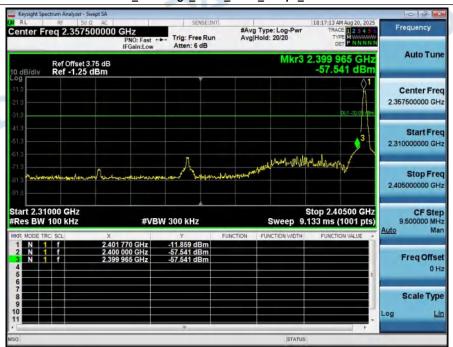
DAG

DAG

DAG

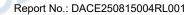

DAG

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 57 of 62

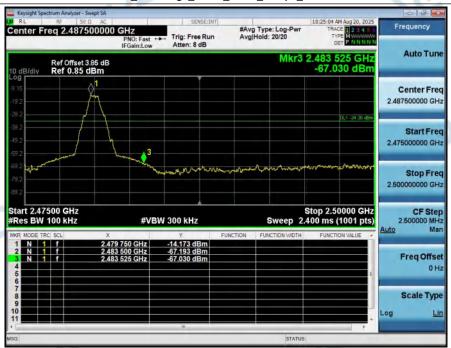


6. Bandedge

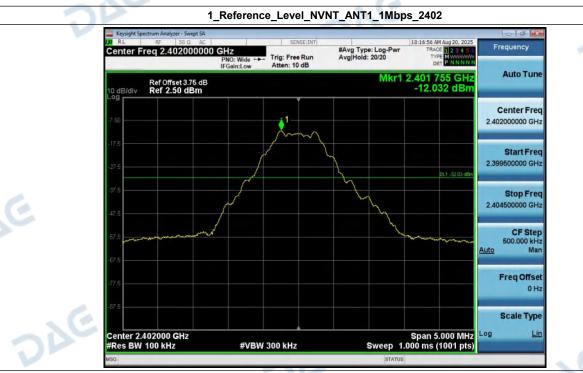
Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark_freq(MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2399.965	-12.032	-57.541	-32.032	Pass
NVNT	ANT1	1Mbps	2480.00	2483.525	-14.361	-67.030	-34.361	Pass

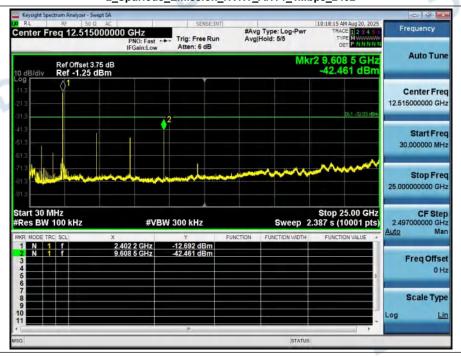


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 58 of 62


4

2_Bandedge_NVNT_ANT1_1Mbps_2480


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 59 of 62


7. Spurious Emission

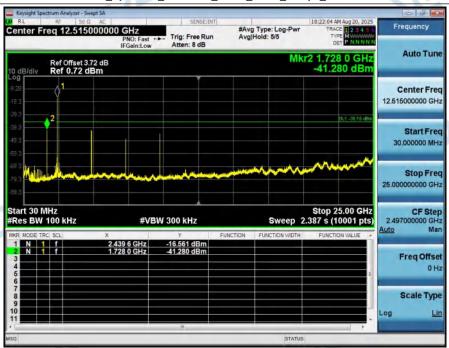
V1.0

Condition	Antenna	Modulation	TX_Frequency (MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	-12.032	-42.461	-32.032	Pass
NVNT	ANT1	1Mbps	2440.00	-15.146	-41.280	-35.146	Pass
NVNT	ANT1	1Mbps	2480.00	-14.361	-44.857	-34.361	Pass

2_Spurious_Emission_NVNT_ANT1_1Mbps_2402

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 60 of 62

4


V1.0

Report No.: DACE250815004RL001

2_Spurious_Emission_NVNT_ANT1_1Mbps_2440

4

2_Spurious_Emission_NVNT_ANT1_1Mbps_2480

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 62 of 62