

Page 1 of 32 Report No.: KS2111S3683E

TEST REPORT

Report No.....: KS2111S3683E

FCC ID-----: 2A37L-PROS

Applicant.....: Volt Technology Inc

Address...... 55 Rue Dagobert, Candiac J5R 6E8 Canada

Manufacturer..... Volt Technology Inc

Address...... 55 Rue Dagobert, Candiac J5R 6E8 Canada

Product Name...... Volt Caddy - Remote Electrical Golf Cart

Model/Type reference.....: PRO-S

Standard...... FCC CFR Title 47 Part 15 Subpart C Section 15.249

Date of Receipt.....: December 01,2021

Date of Test Date...... December 01,2021 ~September 16,2022

Date of issue...... September 16,2022

Test result.....: Pass

Prepared by:

(Printed name+ signature)

Approved by:

(Printed name + Signature)

Testing Laboratory Name.....:

Pai Zheng

Sky Dong

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Address.....: Industrial Park, Minzhu,Shatou, Shajing, Bao'an District, Shenzhen,

Guangdong, China

This test report may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The client should not use it to claim product endorsement by KSIGN. The test results in the report only apply to the tested sample. The test report shall be invalid without all the signatures of testing engineers, reviewer and approver. Any objections must be raised to KSIGN within 15 days since the date when the report is received. It will not be taken into consideration beyond this limit. The test report merely correspond to the test sample.

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

TABLE OF CONTENTS	Page
1. TEST SUMMARY	3
1.1. Test Standards	
1,2. REPORT VERSION	
1.3. Test Description	4
1.4. Measurement Uncertainty	
1.5. Test Facility	6
1.6. Environmental conditions	6
2. GENERAL INFORMATION	7
2.1. GENERAL DESCRIPTION OF EUT	
2.2. Table of Carrier Frequency	
2.3. DESCRIPTION OF TEST MODES	
3. TEST ITEM AND RESULTS	10
3.1. Antenna requirement	10
3.2. CONDUCTED EMISSION	11
3.3. 20dB Bandwidth	
3.4. Radiated Spurious Emissions	
3.5. BAND EDGE EMISSIONS(RADIATED)	23
4. EUT TEST PHOTOS	25
5. PHOTOGRAPHS OF FUT CONSTRUCTIONAL	27

1. TEST SUMMARY

1.1. Test Standards

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, 5725-5875 MHz, and 24.0-24.25 GHz.

ANSI C63.10-2020: American National Standard for Testing Unlicensed Wireless Devices.

1.2. Report version

Revised No.	Date of issue	Description
01	September 16,2022	Original

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

1.3. Test Description

FCC Rules Part 15.249			
-	Section in CFR 47	Result	Test
Test Item	FCC	Resuit	Engineer
Antenna requirement	15.203	Pass	Tom Chen
AC Power Line Conducted Emissions	15.207	N/A	N/A
20dB Bandwidth	Section 15.215(c)	Pass	Tom Chen
Band edge Emissions	Section 15.249(d)	Pass	Tom Chen
Radiated Spurious Emissions	Section 15.205(a), Section 15.209(a), Section 15.249	Pass	Tom Chen

Note:

Pass: The EUT complies with the essential requirements in the standard
 Fail: The EUT does not comply with the essential requirements in the standard

All indications of Pass/Fail in this report are opinions expressed by KSIGN(Guangdong) Testing Co., Ltd. based on interpretations and/or observations of test results Measurement Uncertainties were not taken into account and are published for informational purposes only.

2. N/A: means this test item is not applicable for this device according to the technology characteristic of device.

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

1.4. Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the KSIGN(Guangdong) Testing Co., Ltd. system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Below is the best measurement capability for KSIGN(Guangdong) Testing Co., Ltd.

Test Items	Measurement Uncertainty	Notes
Transmitter power conducted	0.42 dB	(1)
Transmitter power Radiated	2.14 dB	(1)
Conducted spurious emissions 9kHz~40GHz	1.60 dB	(1)
Radiated spurious emissions 9kHz~40GHz	2.20 dB	(1)
Conducted Emissions 9kHz~30MHz	3.20 dB	(1)
Radiated Emissions 30~1000MHz	4.70 dB	(1)
Radiated Emissions 1~18GHz	5.00 dB	(1)
Radiated Emissions 18~40GHz	5.54 dB	(1)
Occupied Bandwidth	2.80 dB	(1)

Note (1): This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Address of the report laboratory

KSIGN(Guangdong) Testing Co., Ltd.

West Side of 1/F., Building C, Zone A, Fuyuan New Factory, Jiujiu Industrial Park, Minzhu, Shatou, Shajing, Bao'an District, Shenzhen, Guangdong, People's Republic of China

Laboratory accreditation

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L13261

KSIGN(Guangdong) Testing Co., Ltd. has been assessed and proved to be in Compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements) for the Competence of Testing and Calibration Laboratories.

A2LA-Lab Cert. No.: 5457.01

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been accredited by A2LA for technical Competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025:2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

ISED#: 25693 CAB identifier.: CN0096

KSIGN(Guangdong) Testing Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

FCC-Registration No.: 294912 Designation Number: CN1328

KSIGN(Guangdong) Testing Co., Ltd. EMC Laboratory has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

1.6. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
Relative Humidity:	30~60 %
Air Pressure:	950~1050mba

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

2. GENERAL INFORMATION

2.1. General Description of EUT

Product Name:	Volt Caddy - Remote Electrical Golf Cart
Model/Type reference:	PRO-S
Power supply(Battery):	DC 3.0V
Hardware version:	V3.1
Software version:	V2.0.06
Specification	
Modulation:	GFSK
Operation frequency:	2419MHz-2472MHz
Channel number:	11
Antenna type:	Internal antenna
Antenna gain:	0.34 dBi
Note:	·

Note:

TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

^{1.} For a more detailed features description, please refer to the manufacturer's specifications or the user's manual

2.2. Table of Carrier Frequency

Frequency Band	Channel Number	Frequency	Channel Number	Frequency
	1	2419MHz	7	2452MHz
	2	2424MHz	8	2457MHz
0400 0400 51417	3	2429MHz	9	2462MHz
2400~2483.5MHZ	4	2435MHz	10	2467MHz
	5	2440MHz	11	2472MHz
	6	2445MHz		

2.3. Description of Test Modes

Operation Frequency List: The EUT has been tested under typical operating condition. The Applicant provides communication tools software to control the EUT for staying in continuous transmitting and receiving mode for testing.

Operation Frequency: 2419MHz/2445MHz/2472MHz

Test mode

For RF test items:

The engineering test program was provided and enabled to make EUT continuous transmit.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

2.4. Measurement Instruments List

	Tonscend JS0806-2 Test system				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023
2	Vector Signal Generator	Agilent	N5182A	MY50142520	03/04/2023
3	Analog Signal Generator	HP	83752A	3344A00337	03/04/2023
4	Power Sensor	Agilent	E9304A	MY50390009	03/04/2023
5	Power Sensor	Agilent	E9300A	MY41498315	03/04/2023
6	Wideband Radio Communication Tester	R&S	CMW500	157282	03/04/2023
7	Climate Chamber	Angul	AGNH80L	1903042120	03/04/2023
8	Dual Output DC Power Supply	Agilent	E3646A	MY40009992	03/04/2023
9	RF Control Unit	Tonscend	JS0806-2	1	03/04/2023

	Transmitter spurious emissions & Receiver spurious emissions				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Until
1	EMI Test Receiver	R&S	ESR	102525	03/04/2023
2	High Pass Filter	Chengdu E-Microwave	OHF-3-18-S	0E01901038	03/04/2023
3	High Pass Filter	Chengdu E-Microwave	OHF-6.5-18-S	0E01901039	03/04/2023
4	Spectrum Analyzer	HP	8593E	3831U02087	03/04/2023
5	Ultra-Broadband logarithmic period Antenna	Schwarzbeck	VULB 9163	01230	12/04/2023
6	Loop Antenna	Beijin ZHINAN	ZN30900C	18050	03/04/2023
7	Spectrum Analyzer	R&S	FSV40-N	101798	03/04/2023
8	Horn Antenna	Schwarzbeck	BBHA 9120 D	2023	03/29/2023
9	Pre-Amplifier	Schwarzbeck	BBV 9745	9745#129	03/04/2023
10	Pre-Amplifier	EMCI	EMC051835SE	980662	03/04/2023
11	Horn Antenna	Schwarzbeck	BBHA 9170	00943	03/04/2023

Note:

TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

¹⁾The Cal. Interval was one year.

²⁾The cable loss has calculated in test result which connection between each test instruments.

Page 10 of 32

Report No.: KS2111S3683E

3. TEST ITEM AND RESULTS

3.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400~2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Test Result

The directional gain of the antenna less than 6dBi, please refer to the EUT internal photographs antenna photo.

Note: The antenna is permanently fixed to the EUT.

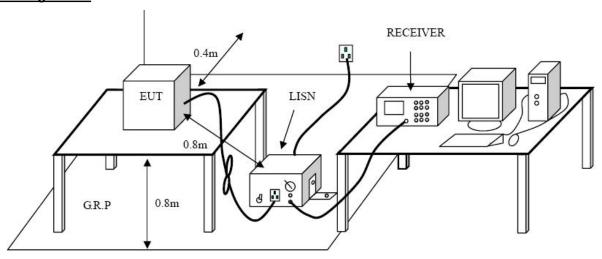
TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Page 11 of 32 Report No.: KS2111S3683E

3.2. Conducted Emission

Limit


Conducted Emission Test Limit

Fraguency	Maximum RF Line Voltage (dBμV)	
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

Test Configuration

Test Procedure

- 1. The EUT was setup according to ANSI C63.10:2013 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50ohm /50uH coupling impedance for the measuring equipment.

 The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 4. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 5. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 6. Conducted Emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 7. During the above scans, the emissions were maximized by cable manipulation.

Test Results

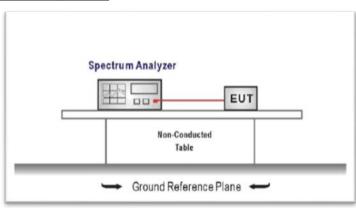
N/A

The product is battery powered.

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Page 12 of 32 Report No.: KS2111S3683E



3.3. 20dB Bandwidth

Limit

Operation frequency range 2400MHz~2483.5MHz.

Test Configuration

Test Procedure

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel

RBW ≥ 1% of the 20 dB bandwidth, VBW ≥ RBW

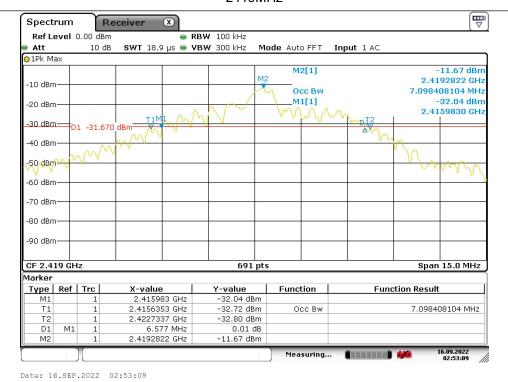
Sweep = auto, Detector function = peak, Trace = max hold

4. Measure and record the results in the test report.

Test Mode

Please refer to the clause 2.3..

TRF No. FCC Part 15.249_R1


Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Test Results

Test Mode:	GFSK	
Channel frequency (MHz)	20dB Bandwidth [MHz]	Verdict
2419	6.577	PASS
2445	6.729	PASS
2472	6.838	PASS
	0.4.401.41.4	

2419MHz

3.4. Radiated Spurious Emissions

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209(a) and 15.205(a)

Standard FCC15.249

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
900-928MHz	50	500
2400-2483.5MHz	50	500
5725-5875MHz	50	500
24.0-24.25GHz	250	2500

Standard FCC 15.209

Frequency	Distance	Field	Strengths Limit
(MHz)	Meters	μ V/m	dB(μV)/m
0.009 ~ 0.490	300	2400/F(kHz)	
0.490 ~ 1.705	30	24000/F(kHz)	
1.705 ~ 30	30	30	
30 ~ 88	3	100	40.0
88 ~ 216	3	150	43.5
216 ~ 960	3	200	46.0
960 ~ 1000	3	500	54.0
Above 1000	3	Other:74.0dB(µV)/m(Peal	k) 54.0dB(μV)/m (Average)

Remark:

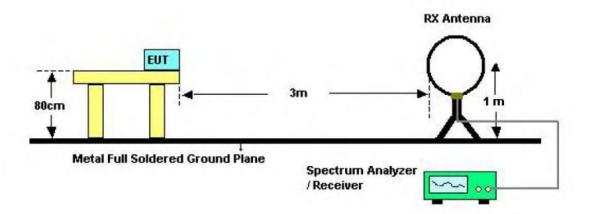
- (1) Emission level dB μ V = 20 log Emission level μ V/m
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance is the distance in meters between the measuring instrument, antenna and the closest point of any part of the device or system.

FREQUENCY RANGE OF RADIATED MEASUREMENT

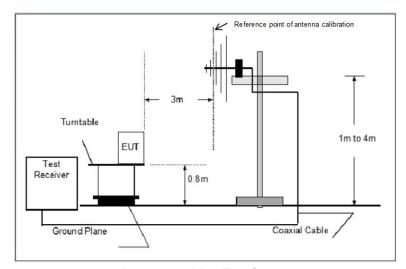
Spectrum Parameter	Setting			
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP			
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP			
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP			
	1GHz~26.5GHz			
Start ~Stop Frequency	RBW 1MHz/ VBW 1MHz for Peak,			
	RBW 1MHz/ VBW 10Hz for Average			

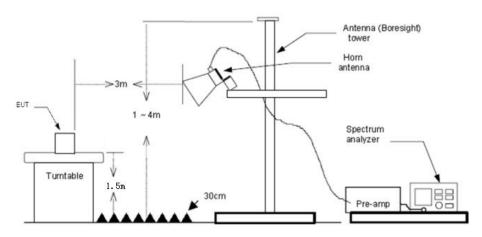
Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

TRF No. FCC Part 15.249_R1


Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Page 16 of 32


Report No.: KS2111S3683E


Test Configuration

Below 30MHz Test Setup

Below 1000MHz Test Setup

Above 1GHz Test Setup

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Page 17 of 32 Report No.: KS2111S3683E

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

(3) From 1 GHz to 10th harmonic:

RBW=1MHz, VBW=3MHz Peak detector for Peak value.

RBW=1MHz, VBW=10Hz RMS detector for Average value.

TEST MODE:

Please refer to the clause 2.3

TEST RESULTS

\boxtimes	Passed	Not Applicable

9 KHz~30 MHz and 18GHz~25GHz

From 9 KHz~30 MHz and 18GHz~25GHz: Conclusion: PASS

Note:

- 1) Final level = Reading level + Correct Factor
 - Correct Factor=Antenna Factor + Cable Loss Preamplifier Factor
- 2) The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.
- 4) Pre-scan 2402MHz, 2437MHz and 2479MHz mode, and found the 2408MHz which it is worse case for 30MHz-1GHz, so only show the test data for worse case.
- 5) Pre-scan 2402MHz, 2437MHz and 2479MHz mode, and found the 2408MHz mode it is worse case for above 1GHz, so only show the test data for worse case.
- 6) 18GHz ~ 25GHz

The EUT was pre-scanned the frequency band (18GHz~25GHz), found the radiated level(Background noise) lower than the limit, so don't show on the report. 3

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Radiated field strength of the fundamental signal

Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dBuV/m)	Polarization	Test value
2419	102.19	-10.88	91.31	114	-22.69	Horizontal	Peak
2445	102.82	-10.88	91.94	114	-22.06	Horizontal	Peak
2472	104.43	-10.88	93.55	114	-20.45	Horizontal	Peak
2419	86.2	-10.88	75.32	94	-18.68	Horizontal	AVG
2445	88.46	-10.88	77.58	94	-16.42	Horizontal	AVG
2472	89.19	-10.88	78.31	94	-15.69	Horizontal	AVG

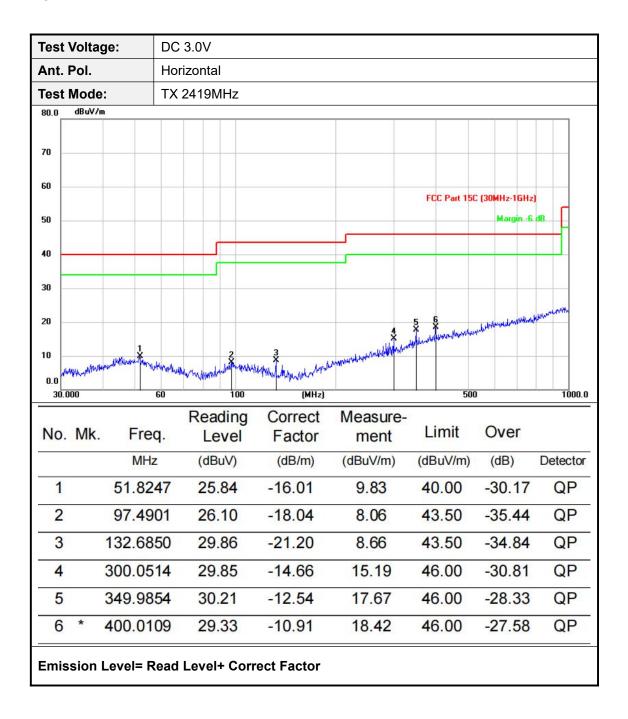
Frequency (MHz)	Read Level (dBuV)	Correct Factor (dB/m)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dBuV/m)	Polarization	Test value
2419	103.81	-10.88	92.93	114	-21.07	Vertical	Peak
2445	103.37	-10.88	92.49	114	-21.51	Vertical	Peak
2472	106.28	-10.88	95.4	114	-18.6	Vertical	Peak
2419	85.82	-10.88	74.94	94	-19.06	Vertical	AVG
2445	83.89	-10.88	73.01	94	-20.99	Vertical	AVG
2472	82.14	-10.88	71.26	94	-22.74	Vertical	AVG

Note:

Correct Factor=Antenna Factor + Cable Loss -Preamplifier Factor

RADIATED EMISSION BELOW 30MHZ

No emission found between lowest internal used/generated frequencies to 30MHz.


TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

30MHz-1GHz

Test Voltage: DC 3.0V Ant. Pol. Vertical **Test Mode:** TX 2419MHz dBuV/m 80.0 70 60 FCC Part 15C (30MHz-1GHz) 50 40 30 20 10 0.0 30.000 500 1000.0 Reading Correct Measure-Limit No. Mk. Freq. Over Level Factor ment MHz (dB/m) (dBuV/m) (dBuV) (dBuV/m) (dB) Detector

1	64.5688	28.80	-18.56	10.24	40.00	-29.76	QP
2	99.9829	25.79	-17.64	8.15	43.50	-35.35	QP
3	300.0514	29.72	-14.66	15.06	46.00	-30.94	QP
4	400.0109	29.33	-10.91	18.42	46.00	-27.58	QP
5	500.1257	30.96	-9.93	21.03	46.00	-24.97	QP
6 *	833.3171	29.31	-5.56	23.75	46.00	-22.25	QP

Emission Level= Read Level+ Correct Factor

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Above 1GHz

Frequency(MHz):		2	419	Polarit	HORIZONTAL	
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4838.00	60.70	-5.92	54.78	74	19.22	PK
4838.00	44.31	-5.92	38.39	54	15.61	AV
7257.00	53.10	-1.81	51.29	74	22.71	PK
725700	42.84	-1.81	41.03	54	12.97	AV

Frequency(MHz):		2	419	Polarit	VERTICAL	
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4838.00	54.08	-5.92	48.16	74	25.84	PK
4838.00	44.32	-5.92	38.40	54	15.60	AV
7257.00	52.83	-1.81	51.02	74	22.98	PK
7257.00	40.37	-1.81	38.56	54	15.44	AV

Frequency(MHz):		2	445	Polarit	HORIZONTAL	
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4890.00	54.21	-5.71	48.50	74	25.50	PK
4890.00	44.15	-5.71	38.44	54	15.56	AV
7335.00	52.56	-0.36	52.20	74	21.80	PK
7335.00	39.03	-0.36	38.67	54	15.33	AV

Frequency(MHz):		2	445	Polarit	VERTICAL	
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4890.00	54.48	-5.71	48.77	74	25.23	PK
4890.00	44.75	-5.71	39.04	54	14.96	AV
7335.00	53.22	-0.36	52.86	74	21.14	PK
7335.00	39.30	-0.36	38.94	54	15.06	AV

Frequency(MHz):		2	472	Polarit	HORIZONTAL	
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4944.00	52.28	-5.51	46.77	74	27.23	PK
4944.00	43.49	-5.51	37.98	54	16.02	AV
7416.00	51.80	0.99	52.79	74	21.21	PK
7416.00	38.43	0.99	39.42	54	14.58	AV

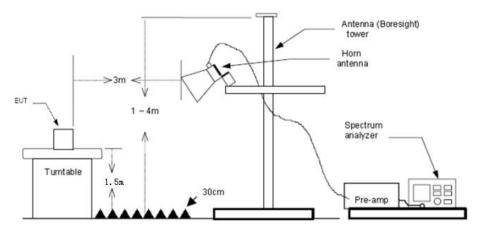
TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Frequency(MHz):		2472		Polarity:		VERTICAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
4944.00	53.24	-5.51	47.73	74	26.27	PK
4944.00	43.29	-5.51	37.78	54	16.22	AV
7416.00	52.02	0.99	53.01	74	20.99	PK
7416.00	39.55	0.99	40.54	54	13.46	AV

Note:

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China


^{1.18}GHz-26.5GHz is the background of the site, there is no radiated spurious.

Page 23 of 32 Report No.: KS2111S3683E

3.5. Band Edge Emissions(Radiated)

Test Configuration

Test Procedure

- 1. The EUT was setup and tested according to ANSI C63.10:2013
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable height antenna tower.
- 4. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;

RBW=1MHz, VBW=3MHz PEAK detector for Peak value.

RBW=1MHz, VBW=10Hz with Average Detector for Average Value.

Test Mode

Please refer to the clause 2.3.

Test Results

Frequency(MHz):		2419		Polarity:		HORIZONTAL	
Freque (MHz	,	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
2400.0	00	57.62	-10.92	46.70	74	27.30	PK
2400.0	00	42.22	-10.92	31.30	54	22.70	AV

Frequency(MHz):		2419		Polarity:		HORIZONTAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
2400.00	52.08	-10.92	41.16	74	32.84	PK
2400.00	41.45	-10.92	30.53	54	23.47	AV

TRF No. FCC Part 15.249_R1

Add:Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

Frequency(MHz):		2472		Polarity:		HORIZONTAL
Frequency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
2483.50	61.37	-10.88	50.49	74	23.51	PK
2483.50	41.31	-10.88	30.43	54	23.57	AV

Frequency(MHz):		2472		Polarity:		HORIZONTAL	
1	equency (MHz)	Reading Level (dBuV/m)	Correc Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector
2	2483.50	60.34	-10.88	49.46	74	24.54	PK
2	2483.50	40.67	-10.88	29.79	54	24.21	AV

Note:

Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

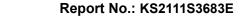
¹⁾ Level (dBμV/m)= Reading (dBμV)+ Factor (dB/m)

Radiated Measurement (Below 1GHz)

Radiated Measurement (Above 1GHz)

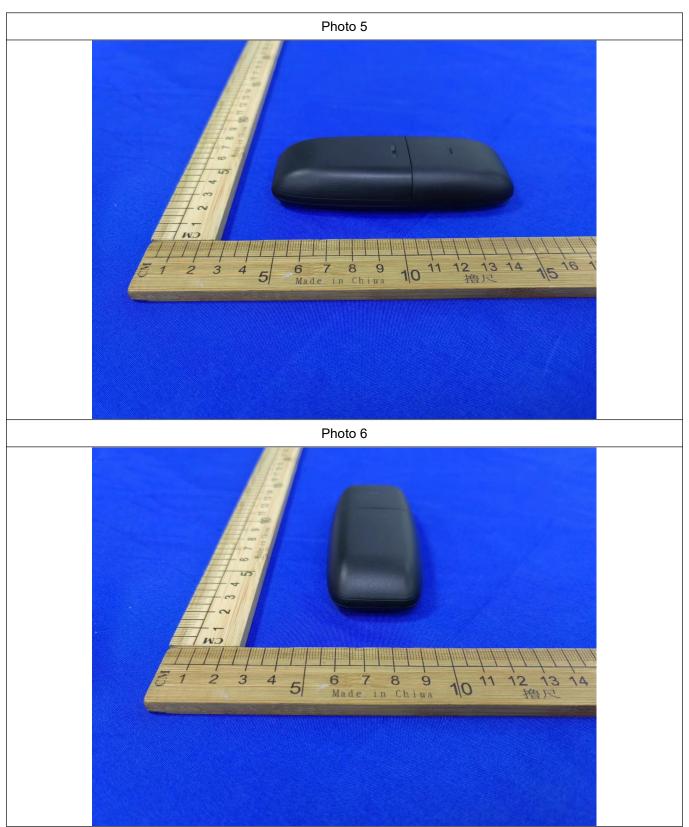
5. PHOTOGRAPHS OF EUT CONSTRUCTIONAL

External Photographs


Photo 2

TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

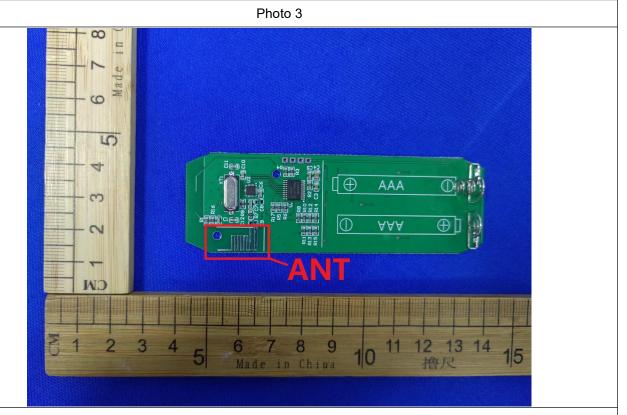
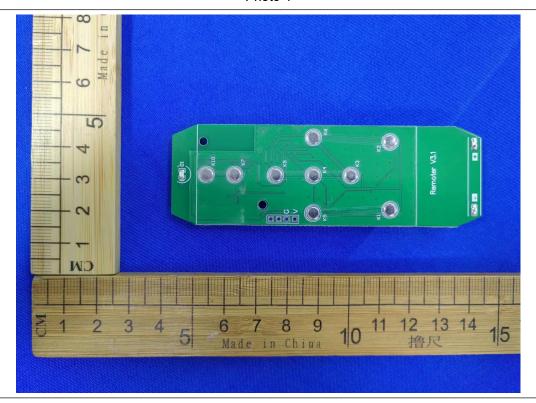


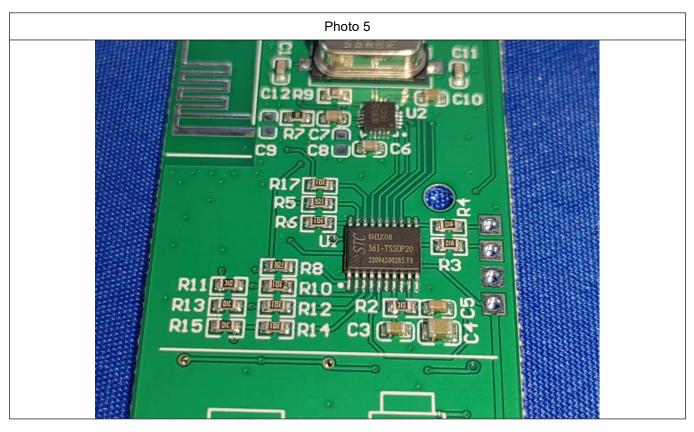
Internal Photographs

Photo 2

TRF No. FCC Part 15.249_R1

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China


Photo 4

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China

--THE END--

Add: Building 5, No. 316, Jianghong South Road Binjiang District, Hangzhou 310052, China