

FCC - TEST REPORT

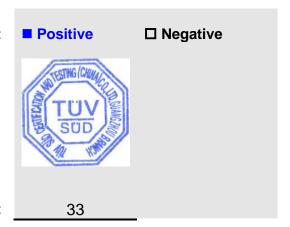
Report Number : 64.790.21.1196.01-R Date of Issue: November 11, 2021

Model : X-BK3432-V2.0

Product Type : Bluetooth Module

Applicant : Xiamen Xingchangxin Industry and Trade Co.,Ltd.

Address of applicant : Floor 3, no.2 workshop, no.177 south erhuan road, tongan industrial


concentration zone, xiamen city, Fujian, China

Manufacturer : Xiamen Xingchangxin Industry and Trade Co.,Ltd.

Address of Manufacturer : Floor 3, no.2 workshop, n

: Floor 3, no.2 workshop, no.177 south erhuan road, tongan industrial concentration zone, xiamen city, Fujian, China

Test Result

Total pages including Appendices

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch is a subcontractor to TÜV SÜD Product Service GmbH according to the principles outlined in ISO 17025.

TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch reports apply only to the specific samples tested under stated test conditions. Construction of the actual test samples has been documented. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. The manufacturer/importer is responsible to the Competent Authorities in Europe for any modifications made to the production units which result in non-compliance to the relevant regulations. TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval.

Report Number: 64.790.21.1196.01 -R Page 1 of 33

1 Table of Contents

1	Ta	able of Contents	2
2	De	etails about the Test Laboratory	3
3	De	escription of the Equipment under Test	4
4	Sι	ummary of Test Standards	5
5	Sı	ummary of Test Results	6
6	G	eneral Remarks	7
7	Τe	est Setups	8
8	Sy	ystems test configuration	9
9	Τe	echnical Requirement	10
9	.1	Conducted Emission	10
9	.2	Conducted peak output power	13
9	.3	6dB bandwidth and 99% Occupied Bandwidth	15
9	.4	Power spectral density	19
9	.5	Spurious RF conducted emissions	21
9	.6	Band edge	26
9	.7	Spurious radiated emissions for transmitter	28
10		Test Equipment List	32
11		System Measurement Lincertainty	33

2 Details about the Test Laboratory

Details about the Test Laboratory

Test Site 1

Company name: TÜV SÜD Certification and Testing (China) Co., Ltd. Shenzhen Branch

Building 12&13, Zhiheng Wisdomland Business Park,

Nantou Checkpoint Road 2, Nanshan District,

Shenzhen City, 518052,

P. R. China

Telephone: 86 755 8828 6998 Fax: 86 755 828 5299

FCC Registration Number: 514049 IC Registration Number: 10320A

Report Number: 64.790.21.1196.01 -R Page 3 of 33

3 Description of the Equipment under Test

Product: Bluetooth Module

PMN: Bluetooth Module

Model no.: X-BK3432-V2.0

FCC ID: 2A2NQ-XCXBT01

Options and accessories: N/A

Rating: DC 3.0V (by Battery port)

RF Transmission

Frequency:

2402MHz-2480MHz

No. of Operated Channel: 40

Modulation: GFSK

Antenna Type: PCB Antenna

Antenna Gain: 2.5dBi

Description of the EUT: Products is bluetooth module. Use 2.4GHz Bluetooth technology

was used for communicating.

4 Summary of Test Standards

Test Standards						
FCC Part 15	PART 15 - RADIO FREQUENCY DEVICES					
Subpart C	Subpart C - Intentional Radiators					
10-1-2020 Edition						

All the test methods were according to KDB558074 D01 v05r02 and ANSI C63.10 (2013).

5 Summary of Test Results

Technical Requirements						
FCC Part 15 Subpart C	-					
Test Condition		Pages	Test Result			
§15.207	Conducted emission AC power port	10	Pass			
§15.247(b)(1)	Conducted peak output power	13	Pass			
§15.247(a)(2)	6dB bandwidth and 99% Occupied Bandwidth	15	Pass			
§15.247(e)	Power spectral density	19	Pass			
§15.247(d)	Spurious RF conducted emissions	21	Pass			
§15.247(d)	Band edge	26	Pass			
§15.247(d) & §15.209 &§15.205	Spurious radiated emissions for transmitter	28	Pass			
§15.203	Antenna requirement	See note 2	Pass			

Note 1: N/A=Not Applicable.

Note 2: The EUT uses an PCB antenna, which gain is 2.0dBi. In accordance to §15.203 & RSS-Gen 6.8, It is considered sufficiently to comply with the provisions of this section.

6 General Remarks

This submittal(s) (test report) is intended for FCC ID: 2A2NQ-XCXBT01 complies with Section 15.207, 15.209, 15.205, 15.247 of the FCC Part 15, Subpart C rules. This report is for the BLE part.

SUMMARY:

ΔII	tests	according	to the	regulations	cited o	n page 5 v	vere
ЛΠ	เธอเอ	accordina	เบเเษ	Touulalions	CILCU U	II Dauc J V	VCIC

- - Performed
- ☐ Not Performed

The Equipment under Test

- - Fulfills the general approval requirements.
- ☐ **Does not** fulfill the general approval requirements.

Sample Received Date: July 9, 2021

Testing Start Date: July 9, 2021

Testing End Date: August 19, 2021

- TÜV SÜD Certification and Testing (China) Co., Ltd. Guangzhou Branch -

Reviewed by:

Prepared by:

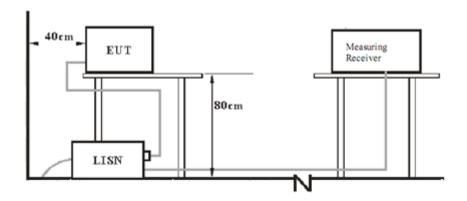
Test by:

Tony Liu

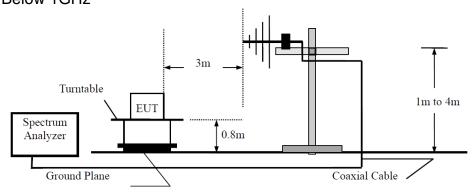
Reviewer

Samuel zhang Project Handler

Samuel Zame

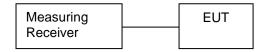

Louise Liu Test Engineer

Louise



7 Test Setups


7.1 AC Power Line Conducted Emission test setups


7.2 Radiated test setups Below 1GHz

Above 1GHz

7.3 Conducted RF test setups

Report Number: 64.790.21.1196.01 -R

8 Systems test configuration

Auxiliary Equipment Used during Test:

DESCRIPTION	MANUFACTURER	MODEL NO.(SHIELD)	S/N(LENGTH)
Mobile Phone	Apple	iPhone 6	
Laptop	Lenovo	X240	L34015282

9 Technical Requirement

9.1 Conducted Emission

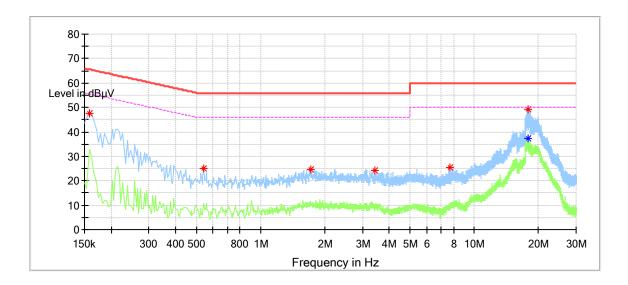
Test Method

- 1. The EUT was placed on a table, which is 0.8m above ground plane
- 2. The power line of the EUT is connected to the AC mains through an Artificial Mains Network (A.M.N.).
- 3. Maximum procedure was performed to ensure EUT compliance
- 4. A EMI test receiver is used to test the emissions from both sides of AC line

Limit

Frequency	QP Limit	AV Limit
MHz	dΒμV	dΒμV
0.150-0.500	66-56*	56-46*
0.500-5	56	46
5-30	60	50

Remark: "*" Decreasing linearly with logarithm of the frequency

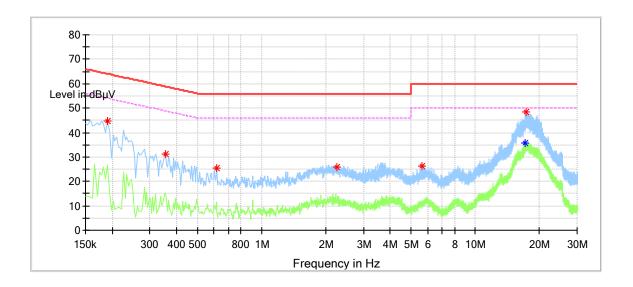

Report Number: 64.790.21.1196.01 -R Page 10 of 33

Conducted Emission Test 150kHz - 30MHz

M/N: X-BK3432-V2.0
Op Cond.: Bluetooth function on.
Test Spec.: Power Line, Live

Temperature (°C): 22.5 Relative Humidity (%): 46.7 Atmospheric Pressure(mbar): 1012

No significant emission was detected within 10 dB to limit


Remark: Correct factor=cable loss + LISN factor

Conducted Emission Test 150kHz - 30MHz

M/N: X-BK3432-V2.0
Op Cond.: Bluetooth function on.
Test Spec.: Power Line, Neutral

Temperature (°C): 22.5 Relative Humidity (%): 46.7 Atmospheric Pressure(mbar): 1012

No significant emission was detected within 10 dB to limit

Remark: Correct factor=cable loss + LISN factor

9.2 Conducted peak output power

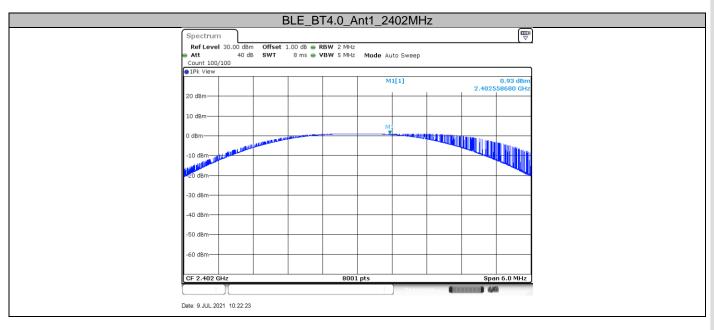
Test Method

- Use the following spectrum analyzer settings:
 RBW > the 6 dB bandwidth of the emission being measured, VBW≥3RBW, Span≥3RBW
 Sweep = auto, Detector function = peak, Trace = max hold.
- 2. Add a correction factor to the display.
- 3. Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

Limits

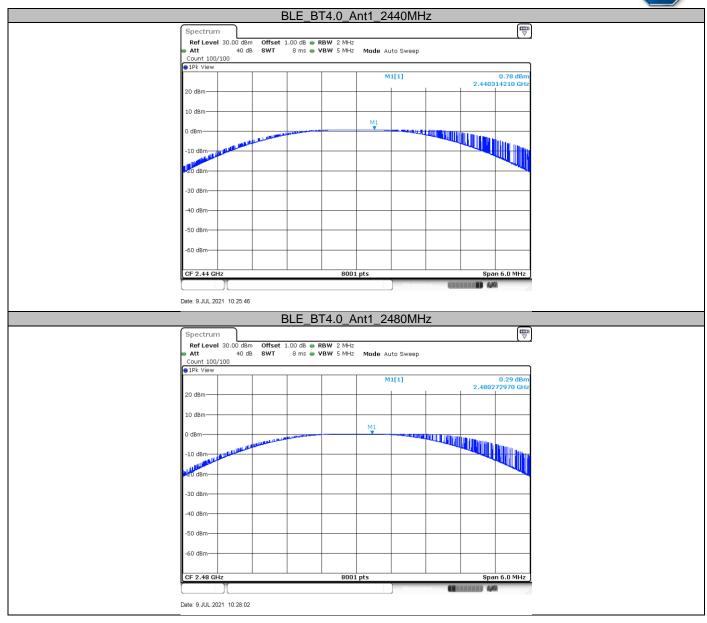
Conducted Peak Output Power Limit:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤1	≤30


EIRP Limit:

Frequency Range	Limit	Limit
MHz	W	dBm
2400-2483.5	≤4	≤36

Test Result


Channel (MHz)	Conducted output power (dBm)	E.I.R.P (dBm)	Limit (dBm)	Verdict
2402	0.93	3.43	≤30	PASS
2440	0.78	3.28	≤30	PASS
2480	0.29	2.79	≤30	PASS

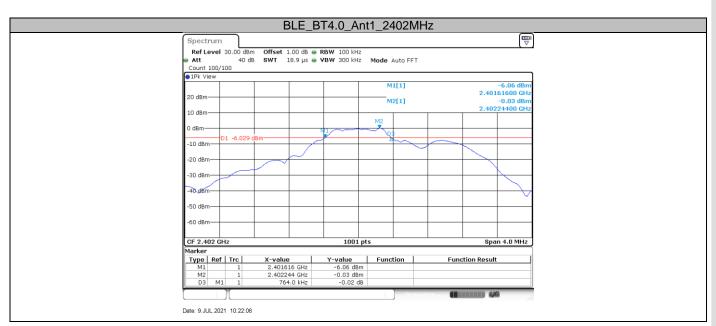
Test Graphs

Report Number: 64.790.21.1196.01 -R

9.3 6dB bandwidth and 99% Occupied Bandwidth

Test Method

- Use the following spectrum analyzer settings:
 RBW=100K, VBW≥3RBW, Sweep = auto, Detector function = peak, Trace = max hold
- 2. Use the automatic bandwidth measurement capability of an instrument, may be employed using the X dB bandwidth mode with X set to 6 dB, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
- 3. Allow the trace to stabilize, record the X dB Bandwidth value.


Limit

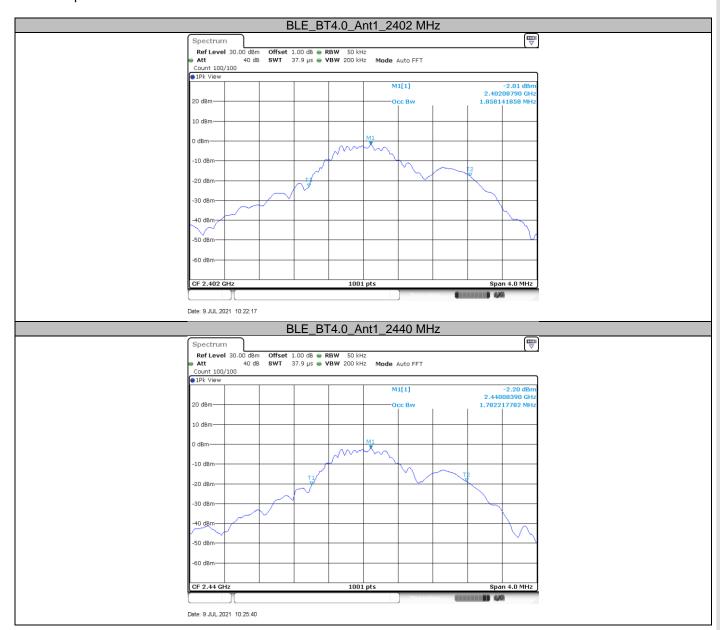
Limit [kHz]	
≥500	_

Test result

Channel(MHz)	6dB BW [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
2402	0.764	2401.616	2402.380	0.5	PASS
2440	0.776	2439.608	2440.384	0.5	PASS
2480	0.768	2479.612	2480.380	0.5	PASS

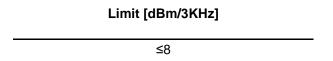
Test Graphs

Report Number: 64.790.21.1196.01 -R Page 15 of 33



Channel(MHz)	99% OCB [MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
2402	1.858	2401.373	2403.231		PASS
2440	1.782	2439.405	2441.187		PASS
2480	1.746	2479.389	2481.135		PASS

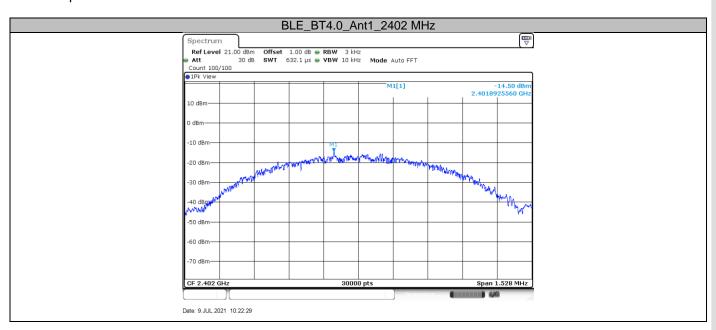
Test Graphs


9.4 Power spectral density

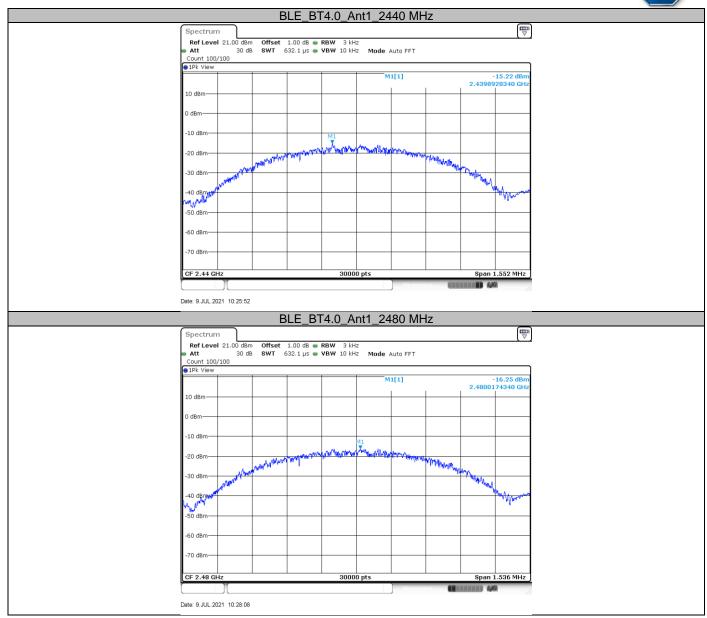
Test Method

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance:

- Set analyzer center frequency to DTS channel center frequency.
 RBW=10kHz,VBW≥3RBW,Span=1.5 times DTS bandwidth, Detector=Peak, Sweep=auto, Trace= max hold.
- 2. Allow trace to fully stabilize, use the peak marker function to determine the maximum amplitude level within the RBW.
- 3. Repeat above procedures until other frequencies measured were completed.


Limit

Test result


Channel(MHz)	Result(dBm/3KHz)	Limit(dBm/3KHz)	Verdict
2402	-14.5	<=8	PASS
2440	-15.22	<=8	PASS
2480	-16.25	<=8	PASS

Test Graphs

Report Number: 64.790.21.1196.01 -R Page 19 of 33

9.5 Spurious RF conducted emissions

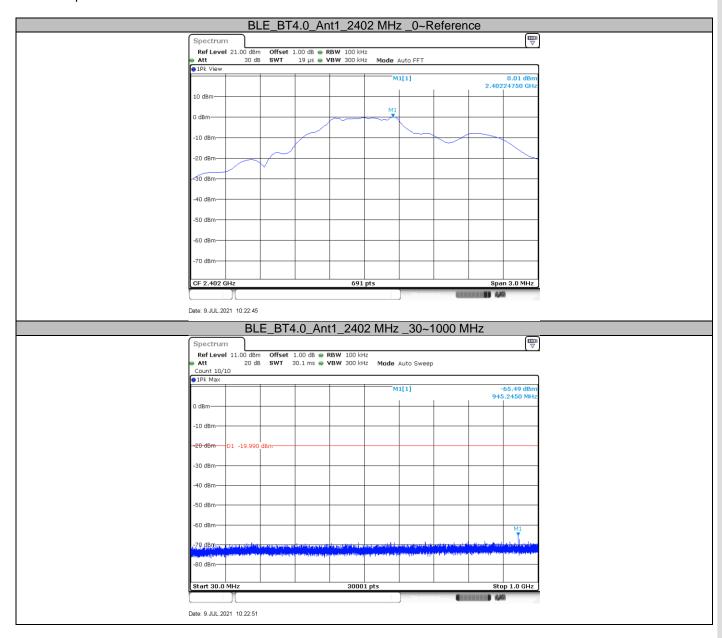
Test Method

- 1. Establish a reference level by using the following procedure:
 - a. Set RBW=100 kHz. VBW≥3RBW. Detector =peak, Sweep time = auto couple, Trace mode = max hold.
 - b. Allow trace to fully stabilize, use the peak marker function to determine the maximum PSD level.
- 2. Use the maximum PSD level to establish the reference level.
 - a. Set the center frequency and span to encompass frequency range to be measured.
 - b. Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements, report the three highest emissions relative to the limit.
- 3. Repeat above procedures until other frequencies measured were completed.

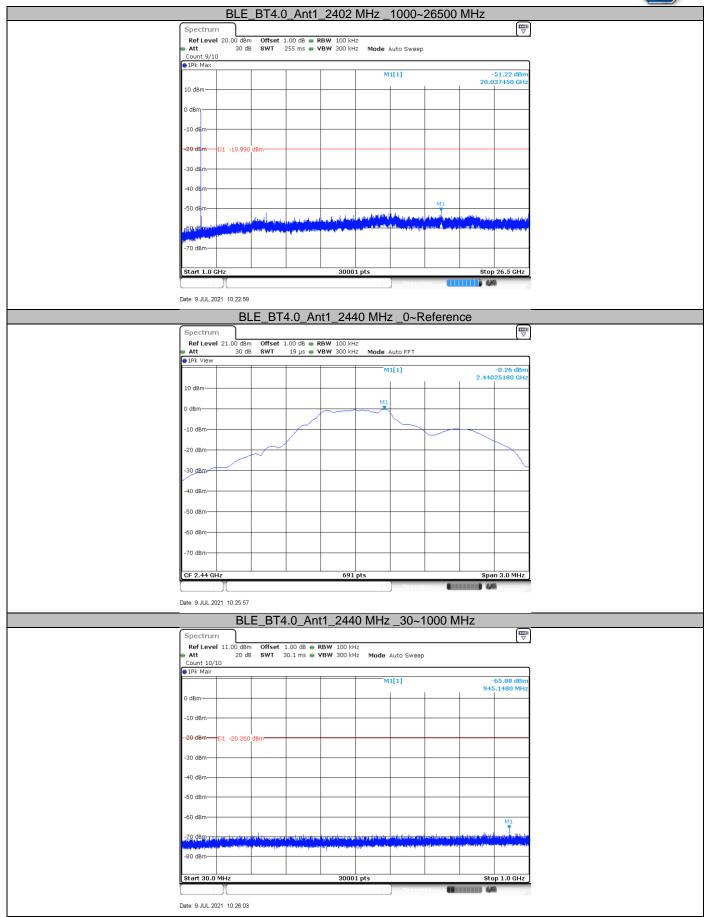
Limit

Frequency Range	Limit (dBc)
MHz	
30-25000	-20

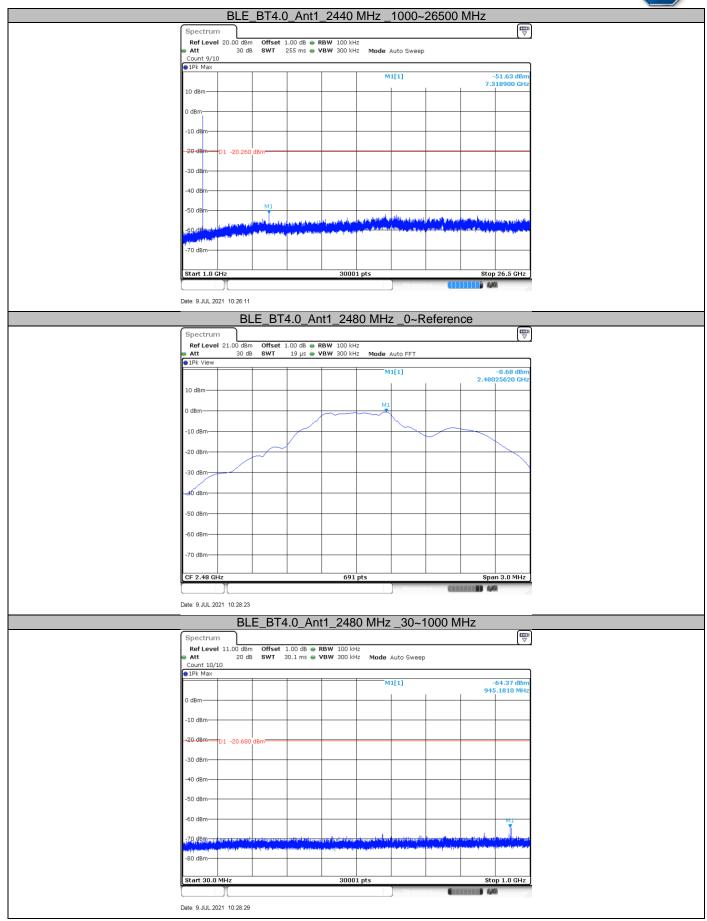
Report Number: 64.790.21.1196.01 -R Page 21 of 33

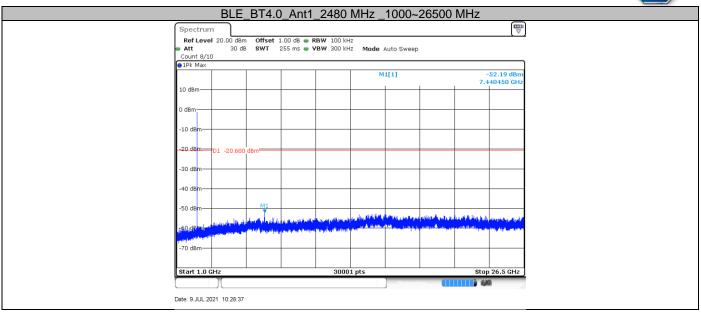


Spurious RF conducted emissions

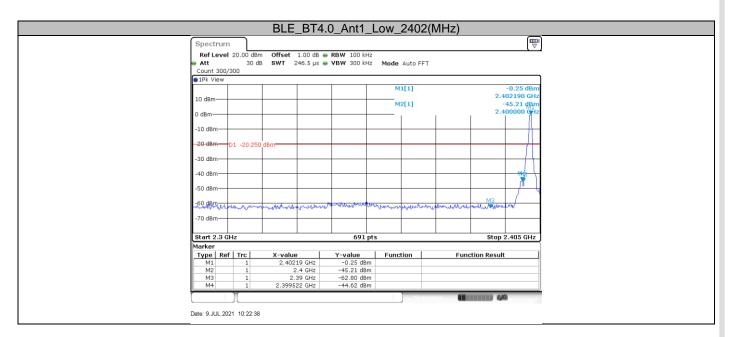

Test Result

Channel(MHz)	Freq Range (MHz)	RefLevel	Result(dBm)	Limit(dBm)	Verdict
	Reference	3.71 dBm	0.01		PASS
2402	30~1000	30~1000 MHz	-65.49	<=-16.29	PASS
	1000~26500	1000~26500 MHz	-51.22	<=-16.29	PASS
	Reference	4.07 dBm	-0.26		PASS
2440	30~1000	30~1000 MHz	-65.88	<=-15.93	PASS
	1000~26500	1000~26500 MHz	-51.63	<=-15.93	PASS
	Reference	3.96 dBm	-0.68		PASS
2480	30~1000	30~1000 MHz	-64.37	<=-16.04	PASS
	1000~26500	1000~26500 MHz	-52.19	<=-16.04	PASS


Test Graphs

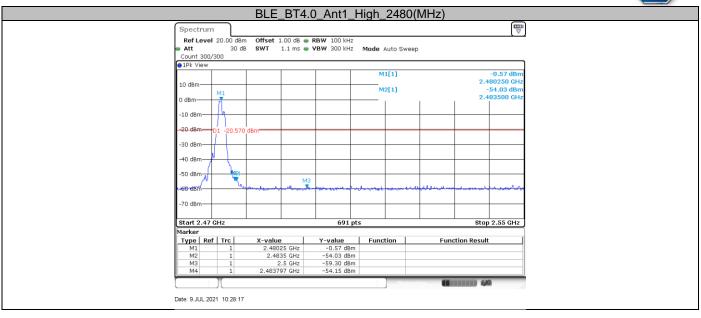


9.6 Band edge


Test Method

- 1 Use the following spectrum analyzer settings: Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 kHz, VBW≥RBW, Sweep = auto, Detector function = peak, Trace = max hold.
- 2 Allow the trace to stabilize, use the peak and delta measurement to record the result.
- 3 The level displayed must comply with the limit specified in this Section.

Limit


In any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test result

Report Number: 64.790.21.1196.01 -R Page 26 of 33

9.7 Spurious radiated emissions for transmitter

Test Method

- 1: The EUT was place on a turn table which is 1.5m above ground plane for above 1GHz and 0.8m above ground for below 1GHz at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2: The EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 3: The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4: For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5: Use the following spectrum analyzer settings According to C63.10:

For Below 1GHz

Use the following spectrum analyzer settings:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 100 KHz to 120KHz, VBW≥RBW for peak measurement, Sweep = auto, Detector function = peak, Trace = max hold.

For Peak unwanted emissions Above 1GHz:

Span = wide enough to capture the peak level of the in-band emission and all spurious RBW = 1MHz, VBW≥RBW for peak measurement ,Sweep = auto, Detector function = peak, Trace = max hold.

Procedures for average unwanted emissions measurements above 1000 MHz

- a) RBW = 1 MHz.
- b) VBW ≥[3 × RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] \ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.
- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D,where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the

Report Number: 64.790.21.1196.01 -R Page 28 of 33

emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:

- 1) If power averaging (rms) mode was used in the preceding step e), then the correction factor is $[10 \log (1 / D)]$, where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
- 2) If linear voltage averaging mode was used in the preceding step e), then the correction factor is [20 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 6 dB shall be added to the measured emission levels.
- 3) If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Frequency	Field Strength	Field Strength	Detector
MHz	uV/m	dBμV/m	
30-88	100	40	QP
88-216	150	43.5	QP
216-960	200	46	QP
960-1000	500	54	QP
Above 1000	500	54	AV
Above 1000	5000	74	PK

Spurious radiated emissions for transmitter

According to C63.10, if the peak (or quasi-peak) measured value complies with the average limit, it is unnecessary to perform an average measurement, so AV emission value did not show in below table if the peak value complies with average limit.

Transmitting spurious emission test result as below:

Transmitting spurious emission test result as below:

30MHz - 1GHz

Frequency (MHz)	QuasiPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
54.371250	21.58	40.00	18.42	100.0	Н	204.0	18
98.445625	23.10	43.50	20.4	100.0	Н	337.0	16
129.667500	22.36	43.50	21.14	100.0	Н	158.0	13
192.475000	26.07	43.50	17.43	100.0	Н	204.0	16
298.447500	23.64	46.00	22.36	100.0	Н	135.0	19
917.792500	32.69	46.00	13.31	100.0	Н	31.0	30
54.310625	24.63	40.00	15.37	100.0	٧	129.0	18
106.205625	27.40	43.50	16.10	100.0	٧	129.0	16
167.558125	26.93	43.50	16.57	100.0	V	129.0	13
296.265000	26.44	46.00	19.56	100.0	٧	108.0	19
602.845625	30.69	46.00	15.31	100.0	٧	98.0	26
961.624375	35.66	54.00	18.34	100.0	V	0.0	30

Report Number: 64.790.21.1196.01 -R Page 30 of 33

2402MHz (Above 1GHz)

Frequency	MaxPeak	Limit	Margin	Height	Pol	Azimuth	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(cm)		(deg)	(dB/m)
2350.500000	42.28	74.00	31.72	150.0	Н	335.0	-2.18
3120.500000	44.33	74.00	29.67	150.0	Н	112.0	0.00
3996.000000	46.33	74.00	27.67	150.0	Н	9.0	2.00
4831.500000	49.40	74.00	24.60	150.0	Н	15.0	3.89
5740.000000	50.17	74.00	23.83	150.0	Н	183.0	6.37
7206.500000	50.70	74.00	23.30	150.0	Н	157.0	6.80
2000.000000	42.10	74.00	31.90	100.0	٧	194.0	-3.31
3247.500000	45.83	74.00	28.17	100.0	٧	15.0	0.29
4258.500000	48.03	74.00	25.97	100.0	٧	249.0	3.10
5392.500000	50.98	74.00	23.02	100.0	٧	312.0	5.39
7206.500000	53.87	74.00	20.13	100.0	٧	135.0	6.80
11035.000000	43.61	74.00	30.39	100.0	V	356.0	10.53

2440MHz (Above 1GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	PK Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
1615.500000	40.90	74.00	33.10	150.0	Н	0.0	-6.53
2143.500000	42.41	74.00	31.59	150.0	Н	96.0	-2.95
3007.500000	45.19	74.00	28.81	150.0	Н	43.0	0.06
4112.000000	47.86	74.00	26.14	150.0	Н	150.0	2.58
5192.000000	49.75	74.00	24.25	150.0	Н	293.0	5.03
7320.000000	54.49	74.00	19.51	150.0	Н	30.0	7.04
2188.500000	43.15	74.00	30.85	100.0	٧	15.0	-2.71
2898.000000	45.61	74.00	28.39	100.0	٧	30.0	-0.51
4254.500000	48.95	74.00	25.05	100.0	٧	38.0	3.07
5992.500000	49.94	74.00	24.06	100.0	٧	4.0	6.81
7320.500000	52.27	74.00	21.73	100.0	٧	154.0	7.04
17151.000000	49.05	74.00	24.95	100.0	٧	130.0	18.09

2480MHz (Above 1GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	PK Limit (dBµV/m)	Margin (dB)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
2022.500000	42.09	74.00	31.91	150.0	Н	15.0	-3.28
2363.500000	43.48	74.00	30.52	150.0	Н	15.0	-2.16
2813.000000	45.65	74.00	28.35	150.0	Н	94.0	-0.59
4363.500000	47.71	74.00	26.29	150.0	Н	50.0	3.18
5997.000000	51.15	74.00	22.85	150.0	Н	335.0	6.83
7206.000000	43.03	74.00	30.97	150.0	Н	356.0	6.80
1722.500000	40.87	74.00	33.13	150.0	٧	93.0	-5.57
2624.500000	44.49	74.00	29.51	150.0	٧	280.0	-1.30
3775.000000	47.18	74.00	26.82	150.0	٧	343.0	1.32
4442.000000	46.94	74.00	27.06	150.0	٧	327.0	3.24
5904.000000	50.79	74.00	23.21	150.0	٧	93.0	6.76

Remark:

- (1) Data of Data of measurement within frequency range18-26GHz are the noise floor or attenuated more than 20dB below the permissible limits or the field strength is too small to be measured, so test data does not present in this report.
- (2) Level = Reading Level + Correction Factor Above 1GHz: Corrector factor = Antenna Factor + Cable Loss- Amplifier Gain Below 1GHz: Corrector factor = Antenna Factor + Cable Loss (The Reading level is recorded by software which is not shown in the sheet)

Report Number: 64.790.21.1196.01 -R Page 31 of 33

10 Test Equipment List

List of Test Instruments

Conducted Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 3	101782	2022-6-29
LISN	Rohde & Schwarz	ENV216	100326	2022-6-12

Radiated Emission Test

Description	Manufacturer	Model no.	Serial no.	cal. due date
EMI Test Receiver	Rohde & Schwarz	ESR 26	101269	2022-6-29
Trilog Super Broadband Test Antenna	Schwarzbeck	VULB 9162	284	2022-2-24
Wave Guide Antenna	ETS	3117	00218954	2022-6-15
Pre-amplifier	Rohde & Schwarz	SCU 18F	100745	2022-10-25
Pre-amplifier	Rohde & Schwarz	SCU 08F2	08400018	2022-10-25
Sideband Horn Antenna	Q-PAR	QWH-SL-18- 40-K-SG	12827	2022-8-5
Pre-amplifier	Rohde & Schwarz	SCU 40A	100432	2022-7-30
3m Semi-anechoic chamber	TDK	9X6X6		2022-12-29
Test software	Rohde & Schwarz	EMC32	Version10.35.02	N/A

RF conducted test

Description	Manufacturer	Model no.	Serial no.	cal. due date
Signal Analyzer	Rohde & Schwarz	FSV40	101030	2022-6-21
Vector Signal Generator	Rohde & Schwarz	SMU 200A	105324	2022-6-22
RF Switch Module	Rohde & Schwarz	OSP120/OSP- B157	101226/100851	2022-6-21
Power Splitter	Weinschel	1580	SC319	2022-7-16
10dB Attenuator	Weinschel	4M-10	43152	2022-6-21
Test software	Rohde & Schwarz	EMC32	Version 10.60.10	N/A
Test software	Tonscend	System for BT/WIFI	Version 2.6.77.0518	N/A

Report Number: 64.790.21.1196.01 -R Page 32 of 33

11 System Measurement Uncertainty

For a 95% confidence level, the measurement expanded uncertainties for defined systems, in accordance with the recommendations of ISO 17025 were:

System Measurement Uncertaint	у
Test Items	Extended Uncertainty
Uncertainty for Conducted Emission 150kHz-30MHz	3.21dB
Uncertainty for Radiated Spurious Emission 25MHz-3000MHz	Horizontal: 4.80dB; Vertical: 4.87dB;
Uncertainty for Radiated Spurious Emission 3000MHz-18000MHz	Horizontal: 4.59dB; Vertical: 4.58dB;
Uncertainty for Radiated Spurious Emission 18000MHz-40000MHz	Horizontal: 5.05dB; Vertical: 5.04dB;
Uncertainty for Conducted RF test with TS 8997	Power level test involved: 1.16dB Frequency test involved: 0.6×10 ⁻⁷ or 1%

Report Number: 64.790.21.1196.01 -R Page 33 of 33