

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC PART 15 SUBPART C TEST REPORT

FCC PART 15.247

Report Reference No..... CTA21120700601 FCC ID.:: 2A2HB-LH108

Compiled by

(position+printed name+signature)... File administrators Kevin Liu

Supervised by

(position+printed name+signature)..: Project Engineer Kevin Liu

Approved by

(position+printed name+signature)... RF Manager Eric Wang

Dec. 14, 2021 Date of issue.....

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name..... Lealon (Shenzhen) Technology Ltd

Room 916, RongChao Xincheng Building, Dayun Road, Address:

Huanggekeng Community, Longcheng Street, LongGang

CTATESTIN

District, Shen Zhen, Guangdong, China

Test specification:

FCC Part 15.247

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description Bluetooth speaker

Trade Mark:

Manufacturer: Lealon (Shenzhen) Technology Ltd

Model/Type reference....:

Listed Models: 8488

GFSK, Π/4DQPSK,8DPSK Modulation:

Frequency..... From 2402MHz to 2480MHz

DC3.7V from battery Rating:

Result

Page 2 of 48 Report No.: CTA21120700601

TEST REPORT

Bluetooth speaker Equipment under Test

Model /Type LH108

Listed Models 8488

Applicant Lealon (Shenzhen) Technology Ltd

Room 916, RongChao Xincheng Building, Dayun Road, Address

Huanggekeng Community, Longcheng Street, LongGang

District, Shen Zhen, Guangdong, China

Lealon (Shenzhen) Technology Ltd Manufacturer

Room 916, RongChao Xincheng Building, Dayun Road, Address

Huanggekeng Community, Longcheng Street, LongGang

District, Shen Zhen, Guangdong, China

Test Result: **PASS**

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATE

Page 3 of 48 Report No.: CTA21120700601

Contents

		Contents
1 TEST STANDARDS 2 SUMMARY 2.1 General Remarks 2.2 Product Description 2.3 Equipment Under Test 2.4 Short description of the Equipment under Test (EUT) 2.5 EUT operation mode 2.6 Block Diagram of Test Setup 2.7 Related Submittal(s) / Grant (s) 2.8 Modifications 3 TEST ENVIRONMENT 3.1 Address of the test laboratory 3.2 Test Facility 3.3 Environmental conditions 3.4 Summary of measurement results 3.5 Statement of the measurement uncertainty 3.6 Equipments Used during the Test 4 TEST CONDITIONS AND RESULTS 4.1 AC Power Conducted Emission 4.2 Radiated Emission 4.3 Maximum Peak Output Power 4.4 20dB Bandwidth 4.5 Frequency Separation 4.6 Number of hopping frequency 4.7 Time of Occupancy (Dwell Time) 4.8 Out-of-band Emissions 4.9 Pseudorandom Frequency Hopping Sequence 4.10 Antenna Requirement	TEST STANDARDS	
	C	TEGT GTANDARDG
		TES!
	<u>2</u>	<u>SUMMARY5</u>
		EST!
	2.1	General Remarks 5
		Product Description 5
		Fridant Under Teet
		Equipment Under Test 5 Short description of the Equipment under Test (EUT) 5
TATE		
C	2.8	MODIFICATIONS
7		TE3
	3	TEST ENVIRONMENT7
	_	151
		- CTATE
		Address of the test laboratory 7
		Test Facility 7
		Environmental conditions 7
		Summary of measurement results 8
	3.6	Equipments Used during the Test 9
	4	TEST CONDITIONS AND RESULTS10
	<u>-</u>	TEGO CONDITIONO AND RECOLETO
		AC Power Conducted Emission 10
		Radiated Emission 13
		Maximum Peak Output Power 19
		20dB Bandwidth 20
		Frequency Separation 24
		Number of hopping frequency 26
	4.7	Time of Goodpaney (2 tren Time)
	4.8	
	4.9	Pseudorandom Frequency Hopping Sequence
	4.10	Antenna Requirement 42
TATE		
CAL	5	TEST SETUP PHOTOS OF THE EUT43
	<u>5</u>	<u>1E31 3E10P PHOTOS OF THE EUT43</u>
		CTA '
	<u>6</u>	PHOTOS OF THE EUT44
	_	
		GTIN
		TES
		C/l
		CTA TESTING
10		

Page 4 of 48 Report No.: CTA21120700601

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices

Page 5 of 48 Report No.: CTA21120700601

SUMMARY

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample	:	Nov. 27, 2021
Tourse of the second of the se	2011	CAL
Testing commenced on		Nov. 27, 2021
	To our man	
Testing concluded on	:	Dec. 14, 2021

2.2 Product Description

	C.V
Testing concluded on	: Dec. 14, 2021
2.2 Product Descrip	otion
Product Name:	Bluetooth speaker
Model/Type reference:	LH108
Power supply:	DC 3.7V From Battery
Hardware version:	Y20096B-BT V1.0
Software version:	V1.0
Adapter information (Auxiliary test supplied by test Lab)	Model: EP-TA20CBC Input:AC 100-240V 50/60Hz Output:DC 5V 2A
Testing sample ID:	CTA211207006-1# (Engineer sample) CTA211207006-2# (Normal sample)
Bluetooth :	
Supported Type:	Bluetooth BR/EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	PCB antenna
Antenna gain:	0.00 dBi

Note: Antenna gain is provide by the manufacturer.

2.3 Equipment Under Test

2.3 Equipment Under Test					
Power supply system utilised			TES		
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	0	24 V DC
		•	Other (specified in blank bel	low	

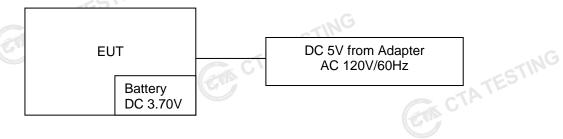
DC 3.7V From Battery and DC 5V From adapter

Short description of the Equipment under Test (EUT)

This is a Bluetooth speaker.

For more details, refer to the user's manual of the EUT.

2.5 **EUT** operation mode


The Applicant provides communication tools software(BT tool) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels provided to

Page 6 of 48 Report No.: CTA21120700601

Operation Frequency:

-6	Channel		Fre	equency (MHz)	
	00			2402	
C	01	-61	No	2403	
C 1	:	TATES		: NG	
	38	C		2440	
	39			2441	
	40			2442	
	:			:	
	77			2479	
	78			2480	

Block Diagram of Test Setup

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria.

Page 7 of 48 Report No.: CTA21120700601

TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

Test Facility 3.2

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

adiated Efficient.		
Temperature:		24 ° C
	Touted.	TP.
Humidity:		46 %
	William Continue	
Atmospheric pressure:		950-1050mbar

AC Power Conducted Emission:

C i owei Conducted Emission.	
Temperature:	25 ° C
Ma.	
Humidity:	47 %
TING	
Atmospheric pressure:	950-1050mbar

Conducted testing:

Atmospheric pressure:	950-1050mbar
onducted testing:	TESTING
Temperature:	24 ° C
Humidity:	46 %
Atmospheric pressure:	950-1050mbar

Page 8 of 48 Report No.: CTA21120700601

3.4 Summary of measurement results

	Test Specification clause	Test case	Test Sample	Test Mode	Test Channel		orded eport	Test result	
	§15.247(a)(1)	Carrier Frequency separation	CTA21120700 6-1#	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK		Compliant	_
	§15.247(a)(1)	Number of Hopping channels	CTA21120700 6-1#	GFSK П/4DQPSK 8DPSK	⊠ Full	GFSK 8DPSK	⊠ Full	Compliant	
	§15.247(a)(1)	Time of Occupancy (dwell time)	CTA21120700 6-1#	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	⊠ Middle	Compliant	CT
ATES	§15.247(a)(1)	Spectrumba ndwidth of aFHSS system20dB bandwidth	CTA21120700 6-1#	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Middle☑ Highest	Compliant	
	§15.247(b)(1)	Maximum outputpower	CTA21120700 6-1#	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	Compliant	
	§15.247(d)	Band edgecomplia nce conducted	CTA21120700 6-1#	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	Compliant	
	§15.205	Band edgecomplia nce radiated	CTA21120700 6-1#	GFSK П/4DQPSK 8DPSK	☑ Lowest☑ Highest	GFSK	☑ Lowest☑ Highest	Compliant	
	§15.247(d)	TX spuriousemi ssions conducted	CTA21120700 6-1#	GFSK П/4DQPSK 8DPSK		GFSK П/4DQPSK 8DPSK		Compliant	
	§15.209(a)	TX spuriousemi ssions Radiated above 1GHz	CTA21120700 6-1#	GFSK П/4DQPSK 8DPSK	✓ Lowest✓ Middle✓ Highest	GFSK	✓ Lowest✓ Middle✓ Highest	Compliant	
	§15.209(a)	TX spurious Emissions radiated Below 1GHz	CTA21120700 6-2#	GFSK П/4DQPSK 8DPSK	 Lowest Middle Highest	GFSK	⊠ Middle	Compliant	CT
ATES	§15.107(a) §15.207	Conducted Emissions 9KHz-30 MHz	CTA21120700 6-2#	GFSK П/4DQPSK 8DPSK		GFSK	⊠ Middle	Compliant	

Remark:

- The measurement uncertainty is not included in the test result.
- We tested all test mode and recorded worst case in report

Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)

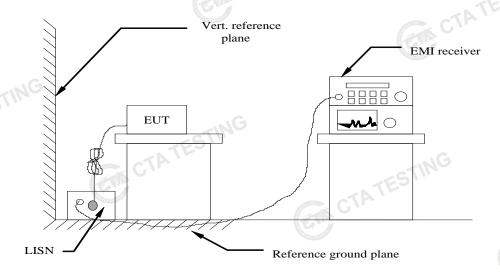
Report No.: CTA21120700601 Page 9 of 48

Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

CTATESTING


	3.6 Equipments	Used during the	e Test		TESTING	
	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibrat Due Da
	LISN	R&S	ENV216	CTA-308	2021/08/06	2022/08
	LISN	R&S	ENV216	CTA-314	2021/08/06	2022/08
ATE	EMI Test Receiver	R&S	ESPI	CTA-307	2021/08/06	2022/08
	EMI Test Receiver	R&S	ESCI	CTA-306	2021/08/06	2022/08
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2021/08/06	2022/08
	Spectrum Analyzer	R&S	FSP	CTA-337	2021/08/06	2022/08
	Vector Signal generator	Agilent	N5182A	CTA-305	2021/08/06	2022/08
	Analog Signal Generator	R&S	SML03	CTA-304	2021/08/06	2022/08
	Universal Radio Communication	CMW500	R&S	CTA-302	2021/08/06	2022/08
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2021/08/06	2022/08
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2021/08/07	2022/08
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2021/08/07	2022/08
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2021/08/07	2022/08
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/06	2022/08
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2021/08/06	2022/08
TE	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2021/08/06	2022/08
	Directional coupler	NARDA	4226-10	CTA-303	2021/08/06	2022/08
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2021/08/06	2022/08
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2021/08/06	2022/08
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2021/08/06	2022/08
	Power Sensor	Agilent	U2021XA	CTA-405	2021/08/06	2022/08
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2021/08/06	2022/08

Page 10 of 48 Report No.: CTA21120700601

TEST CONDITIONS AND RESULTS

AC Power Conducted Emission

TEST CONFIGURATION

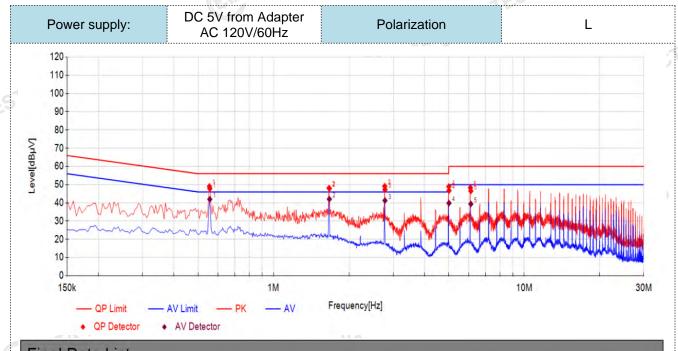
TEST PROCEDURE

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)					
Frequency range (Wiriz)	Quasi-peak	Average				
0.15-0.5	66 to 56*	56 to 46*				
0.5-5	56	46				
5-30	60	50				
* Decreases with the logarithm of the frequen	ncy.					
CIP CTP	TESTING	TATESTING				

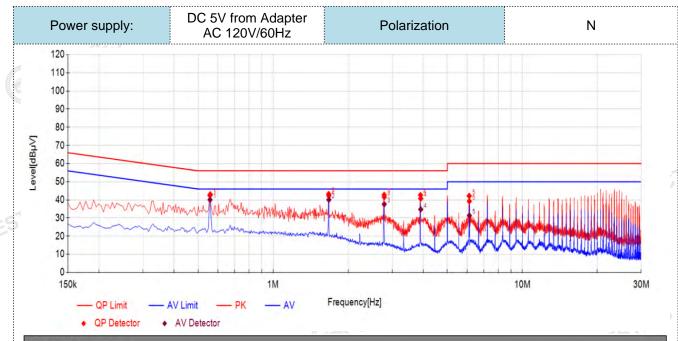

Page 11 of 48 Report No.: CTA21120700601

TEST RESULTS

Remark:

1. All modes of GFSK, ⊓/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:


NO.	Freq.	Factor	QP Reading[dB	QP Value	QP Limit	QP Margin	AV Reading	AV Value	AV Limit	AV Margin	Verdic	
[MHz] [dB]	[MHZ] [dB] µV] [dBµV] [dBµV]					[dB]	[dBµV]	[dBµV]	[dBµV]	[dB]		
1	0.5572	10.50	37.31	47.81	56.00	8.19	31.46	41.96	46.00	4.04	PASS	
2	1.6705	10.50	37.39	47.89	56.00	8.11	31.55	42.05	46.00	3.95	PASS	
3	2.7844	10.50	36.82	47.32	56.00	8.68	30.78	41.28	46.00	4.72	PASS	
4	5.0130	10.50	36.21	46.71	60.00	13.29	29.34	39.84	50.00	10.16	PASS	
5	6.1285	10.50	36.02	46.52	60.00	13.48	28.89	39.39	50.00	10.61	PASS	

CTA TESTING

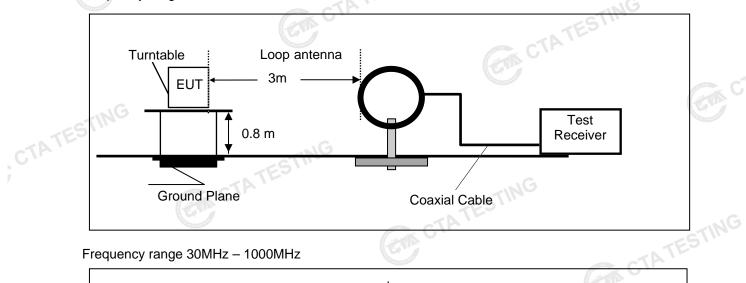
Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- CTA TESTING 3). $QPMargin(dB) = QP Limit (dB\mu V) - QP Value (dB\mu V)$
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

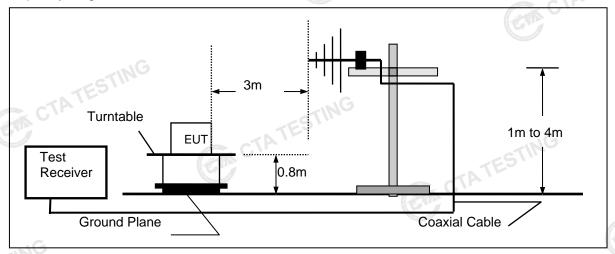
Report No.: CTA21120700601 Page 12 of 48

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dΒμV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict
1	0.5583	10.50	31.94	42.44	56.00	13.56	29.54	40.04	46.00	5.96	PASS
2	1.6742	10.50	31.78	42.28	56.00	13.72	29.60	40.10	46.00	5.90	PASS
3	2.7935	10.50	31.06	41.56	56.00	14.44	27.10	37.60	46.00	8.40	PASS
4	3.9120	10.50	30.22	40.72	56.00	15.28	24.26	34.76	46.00	11.24	PASS
5	6.1315	10.50	28.73	39.23	60.00	20.77	20.86	31.36	50.00	18.64	PASS

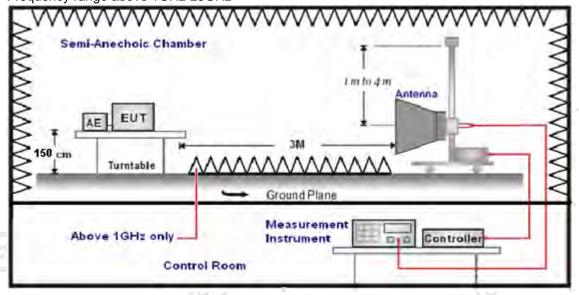
CATE


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$

Report No.: CTA21120700601 Page 13 of 48


4.2 Radiated Emission

TEST CONFIGURATION


Frequency range 9 KHz – 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

Page 14 of 48 Report No.: CTA21120700601

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz. 5.
- The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	251011
18GHz-25GHz	Horn Anternna	1	

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP G
	Peak Value: RBW=1MHz/VBW=3MHz,	-657111
1GHz-40GHz	Sweep time=Auto	Peak
1G112-40GHZ	Average Value: RBW=1MHz/VBW=10Hz,	reak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

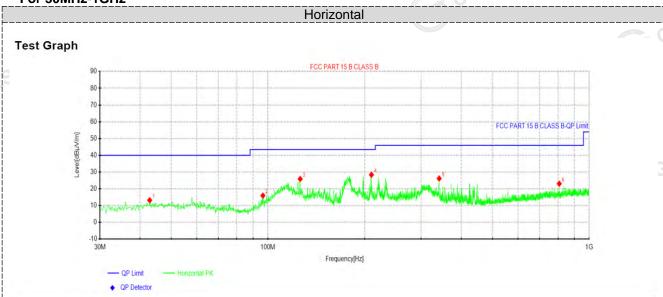
Transd=AF +CL-AG

RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBμV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500


TEST RESULTS

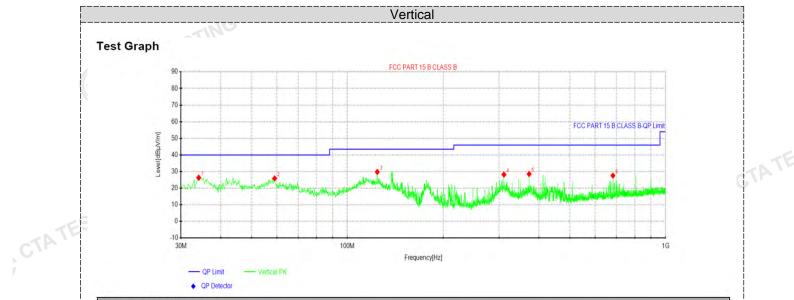
Page 15 of 48 Report No.: CTA21120700601

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK,π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz

Susp	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	42.8525	29.98	13.23	-16.75	40.00	26.77	100	11	Horizontal
2	96.445	34.91	15.99	-18.92	43.50	27.51	100	180	Horizontal
3	126.03	46.81	25.90	-20.91	43.50	17.60	100	304	Horizontal
4	210.056	47.52	28.42	-19.10	43.50	15.08	100	54	Horizontal
5	341.37	42.46	26.19	-16.27	46.00	19.81	100	219	Horizontal
6	807.212	33.58	23.08	-10.50	46.00	22.92	100	156	Horizontal


CTAT

CTATESTING

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 16 of 48 Report No.: CTA21120700601

Suspe	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµV/m]	Level [dBµV/m]	Factor [dB]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	34.1225	44.36	26.35	-18.01	40.00	13.65	100	342	Vertical
2	59.1	43.92	25.90	-18.02	40.00	14.10	100	354	Vertical
3	124.211	50.51	29.79	-20.72	43.50	13.71	100	321	Vertical
4	310.451	45.41	28.21	-17.20	46.00	17.79	100	189	Vertical
5	372.531	44.40	28.56	-15.84	46.00	17.44	100	165	Vertical
6	683.052	39.39	27.60	-11.79	46.00	18.40	100	18	Vertical

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V/m)$ + Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Report No.: CTA21120700601 Page 17 of 48

For 1GHz to 25GHz

Note: GFSK, $\pi/4$ DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	56.87	PK	74.00	17.13	61.14	32.33	5.12	41.72	-4.27	
4804.00	48.25	AV	54.00	5.75	52.52	32.33	5.12	41.72	-4.27	
7206.00	46.77	PK	74.00	27.23	47.29	36.60	6.49	43.61	-0.52	
7206.00		AV	54.00						60 Hd	

Frequ	ency(MHz)):	24	02	Pola	arity:	VERTICAL			
Frequency (MHz)	Le	ssion vel IV/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4804.00	57.37	PK	74.00	16.63	61.64	32.33	5.12	41.72	-4.27	
4804.00	48.95	AV	54.00	5.05	53.22	32.33	5.12	41.72	-4.27	
7206.00	47.57	PK	74.00	26.43	48.09	36.60	6.49	43.61	-0.52	
7206.00		AV	54.00							

Freque	ncy(MHz)	:	2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	/el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	56.76	PK	74.00	17.24	60.64	32.60	5.34	41.82	-3.88
4882.00	47.67	AV	54.00	6.33	51.55	32.60	5.34	41.82	-3.88
7323.00	46.59	PK	74.00	27.41	46.70	36.80	6.81	43.72	-0.11
7323.00		AV	54.00	VIE				G	
							-6711		

Freque	ency(MHz)):	24	41	Pola	arity:		VERTICAL	-
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4882.00	57.46	PK	74.00	16.54	61.34	32.60	5.34	41.82	-3.88
4882.00	48.47	AV	54.00	5.53	52.35	32.60	5.34	41.82	-3.88
7323.00	47.79	PK	74.00	26.21	47.90	36.80	6.81	43.72	-0.11
7323.00		AV	54.00						

Frequency(MHz):		2480		Polarity:		HORIZONTAL			
Frequency (MHz)	_	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	56.94	PK	74.00	17.06	60.02	32.73	5.66	41.47	-3.08
4960.00	48.69	ΑV	54.00	5.31	51.77	32.73	5.66	41.47	-3.08
7440.00	47.36	PK	74.00	26.64	46.91	37.04	7.25	43.84	0.45
7440.00		AV	54.00						

		1G							
Frequency(MHz):		2480		Polarity:		VERTICAL		•	
Гтодиором	Emis	sion	Limit	Morgin	Raw	Antenna	Cable	Pre-	Correction
Frequency	Lev	/el	Limit	Margin	Value	Factor	Factor	amplifier	Factor
(MHz) (dBuV/m)	V/m)	(dBuV/m) (dB)	(dB)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)	
4960.00	58.04	PK	74.00	15.96	61.12	32.73	5.66	41.47	-3.08
4960.00	49.59	AV	54.00	4.41	52.67	32.73	5.66	41.47	-3.08
7440.00	48.56	PK	74.00	25.44	48.11	37.04	7.25	43.84	0.45
7440.00		ΑV	54.00			CTP-			

Page 18 of 48 Report No.: CTA21120700601

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

GFSK

Frequency(MHz):			24	02	Pola	rity:	Н	IORIZONTA	NL
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	49.32	PK	74.00	24.68	59.74	27.42	4.31	42.15	-10.42
2390.00		AV	54.00						
Freque	ency(MHz)):	24	02	Pola	rity:		VERTICAL	•
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	50.52	PK	74.00	23.48	60.94	27.42	4.31	42.15	-10.42
2390.00		AV	54.00		/			45TE	
Freque	ency(MHz)):	2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	47.39	PK	74.00	26.61	57.50	27.70	4.47	42.28	-10.11
2483.50	15	AV	54.00						
Frequency(MHz):		2480		Pola	Polarity:		VERTICAL		
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	48.69	PK	74.00	25.31	58.80	27.70	4.47	42.28	-10.11
		AV	54.00						

REMARKS:

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit. CTA TESTING

Page 19 of 48 Report No.: CTA21120700601

4.3 Maximum Peak Output Power

Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

Test Procedure

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the powersensor.

Test Configuration

CTATESTING **Test Results**

Type Channel Output power (dBm) Limit (dBm) Result 00 0.30 20.97 Pass 78 -0.88 20.97 Pass π/4DQPSK 39 1.98 20.97 Pass 78 1.60 20.97 Pass 8DPSK 39 2.63 20.97 Pass		-412		-113	
GFSK 39 -0.30 20.97 Pass 78 -0.88 00 2.73 π/4DQPSK 39 1.98 20.97 Pass 78 1.60 00 3.37	Туре	Channel	Output power (dBm)	Limit (dBm)	Result
78 -0.88 00 2.73 π/4DQPSK 39 1.98 20.97 Pass 78 1.60 00 3.37		00	0.30		CTIN
π/4DQPSK 39 1.98 20.97 Pass 78 1.60 00 3.37	GFSK	39	-0.30	20.97	Pass
π/4DQPSK 39 1.98 20.97 Pass 78 1.60 00 3.37		78	-0.88	G V	
78 1.60 00 3.37		00	2.73		
00 3.37	π/4DQPSK	39	1.98	20.97	Pass
No.	TESI	78	1.60		
8DPSK 39 2.63 20.97 Pass	C	00	3.37		
	8DPSK	39	2.63	20.97	Pass
78 1.85		78	1.85	TEST	

Page 20 of 48 Report No.: CTA21120700601

20dB Bandwidth

Limit

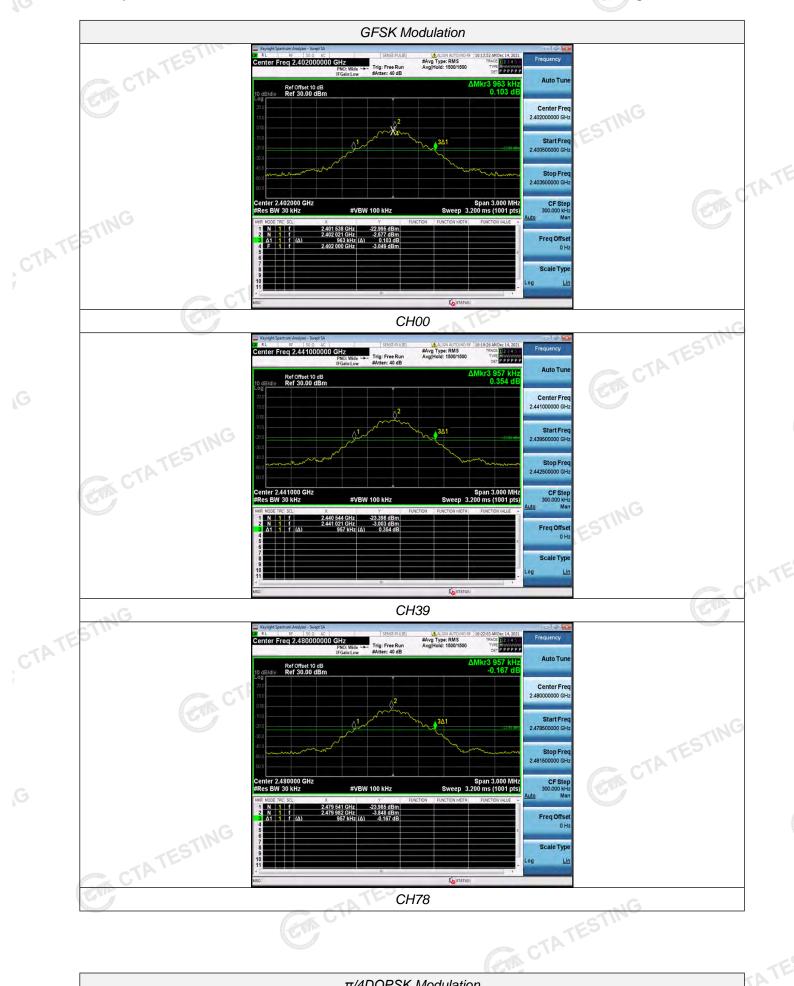
For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Test Configuration

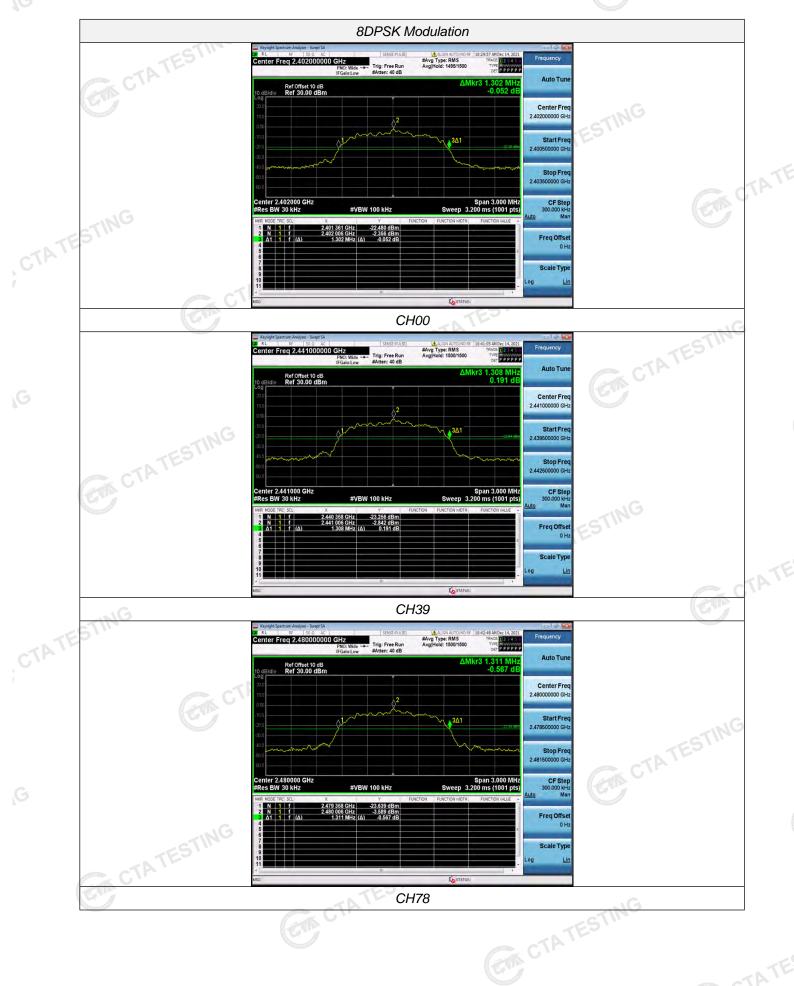

EUT CTATESTING	SPECTRUM ANALYZER
	CTATE CTATE

Test Results

Test Results	C	CTATES	CTATESTING
Modulation	Channel	20dB bandwidth (MHz)	Result
	CH00	0.963	Po metro
GFSK	CH39	0.957	
TESTIN	CH78	0.957	
CIA.	CH00	1.326	
π/4DQPSK	CH39	1.326	Pass
	CH78	1.332	STING
	CH00	1.302	
8DPSK	CH39	1.308	
	CH78	1.311	C C

CTATESTING CTA TESTING Test plot as follows:

Report No.: CTA21120700601 Page 21 of 48



Report No.: CTA21120700601 Page 22 of 48

CTA TESTING

Report No.: CTA21120700601 Page 23 of 48

Page 24 of 48 Report No.: CTA21120700601

4.5 Frequency Separation

LIMIT

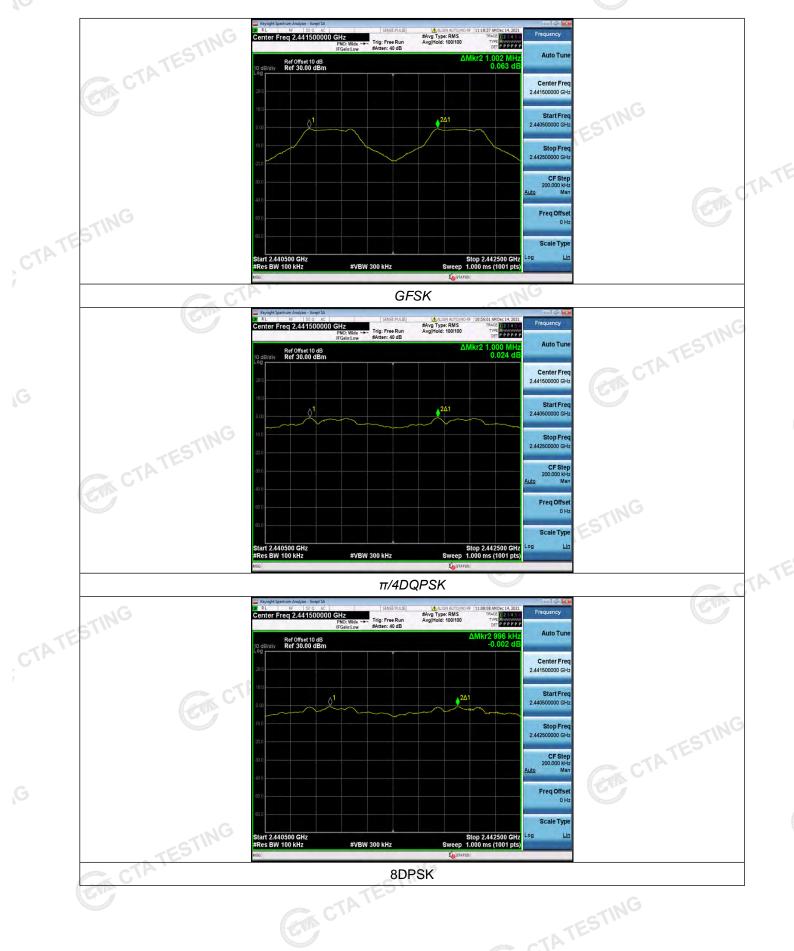
According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the CTATE fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

TEST CONFIGURATION

TEST RESULTS


701011				
Modulation	Channel	Channel Separation (MHz)	Limit(MHz)	Result
GFSK	CH38	1.002	25KHz or 2/3*20dB	Pass
Gran	CH39	1.002	bandwidth	Pass
π/4DQPSK	CH38	1.000	25KHz or 2/3*20dB	Pass
11/4DQF3K	CH39	1.000	bandwidth	rass
8DPSK	CH38	0.996	25KHz or 2/3*20dB	Pass
ODPSK	CH39	0.990	bandwidth	Fd55

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

Test plot as follows:

Report No.: CTA21120700601 Page 25 of 48

CTA TESTING

Page 26 of 48 Report No.: CTA21120700601

Number of hopping frequency

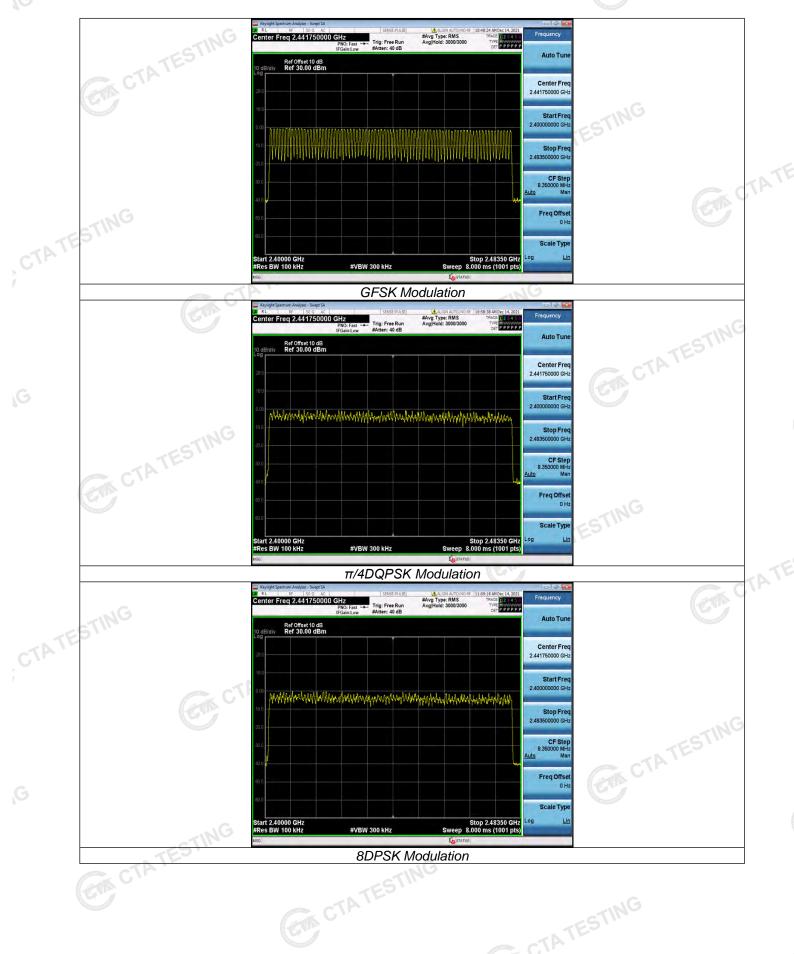
Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

Test Configuration



Test Results

Test Results	ATES	STING	
Modulation	Number of Hopping Channel	Limit	Result
GFSK	79		STATES
π/4DQPSK	79	≥15	Pass
8DPSK	79		-

Test plot as follows: ETA CTATES

Page 27 of 48 Report No.: CTA21120700601

Page 28 of 48 Report No.: CTA21120700601

Time of Occupancy (Dwell Time)

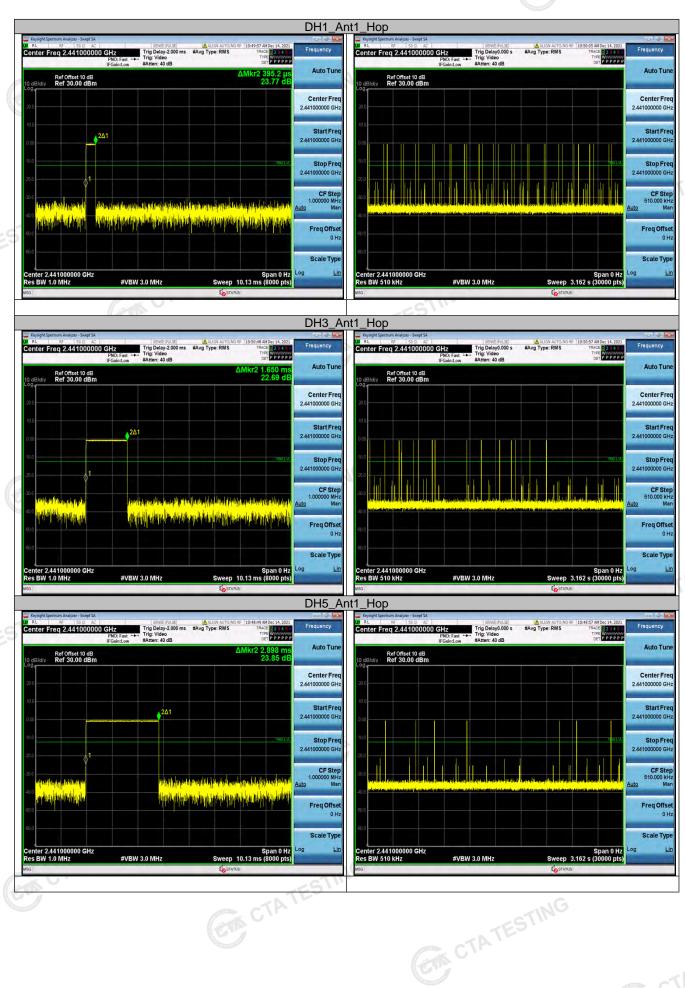
Limit

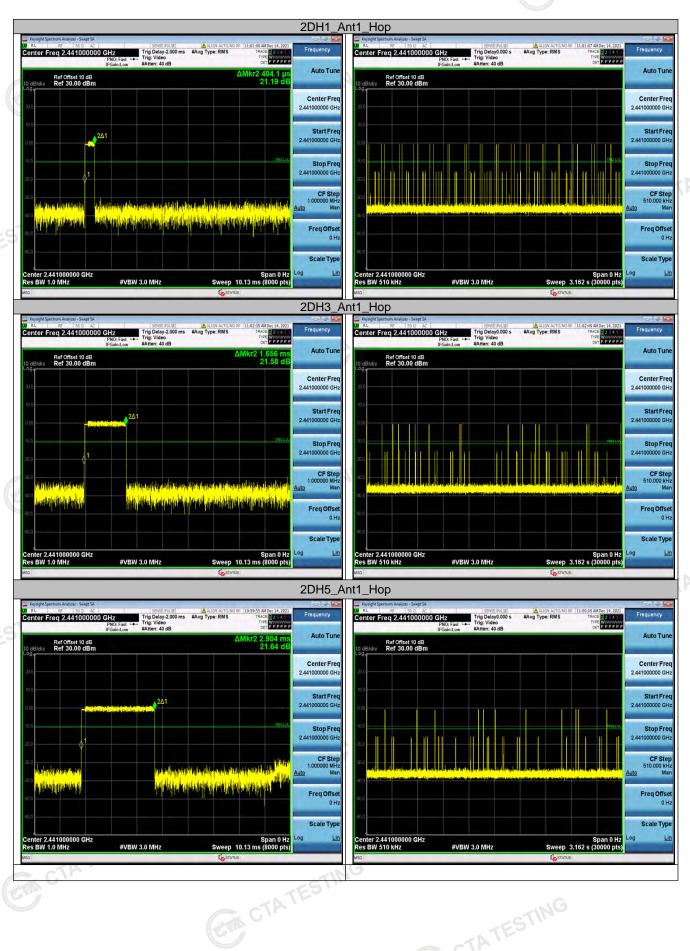
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Test Procedure

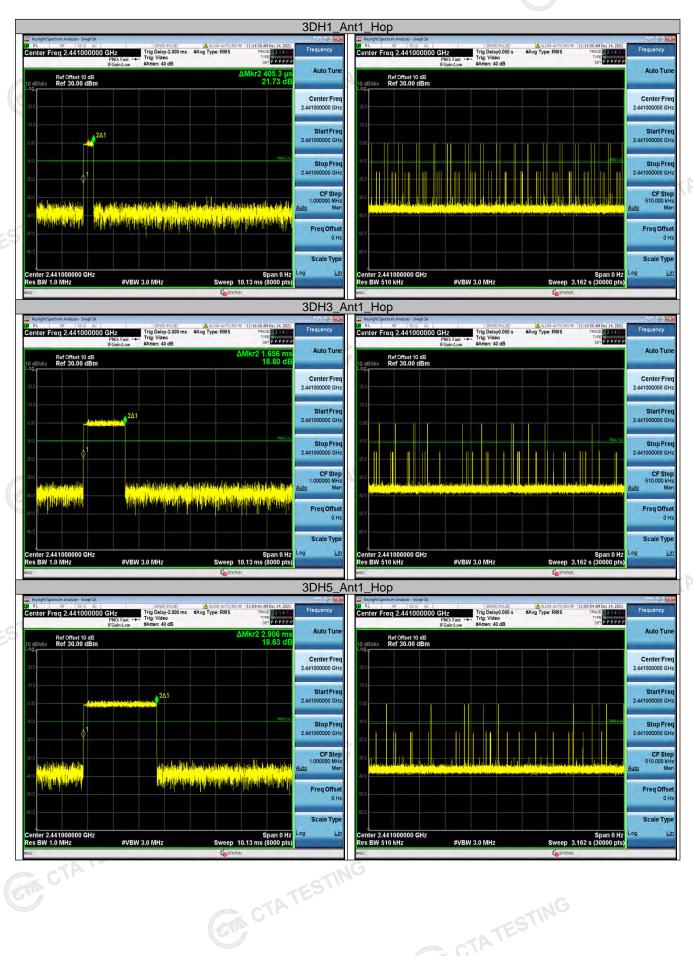
CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

Test Configuration




Test Results

Modulation	Packet	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit (s)	Result
	DH1	0.37	330	0.123	CAL	
GFSK	DH3	1.63	130	0.212	0.40	Pass
	DH5	2.88	100	0.288		
	2-DH1	0.39	320	0.123		
π/4DQPSK	2-DH3	1.64	160	0.262	0.40	Pass
20 TO THE PARTY OF	2-DH5	2.88	120	0.346	ING	
	3-DH1	0.39	320	0.123	TESTIN	
8DPSK	3-DH3	1.64	190	0.311	0.40	Pass
	3-DH5	2.89	130	0.375		


Test plot as follows: CTATESTING

Page 29 of 48 Report No.: CTA21120700601

Page 31 of 48 Report No.: CTA21120700601

Page 32 of 48 Report No.: CTA21120700601

Out-of-band Emissions

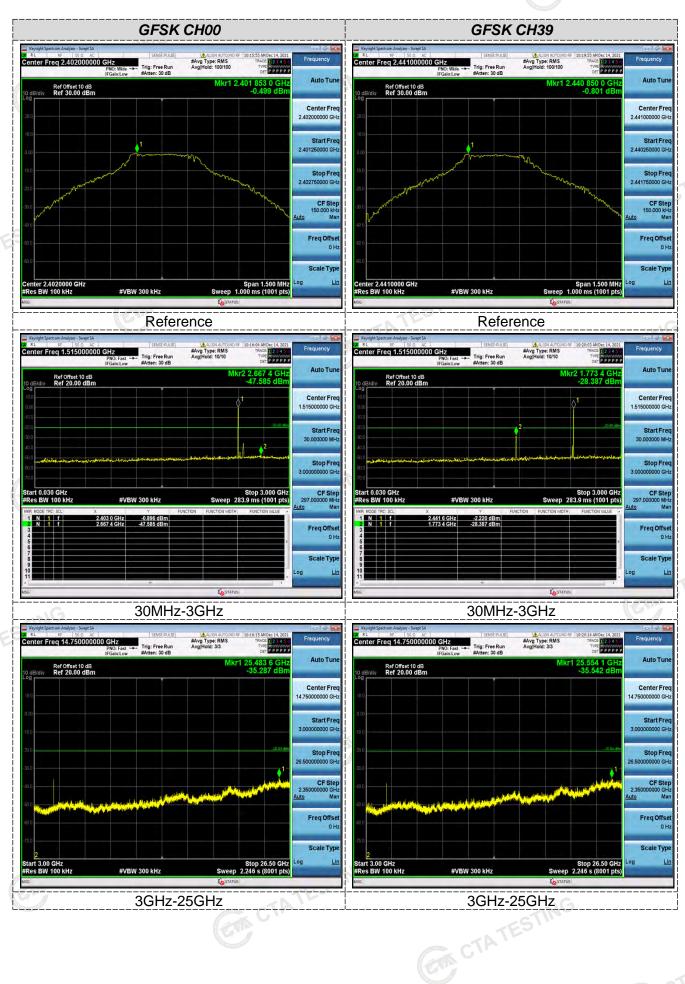
Limit

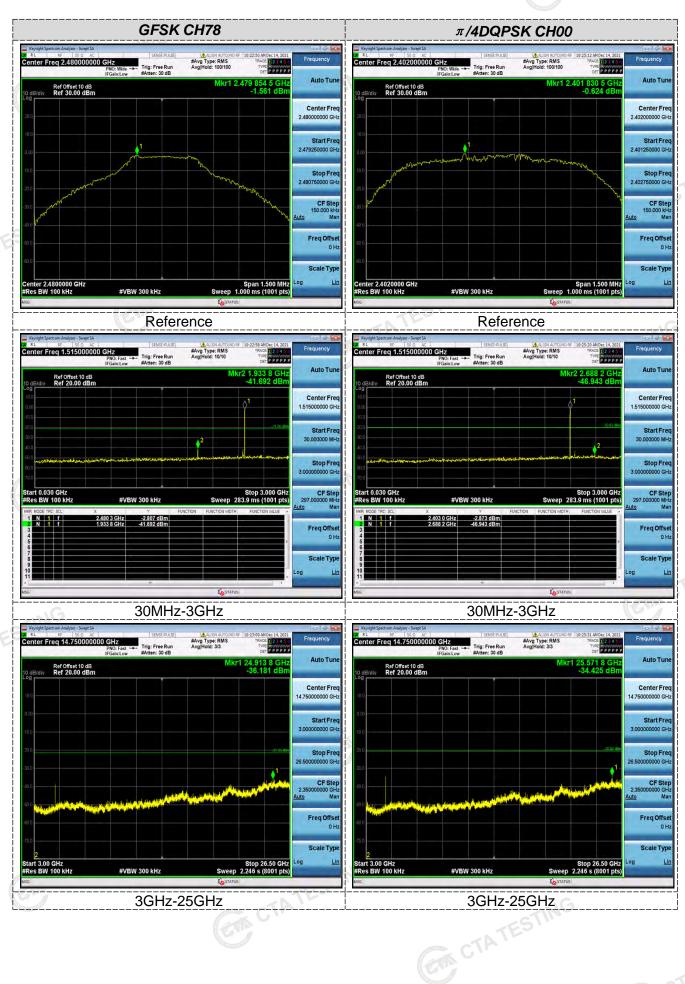
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

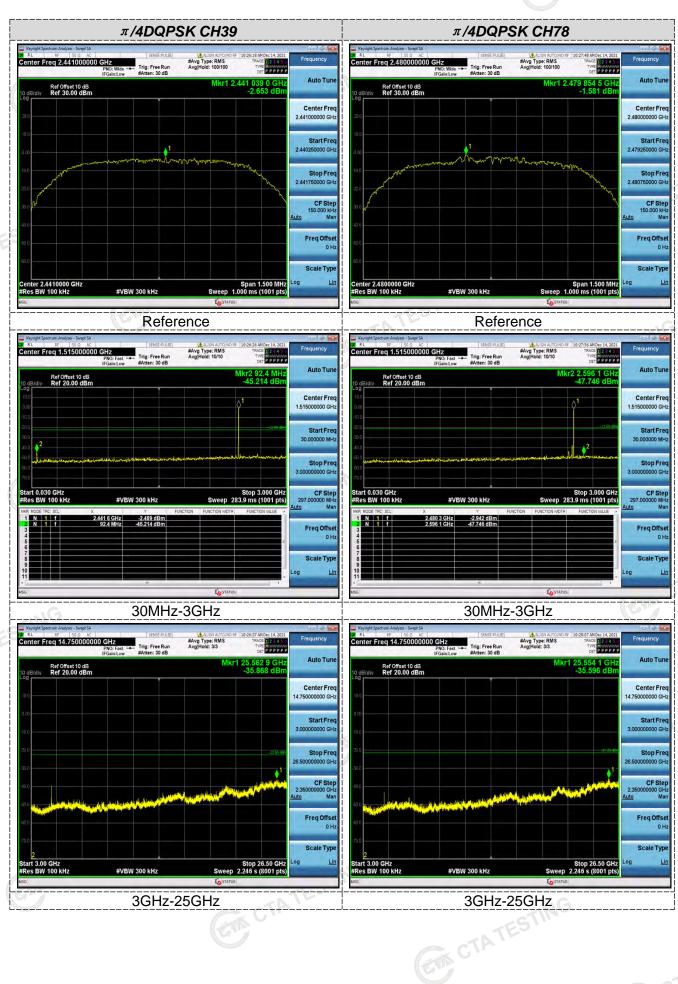
Test Procedure

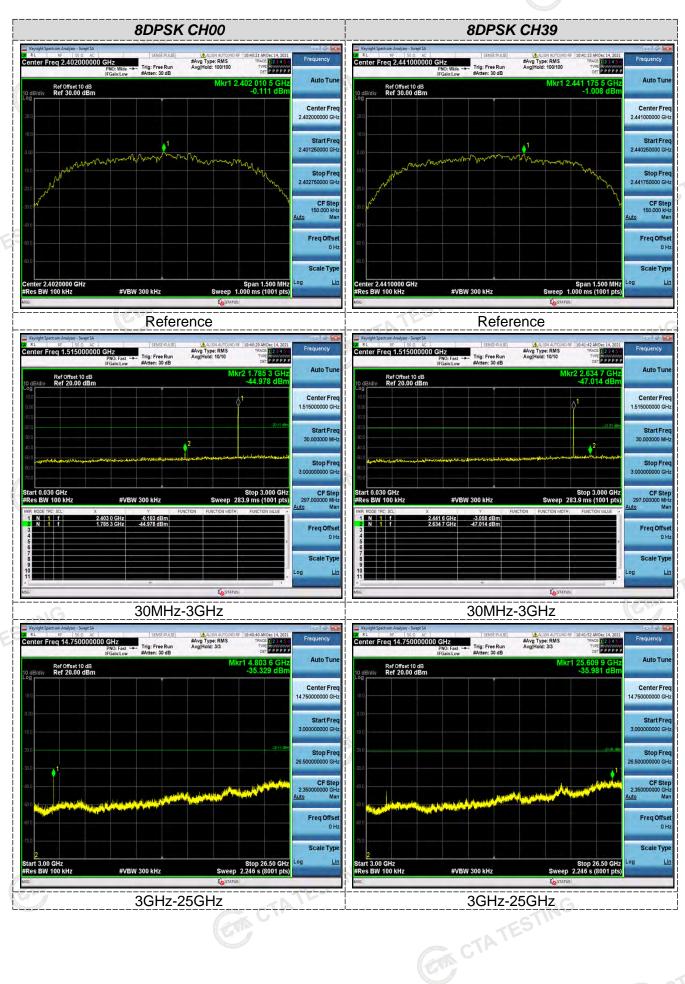
Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions.

Test Configuration




Test Results 57111G


Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.


We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

Page 37 of 48 Report No.: CTA21120700601

Page 38 of 48 Report No.: CTA21120700601

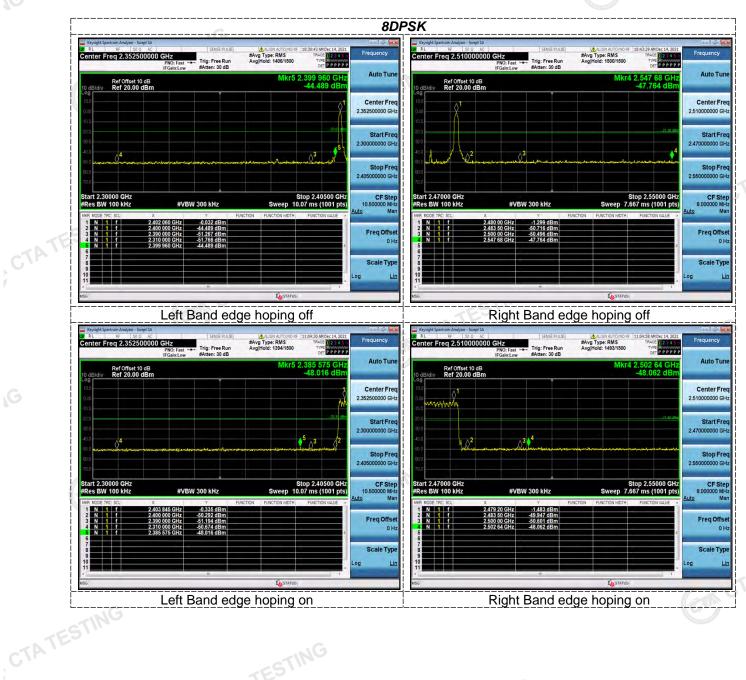
Band-edge Measurements for RF Conducted Emissions: **GFSK** #Avg Type: RMS Avg|Hold: 1434/1500 #Avg Type: RMS Avg|Hold: 1500/15 Center Freq 2.352500000 GHz Center Freq 2.510000000 GHz Auto Tur Auto Tun Ref Offset 10 dB Ref 20.00 dBm Center Free Stop Free 2.405000000 GH Stop Fred 2.550000000 GH: CF Step 8.000000 MH: Mar CF Step 10.500000 MH 0 Ma Freq Offse Scale Typ Scale Type Lin Left Band edge hoping off Right Band edge hoping off Trig: Free Run Auto Tun Auto Tun Ref Offset 10 dB Ref 20.00 dBm Ref Offset 10 dB Ref 20.00 dBm Center Fre Center Fre TYYYYYYY Stop Fre #VBW 300 kHz Freq Offs Freq Offse

Scale Typ

Left Band edge hoping on

CTA TESTING

Scale Type


Right Band edge hoping on

Lin

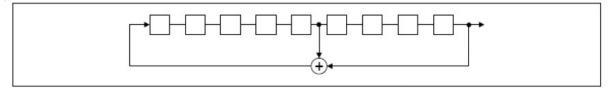
Report No.: CTA21120700601 Page 39 of 48

Report No.: CTA21120700601 Page 40 of 48

Page 41 of 48 Report No.: CTA21120700601

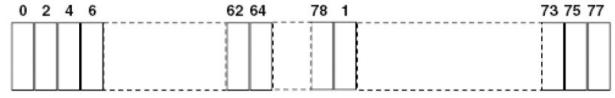
4.9 Pseudorandom Frequency Hopping Sequence

TEST APPLICABLE

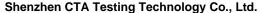

For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence Requirement


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)


Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Page 42 of 48 Report No.: CTA21120700601

4.10 Antenna Requirement

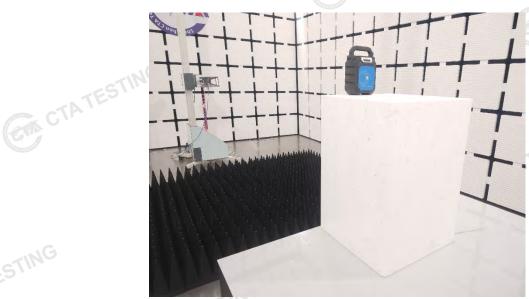
Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain CTATE greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance

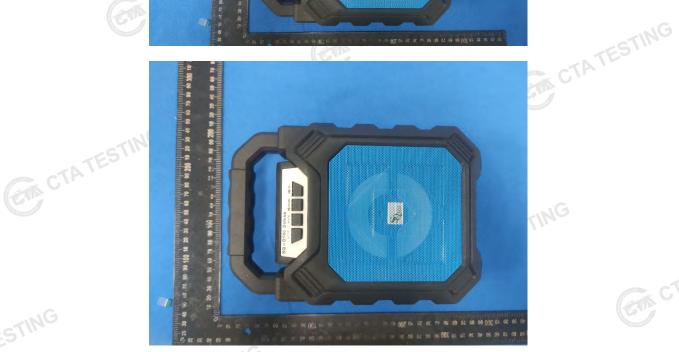
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not CTATESTING apply to intentional radiators that must be professionally installed.

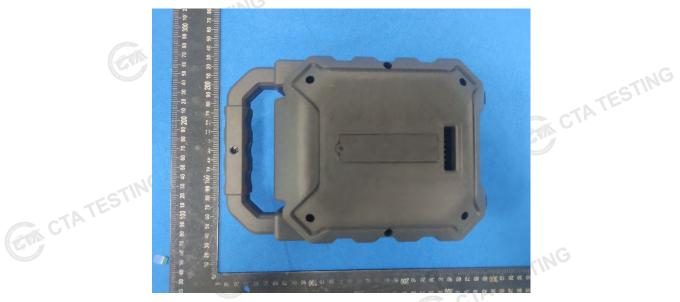

Antenna Connected Construction

The maximum gain of antenna was 0.00 dBi.

Page 43 of 48 Report No.: CTA21120700601

Test Setup Photos of the EUT

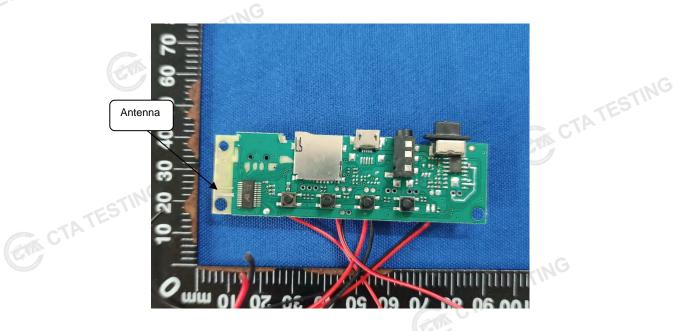


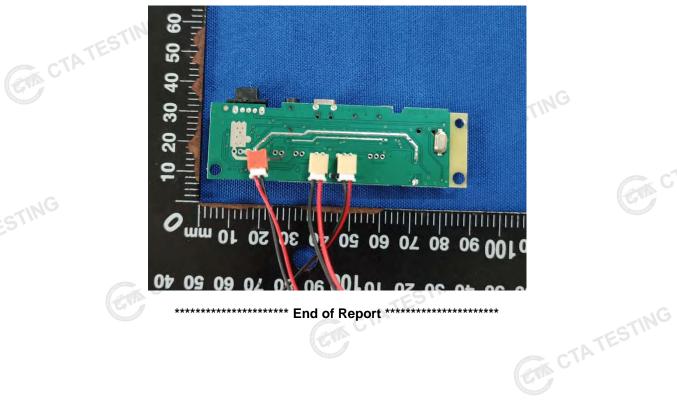

Report No.: CTA21120700601 Page 44 of 48

Photos of the EUT CTATES

External photos

Report No.: CTA21120700601 Page 45 of 48


Page 46 of 48 Report No.: CTA21120700601


Report No.: CTA21120700601 Page 47 of 48

Page 48 of 48 Report No.: CTA21120700601

