

Test report No.
Page
Issued date
FCC ID

: 1 of 22 : March 16, 2022 : 2A2ED11032

: 13864042Y-B-R1

EMI TEST REPORT

Test Report No.: 13864042Y-B-R1

Applicant: LAMI CORPORATION INC.

Type of EUT: Laminator
Model Number of EUT: Revo-Any
FCC ID: 2A2ED11032

Test regulation: FCC Part 15 Subpart B:2021 Class A

Test result: Complied (Refer to Section 3)

- 1. This test report shall not be reproduced in full or partial, without the written approval of UL Japan, Inc.
- 2. The results in this report apply only to the sample tested.
- 3. This sample tested is in compliance with the limits of the above regulation.
- 4. The test results in this test report are traceable to the national or international standards.
- 5. This test report must not be used by the customer to claim product certification, approval, or endorsement by any agency of the Federal Government.
- 6. This test report covers EMC technical requirements.
 - It does not cover administrative issues such as Manual or non-EMC test related Requirements. (if applicable)
- 7. The all test items in this test report are conducted by UL Japan, Inc. Yokowa EMC Lab.
- 8. The opinions and the interpretations to the result of the description in this report are outside scopes where UL Japan, Inc. has been accredited.
- 9. The information provided from the customer for this report is identified in Section 1.
- 10. This report is a revised version of 13864042Y-B. 13864042Y-B is replaced with this report.

Date of test:	July 1, 2021
Representative test engineer:	hnakai
	Hiromichi Nakai
	Engineer
Approved by:	Jan Land
	Masamichi Ishii
	Leader

	The testing in which	"Non-accreditation"	' is displayed is	s outside the	accreditation	scopes in	UL Japar	ı, Inc.
--	----------------------	---------------------	-------------------	---------------	---------------	-----------	----------	---------

There is no testing item of "Non-accreditation".

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 13864042Y-B-R1
Page : 2 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

REVISION HISTORY

Original Test Report No.: 13864042Y-B

Revision	Test report No.	Date	Page revised	Contents
-	13864042Y-B	July 20, 2021	-	-
(Original)				
1	13864042Y-B-R1	March 16, 2022	P.5	Correction of Size (Height) from 280 to
				380
1	13864042Y-B-R1	March 16, 2022	P.9	Addition of explanation about Mode 1

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 13864042Y-B-R1
Page : 3 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

Reference: Abbreviations (Including words undescribed in this report)

		MAND	
AAN	Asymmetric Artificial Network	ISED	Innovation, Science and Economic Development Canada
AC	Alternating Current	ISN ISO	Impedance Stabilization Network
AM	Amplitude Modulation		International Organization for Standardization
AMN	Artificial Mains Network	JAB LAN	Japan Accreditation Board
Amp, AMP	Amplifier	LCL	Local Area Network
ANSI	American National Standards Institute		Longitudinal Conversion Loss
Ant, ANT AP	Antenna	LIMS LISN	Laboratory Information Management System
	Access Point		Line Impedance Stabilization Network
ASK	Amplitude Shift Keying	MRA	Mutual Recognition Arrangement
Atten., ATT AV	Attenuator	N/A NIST	Not Applicable
BPSK	Average	NS NS	National Institute of Standards and Technology No signal detect.
BR	Binary Phase-Shift Keying Bluetooth Basic Rate	NSA	Normalized Site Attenuation
BT	Bluetooth Basic Rate	NVLAP	National Voluntary Laboratory Accreditation Program
BT LE		OBW	, , ,
BW	Bluetooth Low Energy BandWidth	OFDM	Occupied Band Width
C.F	Correction Factor	PK	Orthogonal Frequency Division Multiplexing
C.F Cal Int	Calibration Interval	P _{LT}	Peak
CAV	CISPR AV		long-term flicker severity Partial Odd Harmonic Current
	**************************************	POHC(A)	
CCK	Complementary Code Keying	Pol., Pola. PR-ASK	Polarization
CDN	Coupling Decoupling Network		Phase Reversal ASK
Ch., CH	Channel	P _{ST}	short-term flicker severity
CISPR	Comite International Special des Perturbations Radioelectriques	QAM	Quadrature Amplitude Modulation
Corr.	Correction	QP	Quasi-Peak
CPE	Customer premise equipment	QPSK	Quadri-Phase Shift Keying
CW	Continuous Wave	r.m.s., RMS	Root Mean Square
DBPSK	Differential BPSK	RBW	Resolution Band Width
DC	Direct Current	RE	Radio Equipment
DET	Detector	REV	Reverse
Dmax	maximum absolute voltage change during an observation period	RF	Radio Frequency
DQPSK	Differential QPSK	RFID	Radio Frequency Identifier
DSSS	Direct Sequence Spread Spectrum	RSS	Radio Standards Specifications
EDR	Enhanced Data Rate	Rx	Receiving
e.i.r.p., EIRP	Equivalent Isotropically Radiated Power	SINAD S/N	Ratio of (Signal + Noise + Distortion) to (Noise + Distortion)
EM clamp	Electromagnetic clamp		Signal to Noise ratio
EMC	ElectroMagnetic Compatibility	SA, S/A	Spectrum Analyzer
EMI EMS	ElectroMagnetic Interference	SG SVSWR	Signal Generator
ENIS EN	ElectroMagnetic Susceptibility		Site-Voltage Standing Wave Ratio Total Harmonic Current
	European Norm Effective Radiated Power	THC(A)	
e.r.p., ERP		THD(%)	Total Harmonic Distortion
EU	European Union	TR	Test Receiver
EUT	Equipment Under Test	Tx	Transmitting
Fac.	Factor Federal Communications Commission	VBW	Video BandWidth
FCC FHSS	Federal Communications Commission Frequency Hopping Spread Spectrum	Vert. WLAN	Vertical Wireless LAN
		xDSL	
FM	Frequency Modulation	ADSL	Generic term for all types of DSL technology
Freq. FSK	Frequency Frequency Shift Varing		(DSL: Digital Subscriber Line)
Fund	Frequency Shift Keying Fundamental		
FWD	Forward		
GFSK			
GNSS	Gaussian Frequency-Shift Keying Global Navigation Satellite System		
GPS	Global Positioning System		
Hori.	Horizontal		
ICES	Interference-Causing Equipment Standard		
I/O	Input/Output		
IEC	International Electrotechnical Commission		
IEEE			
IF	Institute of Electrical and Electronics Engineers		
ILAC	Intermediate Frequency International Laboratory Accreditation Conference		
ILAC	international Laboratory Accreditation Conference		

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 13864042Y-B-R1 : 4 of 22 Page Issued date : March 16, 2022 : 2A2ED11032

FCC ID

CONTENTS

	PAGE
Section 1: Customer information	5
Section 2: Equipment under test (EUT)	5
Section 3: Test specification, procedures and results	6
Section 4: Operation of EUT during testing	9
Section 5: Conducted emission	10
Section 6: Radiated emission	11
Appendix 1: Photographs of test setup	13
Appendix 2: Data of EMI test	15
Appendix 3: Test Instruments	20

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 13864042Y-B-R1
Page : 5 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

Section 1: Customer information

Company Name : LAMI CORPORATION INC.

Address : 3-18, Rinkuminamihama, Sennan-shi, Osaka 590-0535 Japan

Telephone Number : +81-72-480-5561

The information provided from the customer is as follows:

- Applicant, Type of EUT, Model Number of EUT on the cover page and other relevant pages
- Operating/Test Mode(s) (Mode(s)) on all the relevant pages
- Section 1: Customer information
- Section 2: Equipment under test (EUT) other than the Receipt Date
- Section 3: Test specification, procedures and results
- Section 4: Operation of EUT during testing
- * The laboratory is exempted from liability of any test results affected from the information in Section 2 and 4.

Section 2: Equipment under test (EUT)

2. 1 Identification of EUT

Type : Laminator Model Number : Revo-Any

Serial Number : Refer to Clause 4.2 Rating : AC 120 V, 50/60 Hz

Country of Mass-production : Japan

Condition : Production prototype

(Not for Sale: This sample is equivalent to mass-produced items.)

Size : 630 x 525 x 380 (Width x Depth x Height (mm) : without output tray)

Modification : No modification by the test lab.

Receipt Date : July 1, 2021

2. 2 Product description

Model: Revo-Any (referred to as the EUT in this report) is a Laminator.

The clock frequencies used in the EUT: 48 MHz

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 13864042Y-B-R1
Page : 6 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

Section 3: Test specification, procedures and results

3. 1 Test Specification

Test Specification : FCC Part 15 Subpart B

FCC Part 15 final revised on May 3, 2021 and effective July 2, 2021

Title : FCC 47CFR Part15 Radio Frequency Device

Subpart B Unintentional Radiators

3. 2 Procedures & results

Item	Test Procedure	Limits	Deviation	Worst margin	Result	Remarks
Conducted emission	ANSI C63.4: 2014 +	Class A	N/A	5.23 dB	Complied	-
	C63.4a: 2017			(11.63574 MHz,	a)	
	7. AC power - line			CAV, N)		
	conducted emission					
	measurements					
Radiated emission	ANSI C63.4: 2014 +	Class A	N/A	6.22 dB	Complied	*1)
	C63.4a: 2017			(49.604 MHz, QP,	b)	
	8. Radiated			Vertical)		
	emission measurements					

^{*1)} Measurements were limited up to 1 GHz since the highest frequency of internal source of the EUT is less than 108 MHz.Note: UL Japan's EMI Work Procedures No. 13-EM-W0420

- a) Refer to Appendix 2 (data of Conducted disturbance)
- b) Refer to Appendix 2 (data of Radiated disturbance)

Symbols:

Complied The data of this test item has enough margin, more than the measurement uncertainty.

Complied# The data of this test item meets the limits unless the measurement uncertainty is taken into consideration.

3.3 Addition to standard

No addition, exclusion nor deviation has been made from the standard.

3.4 Confirmation

UL Japan, Inc. hereby confirms that EUT, in the configuration tested, complies with the specifications FCC Part 15 Subpart B:2021 Class A.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

 Test report No.
 : 13864042Y-B-R1

 Page
 : 7 of 22

 Issued date
 : March 16, 2022

 FCC ID
 : 2A2ED11032

3.5 Uncertainty

EMI

There is no applicable rule of uncertainty in this applied standard. Therefore, the results are derived depending on whether or not laboratory uncertainty is applied.

The following uncertainties have been calculated to provide a confidence level of 95 % using a coverage factor k = 2.

			Open area test site	;		Shielded room				
		No.1	No.2	No.3	No.1	No.2	No.3	No.7	(±)	
		(±)	(±)	(±)	(±)	(±)	(±)	(±)] /	
Conducted disturbance			-	-		-	-	•	7 /	
LISN (AMN)	9 kHz - 150 kHz				3.8 dB				3.8 dB	
	150 kHz - 30 MHz				3.4 dB				3.4 dB	
ISN (LCL= 55 dB - 40 dB)	150 kHz - 30 MHz		4.2 dB							
ISN (LCL= 65 dB - 50 dB)	150 kHz - 30 MHz		4.6 dB							
ISN (LCL= 75 dB - 60 dB)	150 kHz - 30 MHz				5.0 dB				5.0 dB	
ISN (Screened)	150 kHz - 30 MHz				3.4 dB				5.0 dB	
ISN (75 ohm)	150 kHz - 30 MHz				3.4 dB				5.0 dB	
Current probe	150 kHz - 30 MHz				2.8 dB				2.9 dB	
Capacitive Voltage Probe	150 kHz - 30 MHz				3.8 dB				3.9 dB	
Voltage probe	150 kHz - 30 MHz				2.9 dB				2.9 dB	
Radiated disturbance	"									
3 m	9 kHz - 30 MHz	3.7 dB	3.5 dB	3.6 dB	-	-	-	-	Not Defined	
	30 MHz - 200 MHz (Horizontal)	4.5 dB	4.7 dB	4.7 dB	-	-	-	-	6.3 dB	
	30 MHz - 200 MHz (Vertical)	4.6 dB	4.9 dB	4.9 dB	-	-	-	-	6.3 dB	
	200 MHz - 1000 MHz (Horizontal)	4.9 dB	5.2 dB	5.2 dB	-	-	-	-	6.3 dB	
	200 MHz - 1000 MHz (Vertical)	6.0 dB	6.2 dB	6.2 dB	-	-	-	-	6.3 dB	
	1 GHz - 6 GHz		5.0 dB	•	-	-	-	-	5.2 dB	
	6 GHz - 18 GHz		5.2 dB		-	-	-	-	5.5 dB	
10 m	9 kHz - 30 MHz	3.3 dB	3.4 dB	3.4 dB	-	-	-	-	Not Defined	
	30 MHz - 200 MHz (Horizontal)	4.5 dB	4.7 dB	4.7 dB	-	-	-	-	6.3 dB	
	30 MHz - 200 MHz (Vertical)	4.5 dB	4.7 dB	4.7 dB	-	-	-	-	6.3 dB	
	200 MHz - 1000 MHz (Horizontal)	4.7 dB	4.9 dB	4.9 dB	-	-	-	-	6.3 dB	
	200 MHz - 1000 MHz (Vertical)	4.7 dB	4.9 dB	4.9 dB	-	-	-	-	6.3 dB	
	1 GHz - 18 GHz		5.2 dB	•	-	-	-	-	Not Defined	
Antenna terminal voltage										
	30 MHz - 1000 MHz				3.8 dB				Not Defined	
	1 GHz - 2.15 GHz	Hz 3.8 dB							Not Defined	
Disturbance power										
	30 MHz - 300 MHz				3.6 dB				4.5 dB	

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 13864042Y-B-R1
Page : 8 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

3. 6 Test Location

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Telephone : +81 596 24 8750 Facsimile : +81 596 39 0232

FCC Test Firm Registration Number: 788329

	Width x Depth x	Size of	Other
	Height (m)	reference ground plane (m) /	rooms
		horizontal conducting plane	
No.1 open area test site	-	40 x 20	-
No.2 open area test site	-	20 x 18	-
No.3 open area test site	-	20 x 18	-
No.1 shielded room	5.5 x 6.4 x 2.7	5.5 x 6.4	-
No.2 shielded room	4.5 x 3.6 x 2.7	4.5 x 3.6	-
No.3 shielded room	3.6 x 7.2 x 2.4	3.6 x 7.2	-
No.4 shielded room	5.5 x 5.0 x 2.4	4.35 x 3.35	-
No.5 shielded room	5.5 x 4.3 x 2.5	5.54 x 3.0	-
No.6 shielded room	5.2 x 3.2 x 2.9	5.2 x 3.2	-
No.7 shielded room	9.3 x 3.4 x 2.7	9.3 x 3.4	-
No.1 EMS lab.	5.0 x 8.0 x 3.5	-	-
(Full-anechoic chamber)			
No.2 EMS lab.	4.0 x 7.0 x 3.5	-	-
(Full-anechoic chamber)			

3. 7 Test setup, Data of EMI & Test instruments

Refer to Appendix 1 to 3.

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

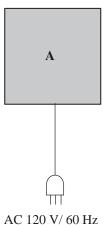
Test report No. : 13864042Y-B-R1 : 9 of 22 Page **Issued date** : March 16, 2022 FCC ID : 2A2ED11032

Section 4: Operation of EUT during testing

4.1 **Operating modes**

The EUT exercise program used during testing was designed to exercise the various system components in a manner similar to typical use.

Test sequence is used: 1. Aging


> The aging mode is kept the laminating state. (Heaters are powered on and rollers are spinning.)

2. Standby (Conducted emission only)

Software: 621768 Ver.0

Justification: The system was configured in typical fashion (as a customer would normally use it) for testing.

4. 2 Configuration and peripherals

Description of EUT

	No.	Item	Model number	Serial number	Manufacturer	Remark	
ſ	A	Laminator	Revo-Any	001	LAMI CORPORATION INC.	EUT	

List of cable used

No.	Item	Length (m)	Shield	Remark
1	AC Cable	1.9	Unshielded	-

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

^{*}Cabling and setup were taken into consideration and test data was taken under worse case conditions.

Test report No. : 13864042Y-B-R1
Page : 10 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

Section 5: Conducted emission

5. 1 Operating environment

The test was carried out in shielded room.

Temperature : See data

Humidity : See data

5. 2 Test configuration

EUT was placed on a wooden platform of nominal size, 1 m by 1.8 m raised 0.8 m above the conducting ground plane. The rear of tabletop was located 0.4 m to the vertical conducting plane. The rear of EUT and its peripherals was aligned and flushed with rear of tabletop. All other surfaces of tabletop were at least 0.8 m from any other grounded conducting surface.

EUT was located 0.8 m from the LISN and excess AC cable was bundled in center.

Photographs of the set up are shown in Appendix 1.

5. 3 Test conditions

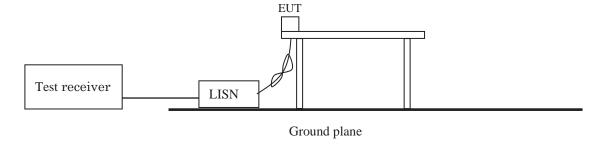
Frequency range : 0.15 MHz - 30 MHz

EUT position : Table top

5. 4 Test procedure

The AC Mains Terminal Continuous disturbance Voltage had been measured with the EUT in shielded room.

The EUT was connected to a Line Impedance Stabilization Network (LISN).


An overview sweep with peak detection has been performed.

The measurements had been performed with a quasi-peak detector and if required, with a CISPR average detector.

The conducted emission measurements were made with the following detector function of the test receiver.

Detector Type : QP / CAV IF Band width : 9 kHz / 9 kHz

Figure 1: Test Setup

5. 5 Results

Summary of the test results: Pass

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 13864042Y-B-R1
Page : 11 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

Section 6: Radiated emission

6.1 Operating environment

This test was carried out in open area test site.

Temperature : See data Humidity : See data

6. 2 Test configuration

EUT was placed on a table which was consisted by polystyrene foam, polypropylene foam and polycarbonate of nominal size, 1 m by 1.5 m, raised 0.8 m above the conducting ground plane.

The rear of EUT and its peripherals was aligned and flushed with rear of tabletop.

The measurements were performed for vertical or horizontal antenna polarization or both as necessary.

The measurement antenna was varied in height above the conducting ground plane to obtain the maximum signal strength.

Photographs of the set up are shown in Appendix 1.

6.3 Test conditions

Frequency range : 30 MHz - 1000 MHz

Test distance : 10 m EUT position : Table top

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

Test report No. : 13864042Y-B-R1
Page : 12 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

6.4 Test procedure

The Radiated Electric Field Strength intensity has been measured on open area test site with a ground plane at a distance of 10 m*.

* Measuring distance

The boundary of the EUT is defined by an imaginary circular periphery.

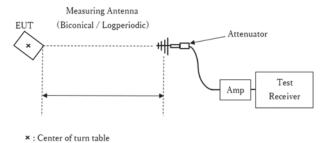
Pre check measurements were performed in a screened room with a search coil at 30 MHz-1000 MHz to distinguish disturbances of EUT from the ambient noise

Measurements were performed with a quasi-peak detector.

The measuring antenna height was varied between 1 m and 4 m and EUT was rotated a full revolution in order to obtain the maximum value of the electric field intensity.

The measurements were performed for vertical or horizontal antenna polarization or both as necessary.

The radiated emission measurements were made with the following detector function.


Frequency: 30 MHz - 1000 MHz

Instrument used : Test Receiver

Detector Type : QP IF Band width : 120 kHz

Figure 2: Test Setup

Below 1 GHz

Test Distance: 10 m

6.5 Results

Summary of the test results: Pass

UL Japan, Inc. Yokowa EMC Lab.

108 Yokowa-cho, Ise-shi, Mie-ken, 516-1106 JAPAN

MI test

Page : 15 of 22

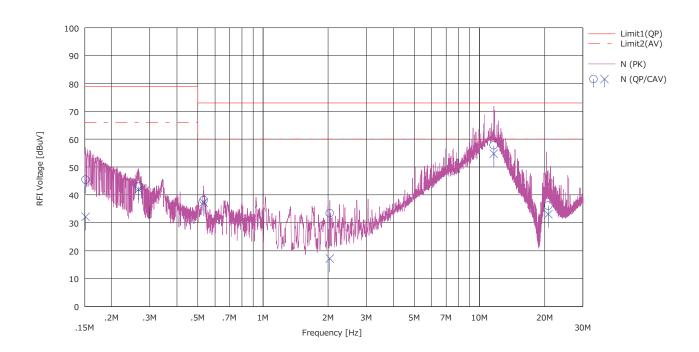
Issued date : March 16, 2022

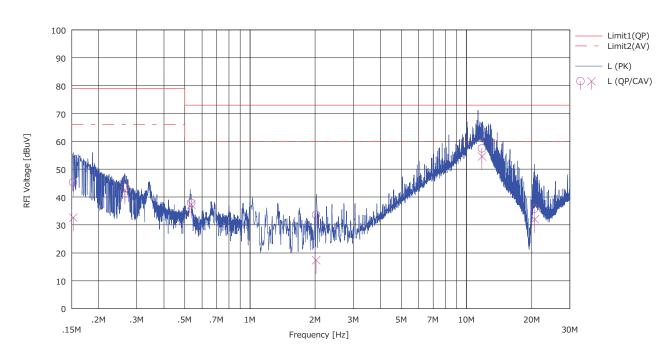
FCC ID : 2A2ED11032

DATA OF CONDUCTED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Shielded Room

Test report No.: 13864042Y-B-R1


Date: 07/01/2021


Mode : 1.Aging Order No. : 13864042 Power : AC 120 V / 60 Hz Temp. / Humi. : 22 deg.C / 45 % RH

Remarks : LS-12 LISN with Adapter_HP OFF(2020-10-06)

Limit: FCC Part 15 B CLASS A

Engineer : Hiromichi Nakai

Test report No. : 13864042Y-B-R1
Page : 16 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

DATA OF CONDUCTED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Shielded Room

Date: 07/01/2021

Mode : 1.Aging Order No. : 13864042 Power : AC 120 V / 60 Hz Temp. / Humi. : 22 deg.C / 45 % RH

Remarks : LS-12 LISN with Adapter_HP OFF(2020-10-06)

Limit: FCC Part 15 B CLASS A

Engineer : Hiromichi Nakai

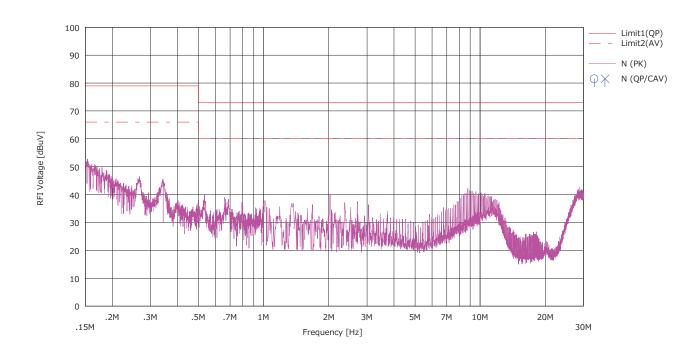
<< QP/CAV DATA >>

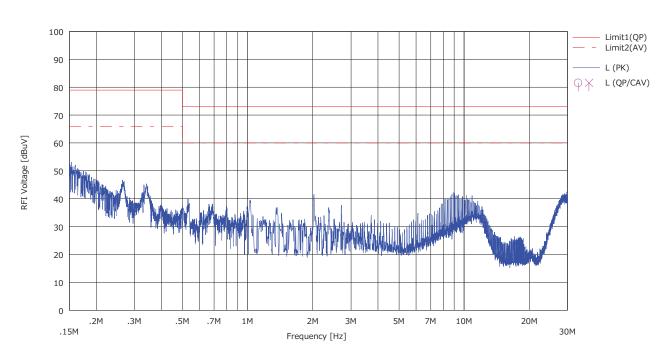
	QP/CAV DA		ding			Res	ults	Liu	mit	Ma	rgin		
No.	Freq.	⟨QP⟩	(CAV)	LISN	LOSS	(QP)	(CAV)	⟨QP⟩	⟨A V⟩	(QP)	〈A V〉	Phase	Comment
	[MHz]	[dBuV]	[dBuV]	[dB]	[dB]	[dBuV]	[dBuV]	[dBuV]	[dBuV]	[dB]	[dB]		
1	0.15175	35.60	22.30	9.62	0.20	45.42	32.12	79.00	66.00	33.58	33.88	N	
2	0.26620	33.20	32.10	9.60	0.22	43.02	41.92	79.00	66.00	35.98	24.08	N	
3	0.53286	28.20	27.40	9.62	0.25	38.07	37.27	73.00	60.00	34.93	22.73	N	
4	2.03400	23.40	7.20	9.63	0.36	33.39	17.19	73.00	60.00	39.61	42.81	N	
5	11.63574	47.30	44.30	9.79	0.68	57.77	54.77	73.00	60.00	15.23	5.23	N	
6	20.77450	25.30	22.30	9.96	0.86	36.12	33.12	73.00	60.00	36.88	26.88	N	
7	0.15280	35.40	22.80	9.63	0.20	45.23	32.63	79.00	66.00	33.77	33.37	L	
8	0.26480	33.40	32.40	9.62	0.22	43.24	42.24	79.00	66.00	35.76	23.76	L	
9	0.53546	28.00	27.40	9.62	0.25	37.87	37.27	73.00	60.00	35.13	22.73	L	
10	2.02028	23.60	7.30	9.66	0.36	33.62	17.32	73.00	60.00	39.38	42.68	L	
11	11.77275	47.00	44.10	9.78	0.68	57.46	54.56	73.00	60.00	15.54	5.44	L	
12	20.64054	25.10	21.30	9.85	0.86	35.81	32.01	73.00	60.00	37.19	27.99	L	
										-			
										-			

Test report No. : 13864042Y-B-R1
Page : 17 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

DATA OF CONDUCTED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Shielded Room


Date: 07/01/2021


Mode : 2.Standby
Order No. : 13864042
Power : AC 120 V / 60 Hz
Temp. / Humi. : 22 deg.C / 45 % RH

Remarks : LS-12 LISN with Adapter_HP OFF(2020-10-06)

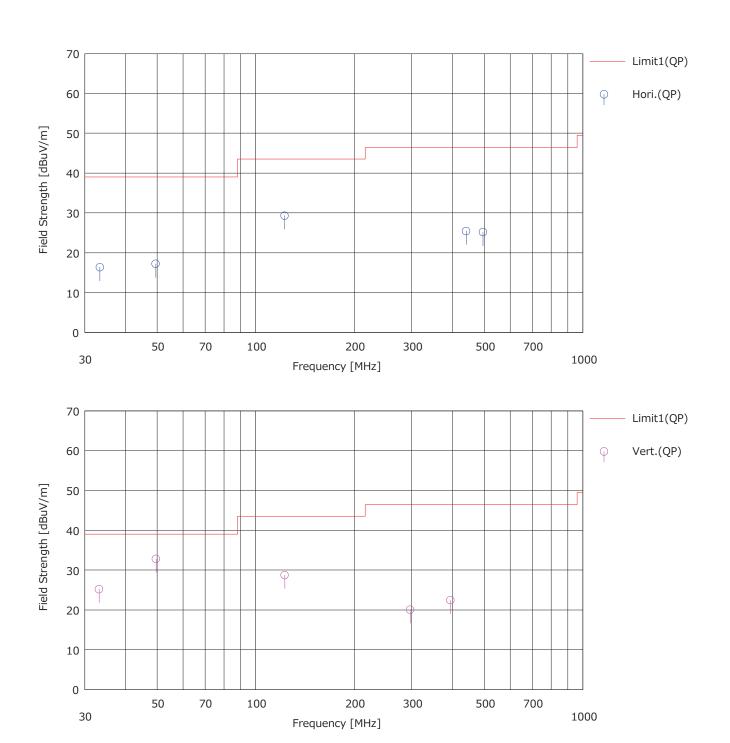
Limit: FCC Part 15 B CLASS A

Engineer : Hiromichi Nakai

Test report No. : 13864042Y-B-R1
Page : 18 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site


Date: 07/01/2021

Mode : 1.Aging
Order No. : 13864042
Power : AC 120 V / 60 Hz
Temp. / Humi. : 22 deg.C / 45 % RH

Remarks : -

Limit: FCC Part 15B CLASS A (10m)

Engineer : Hiromichi Nakai

Test report No. : 13864042Y-B-R1
Page : 19 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

DATA OF RADIATED DISTURBANCE TEST

UL Japan, Inc. Yokowa EMC Lab. No. 2 Open area test site

Date: 07/01/2021

Mode : 1.Aging
Order No. : 13864042
Power : AC 120 V / 60 Hz
Temp. / Humi. : 22 deg.C / 45 % RH

Remarks : -

Limit: FCC Part 15B CLASS A (10m)

Engineer : Hiromichi Nakai

<< QP DATA >>

<<	QP DATA	>>										
		Reading	4.5	, 1	0.1	0.5	Result	Limit	Margin	D.1		
No.	Freq.	(QP)	Ant Fac	Loss	Gain	S.Fac	(QP)	(QP)	(QP)	Pol a.	Ant. Type	Comment
	[MHz]	[dBuV]	[dB/m]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[H/V]	Type	
1	33.232	35.00	12.96	7.19	29.85	-0.12	25.18	39.00	13.82	Vert.	BA	
2	33.420	26.20	12.90	7.20	29.85	-0.12	16.33	39.00	22.67	Hori.	BA	
3	49.511	29.50	10.08	7.51	29.82	-0.07	17.20	39.00	21.80	Hori.	BA	
4	49.604	45.10	10.06	7.51	29.82	-0.07	32.78	39.00	6.22	Vert.	BA	
5		39.60	11.01	8.53	29.75	-0.11	29.28	43.50	14.22	Hori.	BA	
6		39.00	11.05	8.53	29.75	-0.11	28.72	43.50	14.78		BA	
	1											
7	296.665	28.70	13.74	7.42	29.81	0.00	20.05	46.40	26.35		LA	
8	1	28.30	15.82	8.19	29.89	0.00		46.40	23.98		LA	
9	ŀ	30.10	16.69	8.54	29.92	0.00	25.41	46.40	20.99		LA	
10	495.600	28.30	17.89	8.95	29.97	0.00	25.17	46.40	21.23	Hori.	LA	

Test report No. : 13864042Y-B-R1
Page : 20 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

Appendix 3

Test Instruments

*Hyphens for Last Calibration Date and Cal Int (month) are instruments that Calibration is not required (e.g. software), or instruments checked in advance before use.

The expiration date of the calibration is the end of the expired month. As for some calibrations performed after the tested dates, those test equipment have been controlled by means of an unbroken chains of calibrations.

All equipment is calibrated with valid calibrations. Each measurement data is traceable to the national or international standards.

Test item

CE: Conducted disturbance RE: Radiated disturbance

Test report No. : 13864042Y-B-R1
Page : 21 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE RE	DM-02	146648	Tester	SANWA	PC500	7019227	2021/06/02	12
CE RE	YJM-21	176229	Measure	Shinwa Sokutei	80814	-	-	-
CE	CC-2S	146874	Yokowa No.2 shield coaxial(0.01MHz- 1000MHz)	UL Japan	CC-25,CC-27,CC- 28,CC-29,SW- 21,SW-22	YS0201	2021/06/02	12
CE	OS-34	178908	Thermo-Hygrometer	Baumer	CTH-201	A30C5	2021/04/09	12
RE	SC-02	147517	Search Coil	UL Japan	-	-	-	-
RE	OS-36	197155	Thermo-Hygrometer	CUSTOM. Inc	CTH-201	510Q05R-6	2021/03/22	12
CE	LS-12	146973	LISN (AMN)	Rohde & Schwarz	ENV216	101055	2020/10/06	12
RE	AF-03	146611	Pre Amplifier	Anritsu Corporation	MH648A	M97457	2021/07/08	12
RE	AT-02	146625	Attenuator	Anritsu Corporation	MP721A	6200239014	2020/07/06	12
RE	AT-40	146572	Attenuator	Anritsu Corporation	MP721B	6201150481	2020/10/07	12
RE	CC-2ORC	146806	Yokowa No.2 open coaxial(0.1- 1000MHz)	UL Japan	CC-21,CC-22,CC- 24,CC-25,CC-27,SW- 21,SW-22	YO0201	2020/09/28	12
RE	YOATS- 02(NSA)	146944	Open area test site	JSE	3m、10m	2	2020/09/28	12
RE	BA-14	159920	Biconical Antenna	Schwarzbeck Mess- Elektronik OHG	VHBB 9124 + BBA 9106	9124-1022	2021/03/15	12
RE	LA-15	146964	Logperiodic Antenna	Schwarzbeck Mess- Elektronik OHG	VUSLP9111B	185	2021/03/15	12
CE RE	TR-12	146893	EMI Test Receiver	Rohde & Schwarz	ESU 26	100413	2020/07/06	12

Test report No. : 13864042Y-B-R1
Page : 22 of 22
Issued date : March 16, 2022
FCC ID : 2A2ED11032

Test Item	Local ID	LIMS ID	Description	Manufacturer	Model	Serial	Last Calibration Date	Cal Int
CE RE	COTS-YW- EMI-TSJ	146923		TSJ (Techno Science Japan)	TEPTO-DV	-	1	-