

Test Report

Applicant: Shenzhen LiteTrace TechnologiesCo., Ltd

305 Suite C, 3151 Shahe West Street Jianxing Technology

Address : Plaza, Nanshan Shenzhen, China

Product Name : LED Controller

Brand Mark : Keilton

Model : IFS108.B1

IFSX08ZYYYYY, "YYYYY" - can be blank or any alphanumeric

Series model: or decimal point for commercial purposes.Z- can be -AUJ,

-AUX, -N, or blank represents base of the sensor.

FCC ID : 2A26YIFS108

Report Number : BLA-EMC-202506-A1301

Date of Receipt : Jun. 13, 2025

Date of Test : Jun. 13, 2025 to Jun. 18, 2025

Test Standard : 47 CFR Part 15, Subpart C 15.247

Test Result : Pass

Compiled by: Mark Um Review by: Xavier

ued Date: Jun. 18, 2025

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Address: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Table of Contents

1 General information	5
1.1 General information	5
1.2 General description of EUT	5
2 Test summary	7
3 Test Configuration	8
3.1 Test mode	
3.2 Operation Frequency each of channel	
3.3 Test channel	
3.4 Auxiliary equipment	
3.5 Test environment	
4 Laboratory information	10
4.1 Laboratory and accreditations	10
4.2 Measurement uncertainty	10
5 Test equipment	11
6 Test result	
6.1 Antenna requirement	
6.2 Conducted emissions at AC power line (150 kHz-30 MHz)	
6.3 Conducted peak output Power	
6.4 Minimum 6dB bandwidth	
6.5 Power spectrum density	
6.6 Conducted Band Edges Measurement	
6.7 Conducted spurious emissions	
6.8 Radiated spurious emissions	
6.9 Radiated emissions which fall in the restricted bands	
7 Appendix A	43
7.1 Maximum Conducted Output Power	43
7.2 -6dB Bandwidth	
7.3 Occupied Channel Bandwidth	
7.4 Maximum Power Spectral Density Level	
Blue Asia of Technical Services (Shenzhen) Co., Ltd.	

Report No.: BLA-EMC-202506-A1301

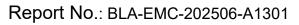
Page 3 of 78

7.5 Band Edge	59
7.6 Conducted RF Spurious Emission	64
Appendix B: photographs of test setup	71
Appendix C: photographs of EUT	73

Page 4 of 78

Revise Record

Version No.	Date	Description
01	Jun. 18, 2025	Original


1 General information

1.1 General information

Applicant	Shenzhen LiteTrace TechnologiesCo., Ltd
Address	305 Suite C, 3151 Shahe West Street Jianxing Technology Plaza, Nanshan Shenzhen, China
Manufacturer	Shenzhen LiteTrace TechnologiesCo., Ltd
Address	305 Suite C, 3151 Shahe West Street Jianxing Technology Plaza, Nanshan Shenzhen, China
Factory	Shenzhen LiteTrace TechnologiesCo., Ltd
Address	305 Suite C, 3151 Shahe West Street Jianxing Technology Plaza, Nanshan Shenzhen, China

1.2 General description of EUT

Product name	LED Controller
Model no.	IFS108.B1
	IFSX08ZYYYYY, "YYYYY" - can be blank or any alphanumeric or
Series model	decimal point for commercial purposes.Z- can be -AUJ, -AUX, -N, or
	blank represents base of the sensor.
Differences of Series	Their circuit design, layout, components used and internal wiring,
model	appearance are exactly the same, and different colors for the shells,
model	different bases.
Operation Frequency	2402MHz-2480MHz
Modulation Type	GFSK
Rate data	1Mbps, 2Mbps
Channel Spacing	2MHz
Number of Channels	40
Antenna Type	PCB antenna
Antenna Gain	-1.37dBi (Provided by customer)
Power supply	DC 12V
Hardware Version	V1.0

Page 6 of 78

Software Version V1.0

Note: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

2 Test summary

No.	Test item	FCC standard	Test Method(Clause)	Result
1	Antenna Requirement	§15.203	N/A	Pass
2	Conducted Emissions at AC Power Line (150kHz-30MHz)	§15.207	ANSI C63.10-2013 Clause 6.2	Pass
3	Conducted Peak Output Power	§15.247(b)(3)	ANSI C63.10-2013 Cluase 7.8.5	Pass
4	Minimum 6dB Bandwidth	§15.247a(2)	ANSI C63.10-2013 Cluase 11.8.1	Pass
5	Power Spectrum Density	§15.247(d)	ANSI C63.10-2013 Cluase 11.10.2	Pass
6	Conducted Band Edges Measurement	§15.247(d)	ANSI C63.10-2013 Cluase 11.13	Pass
7	Conducted Spurious Emissions	§15.247(d)	ANSI C63.10-2013 Cluase 11.11	Pass
8	Radiated Spurious Emissions	§15.209 §15.247(d)	ANSI C63.10-2013 Cluase 6.4,6.5,6.6	Pass
9	Radiated Emissions which fall in the restricted bands	§15.209 §15.247(d)	ANSI C63.10-2013 Cluase 11.12	Pass

3 Test Configuration

3.1 Test mode

Test Mode Note 1	Description
TX	Keep the EUT in continuously transmitting with modulation mode.
RX	Keep the EUT in receiving mode
TX Low channel	Keep the EUT in continuously transmitting mode in low channel
TX middle channel	Keep the EUT in continuously transmitting mode in middle channel
TX high channel	Keep the EUT in continuously transmitting mode in high channel

Note 1: The EUT was configured to measure its highest possible emission and/or immunity level. The test modes were adapted according to the operation manual for use.

Power level setup in software					
Test Software Name	Test Software Name EMI Test Tool				
Mode	Channel Frequency (MHz) Soft Set				
	CH00	2402			
TX	CH20	2442	TX level : Default		
CH39 2480					

3.2 Operation Frequency each of channel

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
		•••		•••			
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

3.3 Test channel

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

3.4 Auxiliary equipment

Device Type	Manufacturer	Model Name	Serial No.	Remark
PC	Lenovo	E460C	1	From lab (No.BLA-ZC-BS-2022005)
Rechargeable battery	TIANNENG	6-DZF-20.3	1	/
DC POWER SUPPLY	ZHAOXIN	KXN-305D	1	/

3.5 Test environment

Environment	Temperature	Voltage
Normal	25°C	DC 12V

4 Laboratory information

4.1 Laboratory and accreditations

The test facility is recognized, certified, or accredited by the following organizations:

Company name:	BlueAsia of Technical Services(Shenzhen) Co., Ltd.
Address:	Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China
CNAS accredited No.:	L9788
A2LA Cert. No.:	5071.01
FCC Designation No.:	CN1252
ISED CAB identifier No.:	CN0028
Telephone:	+86-755-28682673
FAX:	+86-755-28682673

4.2 Measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Parameter	Expanded Uncertainty
Radiated Emission(9kHz-30MHz)	±4.34dB
Radiated Emission(30Mz-1000MHz)	±4.24dB
Radiated Emission(1GHz-18GHz)	±4.68dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %

5 Test equipment

Radiated Spurious Emissions (Below 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-002-01	Anechoic	9*6*6	SKET	N/A	2024/3/27	2027/3/26
BLA-EIVIC-002-01	chamber	chamber	SKET	IN/A	2024/3/27	2027/3/20
BLA-EMC-002-02	Control room	966 control	SKET	N/A	2024/3/27	2027/3/26
BLA-EIVIC-002-02	Control room	room	SKET	IN/A	2024/3/27	2021/3/20
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-043	Loop antenna	FMZB1519B	Schwarzbeck	00102	2024/06/29	2026/06/28
BLA-EMC-065	Broadband	VULB9168	Schwarzbeck	01065P	2024/06/29	2026/06/27
BLA-EIVIC-003	antenna	VOLB9100	Scriwarzbeck	01005P	2024/00/29	2020/00/27
BLA-XC-01	Coaxial Cable	N/A	BlueAsia	V01	N/A	N/A
BLA-XC-02	Coaxial Cable	N/A	BlueAsia	V02	N/A	N/A

Radiated Spurious Emissions (Above 1GHz)

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-001 -01	Anechoic chamber	9*6*6 chamber	SKET	N/A	2023/11/16	2026/11/15
BLA-EMC-001 -02	Control Room	966 control room	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-008	Spectrum	FSP40	R&S	100817	2024/08/08	2025/08/07
BLA-EMC-012	Broadband antenna	VULB9168	Schwarzbeck	00836 P:00227	2022/10/12	2025/10/11
BLA-EMC-013	Horn Antenna	BBHA9120D	Schwarzbeck	01892	2024/06/29	2026/06/28
BLA-EMC-014	Amplifier	PA_000318G- 45	SKET	PA201804300 3	2024/08/08	2025/08/07
BLA-EMC-046	Filter bank	2.4G/5G Filter bank	SKET	N/A	2024/06/28	2025/06/27
BLA-EMC-061	Receiver	ESPI7	R&S	101477	2024/06/28	2025/06/27
BLA-EMC-066	Amplifier	LNPA_30M01 G-30	SKET	SK202106080 1	2024/06/28	2025/06/27
BLA-EMC-086	Amplifier	LNPA_18G40 G-50dB	SKET	SK202207130 1	2024/06/28	2025/06/27
BLA-EMC-087	Horn Antenna	BBHA 9170	Schwarzbeck	1106	2024/06/29	2026/06/28

Page 12 of 78

BLA-XC-03	Coaxial Cable	N/A	BlueAsia	V03	N/A	N/A
BLA-XC-04	Coaxial Cable	N/A	BlueAsia	V04	N/A	N/A

RF conducted

Equipment	Name	Model	Manufacture	S/N	Cal. Date	Due. Date
BLA-EMC-003-	Shield room	5*3*3	SKET	N/A	2023/11/16	2025/11/15
003	Shield footh	5 3 3	SKET	IN/A	2023/11/10	2025/11/15
BLA-EMC-016	Signal Generator	N5182A	Agilent	MY52420567	2024/06/28	2025/06/27
BLA-EMC-038	Spectrum	N9020A	Agilent	MY49100060	2024/08/08	2025/08/07
BLA-EMC-042	Power sensor	RPR3006W	DARE	14I00889SN042	2024/08/08	2025/08/07
	Radio					
BLA-EMC-044	communication	CMW500	R&S	132429	2024/08/08	2025/08/07
	tester					
BLA-EMC-064	Signal Generator	N5182B	KEYSIGHT	MY58108892	2024/06/28	2025/06/27
BLA-EMC-079	Spectrum	N9020A	Agilent	MY54420161	2024/08/08	2025/08/07
DIA EMC 000	Audio Anglyzor	ATS-1	Audio	ATC141004	2024/06/29	2025/06/27
BLA-EMC-088	Audio Analyzer	A10-1	Precision	A13141094	ATS141094 2024/06/28	

Conducted Emissions

Equipment	Name	Model	Manufactu re	S/N	Cal. Date	Due. Date
BLA-EMC-003-001	Shield room	8*3*3	SKET	N/A	2023/11/16	2025/11/15
BLA-EMC-009	EMI receiver	ESR7	R&S	101199	2024/08/08	2025/08/07
BLA-EMC-011	LISN	ENV216	R&S	101372	2024/08/08	2025/08/07
BLA-EMC-033	Impedance transformer	DC-2GHz	DFXP	N/A	2024/06/28	2025/06/27
BLA-EMC-041	LISN	AT166-2	ATTEN	AKK180600 0003	2024/08/08	2025/08/07
BLA-EMC-045	Impedance stable network	ISNT8-cat	TESEQ	53580	2024/08/08	2025/08/07
BLA-EMC-095	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbe ck	01045	2024/06/28	2025/06/27
BLA-EMC-096	Single-channel vehicle artificial power network	NNBM 8124	Schwarzbe ck	01075	2024/06/28	2025/06/27

Report No.: BLA-EMC-202506-A1301

Page 13 of 78

BLA-XC-05	Coaxial Cable	N/A	BlueAsia	V05	N/A	N/A	
							1

Test Software Record:

Software No.	Software Name	Manufacture	Software version	Test site
BLA-EMC-S001	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S002	EZ-EMC	EZ	EEMC-3A1+	RE
BLA-EMC-S003	EZ-EMC	EZ	EEMC-3A1+	CE
BLA-EMC-S010	MTS 8310	MW	2.0.0.0	RF

6 Test result

6.1 Antenna requirement

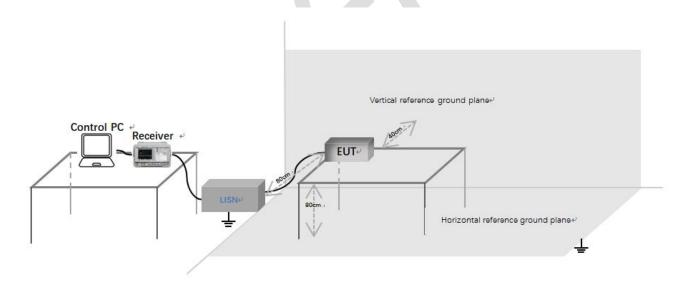
Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

6.1.1 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of a so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT antenna:

The antenna is PCB antenna. The best case gain of the antenna is -1.37dBi.

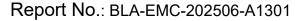

6.2 Conducted emissions at AC power line (150 kHz-30 MHz)

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.2.1 Limit

	Conducted limit(dBµV)				
Frequency of emission(MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30 60 50					
*Decreases with the logarithm of the frequency.					

6.2.2 Test setup



Description of test setup connection:

- a) Connect the control PC to the receiver through a USB to GPIB cable;
- b) The receiver is connected to the LISN through a coaxial line;
- c) Connect the power port of LISN to the EUT.

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

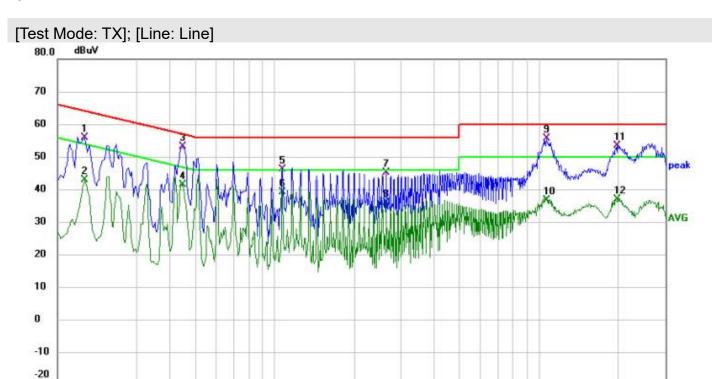
Tel: +86-755-23059481

Page 16 of 78

6.2.3 Procedure

- 1) The mains terminal disturbance voltage test was conducted in a shielded room.
- 2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.
- The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,
- 4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.
- 5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

LISN=Read Level+ Cable Loss+ LISN Factor



Tel: +86-755-23059481

6.2.4 Test data

0.150

(MHz)

5.000

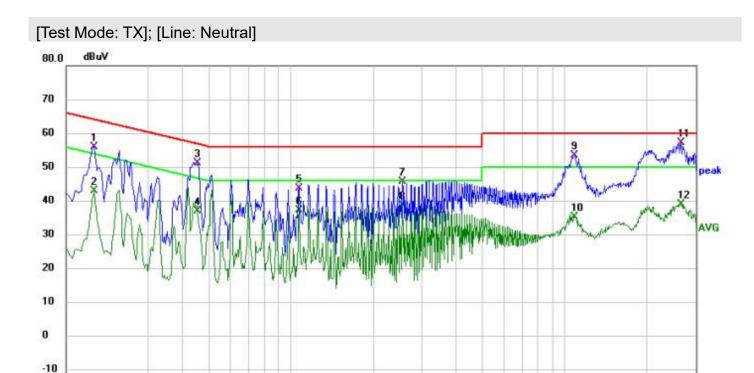
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1900	45.82	10.16	55.98	64.04	-8.06	QP
2		0.1900	32.82	10.16	42.98	54.04	-11.06	AVG
3	*	0.4460	43.33	9.81	53.14	56.95	-3.81	QP
4		0.4460	31.50	9.81	41.31	46.95	-5.64	AVG
5		1.0660	36.37	9.78	46.15	56.00	-9.85	QP
6		1.0660	29.24	9.78	39.02	46.00	-6.98	AVG
7	,	2.6380	35.39	9.78	45.17	56.00	-10.83	QP
8		2.6380	26.15	9.78	35.93	46.00	-10.07	AVG
9		10.6700	45.95	9.76	55.71	60.00	-4.29	QP
10		10.6700	26.85	9.76	36.61	50.00	-13.39	AVG
11		19.8220	43.11	10.19	53.30	60.00	-6.70	QP
12		19.8220	26.77	10.19	36.96	50.00	-13.04	AVG

Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

0.500

Tel: +86-755-23059481


Email: marketing@cblueasia.com www.cblueasia.com

30.000

-20

0.150

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.1900	45.81	10.18	55.99	64.04	-8.05	QP
2		0.1900	32.60	10.18	42.78	54.04	-11.26	AVG
3		0.4540	41.39	9.78	51.17	56.80	-5.63	QP
4		0.4540	27.19	9.78	36.97	46.80	-9.83	AVG
5		1.0660	33.88	9.77	43.65	56.00	-12.35	QP
6		1.0660	27.47	9.77	37.24	46.00	-8.76	AVG
7		2.5460	35.76	9.75	45.51	56.00	-10.49	QP
8		2.5460	28.91	9.75	38.66	46.00	-7.34	AVG
9		10.8340	43.56	9.76	53.32	60.00	-6.68	QP
10		10.8340	25.39	9.76	35.15	50.00	-14.85	AVG
11	*	26.4900	46.89	10.16	57.05	60.00	-2.95	QP
12		26.4900	28.69	10.16	38.85	50.00	-11.15	AVG

(MHz)

5.000

Test Result: Pass

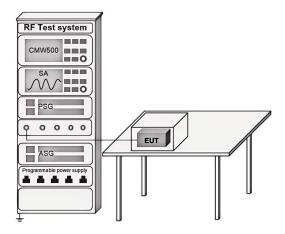
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

0.500

Tel: +86-755-23059481

Email: marketing@cblueasia.com www.cblueasia.com

30.000


6.3 Conducted peak output Power

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.3.1 Limit

Frequency range(MHz)	Output power of the intentional radiator(watt)
	1 for ≥50 hopping channels
902-928	0.25 for 25≤ hopping channels <50
	1 for digital modulation
	1 for ≥75 non-overlapping hopping channels
2400-2483.5	0.125 for all other frequency hopping systems
	1 for digital modulation
5725-5850	1 for frequency hopping systems and digital modulation

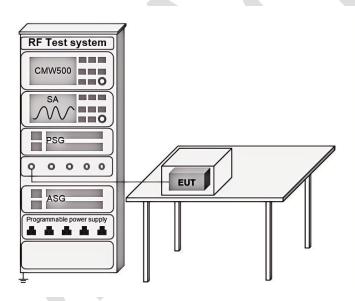
6.3.2 Test setup

6.3.3 Test data

Pass: Please refer to appendix A for details

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481


6.4 Minimum 6dB bandwidth

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.8.1
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

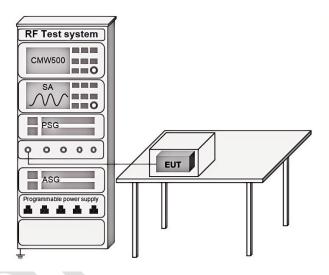
6.4.1 Limit

≥500 kHz

6.4.2 Test setup

6.4.3 Test data

Pass: Please refer to appendix A for details


6.5 Power spectrum density

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 11.10.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.5.1 Limit

≤8dBm in any 3 kHz band during any time interval of continuous transmission

6.5.2 Test setup

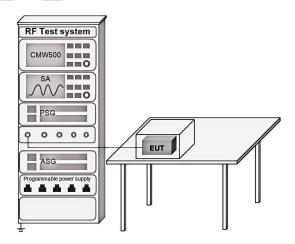
6.5.3 Test data

Pass: Please refer to appendix A for details

6.6 Conducted Band Edges Measurement

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.6.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.6.2 Test setup

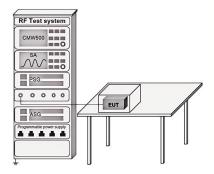
6.6.3 Test data

Pass: Please refer to appendix A for details

6.7 Conducted spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

6.7.1 Limit


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits.

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20dB.

Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.7.2 Test setup

6.7.3 Test data

Pass: Please refer to appendix A for details

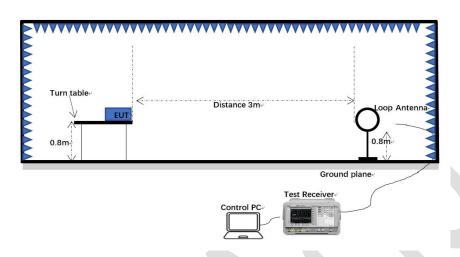
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

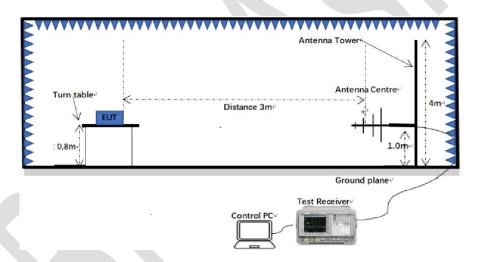
6.8 Radiated spurious emissions

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

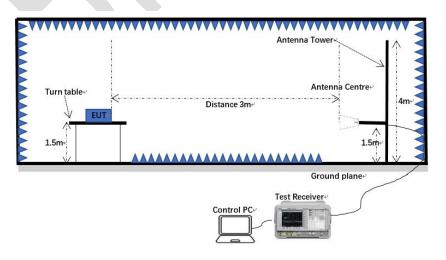
6.8.1 Limit


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.



6.8.2 Test setup


Below 1GHz:

30MHz-1GHz:

Above 1GHz:

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

6.8.3 Procedure

- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Scan from 9 kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

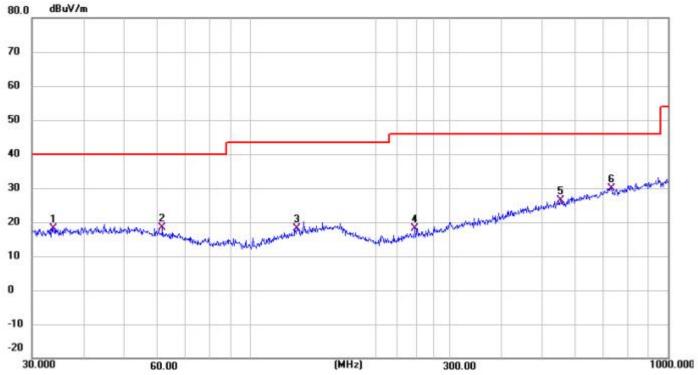
Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

Note 3: The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Level (dBuV) = Reading (dBuV) + Factor (dB/m)

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

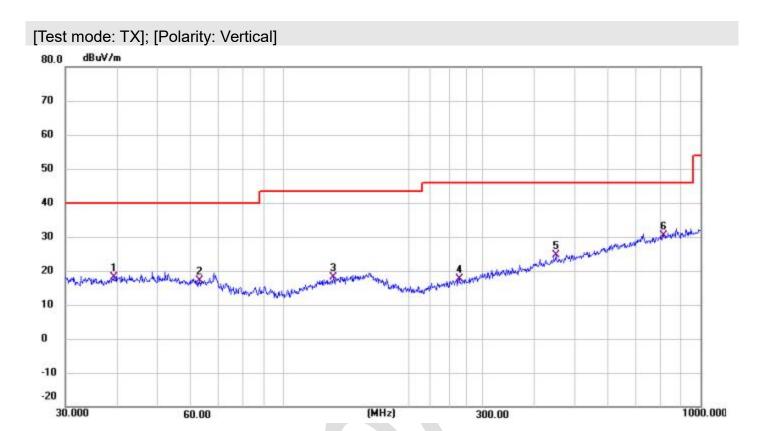


6.8.4 Test data

Below 1GHz

Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M low channel mode which it is worse case.

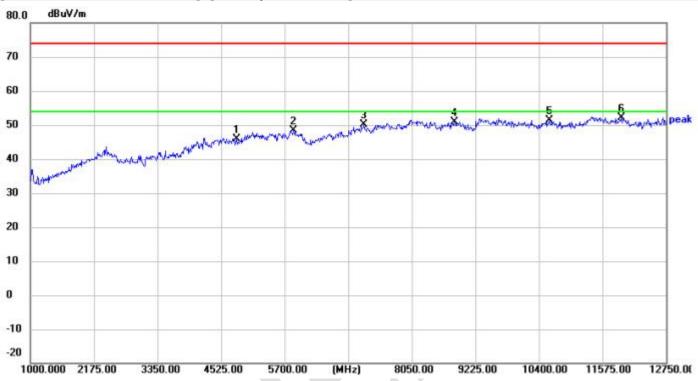
[Test mode: TX]; [Polarity: Horizontal]


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	33.7986	-0.52	18.75	18.23	40.00	-21.77	QP
2	61.5618	0.08	18.27	18.35	40.00	-21.65	QP
3	129.4677	-1.05	19.23	18.18	43.50	-25.32	QP
4	247.6818	0.05	18.17	18.22	46.00	-27.78	QP
5	552.8832	0.29	25.99	26.28	46.00	-19.72	QP
6 *	731.9202	0.93	28.95	29.88	46.00	-16.12	QP

Test Result: Pass

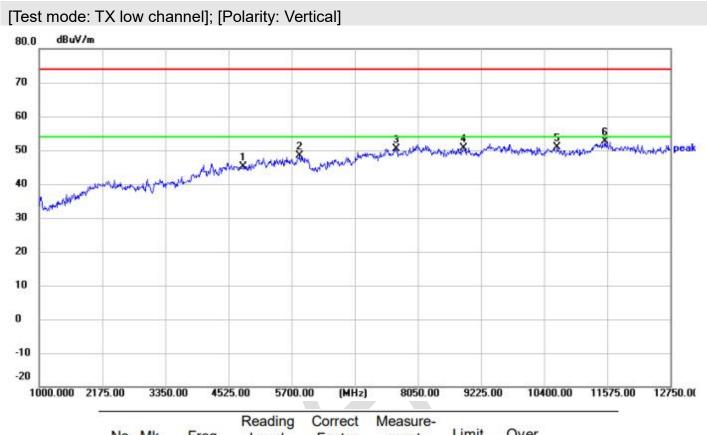
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

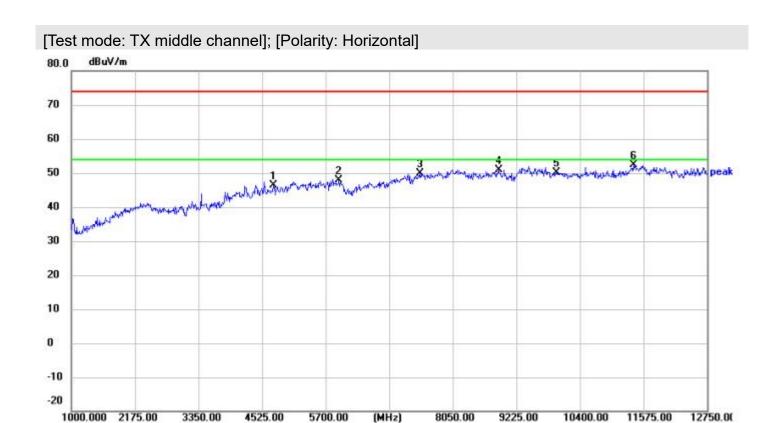

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	39.1616	-1.05	19.26	18.21	40.00	-21.79	QP
2	62.8708	-0.92	18.09	17.17	40.00	-22.83	QP
3	131.7577	-1.48	19.63	18.15	43.50	-25.35	QP
4	263.8190	-1.23	18.77	17.54	46.00	-28.46	QP
5	449.5558	0.40	24.28	24.68	46.00	-21.32	QP
6 *	815.9678	0.36	29.97	30.33	46.00	-15.67	QP

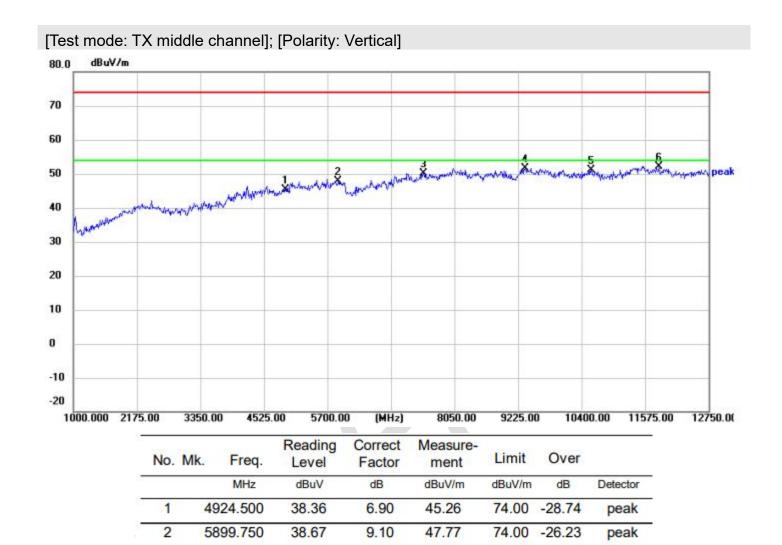
Above 1GHz:

Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M mode which it is worse case.


[Test mode: TX low channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4807.000	39.57	6.32	45.89	74.00	-28.11	peak
2		5864.500	39.50	8.93	48.43	74.00	-25.57	peak
3		7168.750	39.57	10.57	50.14	74.00	-23.86	peak
4		8837.250	38.96	11.92	50.88	74.00	-23.12	peak
5		10599.75	37.86	13.59	51.45	74.00	-22.55	peak
6	*	11927.50	38.29	13.75	52.04	74.00	-21.96	peak


Test Result: Pass


No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1		4795.250	38.87	6.32	45.19	74.00	-28.81	peak	
2		5852.750	39.40	8.88	48.28	74.00	-25.72	peak	
3		7650.500	39.88	10.45	50.33	74.00	-23.67	peak	
4		8907.750	38.15	12.57	50.72	74.00	-23.28	peak	
5		10646.75	37.60	13.24	50.84	74.00	-23.16	peak	
6	*	11528.00	37.84	14.83	52.67	74.00	-21.33	peak	

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detecto
1		4736.500	40.23	6.06	46.29	74.00	-27.71	peak
2		5946.750	38.91	9.03	47.94	74.00	-26.06	peak
3		7450.750	38.75	11.21	49.96	74.00	-24.04	peak
4		8896.000	38.30	12.62	50.92	74.00	-23.08	peak
5		9965.250	36.78	13.23	50.01	74.00	-23.99	peak
6	*	11387.00	38.17	14.13	52.30	74.00	-21.70	peak

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

7474.250

9354.250

10576.25

11833.50

39.23

38.33

37.53

38.66

10.94

13.34

13.63

13.50

50.17

51.67

51.16

52.16

74.00 -23.83

74.00 -22.33

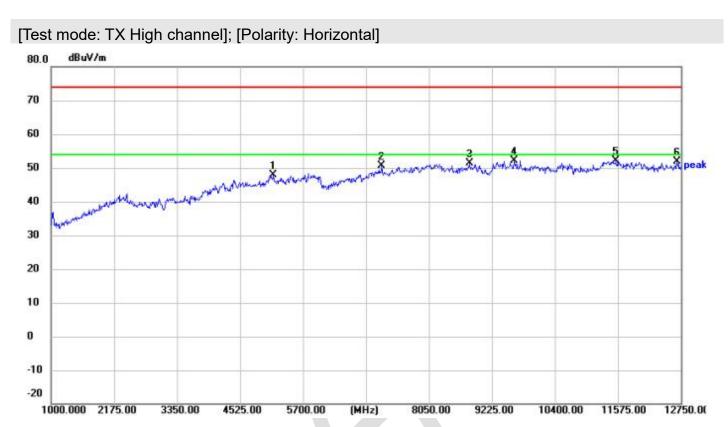
74.00 -22.84

74.00 -21.84

peak

peak

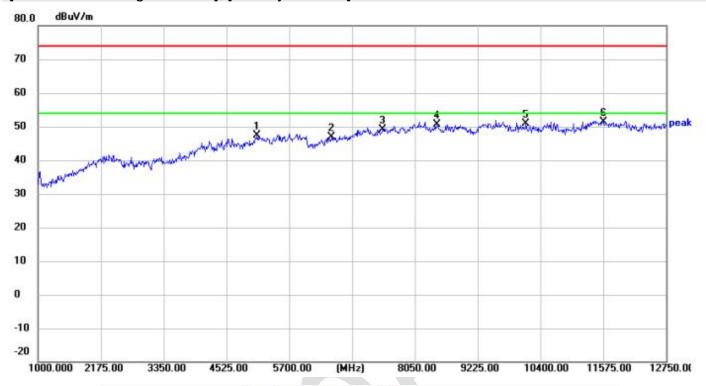
peak


peak

3

4

5



No.	Mk	. Freq.	Reading Freq. Level	Correct Measure- Factor ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		5147.750	39.82	8.08	47.90	74.00	-26.10	peak
2		7168.750	39.95	10.57	50.52	74.00	-23.48	peak
3		8802.000	39.00	12.27	51.27	74.00	-22.73	peak
4	*	9636.250	38.72	13.35	52.07	74.00	-21.93	peak
5		11539.75	37.18	14.83	52.01	74.00	-21.99	peak
6		12679.50	38.07	13.77	51.84	74.00	-22.16	peak

[Test mode: TX High channel]; [Polarity: Vertical]

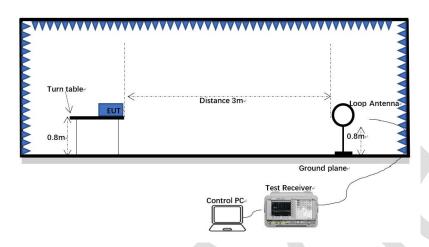
No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
1		5100.750	39.08	8.33	47.41	74.00	-26.59	peak
2		6487.250	38.46	8.36	46.82	74.00	-27.18	peak
3		7450.750	38.02	11.21	49.23	74.00	-24.77	peak
4		8461.250	39.19	11.47	50.66	74.00	-23.34	peak
5		10129.75	37.58	13.26	50.84	74.00	-23.16	peak
6	*	11586.75	36.60	14.79	51.39	74.00	-22.61	peak

Test Result: Pass

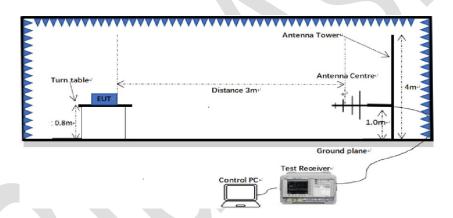
6.9 Radiated emissions which fall in the restricted bands

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	TX
Test Mode (Final Test)	TX

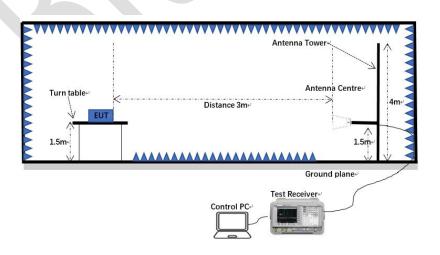
6.9.1 Limit


Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)		
0.009-0.490	2400/F(kHz)	300		
0.490-1.705	24000/F(kHz)	30		
1.705-30.0	30	30		
30-88	100	3		
88-216	150	3		
216-960	200	3		
Above 960	500	3		

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.



6.9.2 Test setup


Below 1GHz:

30MHz-1GHz:

Above 1GHz:

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

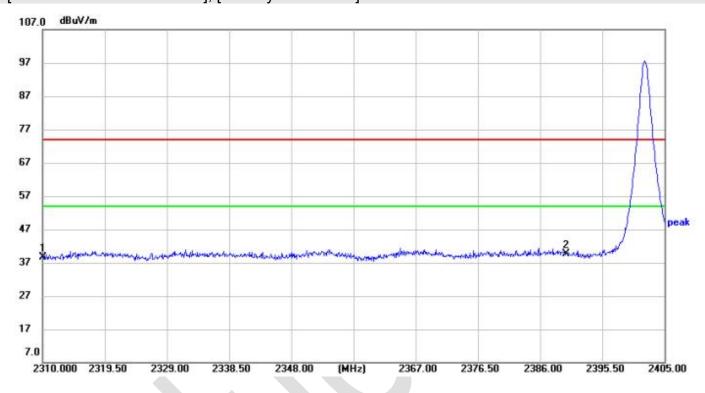
Tel: +86-755-23059481

Page 38 of 78

6.9.3 Procedure

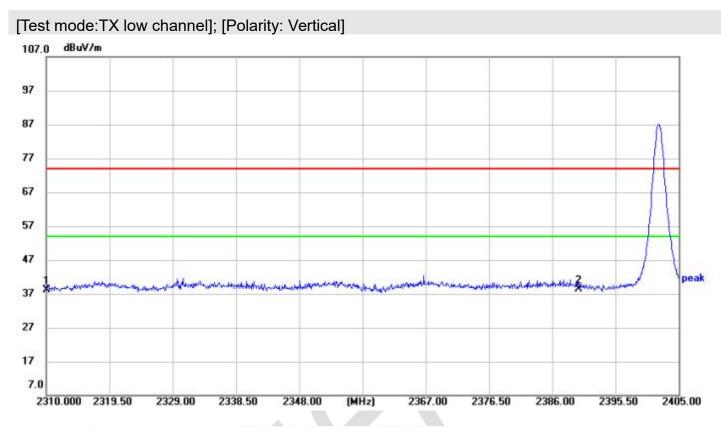
- a) For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b) For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- c) The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- f) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- g) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- h) Test the EUT in the lowest channel, the middle channel, the highest channel.
- i) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- j) Repeat above procedures until all frequencies measured was complete.

Note 1: Level (dBuV) = Reading (dBuV) + Factor (dB/m)


Note 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

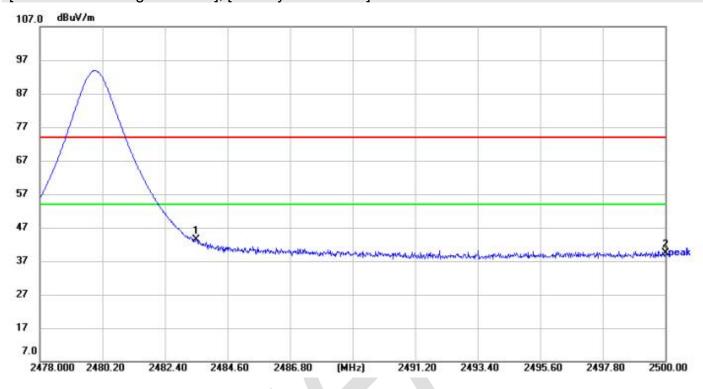
6.9.4 Test data

Remark: During the test, pre-scan the BLE1M/BLE2M mode, and found the BLE1M mode which it is worse case.


[Test mode: TX low channel]; [Polarity: Horizontal]

No.	Mk	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	41.61	-2.87	38.74	74.00	-35.26	peak
2	*	2390.000	42.01	-2.44	39.57	74.00	-34.43	peak

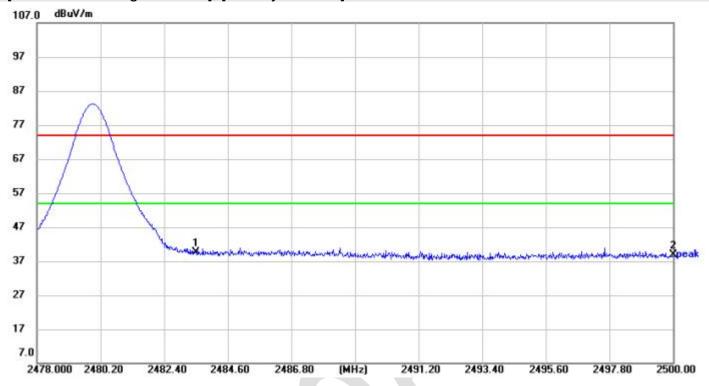
Test Result: Pass



No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2310.000	40.96	-2.87	38.09	74.00	-35.91	peak
2	*	2390.000	40.87	-2.44	38.43	74.00	-35.57	peak

Test Result: Pass

[Test mode: TX High channel]; [Polarity: Horizontal]


No.	M	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	24	83.500	46.32	-2.91	43.41	74.00	-30.59	peak
2		25	00.000	42.26	-3.00	39.26	74.00	-34.74	peak

Test Result: Pass

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

[Test mode:TX High channel]; [Polarity: Vertical]

No.	Mk.		Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	*	2	483.500	42.47	-2.91	39.56	74.00	-34.44	peak
2		2	500.000	41.95	-3.00	38.95	74.00	-35.05	peak

Test Result: Pass

7 Appendix A

7.1 Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted Power	Limit	Verdict
		(MHz)		(dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	-0.159	30	Pass
NVNT	BLE 1M	2442	Ant1	-0.618	30	Pass
NVNT	BLE 1M	2480	Ant1	-0.332	30	Pass
NVNT	BLE 2M	2402	Ant1	-0.083	30	Pass
NVNT	BLE 2M	2442	Ant1	-0.586	30	Pass
NVNT	BLE 2M	2480	Ant1	-0.3	30	Pass

Power NVNT BLE 1M 2402MHz Ant1

Power NVNT BLE 1M 2442MHz Ant1

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Power NVNT BLE 1M 2480MHz Ant1

Power NVNT BLE 2M 2402MHz Ant1



Power NVNT BLE 2M 2442MHz Ant1

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Power NVNT BLE 2M 2480MHz Ant1

Page 47 of 78

7.2-6dB Bandwidth

Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.687	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.665	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.681	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.357	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.278	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.369	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

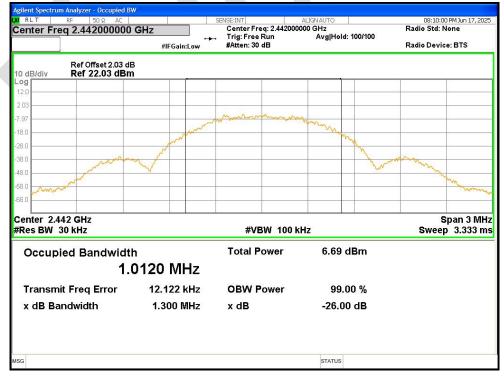
-6dB Bandwidth NVNT BLE 2M 2442MHz Ant1

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

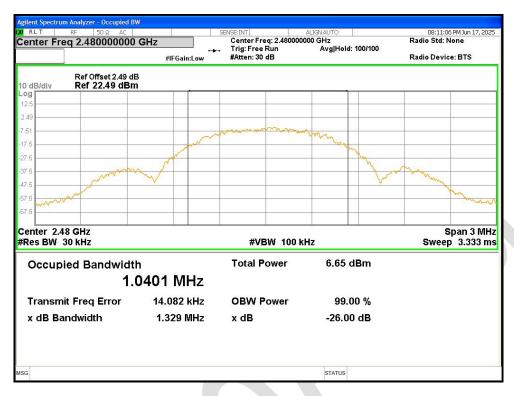
-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

7.3 Occupied Channel Bandwidth


Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.0286
NVNT	BLE 1M	2442	Ant1	1.0120
NVNT	BLE 1M	2480	Ant1	1.0401
NVNT	BLE 2M	2402	Ant1	2.0611
NVNT	BLE 2M	2442	Ant1	2.0199
NVNT	BLE 2M	2480	Ant1	2.0602

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1



Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

OBW NVNT BLE 1M 2480MHz Ant1

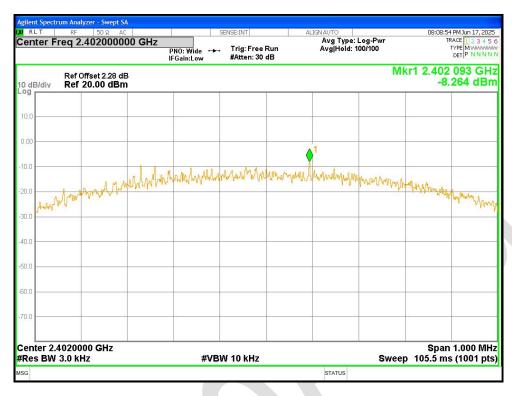
OBW NVNT BLE 2M 2402MHz Ant1

OBW NVNT BLE 2M 2442MHz Ant1

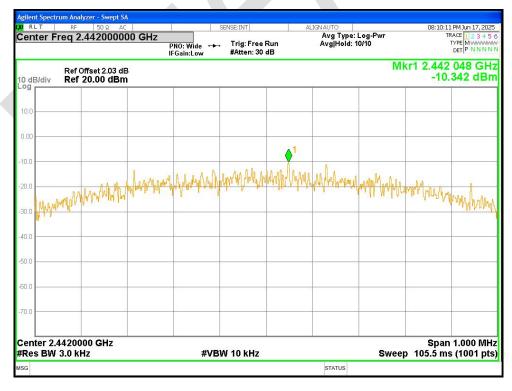
Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

OBW NVNT BLE 2M 2480MHz Ant1

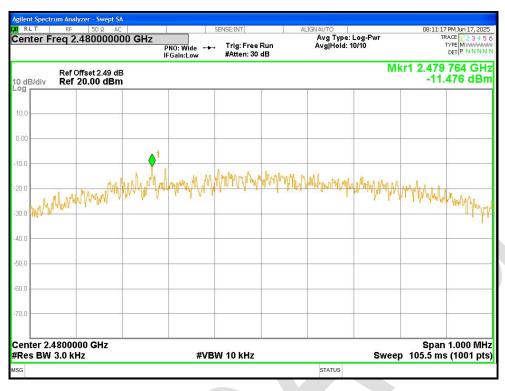


7.4 Maximum Power Spectral Density Level

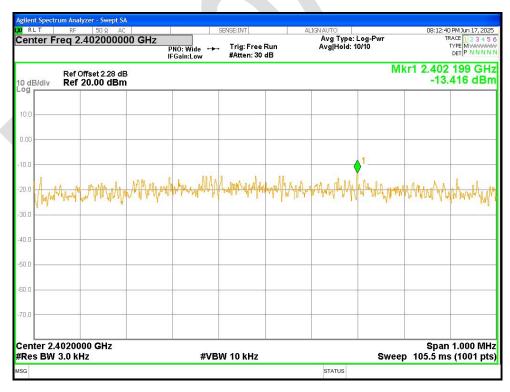

Condition	Mode	Frequency (MHz)	Antenna	Max PSD (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	Ant1	-8.264	8	Pass
NVNT	BLE 1M	2442	Ant1	-10.342	8	Pass
NVNT	BLE 1M	2480	Ant1	-11.476	8	Pass
NVNT	BLE 2M	2402	Ant1	-13.416	8	Pass
NVNT	BLE 2M	2442	Ant1	-13.807	8	Pass
NVNT	BLE 2M	2480	Ant1	-14.839	8	Pass

PSD NVNT BLE 1M 2402MHz Ant1

PSD NVNT BLE 1M 2442MHz Ant1

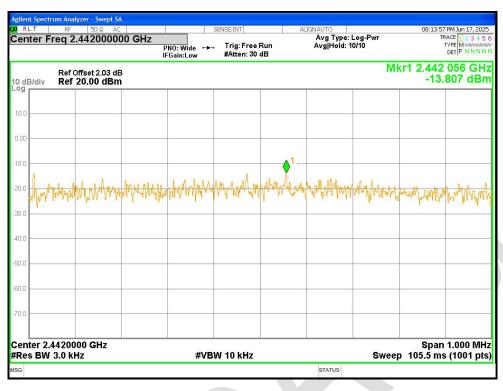


PSD NVNT BLE 1M 2480MHz Ant1

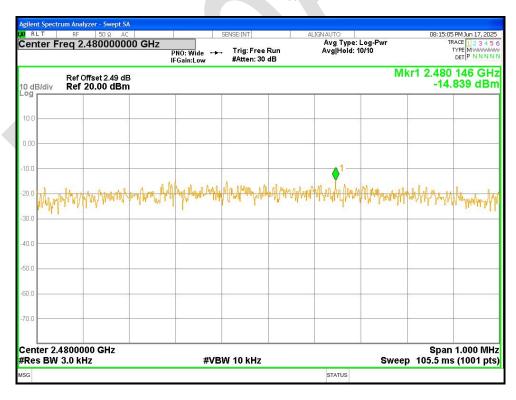

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

PSD NVNT BLE 2M 2402MHz Ant1

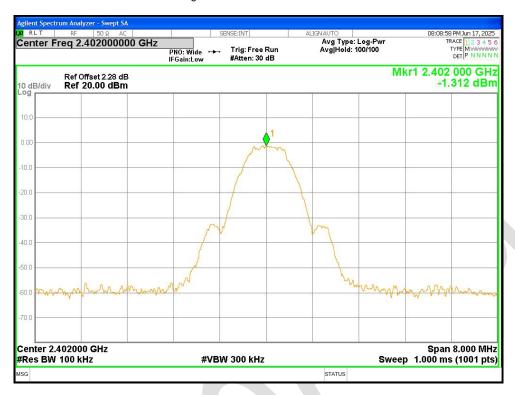


PSD NVNT BLE 2M 2442MHz Ant1


Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

PSD NVNT BLE 2M 2480MHz Ant1


7.5 Band Edge

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	Ant1	-54.79	-20	Pass
NVNT	BLE 1M	2480	Ant1	-54.41	-20	Pass
NVNT	BLE 2M	2402	Ant1	-53.09	-20	Pass
NVNT	BLE 2M	2480	Ant1	-51.93	-20	Pass

Band Edge NVNT BLE 1M 2402MHz Ant1 Ref

Band Edge NVNT BLE 1M 2402MHz Ant1 Emission



Band Edge NVNT BLE 1M 2480MHz Ant1 Ref

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481

Band Edge NVNT BLE 1M 2480MHz Ant1 Emission

Band Edge NVNT BLE 2M 2402MHz Ant1 Ref

Blue Asia of Technical Services (Shenzhen) Co., Ltd.

Tel: +86-755-23059481