

FCC RADIO TEST REPORT

FCC ID:2A255-ATAC

Product: TAC

Trade Name: NeuroTek

Model Name: Advance TAC & Deluxe TAC

Serial Model: NT-ATAC-1, NT-DTAC-1

Report No.: UNIA21092307ER-62

Prepared for

Neurotek Technologies, LLC. 17116 Journeys End Dr., Odessa, FL, USA 33556

Prepared by

Shenzhen United Testing Technology Co., Ltd.

2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang Community, Xixiang Str, Bao'an District, Shenzhen, China

TEST RESULT CERTIFICATION

Report No.: UNIA21092307ER-62

Applicant's name: Net	urotek Technologies, LLC.
Address: 171	16 Journeys End Dr., Odessa, FL, USA 33556
Manufacture's Name: Out	come Driven Innovation, Inc.
Address 974	Comercial St, Palo Alto, CA 94303
Product description	
Product name TA	3
Trade Mark Nei	uroTek
Standards FC0	vance TAC & Deluxe TAC, NT-ATAC-1, NT-DTAC-1 C Rules and Regulations Part 15 Subpart C Section 15.247 SI C63.10: 2013
Co., Ltd., and the test results sho with the FCC requirements. And i report. This report shall not be reproduce document may be altered or revise.	been tested by Shenzhen United Testing Technology we that the equipment under test (EUT) is in compliance t is applicable only to the tested sample identified in the ed except in full, without the written approval of UNI, this sed by Shenzhen United Testing Technology Co., Ltd., d in the revision of the document.
Date (s) of performance of tests	
Date of Issue Test Result	·
Prepared by:	Bob (image) Bob liao/Editor
Reviewer:	Kahn.yang Kahn yang/Supervisor
Approved & Authorized Signer:	Live /

Liuze/Manager

Table of Contents	s	Page
1 . TEST SUMMARY		5
2 . GENERAL INFORMATION		7
2.1 GENERAL DESCRIPTION OF EUT		7
2.2 Carrier Frequency of Channels		8
2.3 Operation of EUT during testing		8
2.4 DESCRIPTION OF TEST SETUP		9
2.5 MEASUREMENT INSTRUMENTS LIST		9
3. CONDUCTED EMISSIONS TEST		11
3.1 Conducted Power Line Emission Limit		11
3.2 Test Setup		11
3.3 Test Procedure		11
3.4 Test Result		11
4 RADIATED EMISSION TEST		14
4.1 Radiation Limit		14
4.2 Test Setup		14
4.3 Test Procedure		16
4.4 Test Result		16
5 OCCUPIED BANDWIDTH MEASUREMEN	NT	21
5.1 Test Limit		21
5.2 Test Procedure		21
5.3 TEST SETUP		21
5.4 Test Result		21
6 POWER SPECTRAL DENSITY		23
6.1 TEST LIMIT		23
6.2 TEST PROCEDURE		23
6.3 EQUIPMENT USED		23
6.4 TEST RESULT		23
7 PEAK OUTPUT POWER		25
7.1 TEST LIMIT		25
7.2 TEST PROCEDURE		25
7.3 EQUIPMENT USED		25
7.4 TEST RESULT		25
8 OUT OF BAND EMISSIONS		26
8.1 TEST LIMIT		26

Table of	f Contents	Page
8.2 TEST SETUP		26
8.3 TEST PROCEDURE		26
8.4 TEST RESULT		26
9 ANTENNA REQUIREMENT		30
10 PHOTO OF TEST		31
10.1 RADIATED EMISSION		31
10.2 CONDUCTED EMISSION		32

1. TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	STANDARD		RESULT
CONDUCTED EMISSION		FCC Part 15.207	COMPLIANT
RADIATED EMISSION		FCC Part 15.209(a)	COMPLIANT
OCCUPIED BANDWIDTH		FCC Part 15.247(a)(2)	COMPLIANT
POWER SPECTRAL DENSITY		FCC Part 15.247(e)	COMPLIANT
PEAK OUTPUT POWER		FCC Part 15.247(b)	COMPLIANT
OUT OF BAND EMISSIONS		FCC Part 15.247(d)	COMPLIANT
CONDUCTED SPURIOUS EMISSION		FCC Part 15.247(d)	COMPLIANT
ANTENNA REQUIREMENT		FCC Part 15.203	COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen United Testing Technology Co., Ltd.

Address : 2F, Annex Bldg, Jiahuangyuan Tech Park, #365 Baotian 1 Rd, Tiegang

Community, Xixiang Str, Bao'an District, Shenzhen, China

The testing quality ability of our laboratory meet with "Quality Law of People's Republic of China" Clause 19. The testing quality system of our laboratory meets with ISO/IEC-17025 requirements. This approval result is accepted by MRA of APLAC.

Our test facility is recognized, certified, or accredited by the following organizations:

A2LA Certificate Number: 4747.01

The EMC Laboratory has been accredited by A2LA, and in compliance with ISO/IEC 17025:2017 General Requirements for testing Laboratories.

FCC Registration Number: 674885

The EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications commission.

IC Registration Number: 21947

The EMC Laboratory has been registered and fully described in a report filed with the (IC) Industry Canada.

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Measurement Uncertainty

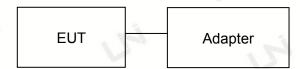
Conducted Emission Expanded Uncertainty = 2.23dB, k=2
Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2
Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2
Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2.1 GENERAL DESCRIPTION OF EUT

Equipment	TAC
Trade Mark	NeuroTek
Model Name	Advance TAC & Deluxe TAC
Serial No.	NT-ATAC-1, NT-DTAC-1
Model Difference	All the model are the same circuit and RF module, except the model name colour button and LCD size.
FCC ID	2A255-ATAC
Antenna Type	Monopole Antenna
Antenna Gain	0dBi
Frequency Range	2405MHz
Number of Channels	1
Modulation Type	O-QPSK
Battery	3.7V, 1100mAh
Power Source	DC5V from Adapter or DC3.7V from battery
Adapter	Model:YNQX09T050100UL Input:100-240V~ 50/60Hz 0.3A Output: DC 5V 1A

Channel	Frequency		
01	(MHz)		
01	2405		

2.3 Operation of EUT during testing


Operating Mode The mode is used:

Transmitting mode for TX running at 2405MHz

After evaluation, the data of the worst-case is Model Advance TAC & Deluxe TAC(Large LCD size).

Operation of EUT during Conducted testing:

Report No.: UNIA21092307ER-62

Operation of EUT during Radiation and Above1GHz Radiation testing:

Table for auxiliary equipment:

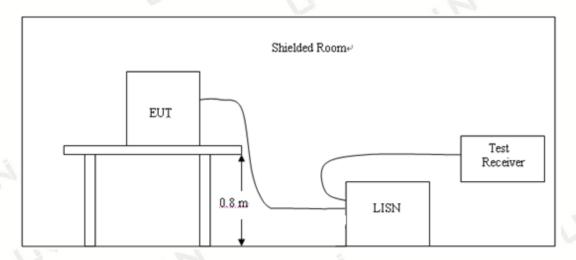
Equipment Description	Manufacturer	Model	Calibration Due Date
Adapter	N/A	YNQX09T050100UL	N/A

2.5 MEASUREMENT INSTRUMENTS LIST

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibrated until
- 1		CONDUCTED	EMISSIONS TEST	-	
1	AMN	Schwarzbeck	NNLK8121	8121370	2022.9.9
2	AMN	ETS	3810/2	00020199	2022.9.9
3	EMI TEST RECEIVER	Rohde&Schwarz	ESCI	101210	2022.9.9
4	AAN	TESEQ	T8-Cat6	38888	2022.9.9
		RADIATED	EMISSION TEST	12	
1	Horn Antenna	Sunol	DRH-118	A101415	2022.9.9
2	BicoNILog Antenna	Sunol	JB1 Antenna	A090215	2022.9.9
3	PREAMP	HP	8449B	3008A00160	2022.9.9
4	PREAMP	HP	8447D	2944A07999	2022.9.9
5	EMI TEST RECEIVER	Rohde&Schwarz	ESR3	101891	2022.9.9
6	VECTOR Signal Generator	Rohde&Schwarz	SMU200A	101521	2021.9.28
7	Signal Generator	Agilent	E4421B	MY4335105	2021.9.28
8	MXA Signal Analyzer	Agilent	N9020A	MY50510140	2021.9.28
9	MXA Signal Analyzer	Agilent	N9020A	MY51110104	2022.9.9
10	ANT Tower&Turn table Controller	Champro	EM 1000	60764	2021.9.28
11	Anechoic Chamber	Taihe Maorui	9m*6m*6m	966A0001	2022.9.9
12	Shielding Room	Taihe Maorui	6.4m*4m*3m	643A0001	2022.9.9
13	RF Power sensor	DARE	RPR3006W	15I00041SNO88	2022.3.14

			4		
14	RF Power sensor	DARE	RPR3006W	15I00041SNO89	2022.3.14
15	RF power divider	Anritsu	K241B	992289	2021.9.28
16	Wideband radio communication tester	Rohde&Schwarz	CMW500	154987	2021.9.28
17	Biconical antenna	Schwarzbeck	VHA 9103	91032360	2022.9.8
18	Biconical antenna	Schwarzbeck	VHA 9103	91032361	2022.9.8
19	Broadband Hybrid Antennas	Schwarzbeck	VULB9163	VULB9163#958	2022.9.8
20	Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1680	2022.1.12
21	Active Receive Loop Antenna	Schwarzbeck	FMZB 1919B 00023		2022.9.8
22	Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170651	2022.03.14
23	Microwave Broadband Preamplifier	Schwarzbeck	BBV 9721	100472	2022.9.8
24	Active Loop Antenna	Com-Power	AL-130R	10160009	2022.05.10
25	Power Meter	KEYSIGHT	N1911A	MY50520168	2022.05.10
26	Frequency Meter	VICTOR	VC2000	997406086	2022.05.10
27	DC Power Source	HYELEC	HY5020E	055161818	2022.05.10
24*	Active Loop Antenna	Com-Power	AL-130R	10160009	2022.05.09
25*	Power Meter	KEYSIGHT	N1911A	MY50520168	2022.05.09
26*	Frequency Meter	VICTOR	VC2000	997406086	2022.05.09
27*	DC Power Source	HYELEC	HY5020E	055161818	2022.05.09

Page 11 of 32 Report No.: UNIA21092307ER-62


3.1 Conducted Power Line Emission Limit

For unintentional device, according to § 15.207(a) Line Conducted Emission Limits is as following

_	Maximum RF Line Voltage(dB V)				
Frequency (MHz)	CLASS A		CLASS B		
	Q.P.	Ave.	Q.P.	Ave.	
0.15~0.50	79	66	66~56*	56~46*	
0.50~5.00	73	60	56	46	
5.00~30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency
For intentional device, according to §15.207(a) Line Conducted Emission Limit is same as above table.

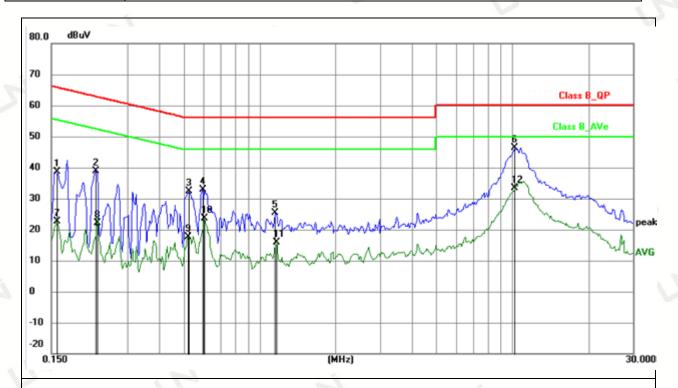
3.2 Test Setup

3.3 Test Procedure

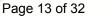
- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. A wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

3.4 Test Result

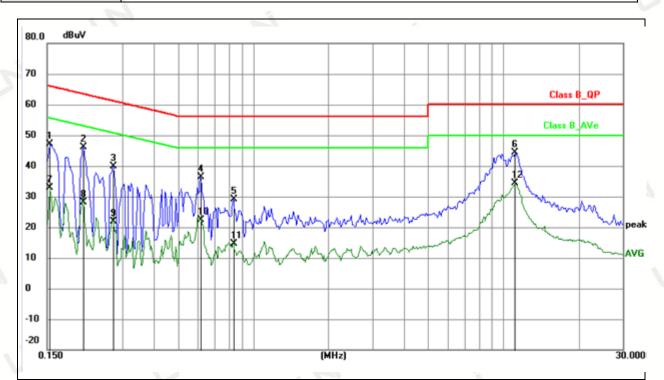
Pass


Remark:

1. All modes were tested at AC 120V and 240V, only the worst result of AC 120V was reported.



Temperature:	24℃	Relative Humidity:	48%
Test Date:	2021-08-02	Pressure:	1010hPa
Test Voltage:	AC 120V/60Hz for Adapter	Phase:	Line
Test Mode:	TX	120	i Zi


Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
1	0.1578	28.95	9.78	38.73	65.58	-26.85	peak	Р
2	0.2241	29.23	9.75	38.98	62.67	-23.69	peak	Р
3	0.5243	22.52	9.77	32.29	56.00	-23.71	peak	Р
4	0.5946	23.20	9.77	32.97	56.00	-23.03	peak	Р
5	1.1523	15.53	9.79	25.32	56.00	-30.68	peak	Р
6	10.2332	36.21	10.17	46.38	60.00	-13.62	peak	Р
7	0.1578	12.97	9.78	22.75	55.58	-32.83	AVG	Р
8	0.2268	12.46	9.75	22.21	52.57	-30.36	AVG	Р
9	0.5205	7.95	9.77	17.72	46.00	-28.28	AVG	Р
10	0.6023	13.74	9.78	23.52	46.00	-22.48	AVG	Р
11	1.1640	6.04	9.79	15.83	46.00	-30.17	AVG	Р
12	10.2332	23.17	10.17	33.34	50.00	-16.66	AVG	Р
							•	

Temperature:	24 ℃	Relative Humidity:	48%
Test Date:	2021-08-02	Pressure:	1010hPa
Test Voltage:	AC 120V/60Hz for Adapter	Phase:	Neutral
Test Mode:	TX		

Remark: Factor = Insertion Loss + Cable Loss, Result = Reading + Factor, Margin = Result – Limit.

Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F
0.1539	37.29	9.78	47.07	65.79	-18.72	peak	Р
0.2084	36.41	9.75	46.16	63.27	-17.11	peak	Р
0.2747	30.08	9.75	39.83	60.97	-21.14	peak	Р
0.6140	26.51	9.78	36.29	56.00	-19.71	peak	Р
0.8325	19.31	9.78	29.09	56.00	-26.91	peak	Р
11.1236	34.19	10.21	44.40	60.00	-15.60	peak	Р
0.1539	23.20	9.78	32.98	55.79	-22.81	AVG	Р
0.2094	18.29	9.75	28.04	53.23	-25.19	AVG	Р
0.2758	12.05	9.76	21.81	50.94	-29.13	AVG	Р
0.6172	12.72	9.78	22.50	46.00	-23.50	AVG	Р
0.8348	4.74	9.78	14.52	46.00	-31.48	AVG	Р
11.1385	24.10	10.21	34.31	50.00	-15.69	AVG	Р
	(MHz) 0.1539 0.2084 0.2747 0.6140 0.8325 11.1236 0.1539 0.2094 0.2758 0.6172 0.8348	(MHz) (dBuV) 0.1539 37.29 0.2084 36.41 0.2747 30.08 0.6140 26.51 0.8325 19.31 11.1236 34.19 0.1539 23.20 0.2094 18.29 0.2758 12.05 0.6172 12.72 0.8348 4.74	(MHz) (dBuV) (dB) 0.1539 37.29 9.78 0.2084 36.41 9.75 0.2747 30.08 9.75 0.6140 26.51 9.78 0.8325 19.31 9.78 11.1236 34.19 10.21 0.1539 23.20 9.78 0.2094 18.29 9.75 0.2758 12.05 9.76 0.6172 12.72 9.78 0.8348 4.74 9.78	(MHz) (dBuV) (dB) (dBuV) 0.1539 37.29 9.78 47.07 0.2084 36.41 9.75 46.16 0.2747 30.08 9.75 39.83 0.6140 26.51 9.78 36.29 0.8325 19.31 9.78 29.09 11.1236 34.19 10.21 44.40 0.1539 23.20 9.78 32.98 0.2094 18.29 9.75 28.04 0.2758 12.05 9.76 21.81 0.6172 12.72 9.78 22.50 0.8348 4.74 9.78 14.52	(MHz) (dBuV) (dB) (dBuV) (dBuV) 0.1539 37.29 9.78 47.07 65.79 0.2084 36.41 9.75 46.16 63.27 0.2747 30.08 9.75 39.83 60.97 0.6140 26.51 9.78 36.29 56.00 0.8325 19.31 9.78 29.09 56.00 11.1236 34.19 10.21 44.40 60.00 0.1539 23.20 9.78 32.98 55.79 0.2094 18.29 9.75 28.04 53.23 0.2758 12.05 9.76 21.81 50.94 0.6172 12.72 9.78 22.50 46.00 0.8348 4.74 9.78 14.52 46.00	(MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) 0.1539 37.29 9.78 47.07 65.79 -18.72 0.2084 36.41 9.75 46.16 63.27 -17.11 0.2747 30.08 9.75 39.83 60.97 -21.14 0.6140 26.51 9.78 36.29 56.00 -19.71 0.8325 19.31 9.78 29.09 56.00 -26.91 11.1236 34.19 10.21 44.40 60.00 -15.60 0.1539 23.20 9.78 32.98 55.79 -22.81 0.2094 18.29 9.75 28.04 53.23 -25.19 0.2758 12.05 9.76 21.81 50.94 -29.13 0.6172 12.72 9.78 22.50 46.00 -23.50 0.8348 4.74 9.78 14.52 46.00 -31.48	(MHz) (dBuV) (dB) (dBuV) (dBuV) (dB) Detector 0.1539 37.29 9.78 47.07 65.79 -18.72 peak 0.2084 36.41 9.75 46.16 63.27 -17.11 peak 0.2747 30.08 9.75 39.83 60.97 -21.14 peak 0.6140 26.51 9.78 36.29 56.00 -19.71 peak 0.8325 19.31 9.78 29.09 56.00 -26.91 peak 11.1236 34.19 10.21 44.40 60.00 -15.60 peak 0.1539 23.20 9.78 32.98 55.79 -22.81 AVG 0.2094 18.29 9.75 28.04 53.23 -25.19 AVG 0.2758 12.05 9.76 21.81 50.94 -29.13 AVG 0.6172 12.72 9.78 22.50 46.00 -23.50 AVG 0.8348 4.74

Page 14 of 32

Report No.: UNIA21092307ER-62

4 RADIATED EMISSION TEST

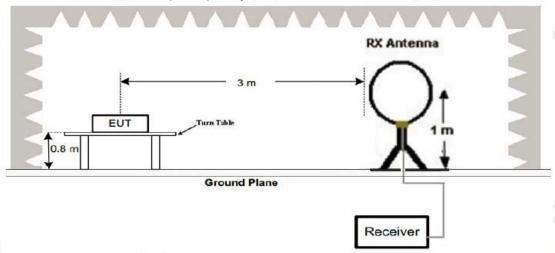
4.1 Radiation Limit

For unintentional device, according to § 15.209(a), except for Class A digital devices, the field strength of radiated emissions from unintentional radiators at a distance of 3 meters shall not exceed the following values:

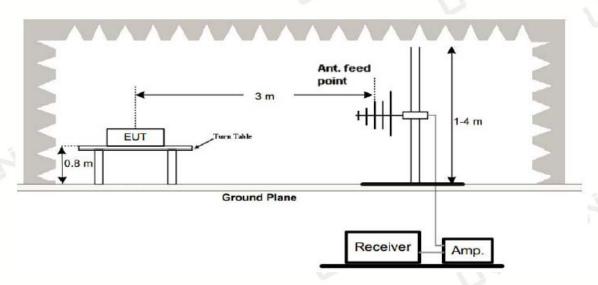
Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F (kHz)	-	Quasi-peak	300
0.490MHz-1.705MHz	24000/F (kHz)	-	Quasi-peak	30
1.705MHz-30MHz	30	-	Quasi-peak	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3
	500	74.0	Peak	3

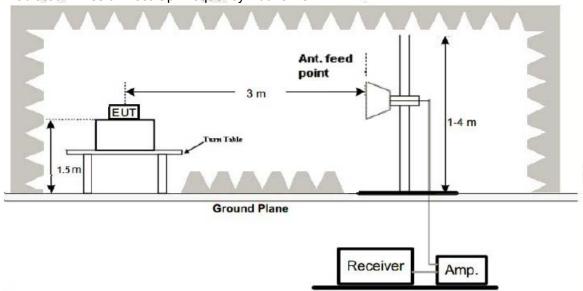
Limit calculation and transfer to 3m distance as showed in the following table:

Frequency	Frequency Limit	
(MHz)	(dBuV/m)	(m)
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3
1.705-30.0	69.5	3
30-88	40.0	3
88-216	43.5	3
216-960	46.0	3
Above 960	54.0	3


For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emissions from intentional radiators at a distance of 3 meters shall not exceed the above table.

4.2 Test Setup




1. Radiated Emission Test-Up Frequency Below 30MHz

2. Radiated Emission Test-Up Frequency 30MHz~1GHz

3. Radiated Emission Test-Up Frequency Above 1GHz

Page 16 of 32 Report No.: UNIA21092307ER-62

4.3 Test Procedure

- 1. Below 1GHz measurement the EUT is placed on turntable which is 0.8m above ground plane. And above 1GHz measurement EUT was placed on low permittivity and low tangent turn table which is 1.5m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The test frequency range from 9KHz to 25GHz per FCC PART 15.33(a).

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery

4.4 Test Result

PASS

Remark:

1. By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "Z axis" position was the worst, and test data recorded in this report.

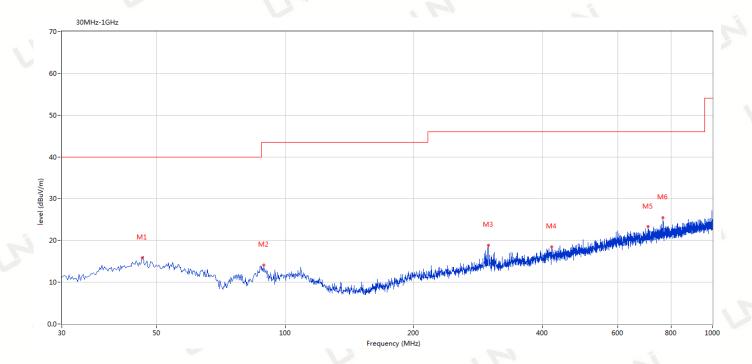
Below 30M

Temperature:	22 ℃	Relative Humidity:	48%
Test Date:	2021-08-02	Pressure:	1010hPa
Test Voltage:	DC3.7V from battery	Polarization:	Horizontal
Test Mode:	TX		

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
\	- 1			Р
\		1-24	-, 14	Р

Note:

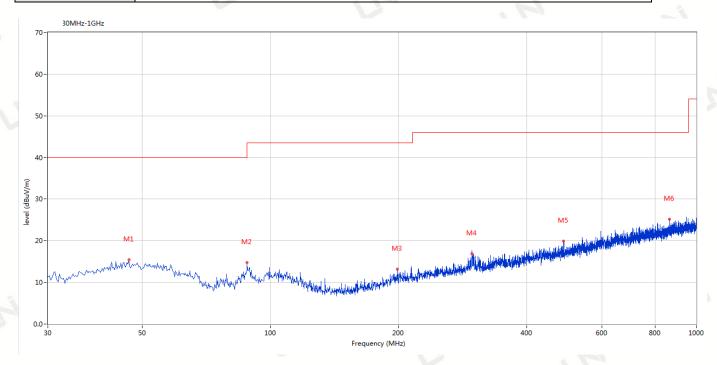
The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor =20 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor

Temperature:	22 ℃	Relative Humidity:	48%
Test Date:	2021-08-02	Pressure:	1010hPa
Test Voltage:	DC3.7V from battery	Polarization:	Horizontal
Test Mode:	TX		

No.	Frequency (MHz)	Results (dBuV/m)	Factor (dB)	Limit (dBuV/m)	Over Limit (dB)	Detector	ANT	Verdict
1	46.243	15.78	-11.41	40.0	-24.22	Peak	Horizontal	Pass
2	89.155	14.08	-15.39	43.5	-29.42	Peak	Horizontal	Pass
3	299.108	18.91	-11.08	46.0	-27.09	Peak	Horizontal	Pass
4	421.055	18.51	-8.13	46.0	-27.49	Peak	Horizontal	Pass
5	706.648	23.28	-4.02	46.0	-22.72	Peak	Horizontal	Pass
6	765.076	25.48	-3.23	46.0	-20.52	Peak	Horizontal	Pass


Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Page 18 of 32

Report No.: UNIA21092307ER-62

Temperature:	22℃	Relative Humidity:	48%
Test Date:	2021-08-02	Pressure:	1010hPa
Test Voltage:	DC3.7V from battery	Polarization:	Vertical
Test Mode:	TX	, si	

Na	Frequency	Results	Factor	Limit	Over	Detector	ANIT	\/a malia4
No.	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	Limit (dB)	Detector	ANT	Verdict
1	46.486	15.42	-11.43	40.0	-24.58	Peak	Vertical	Pass
2	88.185	14.71	-15.59	43.5	-28.79	Peak	Vertical	Pass
3	198.495	13.21	-13.50	43.5	-30.29	Peak	Vertical	Pass
4	297.168	16.91	-11.09	46.0	-29.09	Peak	Vertical	Pass
5	487.726	19.95	-7.12	46.0	-26.05	Peak	Vertical	Pass
6	863.507	25.23	-2.34	46.0	-20.77	Peak	Vertical	Pass

Remark: Absolute Level = Reading Level + Factor, Margin = Absolute Level – Limit Factor = Ant. Factor + Cable Loss – Pre-amplifier

Remark:

- (1) Measuring frequencies from 9 KHz to the 1 GHz, Radiated emission test from 9KHz to 30MHz was verified, and no any emission was found except system noise floor.
- (2) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (3) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

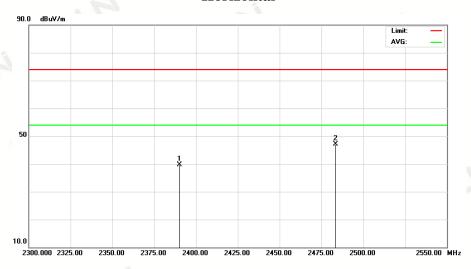
Above 1 GHz Test Results:

EU E	TA 0		Advance TAC &		
EUT:	TAC	Model Name:	Deluxe TAC		
Temperature:	25 ℃	Test Date:	2021-08-02		
Pressure:	1010 hPa	Relative Humidity:	60%		
Test Mode :	1Mbps	Test Voltage:	DC3.7V from battery		
Measurement Distance	3 m	Frenqucy Range	1GHz to 25GHz		
RBW/VBW	1MHz/1MHz for Peak, 1MHz/10Hz for Average.				

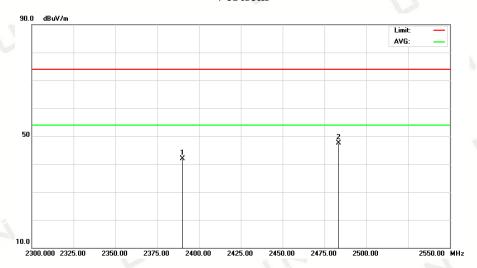
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Rema	Comment
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	rk	Comment
20	i	(2	2405 MHz)-Above	1G			
4810.11	57.53	-3.64	53.89	74	-20.11	Pk	Vertical
4810.11	44.62	-3.64	40.98	54	-13.02	AV	Vertical
7235.64	53.66	-0.94	52.72	74	-21.28	Pk	Vertical
7235.64	41.19	-0.94	40.25	54	-13.75	AV	Vertical
4810.11	55.89	-3.64	52.25	74	-21.75	Pk	Horizontal
4810.11	42.01	-3.64	38.37	54	-15.63	AV	Horizontal
7235.64	54.46	-0.94	53.52	74	-20.48	Pk	Horizontal
7235.64	36.07	-0.94	35.13	54	-18.87	AV	Horizontal

Remark

- (1) Measuring frequencies from 1 GHz to the 25 GHz.
- (2) "F" denotes fundamental frequency; "H" denotes spurious frequency. "E" denotes band edge frequency.
- (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.
- (4) Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- (5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- (6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.



Operation Mode: TX Mode


_	A 1 D 1	Read	ding	A 1/0F	Α	ct	Lir	mit	1
Freq. (MHz)	Ant.Pol. H/V	Peak (dBuv)	AV (dBuv)	Ant/CF CF(dB)	Peak (dBuv/m)	AV (dBuv/m)	Peak (dBuv/m)	AV (dBuv/m)	Note
2390.00	Н	45.93		-5.79	40.14		74.00	54.00	CH01
2390.00	V	48.01		-5.79	42.22		74.00	54.00	CH01
2483.50	Н	52.69	\	-4.98	47.71	21-	74.00	54.00	CH01
2483.50	V	53.73		-4.98	48.75		74.00	54.00	CH01

Corr.Factor = Antenna Factor + Cable Loss - Pre-amplifier.

Horizontal

Vertical

5 OCCUPIED BANDWIDTH MEASUREMENT

5.1 Test Limit

FCC Part15(15.247), Subpart C					
Section	Test Item	Limit	Frequency Range (MHz)	Result	
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

5.2 Test Procedure

- 1. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- 2. Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto, Span=6MHz.

5.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

5.4 Test Result

PASS

Mode	Freq	6dB 99%OBW		Conclusion	
Mode	(MHz)	(MHz)	(MHz)	Conclusion	
TX	2405	1.611		PASS	

2405 MHZ

6 POWER SPECTRAL DENSITY

6.1 TEST LIMIT

FCC Part15(15.247), Subpart C					
Section Test Item Limit Fre			Frequency Range (MHz)	Result	
15.247	Power Spectral Density	8 dBm (in any 3kHz)	2400-2483.5	PASS	

6.2 TEST PROCEDURE

- 1. The EUT was directly connected to the spectrum analyzer.
- 2. Set EUT as normal operation.
- 3. Based on FCC Part15 C Section 15.247: RBW=3kHz, VBW=10kHz.
- 4. Set detected by the spectrum analyzer with peak detector.

6.3 TEST SETUP

6.4 TEST RESULT

PASS

Mode	Freq	Power Density Limit		Result	
Mode	(MHz)	(dBm/3kHz)	(dBm/3kHz) (dBm/3kHz)		
TX	2405	-5.812	8	PASS	

2405 MHZ

7 PEAK OUTPUT POWER

7.1 TEST LIMIT

FCC Part15(15.247), Subpart C					
Section Test Item Limit Frequency Range (MHz) Resu				Result	
15.247(b)(3)	Peak Output Power	1 watt or 30dBm	2400-2483.5	PASS	

7.2 TEST PROCEDURE

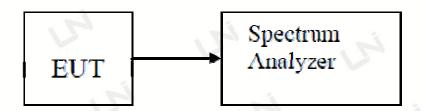
1. The EUT was directly connected to the Power meter.

7.3 TEST SETUP

7.4 TEST RESULT

PASS

Test Mode Frequency (MHz)		Maximum Peak Conducted Output Power (dBm)	LIMIT (dBm)
TX	2405	8.64	30



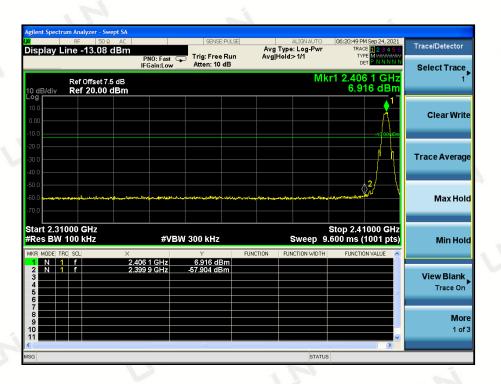
8 OUT OF BAND EMISSIONS

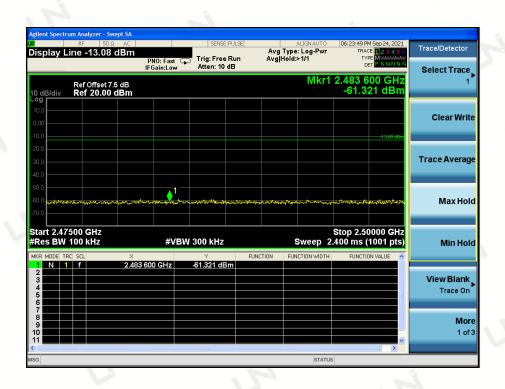
8.1 TEST LIMIT

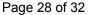
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

8.2 TEST SETUP

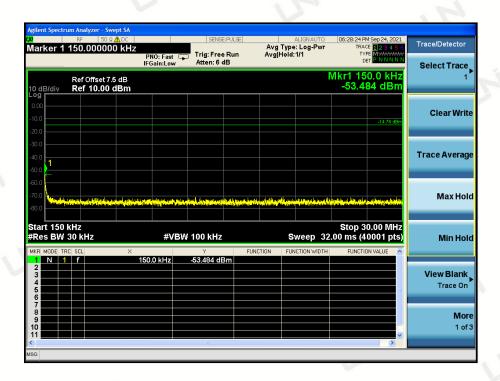
8.3 TEST PROCEDURE

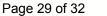

- 1. Set EUT as TX operation and connect directly to the spectrum analyzer.
- 2. Based on FCC Part15 C Section 15.247: RBW=100kHz, VBW=300kHz.
- 3. Set detected by the spectrum analyzer with peak detector.


8.4 TEST RESULT


PASS

Frequency Band	Delta Peak to band emission (dBc)	>Limit (dBc)	Result
2400	64.82	20	Pass
2483.5	68.24	20	Pass



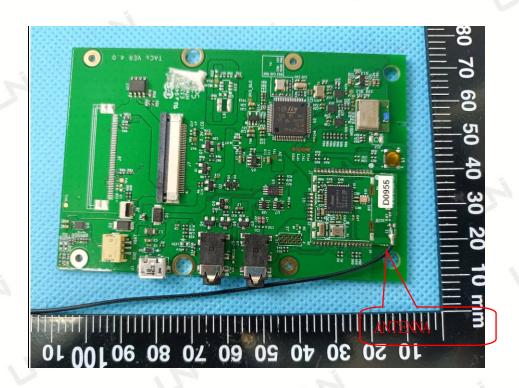




Page 30 of 32

Report No.: UNIA21092307ER-62

9 ANTENNA REQUIREMENT


Standard Applicable:

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Antenna Connected Construction

The antenna used in this product is a Monopole Antenna, The directional gains of antenna used for transmitting is 0dBi.

ANTENNA:

10 PHOTO OF TEST

10.1 RADIATED EMISSION

10.2 CONDUCTED EMISSION

End of Report